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To address ultimate precision in density functional theory calculations we employ the full-potential linearized
augmented plane-wave + local-orbital (LAPW + lo) method and justify its usage as a benchmark method.
LAPW + lo and two completely unrelated numerical approaches, the multiresolution analysis (MRA) and the
linear combination of atomic orbitals, yield total energies of atoms with mean deviations of 0.9 and 0.2 μHa,
respectively. Spectacular agreement with the MRA is reached also for total and atomization energies of the G2-1
set consisting of 55 molecules. With the example of α iron we demonstrate the capability of LAPW + lo to
reach μHa/atom precision also for periodic systems, which allows also for the distinction between the numerical
precision and the accuracy of a given functional.
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Density functional theory (DFT) [1,2] is the most widely
used method in modern computational condensed-matter
physics and chemistry as reflected by the existence of dozens
of implementations, employing diverse numerical schemes.
Although each of these implementations may be most suitable
for a specific type of application, in essence, all of them
solve the Kohn-Sham (KS) equation [2]. Given the diversity
of computational tools, it is natural to ask whether they
indeed provide the same answers. This question, i.e., how
reproducible DFT results are, was recently discussed in the
context of a community effort where the equation of state of
71 elemental solids was calculated using a variety of DFT
implementations [3]. It turned out that, after a period of fine-
tuning, different DFT codes are now in good overall agreement.
Despite the deviations between codes being small on average,
discrepancies obtained for certain elements are much more
substantial. Moreover, it is not clear or even not expected that
such agreement would be preserved beyond bulk elemental
materials. As a matter of fact, the work to be performed to
explore and guarantee the precision of electronic-structure
codes is certainly far from being finished.

Efforts on the improvement of computational methods are
immensely alleviated if reliable reference data or reference
tools are available. The gold standard for solving the same
KS equation of DFT for condensed matter are full-potential
all-electron methods, especially those employing (linearized)
augmented plane waves with local orbitals (LAPW + lo) [4–6]
as basis functions. LAPW + lo is often trusted blindly as
the ultimate reference method for validating pseudopotentials
or data sets of projector-augmented waves [7–10]. Yet, it
has never been shown how precise this method can be in
practice. Even more, arguing that the method would depend
on parameters which “can influence the results in a more or
less erratic way,” it was even questioned recently [11] whether
LAPW + lo can provide benchmark quality at all.

In this Rapid Communication, we use our LAPW + lo
implementation in the full-potential all-electron package EX-
CITING [12] to show that for absolute total energies outstanding

1-μHa/atom precision can be obtained. In order to validate
this statement, we first turn to atoms and molecules since for
finite systems one can find other methods that, in principle,
are capable of yielding an exact numerical solution of the KS
equation. In the second step, we exploit the duality of the
LAPW + lo basis for verifying the numerical performance
of plane waves using atomic orbitals and vice versa. Making
use of this concept, we demonstrate that microhartree precision
is achievable also for periodic systems. Clearly, we can thus
distinguish between the accuracy of a DFT functional and the
numerical precision of the actual implementation.

Let us recall the Kohn-Sham equation of DFT,

[
−∇2

2
+ veff (r)

]
ψ(r) = εKSψ(r). (1)

The major source of numerical issues in solving it is the
behavior of the effective potential veff (r). Although it is very
smooth in most of the space, its shape is dominated by the
electrostatic contribution in the proximity of nuclei where it
varies rapidly with a divergence at the nuclear sites. As a result,
the otherwise well-behaved KS orbitals ψ(r) exhibit cusps at
the atomic positions and a nodal structure in their vicinity.

The LAPW + lo method meets these properties of ψ(r). The
unit cell is partitioned into nonoverlapping atomic spheres (or
muffin-tin spheres MTα), centered at the nuclear positions with
index α and the interstitial region (I). KS wave functions are ex-
panded in terms of atomlike functions f α

ν (rα) = uν(rα)Y�m(r̂α)
and plane waves, respectively,

φG+k(r) =
{∑

ν Aα
G+k,νf

α
ν (rα), r ∈ MTα,

1√
�
ei(G+k)r, r ∈ I.

