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Topological semimetals are a new class of condensed matter systems with nontrivial electronic structure
topology. Their unusual observable properties may often be understood in terms of quantum anomalies.
In particular, Weyl and Dirac semimetals, which have point band-touching nodes, are characterized by the
chiral anomaly, which leads to the Fermi arc surface states, anomalous Hall effect, negative longitudinal
magnetoresistance, and planar Hall effect. In this paper, we explore analogous phenomena in nodal line
semimetals. We demonstrate that such semimetals realize a three-dimensional analog of the parity anomaly,
which is a known property of two-dimensional Dirac semimetals arising, for example, on the surface of a
three-dimensional topological insulator. We relate one of the characteristic properties of nodal line semimetals,
namely, the drumhead surface states, to this anomaly, and derive the field theory, which encodes the corresponding
anomalous response.
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I. INTRODUCTION

Topological (semi)metal is a new phase of matter, which is
characterized by a nontrivial electronic structure topology, yet
is not an insulator with a gap in the spectrum [1–18]. Integer
momentum space invariants, which characterize topologically
nontrivial states of matter, are defined in this case on the Fermi
surface, rather than in the whole Brillouin zone (BZ) [19–21].
Such Fermi surface invariants arise from singularities in the
electronic structure, in the simplest case isolated points, at
which different bands touch. The significance of such points
was emphasized early on by Volovik [19,21], and also pointed
out by Murakami [22].

Nontrivial electronic structure topology has both spectro-
scopic manifestations, in the form of localized edge states,
and manifestations in response, in the form of quantized,
or just insensitive to perturbations and microscopic details,
transport, or other response properties. In the context of
Weyl and Dirac semimetals, this topological response may
have different manifestations, such as negative longitudinal
magnetoresistance [23–26], giant planar Hall effect [27–31],
and anomalous Hall effect [18,32].

The edge states and the topological response are closely
related, and one way to understand this relation is in terms of
the concept of quantum anomalies. Quantum anomaly is often
described as violation of a classical symmetry (i.e., symmetry
of the action) by quantum effects in the presence of external
(say electromagnetic) fields [33]. This violation of a symmetry
then leads to nonconservation of a current, which should be
conserved classically by Noether’s theorem. This viewpoint,
however, is strictly applicable only to quantum anomalies in
the particle physics context since condensed matter systems
typically do not possess the corresponding symmetries, such
as the chiral symmetry, to begin with.

Another, more useful in the condensed matter context, way
to understand the anomalies is in terms of failure of gauge in-
variance. Current nonconservation may be represented in terms
of an anomalous term in the action for the electromagnetic (or

some other) field, which is not gauge invariant in the presence
of a boundary. What restores the overall gauge invariance is the
contribution of edge states, which precisely cancels the gauge
invariance violating part of the bulk action [34].

It is instructive to see how this works in the case of the
simplest topological metal system: a Weyl semimetal with two
nodes [35]. The chiral anomaly in this system may be expressed
in terms of the following action for the electromagnetic field
[36]:

S = − e2

4π2

∫
dt d3r qμεμναβAν∂αAβ, (1)

where qμ = qδμz describes the momentum space separation
between the Weyl nodes (2q) along the z axis and h̄ = c = 1
units are used here and throughout this paper, except in some
of the final formulas. We have also ignored the chiral magnetic
effect [37] and related phenomena in Eq. (1) for simplicity
[these effects exist only away from equilibrium and require
certain modifications of Eq. (1), which we do not want to
discuss here; they have been discussed in detail, for example
in Refs. [38,39]].

Consider a gauge transformation Aμ → Aμ + ∂μχ . This
changes the action in Eq. (1) by

Sχ = − e2

4π2

∫
dt d3r qμεμναβ∂νχ∂αAβ. (2)

Sχ vanishes identically in the absence of boundaries (i.e., in a
system with periodic boundary conditions), but does not vanish
in a system with a boundary. Indeed, suppose qμ = qδμz
(x),
where 
(x) is the Heaviside step function. This may represent,
for example, a contact between a Weyl semimetal in the x > 0
half-space and vacuum in the x < 0 half-space. Then, we
obtain

Sχ = e2q

2π2

∫
dt dy dz χ (∂yA0 − ∂tAy). (3)
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Equation (3) clearly does not vanish in general and this means
that Eq. (1) fails to be gauge invariant in the presence of a
boundary. This failure of gauge invariance is a symptom that
Eq. (1) is incomplete. Indeed, what it does not take into account
is the Fermi arc edge states, which are present in the Weyl
semimetal system, described by Eq. (1). For a Weyl semimetal
with two nodes, separated along the z axis and with a boundary,
perpendicular to the x axis, these edge states have the form
of a chiral sheet, which disperses along the y direction and
extends between the projections of the Weyl node locations
onto the surface BZ. This chiral sheet may be viewed as
2q/(2π/Lz) = qLz/π (where Lz is the size of the system in
the z direction) one-dimensional chiral modes, which upon
a gauge transformation generate a contribution to the action,
which is equal to −Sχ , thus canceling the non-gauge-invariant
part of the bulk action, as described in detail in Ref. [35].

In this paper, we explore the connection between the edge
states and the quantum anomalies in the context of nodal line
semimetals [7,40–42]. Nodal line semimetals possess surface
states that have the form of a drumhead: the surface states are
weakly dispersing and exist in a two-dimensional (2D) region
in the crystal momentum space, bounded by the projection of
the bulk nodal line onto the surface BZ [7]. A natural question
one may ask is if there exists a bulk anomaly, such as the
chiral anomaly described above, which is associated with the
drumhead surface states?

We answer this question in the affirmative and demonstrate
that the quantum anomaly, associated with the drumhead
surface states of nodal line semimetals, is closely related to
the parity anomaly of (2+1)-dimensional relativistic Dirac
fermions. Somewhat related ideas were put forward recently in
Ref. [43], while an entirely different viewpoint was presented
earlier in Ref. [44]. Closely related phenomena in Dirac
semimetals in an external magnetic field have been discussed
in Ref. [45].

