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Fracton order is a new kind of quantum order characterized by topological excitations that exhibit remarkable
mobility restrictions and a robust ground-state degeneracy (GSD) which can increase exponentially with system
size. In this paper, we present a generic lattice construction (in three dimensions) for a generalized X-cube model
of fracton order, where the mobility restrictions of the subdimensional particles inherit the geometry of the lattice.
This helps explain a previous result that lattice curvature can produce a robust GSD, even on a manifold with
trivial topology. We provide explicit examples to show that the (zero-temperature) phase of matter is sensitive
to the lattice geometry. In one example, the lattice geometry confines the dimension-1 particles to small loops,
which allows the fractons to be fully mobile charges, and the resulting phase is equivalent to (3+1)-dimensional
toric code. However, the phase is sensitive to more than just lattice curvature; different lattices without curvature
(e.g., cubic or stacked kagome lattices) also result in different phases of matter, which are separated by phase
transitions. Unintuitively, however, according to a previous definition of phase [X. Chen et al., Phys. Rev. B 82,
155138 (2010)], even just a rotated or rescaled cubic results in different phases of matter, which motivates us
to propose a coarser definition of phase for gapped ground states and fracton order. This equivalence relation
between ground states is given by the composition of a local unitary transformation and a quasi-isometry (which
can rotate and rescale the lattice); equivalently, ground states are in the same phase if they can be adiabatically
connected by varying both the Hamiltonian and the positions of the degrees of freedom (via a quasi-isometry).
In light of the importance of geometry, we further propose that fracton orders should be regarded as a geometric
order.
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Topologically ordered quantum phases of matter are often
characterized by their topological excitations and topological
ground-state degeneracy (GSD). These (liquid [1]) topological
phases [2–4] (e.g., Z2 gauge theory described by toric code [5]
or BF theory [6,7]) are topologically invariant. That is, the
Lagrangian has no dependence on the space-time metric; the
GSD only depends on the topology of the spatial manifold;
and the braiding statistics of the topological excitations only
depends on the topology of the braiding paths.

This topological invariance is absent in the recently discov-
ered, exactly solvable, gapped three-dimensional (3D) lattice
models [8–19] that exhibit so-called fracton topological order
[13,20]. Fracton order can be characterized by its topological
excitations which are subdimensional [21], which means that
they are immobile or are restricted to only move along lines
or surfaces without creating or destroying other topological
excitations. In this context, a topological excitation is an
excitation that can not be annihilated by local operators, but
instead requires contact with a corresponding antiparticle in
order to be annihilated [22]. The immobile excitations are
called fractons, while the particles that are bound to lines
and surfaces are called dimension-1 particles (or lineons [23])
and dimension-2 particles, respectively. Fracton order has also
been characterized by its GSD which increases exponentially
with system size on a torus [8,9,24], geometric braiding
processes (Fig. 1), geometry-dependent entanglement [25–
27], glassy dynamics [11,28,29], duality to lattice defects
[30], duality to fractal and subdimensional symmetry breaking

[10,13,31–34], bifurcation in entanglement renormalization
[24,35], and connections to emergent gravity [36].

The aim of our work is to demonstrate the significance of
geometry in the study of fracton order by considering the
effects of changing the geometry of the lattice. By lattice
geometry, we mean the following: Is the lattice a cubic
lattice or stack of kagome lattices? Or does the lattice have
curvature (as in, e.g., Fig. 5)? Although liquid topological
order (e.g., Z2 gauge theory) is completely blind to lattice
geometry, we will show that lattice geometry plays a fun-
damental role in the physics of fracton order. To do this,
in Sec. II we formulate a lattice construction (Fig. 3) of
generic lattices on which we can define a generalized X-cube
fracton model, which was previously only defined on a cubic
lattice [13].

In Sec. III we will see that the mobility restrictions of the
subdimensional particles inherit the geometry of the lattice.
This helps explain a previous discovery that lattice curvature
can result in a robust GSD on a manifold with trivial topology
[Fig. 6(b)] [37].

In Sec. IV, we show that the lattice geometry can also affect
the phase of matter (at zero temperature). As examples, we
consider two lattices (Figs. 8 and 7) where the geometry grants
fractons either full or subdimensional mobility which results in
a phase equivalent to (3+1)-dimensional [(3+1)D] Z2 gauge
theory or a stack of (2+1)-dimensional [(2+1)D] toric codes.

In Sec. V, we show that the phase is sensitive to
more than just lattice curvature. For example, the X-cube
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FIG. 1. Geometric braiding operators for the (a) X-cube model
on a cubic lattice [13,15,37], (b) X-cube model on a stacked kagome
lattice, and (c) Chamon model [11,12] of fracton order. The surfaces
are membrane operators that braid fractons around the edge of the
membrane by exchanging other excitations in the interior of the
membrane [37]. The lines are string operators that braid dimension-1
particles. The operators are products of X, Y , and Z Pauli operators,
which are colored red, green, and blue. This figure exemplifies
that, in fracton orders, the braiding paths of the subdimensional
excitations take rigid geometric shapes that depend on the model and
lattice.

model on different lattices without curvature (e.g., cubic or
stacked kagome) can result in a different GSD and phase of
matter.

In [38] (and [39]), two gapped quantum ground states were
defined to be in the same phase if they could be connected by
an adiabatic evolution of the Hamiltonian. Equivalently, the
phase was also classified by an equivalence relation where two
states are in the same phase if they could be connected by
a (generalized) local unitary (gLU) transformation. (Hamilto-
nians on different lattices can be compared by adding trivial
gapped degrees of freedom so that both Hamiltonians share the
same Hilbert space; analogously, a “generalized” local unitary
is allowed to add and remove degrees of freedom that are in a
direct product state.)

