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Topological Z2 resonating-valence-bond spin liquid on the square lattice
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A one-parameter family of long-range resonating-valence-bond (RVB) state on the square lattice was previously
proposed to describe a critical spin liquid (SL) phase of the spin-1/2 frustrated Heisenberg model. We provide
evidence that this RVB state in fact also realizes a topological (long-range entangled) Z2 SL, limited by two
transitions to critical SL phases. The topological phase is naturally connected to the Z2 gauge symmetry of the
local tensor. This Rapid Communication shows that, on one hand, spin-1/2 topological SL with C4v point-group
symmetry and SU (2) spin rotation symmetry exists on the square lattice and, on the other hand, criticality and
nonbipartiteness are compatible. We also point out that strong similarities between our phase diagram and the ones
of classical interacting dimer models suggest both can be described by similar Kosterlitz-Thouless transitions. This
scenario is further supported by the analysis of the one-dimensional boundary state. Forms of parent Hamiltonians
hosting the Z2 SL are suggested.
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Introduction. In pioneering work [1], Anderson proposed
the resonating-valence-bond (RVB) state [2] as the parent
Mott insulator for high-temperature superconductivity [3].
In contrast to magnetic phases, the insulating RVB state
hosts preexisting (resonating) singlet pairs of spins 1/2—or
valence bonds (VBs)—which, upon hole doping, give rise to
superconducting (coherent) Cooper pairs. Originally, the RVB
state, in its simplest version only involves resonating singlets
build from nearest-neighbor (NN) spins 1/2. More recently, a
generalized RVB state including longe-range singlet pairs has
been introduced to describe the ground state of the spin-1/2
frustrated Heisenberg antiferromagnet on the square lattice
[4,5].

In recent years, the notion of topological order [6,7] has
progressively emerged as a key concept going beyond the
traditional Ginzburg-Landau paradigm of spontaneous sym-
metry breaking [8,9]. It is at the heart of the excitement for
quantum computing as can be conceptually realized in Kitaev’s
toric code (TC) [10]. Rokhsar-Kivelson (RK) quantum dimer
models [11,12] on the kagome and triangular lattices turned
out to host dimer liquid phases of the same Z2 (i.e., Ising)
topological class as the TC [13,14]. The kagome NN RVB state
also provides a beautiful example—and maybe the simplest
possible—of a Z2 spin liquid (SL) [15–18], the spin-1/2
SU (2)-symmetric analog of the RK dimer liquids. Topological
order is associated to long-range entanglement providing the
roots for the emergence of exotic fractionalized bulk exci-
tations. E.g., the kagome NN RVB state hosts mobile spin-
1/2 (electriclike) spinon and spinless (magneticlike) vison
excitations [16].

Strikingly, NN RVB states turn out to have very different
infrared (i.e., long-distance) properties depending on the bi-
partiteness or nonbipartiteness of the lattice [16]. For example,
in contrast to its analog on the kagome lattice, the NN RVB
state on the square lattice exhibits algebraic (dimer-dimer)
correlations [19,20]. All spin-1/2 NN RVB states are in fact

closely related to their RK dimer-liquid analogs [11]. On
the square lattice, a height field representation can be drawn
enabling to construct a coarse-grained field theory [21,22]
hosting a stable critical Kosterlitz-Thouless (KT) phase. The
nonorthogonality of the valence-bond configurations of the
NN RVB state does not affect the critical nature of the
state but only modifies the critical exponent [19,20,23]. In
this Rapid Communication, we show that introducing long-
range bonds into the (square lattice) NN RVB state—breaking
its bipartiteness nature—leads to a rich phase diagram, in-
cluding a new topological Z2 SL, bounded by two critical
KT phases.

The RVB as a simple projected entangled-pair state. For
this goal, we consider the generalized RVB state on the square
lattice, which was introduced in Ref. [4]. Such a state is
represented as a simple projected entangled-pair state (PEPS)
which, after applying a π rotation along the Y -spin axis on
one of the two sublattices, only involves a single tensor A
on every site. The tensor A is obtained by linear combining
two A1 tensors, both of which belong to the A1 irreducible
representation of the square lattice point-group C4v:

A = A(1)
1 + λA(2)

1 . (1)

The A(1)
1 (A(2)

1 ) tensor has one (three) virtual spin-1/2 and
three (one) virtual spin-0 in every site configuration and corre-
spondingly one (three) virtual dimer(s) attached to every lattice
site. Virtual spin-1/2 on the bonds connecting NN sites are
paired up into singlets. The four virtual spins attached to every
site are then projected into the physical spin-1/2. The bond
dimension is thus D = 3. The elements of A(1,2)

