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Chiral solitons in spinor polariton rings

D. A. Zezyulin,1 D. R. Gulevich,! D. V. Skryabin,l’2 and I. A. Shelykhl*3
UITMO University, St. Petersburg 197101, Russia
2Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
3Science Institute, University of Iceland, Dunhagi 3, I1S-107, Reykjavik, Iceland

® (Received 30 October 2017; revised manuscript received 29 March 2018; published 12 April 2018)

‘We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM)
and Zeeman splittings of spinor polariton states and spin-dependent polariton-polariton interactions. We present
a class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their
properties for realistic values of the parameters of the system. We show that the effects of the geometric phase
arising from the interplay between the external magnetic field and the TE-TM splitting introduce chirality in
the system and make solitons propagating in clockwise and anticlockwise directions nonequivalent. This can be
interpreted as a solitonic analog of the Aharonov-Bohm effect.
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Introduction. Topology of the potential is critical for the
dynamics of a quantum particle since it defines connectivity
of the available trajectories. Therefore changes in the topol-
ogy of a system are often related to qualitative alternations
of its physical behavior [1]. Quantum nonsingle connected
structures, such as mesoscopic rings, reveal a rich variety of
quantum-mechanical effects [2—4]. One prominent example
is the famous Aharonov-Bohm effect [5,6] where the phase
of a charged particle is influenced by the magnetic field,
which is effectively zero at the particle’s location. This results
in magnetic-flux-dependent oscillations of the ring-confined
particle energy and of the conductivity of the system in the
ballistic regime.

For neutral particles with spin, an analog of the Aharonov-
Bohm phase is represented by the geometric Berry phase.
The latter appears if an effective magnetic field responsible
for the energy splitting of the two components of a spinor
changes smoothly its direction along the ring. In the adiabatic
approximation when the spin follows the direction of the
magnetic field the phase acquired by a particle during one
cycle of the propagation along the ring is equal to half of the
solid angle covered by the vector of an effective magnetic field.
The geometric phase was experimentally detected in photonic
interferometers [7,8] and predicted to play a substantial role
in excitonic [9] and polaritonic [10] ring resonators. The latter
system will be the focus of our attention in the present Rapid
Communication.

Cavity polaritons are hybrid light-matter quasiparticles
emerging in the regime of the strong coupling between the
excitonic resonance and the photonic mode of the planar
semiconductor microcavity [11]. Compared to purely photonic
or purely excitonic systems polaritonic systems have several
important advantages. From their photonic component polari-
tons inherit extremely small effective mass (about 107> of the
mass of free electrons) and large coherence length (on the mil-
limeter scale) [12]. On the other hand, the presence of the ex-
citonic component results in polariton-polariton interactions,
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which can be controlled by means of external electromagnetic
fields [13].

An important property of cavity polaritons is their spin (or
pseudospin) [14], inherited from the spins of quantum well
excitons and cavity photons. Similar to photons, polarions
have two possible spin projections on the structure growth axis
corresponding to two opposite circular polarizations. States
with opposite spins can be mixed by effective magnetic fields
of various origins. A magnetic field applied along the structure
growth axis and acting on the excitonic component splits
energies of the spin positive and spin negative polariton states,
whereas TE-TM splitting of the photonic modes hybridizes
these states via the linear coupling [14]. Because of the effec-
tive spin-orbit interaction it provides to polaritonic systems
[15-17], TE-TM splitting has recently been shown to play
an important role in various types of phenomena in artificial
lattices [18-27].

The polariton interactions render the system nonlinear and
enable the propagation of self-sustained nonlinear entities
(i.e., solitons) whose properties depend significantly on the
underlying topology. The importance of topological solitons
has been known in several sub-areas of nonlinear field theory
including nonlinear optics and cold atom physics, see, e.g.,
Refs. [28,29]. Their robustness is topologically protected that
makes them both attractive for potential applications and
readily observable in experiments even in the presence of
unavoidable dissipation. Effects of balancing between pump
and loss have also been studied in the context of topological
localized structures, see, e.g., Ref. [30]. Recently chiral effects
in nonlinear spinor field models have attracted attention in the
context of information processing in quasiconservative, gain,
and pump-free systems [31-33] as well as in the dissipative
models with pumps [34]. In our recent paper [35], we analyzed
how the combination of the effects of the geometric phase
and spin-dependent polariton-polariton interactions affects
stationary nonlinear states in the polariton rings. On the other
hand, it is well known that one-dimensional (1D) polariton
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FIG. 1. Schematic of the considered geometry. The polariton ring
is placed into external magnetic-field B perpendicular to its interface.
The total effective magnetic field acting on the polariton’s spin is
a combination of the real magnetic field and the field provided by
TE-TM splitting. The direction of the total effective magnetic field
changes along the ring as is shown by the arrows. If one moves along
the ring it covers a cone characterized by angle 6.