The rest of this paper is organized as follows. In Sec. II
we introduce a model of a thin three-dimensional (3D) topo-
logical insulator (TI) film, doped with magnetic impurities,
and analyze the behavior of this system as a function of the
magnetization direction, in particular focusing on a quantum
phase transition between two quantum anomalous Hall states
of the film with opposite signs of the Hall conductivity. We
demonstrate that at the critical point this system exhibits two
massless Dirac fermions, separated in momentum space, and
one-dimensional (1D) edge states, connecting the two Dirac
fermions. Stacking such layers in the growth direction, in
Sec. III we construct a 3D system, exhibiting a nodal line,
which, in a close analogy to the 2D film case, exists at a
critical point, separating two distinct Weyl semimetal phases
with opposite signs of the anomalous Hall conductivity. This
construction allows us to make an explicit connection between
a nodal line in a 3D system and a pair of massless Dirac
fermions, separated in momentum space, in a 2D film. We
also make a connection between the drumhead surface state of
the 3D nodal line semimetal and the edge states of the double
2D Dirac fermion system. In Sec. IV we describe analogous
physics in PT-symmetric nodal line semimetals. Based on the
results of Secs. II, III and IV, in Sec. V we construct a field
theory, which describes anomalous electromagnetic response
of nodal line semimetals. We demonstrate that a necessary

ingredient in this field theory is a vielbein field determinant,
which encodes the chirality of the Weyl fermions. The vielbein
determinant changes sign at the quantum phase transition,
at which the chirality of the Weyl fermions changes sign,
requiring the appearance of a nodal line. We conclude with
a brief discussion of the experimental observability of the
proposed phenomena in Sec. VI.

II. THIN TI FILM IN AN EXTERNAL FIELD

We start by examining a simple, yet realistic, system, which
will allow us to most clearly demonstrate the connection
that exists between 2D Dirac fermions and 3D nodal lines.
Let us consider a thin film of a 3D topological insulator
material. Assuming the bulk material is a good insulator
with a significant band gap, the low-energy physics may be
described by focusing on the 2D Dirac surface states only.
The corresponding Hamiltonian, assuming a single 2D Dirac
fermion per surface of the film at a time-reversal-invariant
momentum (TRIM), which we will take to be at the � point
k = 0 of the BZ of the film for simplicity, is given by

H0 =
[
vF (ẑ × σ ) · k + λ

2
(k3

+ + k3
−)σ z

]
τ z + �τx. (4)

Here, σ is the spin, τ describes the top and bottom surface
pseudospin degree of freedom, and ẑ is the growth direction
of the film. The �τx term describes tunneling between the top
and the bottom surface, which is nonnegligible when the film
is sufficiently thin, which means the thickness of a few unit
cells in practice. The cubic in the crystal momentum term in
the square brackets describes hexagonal warping of the surface
states, present in Bi2Te3 and related 3D TI compounds [46].
This term is often omitted when discussing TI surface states,
but it (or its analogs in materials with nonhexagonal crystal
symmetry) is always present and will play an important role
in what follows. In particular, this term breaks the continuous
C∞ symmetry with respect to arbitrary rotations around the z

axis, which the linearized Hamiltonian of the TI film would
possess, down to the physical C3 symmetry.

We now imagine doping the TI film with magnetic impu-
rities, or placing it in proximity to a ferromagnetic insulator
film, which induces a Zeeman spin-splitting term in Eq. (4),

H = H0 + b · σ , (5)

where the direction of the vector b is arbitrary and may be
parametrized in the standard way using the polar and azimuthal
angles as b = b(sin θ cos φ, sin θ sin φ, cos θ ). This sort of a
system has been created experimentally, most notably in the
context of realizing the 2D quantum anomalous Hall effect
(QAHE) [47,48].

We want to understand the phase diagram of this system as a
function of the magnitude and the direction of the spin-splitting
field b.

Let us start from the case when b = bẑ is along the growth
direction of the film. A similarity transformation

σx,y → τ zσ x,y, τ x,y → σ zτ x,y (6)
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brings the Hamiltonian to the form (the warping term may be
ignored here)

H = vF (ẑ × σ ) · k + (b + �τx)σ z. (7)

This in turn may be brought to the following block-diagonal
form by diagonalizing the τ x matrix

Hr = vF (ẑ × σ ) · k + mrσ
z, (8)

where r = ± are the two eigenvalues of τ x and mr = b +
r�. Each of the two 2 × 2 Hamiltonians Hr describes a 2D
Dirac fermion of “mass” mr . The m− “mass” goes to zero
and changes sign at b = �, marking a quantum Hall plateau
transition between a normal insulator state with σxy = 0 when
b < � to a quantum anomalous Hall insulator state with σxy =
e2/h when b > �. The critical point is described by a massless
2D Dirac fermion, centered at the � point (or any TRIM more
generally) in the first BZ [49].

Now, suppose we rotate b away from the z axis. Here, the
response of the system depends crucially on the azimuthal
angle φ, i.e., it depends on the plane in which the field is rotated
away from the z axis. This angular dependence exists due to
the presence of the hexagonal warping term. Let us start by
rotating the field in the xz plane, which corresponds to φ = 0.
We note that when the field is rotated all the way to the x axis,
which corresponds to θ = π/2, the Hamiltonian of the film
Eq. (5) possesses the following symmetry:

σxH (−kx,ky)σx = H (kx,ky). (9)

Physically, this symmetry is simply the mirror reflection
symmetry with respect to the yz plane, which exists even in
the presence of the hexagonal warping term since k3

+ + k3
− =

2kx(k2
x − 3k2

y). This symmetry has important consequences for
how the system responds to the field b, when it is rotated in
the xz plane and is thus normal to the mirror reflection plane
kx = 0 when θ = π/2.