1 which can be
found in Ref. [24] are reproduced in the Supplemental Material
[25] for convenience and graphically represented in Figs. 1(a)
and 1(b). The PEPS formed by A(1)

1 is exactly the bosonic
equal weight NN RVB state [26], and adding the A(2)

1 tensor
will generate longer-range VB through quantum teleportation
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FIG. 1. (a, b) Schematic representations of the A(1)
1 and A(2)

1 site
tensors, respectively. The red (blue) dots represent virtual spins 1/2
(0), the solid (dotted) lines represent virtual dimers (absence of
dimers), and the red circle stands for the projection operator. The other
tensor elements are obtained by rotation and reflection symmetries. (c)
Typical VB configuration on the square lattice where ellipses stand
for singlet pairs of spin-1/2. (d) Marshall sign versus λ. (e) Phase
diagram of the PEPS given by Eq. (1) versus λ.

[4]. The violation of the Marshall sign [see Fig. 1(d) and
discussion below] implies that singlet VB can appear within the
same sublattice, meaning that, strictly speaking, bipartiteness
is broken once λ �= 0. A typical VB configuration is shown in
Fig. 1(c). Since in every VB configuration the number of A(2)

1
tensor is even, A(λ) and A(−λ) represent the same state, and
one can restrict to, e.g., λ � 0.

To draw a phase diagram as a function of the parameter λ,
we have used a corner transfer matrix renormalization group
(CTMRG) method [27–29] taking advantage of the tensor sym-
metries [5] to compute the spin and dimer correlation functions.
This has been supplemented by a tensor renormalization group
(TRG) analysis to extract topological properties, if any. Our
results are summarized in the schematic phase diagram shown
in Fig. 1(e). A short-range topological Z2 SL phase is found
in an extended region λ ∈ (λc1,λc2 ), surrounded by two critical
SL phases, whereλc1 = 0.85(5), λc2 = 2.85(5). We emphasize
the existence of an emergent U (1) gauge field responsible for
the critical nature of the SL phases at λ < λc1 and λ > λc2.
Next, we present our numerical results supporting this phase
diagram.

Marshall sign and gauge symmetry. The PEPS we are
considering is a SU (2) spin singlet and can be expressed as
coherent superposition of valence-bond configurations, which
form an overcomplete basis:

|ψ(A)〉 =
∑

c(i1j1),(i2j2),...|(i1j1),(i2j2), . . .〉, (2)

where |(i1j1),(i2j2), . . .〉 is a VB configuration and c(i1j1),(i2j2),...

is the corresponding amplitude. Note that, in general we cannot

factorize c(i1j1),(i2j2),... as a product of weights function of the
dimer length. A central question to ask is what is the (ij )
singlet pairing type in the VB basis, i.e., whether there is only
inter-sublattice AB pairing. To answer this question, we have
investigated the Marshall sign [30] in the Ising basis. We put
the PEPS on a finite lattice with torus geometry and use exact
contraction to obtain the wave function. Then we compute

the Marshall sign average, defined as 〈sign〉 =
∑

c sgnc|〈c|ψ(A)〉|2∑
c |〈c|ψ(A)〉|2 ,

where c is the Ising configuration and sgnc is determined by
the sign of the coefficient. As can be seen in Fig. 1(d), for
arbitrarily small λ �= 0, the Marshall sign average deviates
from 1 and more severely with increasing system size. These
results imply that our RVB PEPS cannot be written in the
canonical Liang-Douçot-Anderson form [31] with only (AB)
singlet pairs. Reversely, if VBs are present on the same A

or B sublattices, it implies that, effectively, the bipartiteness
of the lattice is broken. This property is in fact connected
to the broken U (1) gauge symmetry of the site tensor: For
λ = 0 (λ = ∞) the number of virtual spin-1/2 around each
site is fixed to 1 (3), whereas for 0 < λ < ∞, only the parity
of this number is conserved so that the U (1) gauge symmetry
is broken down toZ2. The two U (1)-symmetric RVB states are
in fact closely related to their RK critical dimer-liquid analogs
[11] for which the KT algebraic (dimer) correlations follow
from a coarse-grained height-field theory [21,22]. At finite λ,
the long-distance field theory can no longer be obtained by
the same coarse-graining procedure. Therefore, it is not clear
whether each algebraic phase will survive in a finite region of
the parameter λ. Next, we provide numerical evidence for the
stability of both critical phases and the emergence of a novel
short-range SL in between.