(2)

The coefficients Aα
G+k,ν are determined to ensure smooth-

ness of the basis functions at the sphere boundaries. These
augmented plane waves are typically complemented by local
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FIG. 1. The error in the total LSDA energy of an oxygen atom
when using local orbitals with angular momenta up to �max (left) and
as a function of a plane-wave cutoff RMTGmax (right). The limit of the
total energy is estimated by using �max = 6 and by extrapolating its
dependence on RMTGmax.

orbitals,

φμ(r) =
{
f α

μ (r), r ∈ MTα,

0, r ∈ I.
(3)

That way the flexibility of the basis is improved which, indeed,
has a major impact on results as we demonstrate below. Local
orbitals are crucial also for reaching benchmark quality in
GW calculations as was pointed out recently [13,14]. A more
detailed introduction to the LAPW + lo method is available
in Refs. [12,15]. The overall size of the basis and the quality
in the interstitial region are controlled by the dimensionless
parameter RMTGmax, where Gmax is the maximum length of
wave-vectors G + k used in the LAPW basis. In other words,
RMTGmax can be freely adjusted to make the expansion of wave
functions in the interstitial region as precise as necessary. In the
atomic spheres, the quality of the wave functions is governed
by the choice of the atomiclike functions [Eqs. (2) and (3)].

To illustrate how the LAPW + lo basis can be exploited to
reach essentially exact total energies for a given exchange-
correlation functional, we consider the oxygen atom. We
restrict ourselves to using the local spin-density approxima-
tion (LSDA). Still, the same procedure works for any other
functional for which a local KS potential is available, and
we present a similar discussion for the generalized-gradient
approximation (GGA) in the Supplemental Material [16].
According to the Aufbau principle, the 2p shell is partially
filled with one p orbital doubly occupied and two others singly
occupied. Consequently, this atom is not only magnetic, but
also its effective potential and hence the electron density are
not spherically symmetric. Thus, radial and angular degrees
of freedom are entangled, and all wave functions formally
contain contributions from all angular momenta. We take it
into account by introducing local orbitals not only with angular
momenta of � = 0 and 1, that are the dominating contributions
to the 1s, 2s, and 2p states, but also consider higher values
of �. Their impact on the total energy is shown in Fig. 1. In
the classical LAPW formalism, f α

ν (r) combines strictly two
functions per spherical harmonic for each atom. Local orbitals
allow us to correct for all missing features in the pure LAPW
representation and are not limited in number. A calculation
using local orbitals with � up to 1 yields the total energy
within an error of ∼100 μHa. Adding basis functions with
higher angular momenta gradually improves the result, and, at

�max = 4, this quantity differs from the estimated exact limit
by less than 10−7 Ha. Likewise, we show how the total energy
converges with increasing RMTGmax. In this case, we observe
an exponential decay of the error similarly as in Ref. [12].
Note that the errors due to missing angular degrees of freedom
depend on the atomic-sphere radius; the magnitudes shown in
Fig. 1 are obtained for RMT = 1.2a0. It is possible to reduce
RMT so far that already at �max = 1 the errors are negligible. We
find that, at RMT = 0.5a0, this error is only 2 μHa. However,
a reduction of RMT to such a small value leads to an enormous
increase in the number of LAPWs, making the calculations
very expensive.

At this point, it is already clear that the quality of the basis
in the atomic spheres is essential for highly accurate results,
and the discussed example reflects how to handle systems with
substantially asymmetric potentials in the atomic spheres. Such
potentials not only occur in a range of spin-polarized systems,
but also occur in systems with short bonds.

To show that the converged limit in LAPW + lo corresponds
to the exact numerical solution we compare them to two other
all-electron methods that are expected to deliver highly precise
results. The first one is the multiresolution analysis (MRA) [17]
that also has been used as a reference method in Ref. [11]. It
recasts the KS equation in the Lippmann-Schwinger integral
equation form and solves it iteratively by applying local and
nonlocal operators on trial wave functions numerous times.
The wave functions are stored in an adaptive multiscale
representation, whereas the integral kernels of the nonlocal
operators are represented in a separable form. Such a numerical
approach allows for solving the KS equation efficiently with a
guaranteed precision. The MRA is implemented in the MAD-
NESS code [17], which is currently restricted to finite systems.
The other alternative method is the linear combination of
atomic orbitals (LCAO) for which we use the NWCHEM package
[18]. Although, in the general case, where the precision of the
LCAO for absolute total energies is limited, it was shown how
Gaussian-type orbitals can be used for reaching the complete-
basis limit for atoms [19] which we employ in this Rapid
Communication. In the calculations of molecules, we resort
to the augmented correlation-consistent polarized quadruple-
and quintuple-ζ basis sets known also by their acronyms
aug-cc-pVQZ and aug-cc-pV5Z [20–22], respectively. These
basis sets were used by Willand et al. [23] for generating
all-electron reference data for benchmarking newly generated
pseudopotentials. The so-obtained atomization energies turned
out to be converged to at least 1 kcal/mol (≈1.6 × 10−3 Ha),
which is commonly referred to as chemical accuracy.