To see what happens, we again block-diagonalize Eq. (5) by
first rotating the spin quantization axis along the direction of
b and then performing the similarity transformation (6). This
brings the Hamiltonian to the form

Hr =
[
vF cos θ ky − λ

2
sin θ (k3

+ + k3
−)

]
σx − vF σ ykx

+ mr (k)σ z, (10)

where

mr (k) = b + r

√[
vF sin θky + λ

2
cos θ (k3+ + k3−)

]2

+ �2,

(11)

and r = ± as before. For all θ �= π/2 the spectrum of Hr has
a full gap. When θ = π/2, however, there are two Dirac band-
touching points on the y axis, whose coordinates are given by
the solution of the equation

m−(kx = 0,ky) = b −
√

v2
F k2

y + �2 = 0, (12)

which gives

k±
y = ± 1

vF

√
b2 − �2, (13)

assuming b > �.

b/Δ

σxy =
e2

hσxy = −e2

h
σxy = 0

1−1

σxy =
e2

h
σxy = −e2

h

cos θ0

(a)

(b)

FIG. 1. Phase diagram of a thin TI film in a spin-splitting field
b. (a) The field is along the growth (z) direction of the film. The two
QAHE phases with σxy = ±e2/h are separated by an intermediate
normal insulator phase with σxy = 0. Each of the two transitions is
described by a single massless 2D Dirac fermion. (b) The field b is
rotated in the xz plane while its magnitude b > � is held fixed. In this
case, a direct transition between the two QAHE phases is possible.
Two massless 2D Dirac fermions, separated in momentum space, must
emerge at the critical point to produce a jump of 2e2/h in the Hall
conductivity.

There are two different ways to understand this result. First,
if we take both λ and � to zero in Eq. (5), it is clear that the
field in the x direction simply shifts the gapless top and bottom
surface states of the TI film to different points on the y axis
with coordinates k±

y = ±b/vF in the BZ. When � > 0, which
produces a normal insulator (NI) state in the absence of the
spin-splitting field, a transition to a semimetallic state with
two Dirac points happens at b = � [50], with the Dirac point
locations given by Eq. (13). Crucially, even when the hexagonal
warping term is included, mirror reflection symmetry with re-
spect to the yz plane forces it to vanish everywhere on the y axis
and protects the gaplessness of the Dirac points, even though
time-reversal symmetry is violated by the nonzero b field.

Another way to view the reappearance of the gapless Dirac
points when b is rotated along the x direction is revealed when
one considers the behavior of the anomalous Hall conductivity
of the TI film, σxy . As discussed above, σxy = e2/h when b =
bẑ and b > �. If the field is rotated to the negative z direction,
the sign of the Hall conductivity will change to σxy = −e2/h.
The transition between the two quantized values, as the field
is rotated from z to −z direction, can in general happen at
any value of the polar angle θ . However, when the field is
rotated in the xz plane, the transition is forced to happen at
θ = π/2 by the mirror reflection symmetry with respect to the
yz plane that exists only at this angle. This is because this
mirror symmetry also forces σxy to vanish at θ = π/2 [51].
Indeed, if jx = σxyEy , mirror reflection with respect to the yz

plane changes jx → −jx , while Ey does not change. Thus,
σxy = 0 in this case. The reason that two gapless Dirac points
must appear at the transition is that σxy changes by 2e2/h as θ

is rotated through π/2, each 2D Dirac fermion contributing a
quantum of Hall conductance e2/h when its “mass” changes
sign. The phase diagram of this system as a function of the
angle θ is shown in Fig. 1.
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Let us now demonstrate explicitly that when the field is
rotated in a different plane, which is not perpendicular to a
mirror plane, the transition from σxy = e2/h to−e2/h happens
at a nonuniversal angle, which depends on details of the
Hamiltonian of the TI film. Suppose we rotate b in the yz plane
now, which corresponds to φ = π/2. The block-diagonalized
Hamiltonian in this case is given by

Hr =
[
−vF cos θ kx − λ

2
sin θ (k3

+ + k3
−)

]
σx − vF σ yky

+mr (k)σ z, (14)

where

mr (k) = b + r

√[
−vF sin θkx + λ

2
cos θ (k3+ + k3−)

]2

+ �2.

(15)

The gap in this case may close only on the x axis at two points
with the coordinates

k±
x = ±

√
−vF cot θc

λ
, (16)

which means that θc > π/2 when λ > 0. The critical polar
angle θc, at which the plateau transition from σxy = e2/h to
σxy = −e2/h happens, satisfies the following equation:

cot3 θc + cot θc + λ

v3
F

(b2 − �2) = 0. (17)

Ifλ(b2 − �2)/v3
F � 1, we may ignore cot3 θc above and obtain

θc = arccot

[
−λ(b2 − �2)

v3
F

]
. (18)

In this case, the locations of the Dirac points on the x axis are
given by

k±
x = ± 1

vF

√
b2 − �2. (19)

Now, let us go back to the case of the field rotated in the xz plane
(the mirror symmetry that exists in this case will play a crucial
role later, when we discuss the nodal line semimetals) and
establish a connection between the anomalous response and the
edge states, along the lines of the discussion in the Introduction.
As established above, the anomalous Hall conductivity as a
function of the polar angle θ has the following form in this
case:

σxy = e2

h
sign(cos θ ). (20)

This singular dependence on the angle may be viewed as
being a consequence of the parity anomaly [52,53] of the
two massless 2D Dirac fermions, which appear at θ = π/2 in
the presence of the mirror reflection symmetry. The quantized
σxy is associated with chiral 1D edge states, whose chirality
determines the sign of σxy . This means that at θ = π/2 the
edge states must switch their chirality. This implies that the
critical state with two Dirac points separated in momentum
space, realized at θ = π/2, must itself have edge states, which
connect the two Dirac points, as shown in Fig. 2.

(a)

(b)

(c)

FIG. 2. Edge states of a TI thin-film sample in the form of a strip.
(a) Chiral edge state on one of the edges of the film (the other edge
state not shown for clarity) for θ < π/2. (b) Edge state at the transition
point θ = π/2, which connects the two bulk Dirac points. (c) Edge
state with opposite chirality for θ > π/2. We have included particle-
hole symmetry-breaking terms, omitted in Eq. (4), for the sake of
generality.