systems support a wide variety of propagating topological
defects [36] including solitons and half solitons [37], analogs
of magnetic monopoles [38], propagating domain walls [39],
and others. The goal of the present Rapid Communication is
to analyze rotating nonlinear solutions in 1D spinor polariton
rings which can be readily realized in practical devices [40].

The model. Interacting spinor polaritons trapped in a quasi-
one-dimensional ring resonator (see Fig. 1) can be described
by the following system of dimensionless Gross-Pitaevskii
equations [35]:

ive = —0s + (Wl + Yz DY
QY + keTHy. (1)

Here, ¥1’s are the components of the exciton-polariton spinor
wave-function ¥ = {y;,¥_} in the basis of circular polar-
izations satisfying 1. (¢t,¢) = ¥ +(¢t,¢ + 27), parametero < 0
characterizes attractive interaction of the cross-polarized po-
laritons, €2 is half of the Zeeman energy splitting proportional
to the amplitude of the applied magnetic field, and « is
half of the momentum-independent TE-TM energy splitting.
Parameters 2 and « are dimensionless and scale in units
of 1?/(2m*R?), where R is the ring radius and m™* is the
exciton-polariton effective mass. Unit energy /i%/(2m* R?) can
be varied in a broad range. Depending on the detuning between
the photon and the exciton frequencies, it can take values from
4 to 40 peV for a ring radius of 5 um [35]. TE-TM splitting
can be performed both as high as ~1 meV in a waveguide of
width 1 pum [41,42] and negligibly small by choosing large ring
widths. Also, TE-TM splitting can be controlled by changing
detuning [43] and the properties of the distributed Bragg
reflector [44]. With the unit energy of 40 eV and the angular
velocity of w ~ 1 it will take about 100 ps for a soliton to circle
around the ring, which is on the order of the polariton’s lifetime.
Normalized densities ¥4 scale out the polariton interaction
constant (which can be on the order of ~10~5 meV mm 2
[45], and coefficient « is the ratio of interactions between

(b)

FIG. 2. Different types of rotating solitons at « = —0.05, p =
10, k = 0.8, @ = 0.5, w = 0.4. The pink (blue) color denotes the
density of the 1, (1_) component. (a) and (b) The saturated colors
with the solid lines and (c) the dull colors with the dashed lines mark
the linearly stable and unstable configurations, respectively.

polaritons with parallel and antiparallel spins, which is a small
negative constant [45] (it can also be controlled by the detuning
between exciton and photon modes [46]). System (1) describes
quasiconservative nonlinear dynamics of exciton-polaritons
which has been observed in several experiments [47,48]. It
is expected that the unavoidable (small) losses will limit the
lifetime of the solitons but will not inhibit their chiral properties
discussed in what follows.

To find rotating solutions we switch from the laboratory
frame to the frame of reference rotating with frequency w,
which is achieved by replacing the polar angle ¢ with a
new variable x = ¢ — wt. Seeking the wave functions in the
form of V. (t,) = us(t,x)e "% where u.(t,x)’s satisfy
periodic boundary conditions: u4(f,x) = us(t,x + 2mw), we
get the following system:

ity = (D + lus|® + aluzHus + cuz, 2)

where Dy = —u + iwdy — (3 Fi)? £ Q. Nonlinear spinor
systems similar to that in Eq. (2) have been considered earlier
in the context of birefringent optical fibers [49,50] and, more
recently, for modeling of matter waves in spin-orbit coupled
Bose-Einstein condensates [51,52]. Chemical potential x and
frequency w uniquely select the polariton density integral
p=o f02”(|1/f+|2 + [¥_|*)d g for a given solution.