Correlation functions. To calculate the physical observables
of the PEPS given by Eq. (1), we use the CTMRG method to
extract various correlation functions [5,27–29]. The CTMRG
method allows us to work directly in the thermodynamic
limit, whose accuracy is controlled by the bond dimension
of environment tensors, denoted as χ . For completeness, we
include the details of the specific CTMRG method we are
using in the Supplemental Material [25]. We are interested in
spin-spin and longitudinal/transverse dimer-dimer correlation
functions along, e.g., the ex (horizontal) direction defined as:

Cs(d) = 〈Si · Si+dex
〉0,

C
(L)
d (d) = 〈

Dx
i Dx

i+dex

〉
0 − 〈

Dx
i

〉
0

〈
Dx

i+dex

〉
0,

C
(T)
d (d) = 〈

D
y

i D
y

i+dex

〉
0 − 〈

D
y

i

〉
0

〈
D

y

i+dex

〉
0, (3)

where the dimer operators Dx
i = Si · Si+ex

and D
y

i = Si · Si+ey
.

Note that the correlation along the ey (vertical) direction is
the same due to C4v lattice symmetry. Also, since L and T
dimer correlations give similar results, we will only show the
T correlations for conciseness.

The spin-spin correlations show clear exponential decay
with momentum (π,π ) in all parameter region. Typical behav-
iors for χ = 12D2 are shown in Fig. 2(a). By fitting the asymp-
totic linear behaviors of the data according to ln|Cs(d)| =
−(1/ξs)d + c0, we straightforwardly get the correlation length

161107-2



TOPOLOGICAL Z2 RESONATING-VALENCE- … PHYSICAL REVIEW B 97, 161107(R) (2018)

0 20 40 60

10

10

10

10

(a)

0 1 2 3 4
0.8

1

1.2

1.4

1.6

1.8

2

2.2

(b)

10
0

10
1

10
2

10

10

10

10

10

0 20 40 60

10

10

10

(c)

0 1 2 3 4
0

20

40

60

80

100

120

140

160

180

200

(d)

FIG. 2. (a) Spin correlation function versus distance for different
λ’s at fixed χ = 12D2 (semi-log plot). (b) Spin correlation length
versus λ for different values of χ . (c) Log-log plot of the (transverse)
dimer correlation versus distance for different λ’s at fixed χ = 30D2

(semi-log plot for λ = 1.5 in the inset). (d) Dimer correlation length
versus λ for different values of χ [same as in (b)]. In (b) and (d) the
error bar of fitting correlation length is smaller than symbol size and
has been omitted.

ξs from the slopes −1/ξs, which is shown in Fig. 2(b). It can
be seen that the spin-spin correlation length is very short in
the full parameter region and, with increasing χ , converges
to a small finite value. Note however that a small singularity
may be present around λ � 0.9, reflecting some transition (see
next).

The dimer-dimer correlations reveal new exotic features.
For both small λ (λ < λc1 ) and large λ (λ > λc2 ), the analysis
of the data shows clear power-law decaying dimer-dimer
correlations as can be seen, e.g., in Fig. 2(c). Although for any
finite χ , the asymptotic long-distance dimer-dimer correlations
decay always exponentially, the correlation length ξd [see
Fig. 2(d)] never saturates with increasing χ as can be seen
in Fig. 3(a), which indicates that the two regions are in fact
critical. By fitting the critical behavior |Cd(d)| ∼ d−η in the
d � ξd region, we can obtain the critical exponent η, shown in
Figs. 3(b)–3(d). The converged exponent at λ = 0 (NN RVB
state) agrees very well with Monte Carlo results [19,20]. By
analyzing the behavior of the dimer correlation length with
increasing χ , we have located the phase boundaries λc1 =
0.85(5), λc2 = 2.85(5). Most strikingly, in the intermediate
λc1 < λ < λc2 region, ξd(χ ) clearly saturates to a small value,
as shown in Fig. 2(d), revealing a true short-range behavior.