These edge states may naively appear similar to the Fermi
arcs of Weyl semimetals. However, there is an important dif-
ference between them. The Fermi arcs of 3D Weyl semimetals
are chiral and connect the conduction and valence bands, apart
from connecting the Weyl nodes. This means that both their
location within the gap and their connection to the Weyl nodes
are topologically protected. In contrast, the 1D edge states that
connect the 2D Dirac points in Fig. 2(b) are not chiral and may
be pushed out of the gap and made to merge with the bulk states
by a sufficiently strong perturbation. The only topologically
protected property they have is that they always connect to the
bulk Dirac points.
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III. FROM 2D DIRAC POINTS TO 3D NODAL LINE

We now extend the physics, discussed in Sec. II, to 3D, by
making a multilayer stack of thin TI films [6]. The Hamiltonian
of the stack is given by

H =
[
vF (ẑ × σ ) · k + λ

2
(k3

+ + k3
−)σ z

]
τ z

+ (�S + �D cos kz)τ
x − �D sin kzτ

y + b · σ , (21)

where �S and �D describe tunneling between the 2D Dirac
surface states within the same (S) or neighboring (D) TI layers
and we will take the period of the heterostructure in the growth
direction to be the unit of length. As before, let us assume
that we may rotate the spin-splitting field b in two planes: xz

plane, corresponding to φ = 0, and yz plane, corresponding to
φ = π/2. The difference between the two planes is that yz is
a mirror-symmetric plane, while xz is not, but is normal to a
mirror-symmetric plane instead.

A. Mirror-symmetric case

Let us start with the case of the field rotated in the xz plane.
In this case, the multilayer will have mirror symmetry when the
field is along the x axis and is thus perpendicular to a mirror
plane (yz plane). The Hamiltonian is block-diagonalized by
exactly the same transformations as in Sec. II and we obtain

Hr =
[
vF cos θ ky − λ

2
sin θ (k3

+ + k3
−)

]
σx − vF σ ykx

+mr (k)σ z, (22)

where

mr (k) = b + r

√[
vF sin θky + λ

2
cos θ (k3+ + k3−)

]2

+ �2(kz)

(23)
and

�(kz) =
√

�2
S + �2

D + 2�S�D cos kz. (24)

This is identical to the result obtained before in the single TI
film case [Eqs. (10) and (11)], except the constant tunneling
amplitude � is replaced by the function �(kz). Thus, we may
use the results of the previous section by treating every value
of kz as parametrizing an effective 2D TI film system with the
tunneling amplitude �(kz). In particular, for all θ �= π/2, every
value of kz corresponds to a gapped 2D insulator with either
σxy(kz) = e2/h or σxy(kz) = 0, except when m−(kx = 0,ky =
0,kz) = 0, which corresponds to a critical point between the
two insulators. The solution of this equation gives the locations
of two Weyl points on the z axis, given by

k±
z = π ± k0 = π ± arccos

(
�2

S + �2
D − b2

2�S�D

)
. (25)

This corresponds to the anomalous Hall conductivity, given by

σxy =
∫ k+

z

k−
z

dkz

2π
σxy(kz) = e2k0

πh
, (26)

which is obtained by summing contributions of effective 2D
systems for every value of kz in-between the Weyl node
locations [6].

When θ = π/2, the field is normal to a mirror plane kx =
0 and at every kz we get two 2D Dirac points, signifying a
transition, at which the sign of σxy(kz) changes. The locations
of the Dirac points at every kz satisfy the equation√

v2
F k2

y + �2(kz) = b. (27)

This equation clearly defines a closed curve in the yz plane
in momentum space (the mirror plane). This closed curve is
a nodal line, at which the two bands, corresponding to the
eigenvalue r = −1 touch. This line exists because of the mirror
symmetry with respect to the yz plane when b is perpendicular
to this plane (i.e., is along the x axis). The nodal line may thus
be regarded as a critical state, separating two Weyl semimetals
with opposite sign of the anomalous Hall conductivity.

B. Case without mirror symmetry

Now, let us see what happens when b is rotated in a mirror
(yz) plane, so that the mirror symmetry is never present, since
it is always broken by the field. In this case, we have

Hr = −
[
vF cos θ kx + λ

2
sin θ (k3

+ + k3
−)

]
σx − vF σ yky

+mr (k)σ z, (28)

where

mr (k) = b

+r

√[
−vF sin θkx + λ

2
cos θ (k3+ + k3−)

]2

+ �2(kz).

(29)

The gap in this case may only close on the ky = 0 plane, when
the following equations are satisfied:

k2
x = −vF

λ
cot θ, cot3 θ + cot θ

+ λ

v3
F

[b2 − �2(kz)] = 0, (30)

i.e., the critical angle in this case is actually a function of kz.
This implies that the nodal line does not exist. The critical point,
at which the sign of the 3D Hall conductivity (26) flips, also
does not exist and is replaced by a smooth crossover, which is
possible since a 3D Hall conductivity, unlike a 2D one, is not
quantized.

Specifically, the way the crossover occurs is as follows.
The first of Eq. (30) clearly implies that θc � π/2. Then,
both equations first acquire a real solution when θ = π/2,
kx = ky = 0, and b = �(kz). This corresponds simply to the
locations of the two Weyl points on the z axis, k±

z of Eq. (25).
At this moment, two pairs of extra Weyl points appear at
these locations, which carry a topological charge, equal to the
topological charge of the original Weyl points. The topological
charge of the original Weyl points themselves changes sign at
this moment, so that the total charge at each k±

z is still the same.
As θ increases past π/2, the extra two pairs of Weyl nodes shift
away from the z axis and move towards the x axis (see Fig. 3),
mutually annihilating at a critical angle, given by the solution
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of the equation

cot3 θc + cot θc + λ

v3
F

[b2 − �2(π )] = 0, (31)

which, taking the last term in Eq. (31) to be small, so that the
cot3 θc term can be neglected, gives

θc = π − arccot(δ), (32)

where

δ = λ[b2 − (�S − �D)2]

v3
F

(33)

is a parameter that determines the strength of the mirror-
symmetry violation by the hexagonal warping term. Namely,
the anomalous Hall conductivity changes smoothly (see Fig. 4)
from e2k0/πh to −e2k0/πh in the interval π/2 < θ < θc,
whose width is determined by the parameter δ:

σxy = e2k0

πh

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 � θ � π/2,

2

k0
arccos

(
�2

S + �2
D − b2 − v3

F cot θ/λ

2�S�D

)
−1, π/2 � θ � θc,

−1, θc � θ � π,

(34)

which is calculated as in Eq. (26).