Remarkably, we show that using this definition of phase
[38], a rotated or rescaled lattice can also correspond to a
different phase (Fig. 9); e.g., the X-cube model on cubic
lattices with different orientations corresponds to different
phases of matter. This surprising (and unintuitive) result can be
understood from the fact that different lattices have different
lines and surfaces that the subdimensional particles are bound
to (Fig. 11).

This motivates us to propose a coarser definition of phase
in Sec. V A which (more intuitively) equates the X-cube
model on rotated and rescaled lattices. Under this definition,
two gapped quantum ground states are in the same phase if
they can be connected by an adiabatic evolution of both the
Hamiltonian and the positions of the degrees of freedom.
Equivalently, this definition of phase is also given by an
equivalence relation where two states are in the same phase if
they can be connected by the composition of a generalized local
unitary (gLU) transformation and a quasi-isometry (which can,
e.g., rotate and rescale the lattice). A quasi-isometry is a spatial
transformation that preserves long-distance structure, such as
locality, but is not required to preserve short-distance structure.
When only liquid phases such as liquid [1] topological order
are considered, our definition of phase reduces to the previous
definition proposed in [38].

FIG. 2. (a) For every cube, the X-cube model on a cubic lattice
[Eq. (1)] has a 3-cell operator which is a product of 12 Pauli Z

operators along the edges of the cube:
∏

�∈ Z�. (b) At each vertex,
there are three cross operators: one for each of the three planes that
intersect the vertex. The operators are a product of four X operators
on the four links within the plane that neighbor the vertex:

∏
�∈+ X�.

(Regarding daggers in figure: Ref. [40])

I. X-CUBE MODEL REVIEW

The X-cube model was originally defined on a cubic lattice
with Z2 Pauli operators on the links [13]:

HX-cube = −
∑ ∏

�∈
Z� −

∑

+

∏

�∈+
X�. (1)

The first term sums over all cubes in the lattice and is a
product of 12 Pauli Z operators over the 12 edges of the
cube [Fig. 2(a)]. Excitations of this term are immobile fractons
which are created at the corners of rectangular membrane
operators [13]. However, a pair of neighboring fractons is
a dimension-2 particle which can move along a plane (via
the same “membrane” operator but of unit width). This cube
operator counts the number of fractons within the cube by
braiding dimension-1 particles (excitations of the second term)
around the edges of the cube.

The second term in the Hamiltonian sums over all quadru-
ples of links which make the shape of a cross and is a product
of four Pauli X operators over these four links [Fig. 2(b)].
Excitations of this term are dimension-1 particles which can
only move along the x, y, or z axes [13]. The collection of
an x-axis, y-axis, and z-axis dimension-1 particle can fuse
into the vacuum. A neighboring pair of dimension-1 particles
moving in the same direction is a dimension-2 particle, which
can move along the plane orthogonal to their displacement. The
cross operator in the XY plane counts the number of x-axis and
y-axis particles at the vertex (modulo 2) by braiding a pair of
fractons around a loop in the XY plane.

II. INTERSECTING SURFACES LATTICE
CONSTRUCTION

Unlike liquid topological order, the X-cube model can
not be naturally defined on an arbitrary lattice. The links
neighboring each vertex must come in pairs to uniquely specify
how a dimension-1 particle should pass through a link. We
may also want to preserve the fusion rule that the collection
of three orthogonal dimension-1 particles can fuse into the
vacuum. Thus, we will restrict the vertices to have exactly
six neighboring links so that there are exactly three kinds of
dimension-1 particles at each vertex. Therefore, each vertex
must locally look like the vertex of a cubic lattice. Additionally,
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FIG. 3. (a) A cubic lattice and (b) a stack of kagome lattices
constructed from intersecting surfaces (colored planes), which we
refer to as i-surfaces. Pauli operators live on the links (black) of
the lattice, which are placed where two i-surfaces intersect. The
Hamiltonian [Eq. (2)] consists of three cross operators at each vertex
[Fig. 2(b)], and a 3-cell operator at each 3-cell (3D volume enclosed
by i-surfaces) which is a product of Z operators on the edges of
the 3-cell. The stack of kagome lattices has two kinds of 3-cells: a
triangular prism [Fig. 4(a)] and a hexagonal prism.

there must be a notion of surfaces for the dimension-2 particles
to be bound to.

In order to facilitate these conditions, we will construct our
lattice from a collection of intersecting surfaces, which we will
refer to as i-surfaces. The motion of a dimension-2 fracton
pair will be restricted to these i-surfaces. The dimension-1
particles will traverse the lines formed by the intersection
between two i-surfaces. The lattice has a vertex wherever
three i-surfaces intersect. Links between vertices are places
where two i-surfaces intersect. As desired, not all lattices are
compatible with this construction; e.g., a stack of honeycomb
lattices cannot be constructed, which is sensible since it is
not clear how a dimension-1 particle should pass through
a five-valence vertex of a stacked honeycomb lattice. For
simplicity, we will require that the i-surfaces are not fine tuned;
i.e., perturbing the i-surfaces should not change the lattice.
This implies that no more than three i-surfaces can intersect
at a single point and no more than two i-surfaces can intersect
along a line (which, e.g., rules out a stack of triangular lattices).
As examples, in Fig. 3 we show how this construction can form
a cubic lattice or stack of kagome lattices.