We compute rotating solutions by the numerical continua-
tion from the analytically tractable limitk = Q = w = o =0,
where Eq. (2) decouples into a pair of nonlinear Schrédinger
equations (NLSEs) whose solutions can be found in terms of
Jacobi elliptic functions [53]. Proceeding in this way, we have
discovered that system (2) supports a rich variety of nonlinear
rotating patterns. We mention here three classes of those. First,
when the initial condensate state is chosen to be periodic in
one component and exactly zero in the second component,
the numerical iterative procedure converges to a solution such
that the amplitude of one component is much larger than that
of the other one, i.e., either [y | > |W_| or [Y_| > |¥],
see Fig. 2(a). Since the smaller component can be neglected,
the properties of this family can be recovered from the scalar
NLSE equation. Starting from an initial state with a periodic
profile in one component and constant and nonzero density
in another one, we obtain a class of solutions where one
of the components has a strongly modulated amplitude with
pronounced density humps and dips, whereas the other one
is modulated relatively weakly, see Figs. 2(b) and 2(c). In
the third family, which is the focus of our attention here,
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w=0.8
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FIG. 3. Six upper panels: several representatives of a family
of solutions of type (iii) with o = —0.05, p =10, k = 0.8, and
Q2 = 0.5 at different angular velocities w. The unstable solutions
are marked by the dull colors and the dashed lines. The linearly
stable configurations are marked by the saturated colors and the solid
lines. The lower panels show pseudocolor visualizations of Stokes
parameters S, and S, for v = £0.4 and w = £0.8.

initial states with nontrivial periodic densities in both 1/, and
¥_ lead to solutions where both components feature strong
density modulation, see Fig. 3. The simplest solution, such
as this, features two density dips and two density humps.
In general, they can have arbitrarily large but always even
numbers of petals. Every density dip in this class of solutions
corresponds to the i -phase shift, and therefore an even number
of them is required to satisfy the periodic boundary conditions.
In what follows, we illustrate the main results of our Rapid
Communication using the solutions with six petals. However,
we have checked that our observations and conclusions also
remain valid for smaller and larger numbers of petals.

Chiral solitons. Now we proceed to the main results of our
Rapid Communication. With the focus on rotating patterns, it is
of obvious interest to investigate if and how their properties are
affected by the angular velocity w. To answer this question, in
the six upper panels of Fig. 3 we show representative solutions
of the third class with six dip-hump pairs. The solutions in
the different panels differ by their angular velocities w. One
interesting feature immediately visible in these panels is that

15.0 T T \ T
—1.00 —0.75 —0.50 —0.25 0.00
w

025 050 0.5 1.00

FIG. 4. Dependencies of the chemical potential & on the rotation
velocity w at different values of the magnetic-field 2. Several
configurations of solitons are shown in the insets. For each set of
parameters, two families of rotating solutions arise which differ by
the phase difference between the two circularly polarized components.
Fragments with the saturated and dull colors correspond to the stable
and unstable solutions, respectively. Here « = —0.05, p = 10, and
k =0.8.

the increase in the magnitude of velocity can be favorable for
the solution’s stability: For instance, the unstable solution with
o = 0.4 becomes stable as the velocity increases to w = 0.6
and, furthermore, to @ = 0.8. Even more interestingly, from
Fig. 3 we observe that solitons propagating with opposite
velocities (w and —w) have essentially different shapes and,
generally speaking, different stability properties. For instance,
the unstable solution rotating in the counterclockwise direction
with velocity w = —0.6 becomes stable as the rotation’s
direction is switched to clockwise (w = 0.6). This means that
the found solitons are inherently chiral in the sense that solitons
propagating with angular velocities of equal amplitudes but
opposite directions are not equivalent. In order to highlight
additionally the differences in the structures of solitons prop-
agating with opposite velocities, in the lower panels of Fig. 3
we compare pseudocolor plots of Stokes parameters defining
the distribution of the linear and circular polarization degrees
along the ring for two pairs of counterpropagating patterns,