C. Drumhead surface states

Finally, let us come back to the case of the field rotated
in the xz plane. It is well known that the nodal line state,
realized in this system when the field is rotated along the
x axis, i.e., is normal to the yz mirror plane, is associated
with the drumhead surface states [7]. These surface states fill
the projection of the nodal line onto the surface BZ and are
dispersionless if particle-hole symmetry violating terms are
ignored. As explained above, a 3D nodal line may be thought of
as consisting of pairs of massless 2D Dirac fermions, separated
in momentum space. We demonstrated in Sec. II that such
pairs of massless Dirac fermions lead to 1D edge states, which
connect them. This follows directly from the fact that a pair
of massless 2D Dirac fermions describes the critical point
between two quantum anomalous Hall insulators with opposite
sign of the Hall conductivity. This implies that the drumhead
surface states of 3D nodal line semimetals may be regarded as
families of such 1D edge states, parametrized by the second
momentum component. This also implies that, alternatively,
the drumhead surface states may be regarded as chiral Fermi
arcs of one of the two Weyl semimetal phases, separated by
the critical point, described by the nodal line, in the limit when
the chirality vanishes and switches sign.

By an exact analogy with the argument given at the end of
Sec. II, we observe that the drumhead surface states, unlike the
chiral Fermi arcs, are not fully topologically protected in the
absence of the particle-hole symmetry [7,54,55]. They may be
pushed out of the gap and made to merge with the bulk states,
but the protected property that remains is that they always
connect to the bulk nodal line.

IV. NODAL LINE IN PT-SYMMETRIC SEMIMETALS

So far, we have been discussing the case of Weyl nodal
lines, that is nodal lines in a material with broken time-reversal
symmetry, when two nondegenerate bands touch along the
line. In this section, we will demonstrate that similar ideas
are applicable to the case of parity and time-reversal (PT)
symmetric materials in the absence of the spin-orbit (SO)

interactions. In this case, all bands are doubly degenerate with
respect to the spin and touching is between two pairs of doubly
degenerate bands.

This case is sufficiently simple that it may be understood
without reference to a specific model. We may start from
the most general Hamiltonian of a time-reversal- and parity-
invariant system with four degrees of freedom per unit cell [56]

H0 = d0(k) +
5∑

a=1

da(k)�a, (35)

where �a are five gamma matrices, obeying the Clifford
algebra, which are even under the product of parity and time
reversal. Taking Pauli matrices σ to represent the spin degree
of freedom, and the eigenvalues of τ z of another set of Pauli
matrices τ to represent two orbital states in the unit cell, related
to each other by parity (parity operator is P = τ x), they are
given by

�1 = τ x, �2 = τ y, �3 = τ zσ x,

�4 = τ zσ y, �5 = τ zσ z. (36)

In the absence of the SO interactions, only �1 and �2 may be
present in the Hamiltonian. Ignoring the term, proportional to
the unit matrix, for simplicity, we obtain

H0 = d1(k)τ x + d2(k)τ y. (37)

Parity and time-reversal symmetry required1(k) = d1(−k) and
d2(k) = −d2(−k). The electronic structure, described by H0,
exhibits a nodal line when d1(k) = d2(k) = 0.

Now, suppose we want to break time-reversal symmetry,
but keep the parity symmetry. This can be accomplished
by adding a spin-splitting term b · σ , but the effect of this
term in the absence of the SO interactions will be trivial,
simply lifting the spin degeneracy. The only way to break
time-reversal symmetry but keep parity without involving the
spin is to add a term d3(k)τ z to the Hamiltonian, where
d3(k) = −d3(−k) [57]. Microscopically, this would arise from
a magnetic flux within the unit cell of the crystal, leading to
Aharonov-Bohm phases of the hopping amplitudes, as in the
Haldane-Chern insulator model [53]. To see the effect of this
term on the nodal line, let us specify the functions d1,2,3(k).
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FIG. 3. Phase diagram of the TI-NI multilayer as a function of
the direction of the spin-splitting field b. (a) The field is rotated in the
xz plane, so that when θ = π/2 the field b is normal to the mirror
plane kx = 0. In this case, there is a direct transition between σxy =
±e2k0/πh with a nodal line at the critical point. (b) The field is rotated
in the yz plane, so it is never normal to a mirror plane. In this case,
there is no direct transition between σxy = ±e2k0/πh and instead of
a nodal line there is an intermediate phase with two extra Weyl node
pairs. σxy changes smoothly within this phase, as given by Eq. (34).

Let us take

H0(k) = (
�2 − k2

x − k2
y

)
τ x + v1kzτ

y. (38)

The energy eigenvalues are

ε±(k) = ±
√(

�2 − k2
x − k2

y

)2 + v2
1k

2
z . (39)

The two bands touch along a nodal line in the xy plane, given
by the equation

k2
x + k2

y = �2. (40)

Now, let us add the time-reversal breaking perturbation

H = (
�2 − k2

x − k2
y

)
τ x + v1kzτ

y + v2kxτ
z. (41)

The band energies become

ε±(k) = ±
√(

�2 − k2
x − k2

y

)2 + v2
1k

2
z + v2

2k
2
x. (42)

FIG. 4. Anomalous Hall conductivity of the TI-NI multilayer
system as a function of the polar angle θ when the spin-splitting
field b is rotated in the yz plane and is never normal to a mirror plane
for two different values of the parameter δ, which determines the
strength of the mirror-symmetry violation by the hexagonal warping
term: δ = 0.05 (solid line) and δ = 0.5 (dashed line).

We see that the nodal line has been gapped out except at two
Weyl points on the y axis at k±

y = ±�. Taking v1 > 0, the
chirality of the two Weyl points is given by

C± = ±sign(v2), (43)

and thus interchanges as v2 is tuned through zero. Thus, the
nodal line in PT-symmetric systems has the same meaning
as in systems with SO interactions and broken time-reversal
symmetry: this is a critical state that separates two Weyl
semimetal states with opposite signs of the anomalous Hall
conductivity.