The Hamiltonian is

HX-cube = −
∑ ∏

�∈
Z� −

∑

+

∏

�∈+
X�

−
∑

�

∏

�∈©
Z� −

∑

�

∏

�⊥�
X�. (2)

The first two terms generalize Eq. (1). Instead of summing
over cube operators in the first term, we instead sum over
all 3-cells (3D volumes enclosed by i-surfaces) at which the
3-cell operator is a product of Z operators on the edges of the
3-cell [Fig. 4(a)]. The second term again consists of three cross
operators at each vertex, one for each of the three i-surfaces
intersecting the vertex [Fig. 2(b)]. The third term sums over all
finite-sized loops (that do not increase in size as the system
size increases) and is a product of Z operators around the
loop [Fig. 4(b)]. The fourth term sums over all finite-sized
parallel loops and is a product of X operators on the links

(a) (b) (c)

FIG. 4. New kinds of X-cube Hamiltonian terms in Eq. (2). (a) An
example of a 3-cell operator on a triangular prism, which is a 3-cell in
a stack of kagome lattices [Fig. 3(b)]. The 3-cell operator (

∏
�∈ Z�)

on a 3-cell ( ) is a product of Z operators on the links around the
edges of the 3-cell. (b) A product of Z operators on the links around a
loop:

∏
�∈© Z�. (c) A product of X operators on links connecting two

parallel loops:
∏

�⊥� X�. (Regarding daggers in figure: Ref. [40])

connecting the parallel loops [Fig. 4(c)]. The last two terms are
new, and only appear when there are finite-sized intersections
between i-surfaces. Without the last two terms, the model can
be fine tuned (e.g., in Fig. 7). The third term can be thought of
as condensing a dimension-1 particle around the loop, while
the fourth term condenses a (dimension-2) pair of fractons
around the loop. These terms tend to suppress the existence of
immobile fracton excitations [41].

III. SIGNIFICANCE OF GEOMETRY

Now that we can define the X-cube model on different
lattices, we can ask the following: How does the geometry
of the lattice affect the long-distance physics?

For the case of liquid topological orders, such as Z2 gauge
theory which is described by toric code or BF theory, the
geometry of the lattice or curvature of the spatial manifold has
little effect on the long-distance physics. That is, it does not
matter if toric code is defined on a square lattice or triangular
lattice; the charge and flux excitations can always move in any
direction and the GSD only depends on the topology of the
spatial manifold.

In contrast to liquid topological order, the X-cube model is
very sensitive to lattice geometry. For example, on the cubic
lattice there are three kinds of dimension-1 particles, which
are constrained to only move along the x, y, and z axes.
However, when the X-cube model is defined on a stack of
kagome lattices [Fig. 3(b)], there are four kinds of dimension-1
particles corresponding to the four different directions that the
links of the lattice are aligned. These four kinds of dimension-1
particles are physically distinct; they belong to different super-
selection sectors and can be distinguished by braiding pairs of
fractons from a distance [similar to how braiding can be done
on a cubic lattice Fig. 1(a)].

As a more exotic lattice example, we can consider curved
i-surfaces that produce curved lattices. For example, a collec-
tion of curved surfaces can produce lattices with hyperbolic
geometry (Fig. 5). On this lattice, the dimension-1 particles
move along curved lines, which are geodesics of the hyperbolic
plane. Thus, the mobility restrictions of the subdimensional
particles inherit the geometry of the lattice. Consequently, the
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FIG. 5. Order-4 pentagonal tiling of the hyperbolic plane. A
stack of this lattice can be created from the intersecting surface
construction. The dimension-1 particles move along the lines of the
above lattice, which are geodesics of the hyperbolic plane. As a result,
the braiding operators in Fig. 1 will curve with the lattice geometry.
The geometry of a hyperbolic 3-space can be constructed from an
order-4 dodecahedral honeycomb [42].

rigid braiding operators [Figs. 1(a) and 1(b)] also inherit the
lattice geometry.

The geometry-dependent mobility restrictions of the sub-
dimensional particles also affect the ground-state degeneracy
(GSD). Similar to toric code, the GSD of the X-cube model
can be understood as resulting from nonlocal logical operators
that act on the degenerate ground-state Hilbert space. These
nonlocal operators are anticommuting Wilson and ’t Hooft
loops which correspond to moving a dimension-1 particle
or a dimension-2 fracton pair, respectively, around a closed
loop [Fig. 6(a)] [37,43,44]. Thus, the Wilson and ’t Hooft
loops share the geometric mobility constraints of the subdi-
mensional particles. Since the ’t Hooft loops are bound to a
two-dimensional i-surface, they are very similar to ’t Hooft

FIG. 6. (a) Wilson (blue) and ’t Hooft loops (red) of the X-cube
model on a cubic lattice, which are the logical operators that act on the
degenerate ground-state manifold [37,43]. These loops are products
of Z (blue) and X (red) operators. Physically, a Wilson loop moves
a dimension-1 particle, while a ’t Hooft loop moves a dimension-2
pair of fractons. (b) When a large torus-shaped i-surface is added to
a cubic lattice (hidden for clarity), new links (black) with new qubits
are added to the model. New Wilson and ’t Hooft loops result on the
torus-shape i-surface, which results in a GSD that can be attributed
to lattice curvature [37].

FIG. 7. The X-cube model on a stack of the above lattice results
in a phase equivalent to a stack of (2+1)D toric codes. Toric code
charges (blue diamonds) and fluxes (red disks) are created at the ends
of string operators which are products of X (red lines) and Z (blue
lines) operators, respectively. A charge is an excitation of a cube-
shaped 3-cell (e.g., at a blue diamond). A flux is an excitation of cross
[Fig. 2(b)] and loop [Fig. 4(c)] operators. There are no fractons; the
lattice curvature granted fractons mobility and turned them into toric
code charges.

loops in 2D toric code. As a result, the GSD typically scales as

log2 GSD ∼
∑

s

2gs, (3)

where
∑

s sums over all i-surfaces which each contribute a
factor of 22gs to the GSD, where gs is the genus of the i-surface
s [45].