2Re(Yiy-) P =yl

WPl T Pl

To demonstrate that the revealed chirality does not depend
on the particular choice of the parameters, in the lower panel of
Fig. 4 we plot several dependencies of the chemical potential
wu on the rotation velocity w at different nonzero values of the
magnetic-field €2. For each value of €2, the upper line and lower
lines are two different types of solutions which differ by phases
of the two circularly polarized components (cf. symmetric and
antisymmetric constant amplitude solutions in Ref. [35]). All
the obtained dependencies are not symmetric with respect to
the vertical axis w = 0 and consist of unevenly distributed
subfamilies of stable and unstable solutions, which is more
clear evidence of the solitons’ chirality. Additionally, in Fig. 5
we show the dependence of the chemical potential i on the

X
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FIG. 5. Dependencies of the chemical potential on the magnetic-
field Q2 for solitons in Fig. 4. Fragments with the saturated and dull
colors correspond to the stable and unstable solutions, respectively.

magnetic-field Q2 for solitons in Fig. 4. For every considered
velocity, the curves with w and —w intersect exactly at Q =
0. As another remarkable feature, we note that at rotation
velocities w = £0.5 the solitons exhibit the topological spin-
Meissner effect [35] in the region of |2| < 2 when the energies
are almost independent of the magnetic field.

To understand the the role of external magnetic field, we
notice that if the Zeeman splitting is absent [i.e., 2 =0 in
(2)], then a soliton propagating with velocity w always has a
twin propagating with the opposite velocity —w. Both these
counterpropagating solitons have identical properties, i.e., one
can be rendered to another by inverting the spatial direction
from x to —x and swapping the polarizations—these transfor-
mations obviously do not alter the physical properties of the
solution. In the meantime, nonzero €2 breaks this symmetry and
implies that solitons propagating with two opposite velocities
o and —w have different properties. However, if reversing
the velocity is accompanied by the change in the magnetic
field from 2 to —€2, then the system becomes invariant
under an evident symmetry: Indeed, if u,(x) and u_(x) are
time-independent solutions of Eq. (2), then a pair of new
functions U, (x) = u_(—x) and U_(x) = u4(—x) solves the
same system with w - —w, Q2 - —Q.

The chiral nature of the solitons is linked with breaking of
the time-inversion symmetry which appears naturally in the
systems with present gauge fields. It can be shown that in the
system we consider that a synthetic U(1) gauge field appears
due to the combination of TE-TM splitting and an external
magnetic field acting on the polariton spin. Indeed, let us
consider the projection of the original system of the equations
onto the lowest-energy spin state in adiabatic approximation
[54]. Diagonalizing the Hamiltonian associated with system

(1) in the basis of dressed states, one observes that in the
limit of small densities |¢+| < 1 the adiabatic dynamics is
governed by the following effective density-dependent Hamil-
tonian [55]: H = (p — A + g|yn|?, where p = —id, is the
momentum operator, | |? is the local squared density of the
¥4+ component in one of the dressed states, and g is the effective
nonlinearity coefficient (see the Supplemental Material [56]),

224+ 1) (1 —ak’Q
T AN+ Q) A

3

where A = /2 4+ Q2. The geometric density-dependent
gauge field reads

A=QA" =D+ -)QAX(1 - QA HIYyA @)

The appearance of the gauge field can be qualitatively
explained in the following way. Suppose that the polariton
is moving adiabatically along the ring. If spin-dependent
polariton-polariton interactions are neglected, the direction
of the total effective magnetic field acting on the polariton’s
spin changes along the ring according to the formula B =
e,k cos 2¢ + e,k sin 2¢ + e, (see Fig. 1). In the adiabatic
approximation the spin follows the direction of the magnetic
field, and therefore when the polariton completes one round of
the propagation along the ring its spin covers a nonzero solid
angle which leads to the appearance of the geometric phase
equivalent to

2w
2r(cos 6 — 1) = 27 (Q/A — 1) = / Adp. (5
0

From this expression one immediately deduces the first term
in Eq. (4) corresponding to the linear regime.

To conclude, in this Rapid Communication we have intro-
duced a class of solitons which have the form of localized
defects rotating with constant angular velocity in a spinor
polariton ring. The properties of the solitons, such as the spatial
shape and the dynamical stability, can be effectively managed
by the angular velocity. The solitons feature a chiral nature
which makes the solutions propagating in the clockwise and
counterclockwise directions not equivalent. The chirality is
explained using the concept of effective gauge field stemming
from the combined effect of the TE-TM splitting and the
external magnetic field.
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