V. FIELD THEORY OF NODAL LINE SEMIMETALS

We will now summarize the above analysis of nodal line
semimetals in terms of a field theory, which expresses their
anomalous response, in the spirit of Eq. (1), describing the
chiral anomaly of Weyl semimetals. What we have established
thus far is that the nodal line may be thought of as a state
arising at a critical point between two Weyl semimetal states
with interchanged chirality of the Weyl points. This means
that in addition to the vector qμ, which acts as a chiral gauge
field, determining the separation of two Weyl nodes with fixed
opposite chirality in momentum space, we need to take into
account the possibility of chirality of the Weyl nodes changing
sign, without changing their momentum space location. This
may be expressed with the help of the vielbein fields e

μ
a ,

which encode both the effective metric and the chirality,
characterizing the Weyl points. A low-energy Hamiltonian of
two Weyl nodes, separated in momentum space, may then be
written as

H = γ 0γ aea · (k − qγ 5), (44)

which is a generalization of the ordinary massless Dirac
Hamiltonian to a curved space-time with an arbitrary metric.
The chirality-changing transition, with the appearance of a
nodal line at the critical point, may be described as one of the
vielbein vectors ea flipping its direction and vanishing at the
critical point [58]. For example, in the case of the magnetized
TI-NI multilayer, described by Eq. (22), we may take

e2 = vF cos θ ŷ, (45)
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which vanishes and changes direction at θ = π/2. In the case
of a PT-symmetric semimetal, described by Eq. (41), we may
take

e1 = v2x̂, (46)

which again vanishes and changes direction when v2 = 0.
Defining chirality as

C± = ±sign[e1 · (e2 × e3)] = ±sign[det(e)], (47)

where det(e) is the determinant of the matrix ei
a , we may then

write the following action, which describes the anomalous
response of this system:

S = − e2q

4π2
sign[det(e)]

∫
dt d3r εzναβAν∂αAβ, (48)

where we have taken the (fixed) direction of the vector q, which
determines the separation between the Weyl nodes, to be the z

direction. This action bears a strong resemblance to the Chern-
Simons action

S = − e2

4π
sign(m)

∫
dt d2r εναβAν∂αAβ, (49)

which expresses the parity anomaly of a 2D Dirac fermion of
mass m. This is not unexpected, of course, given the connection
between 3D nodal line and 2D Dirac fermions, which was
established in Secs. II and III.

The information contained in Eq. (49) may be stated as
follows: this equation is telling us that a massless 2D Dirac
fermion describes a direct transition between insulators with
σxy = 0 and σxy = e2/h. Analogously, Eq. (48) is telling us
that the nodal line, which appears when one of the vielbein
vectors ei vanishes, describes a direct transition between two
Weyl semimetal states with σxy = ±2e2q/πh.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have demonstrated that the anomalous
response of 3D nodal line semimetals is closely related to the
parity anomaly of 2D Dirac fermions. The role of the mass
of a 2D Dirac fermion, whose sign enters into the topological
Chern-Simons action for the electromagnetic field, when the
fermions are integrated out, is played by the determinant of the
vielbein matrix ei

a .
Perhaps the most straightforward way to observe these

phenomena, given the currently available materials, is to look
at magnetic response of type-II Dirac semimetals [45]. Type-II

Dirac semimetals possess one or several symmetry-related
Dirac points at TRIM in the first BZ. Material realizations
include TlBi(S1−x Sex)2 [59], (Bi1−xInx)2Se3 [60], and
ZrTe5 [26,61]. As was demonstrated in Ref. [45], magnetic
response of a type-II Dirac point is always strongly anisotropic:
while one of the Zeeman field components acts as a chiral
gauge field, splitting the Dirac point into two Weyl points, the
other two components instead create nodal lines. The problem
then maps exactly onto the magnetic multilayer system,
described in Sec. III and exactly the same conclusions follow.
The anomaly may then be detected as a step-function-like
singularity of the anomalous Hall conductivity of the Dirac
semimetal in the presence of an applied magnetic field, as the
field is rotated. The anomalous Hall conductivity in this case is
defined as part of the Hall conductivity, which arises from the
Zeeman response. It may be obtained by subtracting off the
linear high-field part of the Hall resistivity, as the anomalous
Hall signal is usually isolated.

Another possibility is the recently discovered magnetic
Weyl semimetal Co3Sn2S2 [18]. In this material, six pairs
of Weyl nodes arise out of nodal lines, gapped by the SO
interactions, as revealed by the electronic structure calcula-
tions [18]. Thus, Co3Sn2S2 may naturally reside close to the
phase transition at which the sign of the anomalous Hall
conductivity changes, however, a detailed investigation of
how it responds to rotating the direction of magnetization is
necessary to understand if this really is the case.

In conclusion, we have presented a theory of anomalous
response (quantum anomaly) in nodal line semimetals, which
can be related to the existence of drumhead surface states in
these systems. We have shown that both the surface states and
the anomalous response are closely analogous to the parity
anomaly of (2+1)-dimensional relativistic Dirac fermions,
which in the condensed matter physics context is realized as
the 2D QAHE. We have derived a field theory, describing
the anomalous response of nodal semimetals, and shown that
a crucial ingredient in this field theory is the sign of the
determinant of the vielbein fields, describing both the 3D Weyl
fermion chirality and the effective low-energy metric, which
emerges in Weyl semimetals. This sign changes at a critical
point at which one of the three vielbein vectors vanishes,
leading to the emergence of a nodal line.

ACKNOWLEDGMENTS

Financial support was provided by Natural Sciences and
Engineering Research Council of Canada (NSERC).

[1] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys.
90, 015001 (2018).

[2] M. Z. Hasan, S.-Y. Xu, I. Belopolski, and S.-M. Huang, Annu.
Rev. Condens. Matter Phys. 8, 289 (2017).

[3] B. Yan and C. Felser, Annu. Rev. Condens. Matter Phys. 8, 337
(2017).

[4] A. A. Burkov, Annu. Rev. Condens. Matter Phys. 9, 359
(2018).

[5] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys.
Rev. B 83, 205101 (2011).

[6] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205
(2011).

[7] A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84,
235126 (2011).

[8] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett.
107, 186806 (2011).

165104-8

https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1146/annurev-conmatphys-031016-025225
https://doi.org/10.1146/annurev-conmatphys-031016-025225
https://doi.org/10.1146/annurev-conmatphys-031016-025225
https://doi.org/10.1146/annurev-conmatphys-031016-025225
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1146/annurev-conmatphys-033117-054129
https://doi.org/10.1146/annurev-conmatphys-033117-054129
https://doi.org/10.1146/annurev-conmatphys-033117-054129
https://doi.org/10.1146/annurev-conmatphys-033117-054129
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806


QUANTUM ANOMALIES IN NODAL LINE SEMIMETALS PHYSICAL REVIEW B 97, 165104 (2018)

[9] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and
A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).