The geometry dependence of the Wilson and ’t Hooft loops
allows us to better understand a previous result that lattice
curvature can lead to a robust GSD on a manifold with trivial
topology [37]. The lattice considered is formed by constructing
the cubic lattice from orthogonal i-surfaces [Fig. 3(a)] and
then adding an additional large i-surface with the topology of
a torus [Fig. 6(b)]. The new torus-shaped i-surface has genus
g = 1 and results in closed Wilson and ’t Hooft loop operators
around the torus, which contribute a factor of 4 to the GSD
[in accordance with Eq. (3)]. The GSD is robust in the limit
of a large torus-shaped i-surface. Note that the topology of
the spatial manifold was not changed; instead, it was argued
in Ref. [37] that the resulting lattice should be interpreted as
having spatial curvature around the torus-shaped i-surface.

IV. MOBILIZING FRACTONS

We will now consider two lattices with a very large amount
of positive curvature.

A. Cylindrical i-surfaces

The first lattice is a stack of the lattice shown in Fig. 7,
which is constructed from cylinder-shaped i-surfaces. Note
that on this lattice, we must also include the new loop terms
in HX-cube [Eq. (2)]. These terms do not commute with Wilson
and ’t Hooft string operators [Fig. 6(a)] that are orthogonal to
the plane, which implies that the topological excitations can
not move orthogonal to the plane.
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FIG. 8. (a) Part of a face-centered-cubic (fcc) lattice (green and
blue points). (b) Spherically shaped i-surfaces (with radius 0.46) are
placed at the vertices of the fcc lattice. Here, we show seven i-surfaces
positioned at the seven blue points in (a). Qubits live on the lattice
links (black) where two i-surfaces intersect. (Some links are hidden
behind the spheres.) (c)–(g) The resulting 3-cells (3D volume enclosed
by i-surfaces). The phase of the X-cube model on the resulting lattice
is (3+1)D Z2 gauge theory. Excitations of the 3-cell cubes (g) are
Z2 charges (not fractons). The hopping operator is a product of X

operators on the two red links in (b), which excite the two nearby
blue cubes (Z2 charges).

More physically, the third term in Eq. (2) condenses the
dimension-1 around loops shown in Fig. 4(b); this prevents
pairs of fractons from moving out of the plane. The fourth
term in Eq. (2) condenses pairs of fractons around loops shown
in Fig. 4(c); this prevents dimension-1 particles from moving
out of the plane. These confinement processes also result in
the mobilization of the fractons, which typically results in our
lattice construction when three i-surfaces intersect at multiple
points.

The resulting phase is equivalent to a stack of (2+1)D toric
codes. String operators that move the toric code charges and
fluxes are shown in Fig. 7.

It is important to note that the confinement processes did
not result from optionally adding the third and fourth terms
to HX-cube [Eq. (2)] and increasing their strength. Rather,
the confinement processes are an instability of the first two
terms of HX-cube [Eq. (2)] that result from the geometry of the
lattice, and in particular, the small diameter of the i-surfaces.
That is, if only the first two terms of HX-cube are considered,
then generic perturbations will result (e.g., after applying
degenerate perturbation theory) in an effective Hamiltonian
that includes all four of the terms in HX-cube.

B. Spherical i-surfaces

Now, consider a lattice constructed from spherical i-
surfaces. We will place the spheres on a face-centered-cubic

FIG. 9. A schematic phase diagram of H (g1,g2) [Eq. (4)], which
interpolates between the four Hamiltonians Hi (i = 1,2,3,4) at the
four corners (blue dots). Each Hi consists of the X-cube model defined
on the black lattice (next to each Hi), while the qubits on the green
links are trivially gapped out as in Eq. (4). The X-cube model is
sensitive to the geometry of the lattice on which it is defined (black
lattice), and as a result, each Hi belongs to a different gLU phase
and the four Hi are separated by phase transitions (solid and dotted
red lines). This physics is unique to fracton order; if we placed a
liquid topological order (e.g., 3D toric code) on the black lattice
(instead of the X-cube model), then the above phase transitions
would not be necessary. However, as explained in Sec. V A, if lattice
transformations are allowed during the Hamiltonian interpolation,
then the phase transitions along the dotted red lines are not necessary,
which leads to a different definition of phase of matter.

(fcc) lattice [Figs. 8(a) and 8(b)] [46]. Remarkably, when the
X-cube model is defined on this lattice [47], the phase is
equivalent to (3+1)D Z2 gauge theory [which can be described
by BF theory or (3+1)D toric code]. Indeed, we have checked
that the ground-state degeneracy is equal to 8 on this lattice
lattice with periodic boundary conditions, as expected for
(3+1)D Z2 gauge theory [48]. (The unit cell is composed of
48 links, on which the Pauli operators reside.)

The important physics results from the fact that the lattice
curvature allows the excitations of the 3-cell operators to be
fully mobile (charge excitations in Z2 gauge theory), rather
than immobile fractons which is the case on a cubic lattice.
More generally, this tends to occur when many triples of i-
surfaces intersect at multiple points.

An excitation of a single cross operator [Fig. 2(b)] still
behaves similar to a dimension-1 particle; however, it is
localized to a finite-sized loop around a sphere, and is therefore
effectively confined. Certain (somewhat complicated) closed
loops of cross-operator excitations correspond to a Z2 gauge
theory flux. Logical operators are given in Ref. [24], which are
useful for understanding the flux excitation.

V. DIFFERENT PHASES

We have shown that lattice geometry greatly affects the
topological excitations, ground-state degeneracy (GSD), and
phase of the X-cube model. In this section, we will discuss
more subtle ways that the lattice geometry affects the phase
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of matter (Fig. 9), which will motivate a different definition of
phase in Sec. V A.