Search for topological order. The exponentially decaying
spin and dimer correlation functions (with extremely short
correlation lengths) strongly support the existence of a new
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FIG. 3. (a) Dimer (transverse) correlation length versus χ/D2 for
different values of λ. (b) Fits versus D2/χ of the exponent of the
power-law dimer correlation, for different values of λ in the critical
phases. (c) and (d) Dimer exponent versus λ for different values of χ

and χ → ∞ extrapolation. In (b)–(d), the error bar of the exponent
at finite χ comes from fitting the dimer correlation functions versus
distance, whereas the error bar of the extrapolated exponent comes
from linear fitting versus D2/χ .

quantum phase between λc1 and λc2 . Furthermore, since there
is no evidence for any symmetry-breaking order, it should be
a short-range spin liquid. Then, a natural question is whether
this spin liquid exhibits topological order. The PEPS in Eq. (1)
bears Z2 gauge symmetry, except at λ = 0,∞ where higher
U (1) gauge symmetry is present. The Z2 gauge symmetry is
generated by 2π spin rotation, which only induces a minus
sign in the A tensor. We then expect Z2 topological order
in the intermediate region. To verify this, we use the TRG
method to obtain the modular matrices. Note that, in order to
correctly implement this method, we need to keep theZ2 gauge
symmetry [32,33]. The TRG method for modular matrices
is briefly reviewed in the Supplemental Material [25], whose
precision is controlled by the bond dimension χ of the double
tensor. After every TRG step, we put the double tensor on a
torus. Inserting gauge symmetry transformation, we obtain the
complete modular S and T matrices. In the intermediate region,
the modular matrices converge after six TRG steps, whereas it
takes much longer (typically 10–12 steps) to obtain converged
results in the critical regions, as shown in Fig. 4(a).

The converged modular matrices for the short-range SL are
as follows:

S =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠, T =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, (4)
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FIG. 4. Trace of the modular matrices S and T . (a) versus TRG
step number at χ = 8D2; (b) versus λ after 12 and 16 steps at χ = 4D2

and 8D2, respectively.

which are identical to the modular matrices of the TC in
the string basis. For the two critical regions, we also obtain
converged modular matrices:

S =

⎛
⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎠, T =

⎛
⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎠, (5)

which are rank-1 matrices and indicate trivial topological order.
The trace of the converged modular matrices for different λ’s
is shown in Fig. 4(b) where sharp transitions can be seen
between the different regions. We note that, similar topological
information can also be obtained by investigating the leading
eigenvalues of the transfer matrix in different topological
sectors when putting the PEPS on an infinitely long cylinder
[34].

Boundary conformal field theory for U (1) SL. The existence
of the two critical SL phases (beyond the λ = 0 and λ = ∞
points) is further supported by the analysis of the boundary
state (see the Supplemental Material [25] for details). We find
that the corresponding von Neumann entanglement entropy
scales with the maximal correlation length ξB of the boundary
state when increasingχ , like SvN (χ ) ∼ c

6 ln ξB(χ ), as expected
in a (1+1)-dimensional conformal field theory (CFT) with
universal central charge c [35,36]. From the fits of Fig. 5,
one gets c = 1.01(2) and c = 1.05(6), consistent with a simple
c = 1 CFT.

Conclusion and outlook. Using a simple PEPS ansatz
of a generalized RVB spin liquid, we have shown that:
(i) spin-1/2 topological SL with C4v point-group symmetry
and SU (2)-spin rotation symmetry exists on the square lattice
and (ii) criticality and nonbipartiteness are compatible. The
topological phase observed here is naturally connected to the
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FIG. 5. (a) von Neumann entropy versus the logarithm of the
maximal correlation length. The dashed lines correspond to CFT
predictions with c = 1. (b) Central charge c from linear fits of the
data. Note, in the second critical phase, data with χ � 20D2 only are
used in the fit.

Z2 gauge symmetry of the local tensor typical of an Ising
gauge theory [12,22]. These properties are reminiscent of a
classical interacting dimer model which interpolates between
the square lattice and the triangular lattice by tuning a chemical
potential in the diagonal bonds [37]. In this case, by varying
the temperature, a similar transition is seen separating a high-
temperature short-range disordered dimer liquid to a critical
KT low-temperature dimer phase. In fact, the NN RVB phase
can be mapped to a classical interacting dimer model on the
square lattice at finite temperature [23,38,39]. Although it is
not clear how such a mapping could be extended once λ �= 0,
the similarity between the two phase diagrams suggests that
both can be captured by the same long-wavelength height-
field theory [37,39,40], giving rise to (continuous) KT phase
transitions. Such a scenario is supported by the finding of a
universal boundary central charge c = 1 in the two critical
regions.

Finally, we note that the existence of a SU (2)-invariant local
parent Hamiltonian follows from theZ2 injectivity of the PEPS
[15]. The latter at λ �= 0 would be a “deformation” of the parent
Hamiltonian derived at λ = 0 (see the Supplemental Material
and Refs. [41,42]), including, e.g. (physically relevant) pla-
quette cyclic terms or other sorts of multi-spin interactions
involving up to six sites.
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