[10] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X.
Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).

[11] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B
88, 125427 (2013).

[12] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D.
Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai et al.,
Science 343, 864 (2014).

[13] M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I.
Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin et al., Nat. Commun.
5, 3786 (2014).

[14] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C.
Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee et al., Science
349, 613 (2015).

[15] B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang,
L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti et al., Nat. Phys. 11,
724 (2015).

[16] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P.
Richard, X. C. Huang, L. X. Zhao, G. F. Chen et al., Phys. Rev.
X 5, 031013 (2015).

[17] L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and
M. Soljačić, Science 349, 622 (2015).

[18] E. Liu, Y. Sun, L. Müechler, A. Sun, L. Jiao, J. Kroder, V.
Süß, H. Borrmann, W. Wang, W. Schnelle, S. Wirth, S. T. B.
Goennenwein, and C. Felser, arXiv:1712.06722.

[19] G. Volovik, The Universe in a Helium Droplet (Clarendon,
Oxford, 2003).

[20] F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).
[21] G. E. Volovik, in Quantum Analogues: From Phase Transitions

to Black Holes and Cosmology, Lecture Notes in Physics Vol.
718, edited by W. Unruh and R. Schtzhold (Springer, Berlin,
2007).

[22] S. Murakami, New J. Phys. 9, 356 (2007).
[23] D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).
[24] A. A. Burkov, Phys. Rev. B 91, 245157 (2015).
[25] J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M.

Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Science 350,
413 (2015).

[26] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V.
Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla,
Nat. Phys. 12, 550 (2016).

[27] A. A. Burkov, Phys. Rev. B 96, 041110 (2017).
[28] S. Nandy, G. Sharma, A. Taraphder, and S. Tewari, Phys. Rev.

Lett. 119, 176804 (2017).
[29] H. Li, H. Wang, H. He, J. Wang, and S.-Q. Shen,

arXiv:1711.03671.
[30] N. Kumar, C. Felser, and C. Shekhar, arXiv:1711.04133.
[31] Y. J. Wang, J. X. Gong, D. D. Liang, M. Ge, J. R. Wang, W. K.

Zhu, and C. J. Zhang, arXiv:1801.05929.

[32] A. A. Burkov, Phys. Rev. Lett. 113, 187202 (2014).
[33] K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979).
[34] C. Callan and J. Harvey, Nucl. Phys. B 250, 427 (1985).
[35] P. Goswami and S. Tewari, Phys. Rev. B 88, 245107 (2013).
[36] A. A. Zyuzin and A. A. Burkov, Phys. Rev. B 86, 115133 (2012).
[37] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev.

D 78, 074033 (2008).
[38] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 027201

(2013).
[39] Y. Chen, S. Wu, and A. A. Burkov, Phys. Rev. B 88, 125105

(2013).
[40] M. Neupane, I. Belopolski, M. M. Hosen, D. S. Sanchez, R.

Sankar, M. Szlawska, S.-Y. Xu, K. Dimitri, N. Dhakal, P.
Maldonado et al., Phys. Rev. B 93, 201104 (2016).

[41] G. Bian, T.-R. Chang, H. Zheng, S. Velury, S.-Y. Xu, T. Neupert,
C.-K. Chiu, S.-M. Huang, D. S. Sanchez, I. Belopolski et al.,
Phys. Rev. B 93, 121113 (2016).

[42] L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov,
D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and
C. R. Ast, Nat. Commun. 7, 11696 (2016).

[43] W. B. Rui, Y. X. Zhao, and A. P. Schnyder, arXiv:1703.05958.
[44] S. T. Ramamurthy and T. L. Hughes, Phys. Rev. B 95, 075138

(2017).
[45] A. A. Burkov, Phys. Rev. Lett. 120, 016603 (2018).
[46] L. Fu, Phys. Rev. Lett. 103, 266801 (2009).
[47] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K.

Li, Y. Ou, P. Wei, L.-L. Wang et al., Science 340, 167 (2013).
[48] C.-X. Liu, S.-C. Zhang, and X.-L. Qi, Annu. Rev. Condens.

Matter Phys. 7, 301 (2016).
[49] A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein,

Phys. Rev. B 50, 7526 (1994).
[50] A. A. Zyuzin, M. D. Hook, and A. A. Burkov, Phys. Rev. B 83,

245428 (2011).
[51] X. Liu, H.-C. Hsu, and C.-X. Liu, Phys. Rev. Lett. 111, 086802

(2013).
[52] G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
[53] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[54] J. Behrends, J.-W. Rhim, S. Liu, A. G. Grushin, and J. H.

Bardarson, Phys. Rev. B 96, 245101 (2017).
[55] M. Hirayama, R. Okugawa, T. Miyake, and S. Murakami, Nat.

Commun. 8, 14022 (2017).
[56] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[57] R. Okugawa and S. Murakami, Phys. Rev. B 96, 115201 (2017).
[58] J. Nissinen and G. E. Volovik, Phys. Rev. D 97, 025018 (2018).
[59] T. Sato, K. Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto,

T. Minami, Y. Ando, and T. Takahashi, Nat. Phys. 7, 840 (2011).
[60] M. Brahlek, N. Bansal, N. Koirala, S.-Y. Xu, M. Neupane, C. Liu,

M. Z. Hasan, and S. Oh, Phys. Rev. Lett. 109, 186403 (2012).
[61] R. Y. Chen, Z. G. Chen, X.-Y. Song, J. A. Schneeloch, G. D. Gu,