We will begin by studying the X-cube model using the
definition of phase of matter defined in Ref. [38]. In Ref. [38],
ground states of gapped local Hamiltonians are grouped into
equivalence classes, which are interpreted as phases of matter.
The ground states of H (0) and H (1) are in the same phase if
there exists an adiabatic evolution of Hamiltonians H (g) such
that H (g) is gapped for all 0 � g � 1 (i.e., no phase transition
occurs) where g parametrizes the coupling constants in H (g).
Equivalently, two states are in the same phase if they can be
equated by a generalized local unitary transformation (gLU)
[49]. We will refer to phases under this classification as gLU
phases in order distinguish them from the coarser classification
of phase that we will propose in Sec. V A.

We will argue that different lattice geometries result in
different gLU phases using two different kinds of arguments.
The first argument is to consider the GSD. If two Hamiltonians
have different GSD, then the Hamiltonians must be separated
by a gap closing (i.e., a phase transition) so that the GSD
can change [under an adiabatic evolution of the Hamiltonian
H (g)]. This implies that, e.g., the X-cube model on the
following lattices must correspond to different gLU phases:
a cubic lattice, a stacked kagome lattice, or a cubic lattice with
a larger unit cell (Fig. 9).

To make this explicit, we can consider an arbitrary interpola-
tion H (g1,g2) between four Hamiltonians Hi with i = 1,2,3,4:

Hi = HX-cube(black)

−
∑

�,�′∈splitted black

X�X�′ −
∑

�∈green

Z�,
(4)

H (g1,g2) interpolates between Hi with i = 1,2,3,4.

Each Hi is defined on a stacked kagome lattice and consists
of the X-cube model defined on the black lattice (next to each
Hi in Fig. 9), while the qubits on the green links are trivially
gapped out. The second term is not conceptually important
and will be discussed in the next paragraph. For a periodic
stacked kagome lattice of length L, H1 and H2 describe the
X-cube model on different slanted cubic lattices and with a
GSD = 26L−3. H3 describes the X-cube model on a stacked
kagome lattice with GSD = 28L−3. And H4 describes the X-
cube model on a slanted cubic lattice with a larger unit cell
and GSD = 25L−3 [48]. Thus, H1 (and H2), H3, and H4 must
belong to different gLU phases since they have different GSD
[50].

There is a minor subtlety regarding the definition of
HX-cube(black) due to the fact that pairs of neighboring vertices
in the black slanted cubic lattices (in Fig. 9) are split into
multiple links (Fig. 10) on the stacked kagome lattice. In
HX-cube(black), the 3-cell operators are products of Z operators
on all of the black links on the edge of a 3-cell. The cross
operators are still products of exactly four X operators on four
black links neighboring a vertex. The second term in Eq. (4)
sums over all pairs of links that are between two neighboring
vertices in a black lattice; see Fig. 10 for an example. We
emphasize that H1 is in the same phase as the X-cube model
defined on a slanted cubic lattice like the one that H1 is defined
on, but without the green links or multiple black links between

FIG. 10. Vertices of the black slanted cubic lattices in Fig. 9 can
be separated by two or four black links. In order to define an X-cube
model on these black lattices with extra degrees of freedom, we need to
add an additional term to Hi [Eq. (4)], which takes the following form
for the above for labeled links:

∑
�,�′∈splitted black X�X�′ = X1X2 +

X1X3 + X1X4 + X2X3 + X2X4 + X3X4.

neighboring vertices; H1 just includes extra qubit degrees of
freedom which are either gapped out (as in the green links)
or (trivially) sewed in using a local unitary (as in the splitted
black links).

The two different slanted cubic lattices (H1 and H2) also
belong to different gLU phases. Again, this can be shown using
certain choices of periodic boundary conditions for which these
Hamiltonians have different GSD (Appendix A 1). However,
there is also a physical reason for a difference in gLU phase.
The dimension-2 particles (i.e., pairs of fractons or dimension-
1 particles) are bound to an i-surface (plane of the black cubic
lattice in this case), and these i-surfaces are different in H1 and
H2. If we consider a ’t Hooft loop or paired Wilson loop formed
by these dimension-2 particles, then there are loop operators
(Fig. 11) that only exist in H1 or H2, but not both. In Appendix
A 2, we use this intuition to show more formally that in general
it is not possible to relate the ground states of H1 and H2 by
a local unitary transformation. H1 and H2 can be related by a

FIG. 11. A ’t Hooft loop (red) and paired Wilson loop (blue),
which both commute with H1 (Fig. 9) (but not H2). The ’t Hooft
and paired Wilson loop operators anticommute and are products of
X and Z operators on the red and blue links, respectively. The above
loop operators each transport dimension-2 particles around a periodic
direction via a nonlinear path.H2 does not have topological excitations
that can traverse the same plane (which becomes a precise statement
in the limit of large system size). In Appendix A 2, we use this fact to
argue that H1 and H2 correspond to different phases of matter.
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lattice rotation, but this is not a local unitary transformation.
Thus, the X-cube model on a rotated lattice can result in a
different gLU phase of matter from the X-cube model on the
unrotated lattice [51].

A. Coarser fracton phases

In Ref. [38], phases of gapped local Hamiltonians were
defined as being separated by phase transitions; equivalently,
different gLU phases can not be connected by a generalized
local unitary (gLU) transformation [49]. However, we argued
that the X-cube model on the different black lattices in Fig. 9
correspond to different gLU phases of matter that must be
separated by phase transitions. This may be unsettling since
the lattices used to define H1, H2, and H4 in Fig. 9 only differ
by rotation or rescaling of the unit-cell size. This motivates a
definition of phase of matter where the gLU is composed (via
function composition) with a quasi-isometry.

A quasi-isometry is a spatial transformation that preserves
long-distance structure, such as locality. A quasi-isometry is
coarsely (i.e., up to a bounded error) one-to-one and onto.
Importantly, a quasi-isometry preserves locality (of local
Hamiltonians and local unitary transformations) since a quasi-
isometry f must satisfy |f (x) − f (y)| � K|x − y| + A (for
constant K,A > 0), which implies that nearby points can not
be mapped to far away points. A quasi-isometry does not need
to preserve short-distance details; e.g., a quasi-isometry can be
discontinuous and is perfectly well defined on a lattice. These
properties are desirable since we are interested in long-distance
physics. A homeomorphism (between path-connected metric
spaces) with bounded derivatives is a quasi-isometry that also
preserves short-distance structure. See Appendix B for more
details. Rotations, translations, and scale transformations are
the most important examples of quasi-isometries in this work.

We propose a definition of phase where two states are in
the same phases if and only if they can be equated by the
composition of a gLU and a quasi-isometry. This definition of
phase intuitively groups H1, H2, and H4 (Fig. 9) into the same
phase, but places H3 into a separate phase.

Recall that phases of gapped Hamiltonians are separated by
phase transitions under adiabatically varying the Hamiltonian.
If the positions of the degrees of freedom (qubits in this work)
are stationary under the adiabatic evolution, then gLU alone
defines the corresponding notion of phase. However, if the
positions of the degrees of freedom can be changed during
the adiabatic evolution (e.g., by rotating or applying strain or
pressure to a crystal in a laboratory), then the composition of a
gLU with a quasi-isometry defines the correct notion of phase.
That is because in this case, the ground states are separated by
phase transitions if and only if they can not be related by the
composition of a gLU with a quasi-isometry.

VI. CONCLUSION

We have shown that nearly all important characterizations
of the long-distance physics of the X-cube model depend on
lattice geometry. These characterizations include the mobility
restrictions of the topological excitations and braiding oper-
ators, ground-state degeneracy, and the phase of matter. We
emphasize that the long-distance physics of liquid topological

order is blind to the short-distance lattice geometry since
none of the above characteristics of liquid topological order
depend on the geometry of the lattice. The lattice geometry
dependence of fracton order is ultimately the reason why
our definition of phase of matter (Sec. V A) was necessary.
Thus, we propose that fracton orders should be called fracton
geometric order to emphasize the important role played by
geometry. (Referring to fracton orders as “fracton topological
order” is misleading since these phases are not topologically
invariant.)

In Sec. V A, we made use of quasi-isometries to define
phases of matter. The paradigm that we are applying here
is that metric spaces and quasi-isometries are useful mathe-
matical tools when one is interested in long-distance physics
but starting with a short-distance model. Quasi-isometries
become unnecessary after coarse graining (under renomal-
ization group) a model to its low-energy and long-distance
effective field theory, for which the short-distance details
have been thrown away and no longer need to be explicitly
ignored by using quasi-isometries. For example, after coarse
graining toric code to BF theory [52], one finds that metric
spaces, distance metrics, and quasi-isometries can be replaced
by coarser concepts: topology, continuity, and continuous
functions. A similar paradigm using quasi-isometries was
recently applied in Refs. [53,54] in order to connect lattice
physics to quantum field theories within an “it from qubit”
perspective.

Mathematically, quasi-isometries are particularly important
in the study of geometric group theory. Geometric group theory
has been observed [55] to have connections to the Solovay-
Kitaev theorem [56,57], which is an important result in the
theory of quantum computation. Roughly, the theorem says
that if a set of operators generates a dense subset of SU(2),
then any operator in SU(2) can be efficiently obtained within
an accuracy ε by taking a product of only ∼log4(1/ε) operators
in the generating set [58]. It may be interesting to use geometric
group theory to understand the geometry of the ground-state
degeneracy of fracton orders.

We have only briefly studied examples of how geometry
affects the physics of the X-cube model. A more complete and
general understanding of the generic mathematical structure
would be very desirable. For example, it would be interesting to
study the infinite hierarchy of X-cube models that results from
our lattice construction via increasing the number of stacks
of i-surfaces. (We only considered three or four stacks, which
resulted in cubic and stacked kagome lattices, respectively.)
Furthermore, if the X-cube model is the simplest example of
fracton order in the same way that toric code is the simplest
example of topological order, more interesting geometric
physics may emerge in other fracton models, similar to how
more interesting topological invariants result from more exotic
models of (liquid) topological order [7].

Previously proposed emergent gravity models [59–63] were
later discovered to actually be gapless fracton models [36].
And, recently, a gravitylike attraction mechanism between
fractons was discovered [36] in gapless U(1) fracton models
[21,64] (although the attractive force is only long ranged if
the model has gapless fracton dipoles). These gapless U(1)
fracton models therefore appear to be simplified versions of a
gravitylike model. The gapped ZN fracton models discussed
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FIG. 12. Lattice vectors used to define the periodic boundary
conditions in Eqs. (A1) and (A2).

in this work are the discrete analogs of the U(1) fracton
models. It would therefore be interesting to study how the
geometry-dependent physics discussed in this work applies to
the U(1) fracton models, and how the gravitylike connections
of the U(1) fracton models may apply to the gapped ZN fracton
models.
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APPENDIX A: ROTATED LATTICE ARGUMENTS

In this appendix, we will argue more thoroughly that the
X-cube model on lattices that only differ by a rotation can
result in different gLU phases of matter. As a concrete example,
we will show that the ground states of H1 and H2 (Fig. 9)
belong to different gLU phases. That is, we will argue that
H1 and H2 must be separated by a phase transition (assuming
immobile qubits) and their ground states can not be related by
a generalized local unitary (gLU) transformation.