F. Wang, and N. L. Wang, Phys. Rev. Lett. 115, 176404 (2015).

165104-9

https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1126/science.1245085
https://doi.org/10.1126/science.1245085
https://doi.org/10.1126/science.1245085
https://doi.org/10.1126/science.1245085
https://doi.org/10.1038/ncomms4786
https://doi.org/10.1038/ncomms4786
https://doi.org/10.1038/ncomms4786
https://doi.org/10.1038/ncomms4786
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1038/nphys3426
https://doi.org/10.1038/nphys3426
https://doi.org/10.1038/nphys3426
https://doi.org/10.1038/nphys3426
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
http://arxiv.org/abs/arXiv:1712.06722
https://doi.org/10.1103/PhysRevLett.93.206602
https://doi.org/10.1103/PhysRevLett.93.206602
https://doi.org/10.1103/PhysRevLett.93.206602
https://doi.org/10.1103/PhysRevLett.93.206602
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.91.245157
https://doi.org/10.1103/PhysRevB.91.245157
https://doi.org/10.1103/PhysRevB.91.245157
https://doi.org/10.1103/PhysRevB.91.245157
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1103/PhysRevB.96.041110
https://doi.org/10.1103/PhysRevB.96.041110
https://doi.org/10.1103/PhysRevB.96.041110
https://doi.org/10.1103/PhysRevB.96.041110
https://doi.org/10.1103/PhysRevLett.119.176804
https://doi.org/10.1103/PhysRevLett.119.176804
https://doi.org/10.1103/PhysRevLett.119.176804
https://doi.org/10.1103/PhysRevLett.119.176804
http://arxiv.org/abs/arXiv:1711.03671
http://arxiv.org/abs/arXiv:1711.04133
http://arxiv.org/abs/arXiv:1801.05929
https://doi.org/10.1103/PhysRevLett.113.187202
https://doi.org/10.1103/PhysRevLett.113.187202
https://doi.org/10.1103/PhysRevLett.113.187202
https://doi.org/10.1103/PhysRevLett.113.187202
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1016/0550-3213(85)90489-4
https://doi.org/10.1016/0550-3213(85)90489-4
https://doi.org/10.1016/0550-3213(85)90489-4
https://doi.org/10.1016/0550-3213(85)90489-4
https://doi.org/10.1103/PhysRevB.88.245107
https://doi.org/10.1103/PhysRevB.88.245107
https://doi.org/10.1103/PhysRevB.88.245107
https://doi.org/10.1103/PhysRevB.88.245107
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevB.88.125105
https://doi.org/10.1103/PhysRevB.88.125105
https://doi.org/10.1103/PhysRevB.88.125105
https://doi.org/10.1103/PhysRevB.88.125105
https://doi.org/10.1103/PhysRevB.93.201104
https://doi.org/10.1103/PhysRevB.93.201104
https://doi.org/10.1103/PhysRevB.93.201104
https://doi.org/10.1103/PhysRevB.93.201104
https://doi.org/10.1103/PhysRevB.93.121113
https://doi.org/10.1103/PhysRevB.93.121113
https://doi.org/10.1103/PhysRevB.93.121113
https://doi.org/10.1103/PhysRevB.93.121113
https://doi.org/10.1038/ncomms11696
https://doi.org/10.1038/ncomms11696
https://doi.org/10.1038/ncomms11696
https://doi.org/10.1038/ncomms11696
http://arxiv.org/abs/arXiv:1703.05958
https://doi.org/10.1103/PhysRevB.95.075138
https://doi.org/10.1103/PhysRevB.95.075138
https://doi.org/10.1103/PhysRevB.95.075138
https://doi.org/10.1103/PhysRevB.95.075138
https://doi.org/10.1103/PhysRevLett.120.016603
https://doi.org/10.1103/PhysRevLett.120.016603
https://doi.org/10.1103/PhysRevLett.120.016603
https://doi.org/10.1103/PhysRevLett.120.016603
https://doi.org/10.1103/PhysRevLett.103.266801
https://doi.org/10.1103/PhysRevLett.103.266801
https://doi.org/10.1103/PhysRevLett.103.266801
https://doi.org/10.1103/PhysRevLett.103.266801
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1146/annurev-conmatphys-031115-011417
https://doi.org/10.1146/annurev-conmatphys-031115-011417
https://doi.org/10.1146/annurev-conmatphys-031115-011417
https://doi.org/10.1146/annurev-conmatphys-031115-011417
https://doi.org/10.1103/PhysRevB.50.7526
https://doi.org/10.1103/PhysRevB.50.7526
https://doi.org/10.1103/PhysRevB.50.7526
https://doi.org/10.1103/PhysRevB.50.7526
https://doi.org/10.1103/PhysRevB.83.245428
https://doi.org/10.1103/PhysRevB.83.245428
https://doi.org/10.1103/PhysRevB.83.245428
https://doi.org/10.1103/PhysRevB.83.245428
https://doi.org/10.1103/PhysRevLett.111.086802
https://doi.org/10.1103/PhysRevLett.111.086802
https://doi.org/10.1103/PhysRevLett.111.086802
https://doi.org/10.1103/PhysRevLett.111.086802
https://doi.org/10.1103/PhysRevLett.53.2449
https://doi.org/10.1103/PhysRevLett.53.2449
https://doi.org/10.1103/PhysRevLett.53.2449
https://doi.org/10.1103/PhysRevLett.53.2449
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevB.96.245101
https://doi.org/10.1103/PhysRevB.96.245101
https://doi.org/10.1103/PhysRevB.96.245101
https://doi.org/10.1103/PhysRevB.96.245101
https://doi.org/10.1038/ncomms14022
https://doi.org/10.1038/ncomms14022
https://doi.org/10.1038/ncomms14022
https://doi.org/10.1038/ncomms14022
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.96.115201
https://doi.org/10.1103/PhysRevB.96.115201
https://doi.org/10.1103/PhysRevB.96.115201
https://doi.org/10.1103/PhysRevB.96.115201
https://doi.org/10.1103/PhysRevD.97.025018
https://doi.org/10.1103/PhysRevD.97.025018
https://doi.org/10.1103/PhysRevD.97.025018
https://doi.org/10.1103/PhysRevD.97.025018
https://doi.org/10.1038/nphys2058
https://doi.org/10.1038/nphys2058
https://doi.org/10.1038/nphys2058
https://doi.org/10.1038/nphys2058
https://doi.org/10.1103/PhysRevLett.109.186403
https://doi.org/10.1103/PhysRevLett.109.186403
https://doi.org/10.1103/PhysRevLett.109.186403
https://doi.org/10.1103/PhysRevLett.109.186403
https://doi.org/10.1103/PhysRevLett.115.176404
https://doi.org/10.1103/PhysRevLett.115.176404
https://doi.org/10.1103/PhysRevLett.115.176404
https://doi.org/10.1103/PhysRevLett.115.176404