1. Degeneracy argument

First, we will give an example of a certain periodic boundary
condition for which the two Hamiltonians (H1 and H2) have a
different ground-state degeneracies (GSD). A periodic lattice
can be defined by imposing a periodic equivalence of lattice
points. A typical choice for a lattice of lengths (L1,L2,L3) is
to equate each point x as follows:

x ≡ x + L1a ≡ x + L2b ≡ x + L3c, (A1)

where a, b, and c are lattice vectors. With the lattice vectors
shown in Fig. 12, the above periodic boundary conditions result
in a log2 GSD = 2L1 + 2L2 + 2L3 − 3 for both H1 and H2.

However, if we instead choose

x ≡ x + b + L1a ≡ x + L2b ≡ x + L3c, (A2)

then H1 has log2 GSD = 2L2 + 2L3 (for even L1) while H2

instead has a much smaller log2 GSD = 2 + 2L3 (for even L1

and L2) [48]. The reduced GSD occurs because the Wilson
loops [Fig. 6(a)] along certain directions get merged into a sin-
gle Wilson loop due to the shifted periodic boundary condition.
Since H1 and H2 have different GSD on the same lattice, they
must be separated by a phase transition (if we assume that the
qubits are immobile under adiabatic Hamiltonian evolution).

2. Logical operator argument

As an alternative argument, we will derive a contradiction
by assuming that the ground states of H1 and H2 [Eq. (4)]
can be related by a local unitary transformation (in the sense
of Ref. [38]). We will work in the limit of an infinitely large
lattice so that the concept of local operators is well defined.
This will be an argument (not a proof) since we will apply
the physics knowledge that H2 does not have mutual semion
topological excitations that can traverse the loops in Fig. 11.
However, we expect that this could also be proven.

To derive a contradiction, consider a ground state |ψ1〉 of
H1 that is an eigenstate of the ’t Hooft loop T1 in Fig. 11, which
wraps a dimension-2 particle (composed of a pair of fractons)
around a periodic direction. We will also consider the paired
Wilson loop operator W1 in Fig. 11, which wraps a dimension-2
particle (composed of a pair of dimension-1 particles) around
the same plane. The algebra of these operators is

T1|ψ1〉 = |ψ1〉, T1W1 = −W1T1. (A3)

To derive a contradiction, suppose that H2 has a ground state
|ψ2〉 that is related to |ψ1〉 by a local unitary transformation
U via |ψ2〉 = U |ψ1〉. We can then define the transformed
operators

T2 ≡ UT1U
−1, W2 ≡ UW1U

−1; (A4)

|W2ψ2〉 ≡ W2|ψ2〉 must also be a ground state of H2. This is
because

〈ψ2|Hn
2 |ψ2〉 = 〈ψ1|U−1Hn

2 U |ψ1〉

=

〈W2ψ2|Hn
2 |W2ψ2〉 = 〈W1ψ1|U−1Hn

2 U |W1ψ1〉,
(A5)

where we have raised H2 to a positive integer power n. The
right-hand sides of the above two lines must be equal since
|ψ1〉 and |W1ψ1〉 ≡ W1|ψ1〉 are ground states of H1 (which is
topologically ordered) and must therefore be indistinguishable
by local operators [65], and U−1Hn

2 U is a local operator (since
H2 and U are local). Using n = 1 and 2, Eq. (A5) shows that
|ψ2〉 and |W2ψ2〉 have the same energy expectation value and
energy uncertainty of H2. Since |ψ2〉 is a ground state of H2

with zero-energy uncertainty, |W2ψ2〉 is therefore also a ground
state of H2.

Therefore, T2 and W2 are logical operators that act on
the ground states |ψ2〉 and |W2ψ2〉 of H2 with the following
algebra:

T2|ψ2〉 = |ψ2〉, T2W2 = −W2T2 (A6)

since |ψ2〉 = U |ψ1〉. But, since U is local, T2 and W2 must only
act on the qubits near the (red and blue) loops drawn in Fig. 11.
However, H2 does not have logical operators obeying Eq. (A6)
that only act in this region. This is because the presence of
these string logical operators would imply the existence of
topological excitations that can move along the loops drawn
in Fig. 11. However, no such excitations exist for H2. We have
thus derived a contradiction by assuming that the ground states
of H1 and H2 can be related by a local unitary transformation.
[Although we did not consider generalized local unitary (gLU)
transformations, which can add and remove qubits, we do not
expect this to affect the result of the argument.] Therefore, the
ground states of H1 and H2 can not be related by a local unitary
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FIG. 13. (Blue) A quasi-isometry f (x) = 2x − 2 floor(x/2)
which can be viewed on the continuum (f : R → R) or a lattice
(f : Z → Z). Note that f is neither continuous nor one-to-one
(nor onto when f : Z → Z); these properties are not required of
quasi-isometries. f (x) happens to be its own quasi-inverse [with
A = 4 in Eq. (B2)]. (Yellow) f (x) satisfies the coarse-Lipschitz
property [Eq. (B1)] with K = 1 and A = 2. The shaded yellow region
corresponds to the bound (resembling a light cone) that Eq. (B1)
implies on f (x) when y = 0.

transformation and must therefore correspond to different gLU
phases of matter.

Note that in order to derive a contradiction, it was essential
that we assumed that U is a local transformation. In particular,
U can not be a 2π/3 lattice rotation operator and thus T2 and
W2 can not simply be equal to T1 and W1 rotated by 2π/3.
Since lattice rotations are an example of a quasi-isometry, this
argument does not apply to our definition of phase in Sec. V A.

APPENDIX B: QUASI-ISOMETRY AND LOCALITY

In this appendix, we will review the mathematical notion of
quasi-isometry and prove that quasi-isometries preserve the lo-
cality of local Hamiltonians and local unitary transformations.

A quasi-isometry is a function between metric spaces that
is coarse Lipschitz and has a coarse-Lipschitz quasi-inverse.
To be precise, let X and X′ be metric spaces with distance
metrics dX : X × X → R and dX′ : X′ × X′ → R. We will
abuse notation and simply write |x − y| instead of dX(x,y) or
dX′ (x,y) (even though subtraction is not defined on a generic
metric space). A function f : X → X′ is coarse Lipschitz if

|f (x) − f (y)| � K|x − y| + A (B1)

for all x,y ∈ X. (If A = 0, then f is Lipschitz continuous.)
A function g : X′ → X is a quasi-inverse of f if there exists
A > 0 such that

|g(f (x)) − x| � A and |f (g(x ′)) − x ′| � A (B2)

for all x ∈ X and x ′ ∈ X′. g is a coarse inverse of f in the
sense that g inverts f up to a bounded error A. See Fig. 13 for
an example.

As an aside, quasi-isometries can be related to other kinds
of functions in certain limits: A quasi-isometry with A = 0 [in
Eqs. (B1) and (B2)] is also a uniform homeomorphism, which
is a homeomorphism that is uniformly continuous and has a
uniformly continuous inverse. All uniform homeomorphisms
between path-connected metric spaces are quasi-isometries. A

quasi-isometry with K = 1 and A = 0 is an isometry, which is
a distance-preserving transformation between metric spaces.

We define a local Hamiltonian to be a sum of operators
where the norm of each operator decreases exponentially
with the diameter of its support. More precisely, Ĥ is a
local Hamiltonian if it can be expressed as Ĥ = ∑

α Ôα with
constants E > 0 and ξ > 0 such that

||Ôα|| � E e−diam(Ôα)/ξ , (B3)

where ||Ôα|| denotes the operator norm of Ôα and

diam(Ôα) = diam(Xα) = max
x,y∈Xα

|x − y| (B4)

is the diameter of the support of the operator Ôα , where the
support of Ôα is the set of lattice sites Xα that Ôα acts on.
(We will place hats above operators in this appendix.) As an
example, Ĥ = ∑

ij e−|i−j |ẐiẐj is a local Hamiltonian with
E = ξ = 1.

We consider quasi-isometries since unlike generic spatial
transformations, quasi-isometries will preserve the locality of
local Hamiltonians and local unitary transformations. Further-
more, quasi-isometries have the desired property that they are
not sensitive to short-distance details. Quasi-isometries are
introduced in this work so that we can be very precise about
what kind of “nice” spatial transformations are allowed in our
definition of phase of matter, which applies to phases with or
without fractons.

When we consider the composition of a quasi-isometry
with a generalized local unitary (gLU) transformation, we will
want to preserve the Hilbert space and locations of the degrees
of freedom. For example, the quasi-isometry f (x) = 2x will
rescale a lattice of qubits at x ∈ Z to a lattice with qubits at
even integers (x ∈ 2Z). (A similar rescaling relates the black
lattices for H2 and H4 in Fig. 9.) In order to preserve the Hilbert
space, we must make use of the generalzied local unitary (gLU)
transformation [49] by adding back qubits at the odd-integer
positions (x ∈ 2Z + 1). Since the Hilbert space and position
of degrees of freedom are preserved, the physical notion of
distance (i.e., the distance metric) can also be preserved.

As a nonexample, although it is a homeomorphism, f (x) =
x3 is not a quasi-isometry. This is desirable because on a
lattice (where f : Z → Z) and for large x � 1, f will map
neighboring qubits (at x and x + 1) to distant locations [x3 and
(x + 1)3] which will be separated by many qubits after adding
back the missing qubits [at x3 + 1,x3 + 2, . . . ,(x + 1)3 − 1]
with a gLU.

To show that quasi-isometries preserve the locality of
local Hamiltonians, consider a quasi-isometry f and a local
Hamiltonian Ĥ = ∑

α Ôα . Let K,A > 0 obey Eq. (B1) and
choose E,ξ > 0 that satisfy Eq. (B3). After applying the
quasi-isometry f , each operator f (Ôα) will have a diameter
with the following upper bound:

diam(f (Ôα)) = max
x,y∈Xα

|f (x) − f (y)| (B5)

� max
x,y∈Xα

K|x − y| + A (B6)

= Kdiam(Ôα) + A. (B7)
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Equations (B5) and (B7) follow from the definition of the
diameter of an operator [Eq. (B4)], while Eq. (B6) follows
from the coarse-Lipschitz property [Eq. (B1)]. Thus, after the
quasi-isometry f is applied to the Hamiltonian Ĥ , the resulting
Hamiltonian f (Ĥ ) is local since

||f (Ôα)|| = ||Ôα|| (B8)

� E e−diam(Ôα)/ξ (B9)

� E′ e−diam(f (Ôα))/ξ ′
, (B10)

where E′ = E eA/ξ ′
and ξ ′ = Kξ . Equation (B8) follows

since the quasi-isometry f does not change the norm of
an operator. Equation (B9) follows from the definition of a
local Hamiltonian [Eq. (B3)]. Equation (B10) follows from
Eq. (B7).

Since local unitary transformations are defined in terms of
time-dependent local Hamiltonians [49] and quasi-isometries
preserve the locality of local Hamiltonians, this implies that
quasi-isometries also preserve the locality of local unitary
transformations.
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in the Appendix of Ref. [37].
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[65] Recall that if it were possible to distinguish |ψ1〉 and |W1ψ1〉

using the expectation value of a local operator H ′, then H ′

could be added to the Hamiltonian H1 with an arbitrarily small
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