The MRA and LCAO are designed for calculating finite sys-
tems, and thus we make use of them first for comparison with
our total energies of atoms and further below for molecules.
We employ nonrelativistic theory and the LSDA [24]. This
choice, however, does not influence the overall conclusions
from our Rapid Communication. The total energies of atoms
obtained with the three codes are compared in Fig. 2. In all
cases, we observe outstanding agreement between the LAPW
+ lo and the MRA (LCAO) with a mean absolute deviation
of 0.9 μHa (0.2 μHa). (Computational details and the total
energies are provided in the Supplemental Material [16].)

The excellent agreement between the different methods is
all the more remarkable in view of the very different ways the
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FIG. 2. LSDA energies of atoms obtained by MADNESS (MRA)
and NWCHEM (LCAO) with EXCITING (LAPW + lo) results taken as
a reference. Note the microhartree precision throughout.

KS equation is solved. In particular, it concerns the fact that
EXCITING has been developed primarily for studying problems
of condensed-matter theory, e.g., it considers electrons in
periodic potentials. In other words, we compute isolated atoms
and molecules employing periodic boundary conditions. It
translates into a huge number of basis functions and, thus,
requires an efficient way to diagonalize the Hamiltonian. To
do so, we have implemented a different approach. It follows
the block-Davidson algorithm [25] although with an important
modification such that the initial subspace is particularly
suitable for LAPW + lo. It consists of an initial guess for the KS
wave functions, all local orbitals, and a number of eigenvectors
of the overlap matrix. As a result, we obtain an algorithm
that predictably converges even at high values of the cutoff
parameter RMTGmax when the LAPWs become nearly linearly
dependent. Our implementation of this algorithm follows the
spirit of Ref. [26] and thus does not require the construction
of the entire Hamiltonian and overlap matrices. Details of the
implementation will be published elsewhere [27].

In order to reach the limit of an isolated molecule (or atom)
in LAPW + lo calculations, it is necessary to ensure that
there is no artificial interaction between the periodic images
of molecules in neighboring unit cells. It is especially critical
for polarizable molecules with permanent dipoles as their
interaction energy scales as d−3 [28], where d is the distance
between adjacent molecules. We eliminate this slow decay
by truncating the Coulomb potential [29]. Such an approach
is particularly important for molecules, such as LiH. The
truncation of the Coulomb potential allows for a reduction
of the unit-cell dimensions from 80 to 16 Å. Thus, the size
of the LAPW + lo basis reduces from 108 to 106 making
the total-energy calculation feasible. Note that even 106 basis
functions are an unusually large problem size in comparison
to typical LAPW + lo calculations.

Equipped with this methodology, we turn to the second
benchmark, which is the G2-1 set [30]. This set contains 55
molecules, consisting of two to eight atoms for which a variety
of experimental data is available. Thus it provides an excellent
opportunity for benchmarking methods of DFT and quantum
chemistry. Here, we use it for comparing different computa-

TABLE I. Mean deviation (MD), mean absolute deviation
(MAD), and maximum absolute deviation (MaxD) of LAPW +
lo total (left columns) and atomization energies (right columns)
of the G2-1 molecules with respect to the results obtained with
MADNESS (MRA) and NWCHEM (LCAO). All quantities (in Ha/atom)
are obtained using the LSDA.

Total energy Atomization energy


Etot
MRA 
Etot

LCAO 
Eat
MRA 
Eat

LCAO

MD 0.2 × 10−6 1.2 × 10−3 0.4 × 10−6 6.1 × 10−5

MAD 0.3 × 10−6 1.2 × 10−3 0.5 × 10−6 9.9 × 10−5

MaxD 1.1 × 10−6 7.6 × 10−3 1.5 × 10−6 2.1 × 10−3

tional methods. We consider fixed geometries according to the
data published in Refs. [31,32].

Table I summarizes deviations of the MRA and LCAO
energies from those obtained with EXCITING. The complete
list of total energies can be found in the Supplemental Material
[16]. The agreement between the LAPW + lo and the MRA
is spectacular for both absolute total energies and atomization
energies. The average and maximum deviations in total energy
from the other methods amount to 0.3 and 1.1 μHa/atom,
respectively, consistent with the results for atoms shown above.
Similarly, we obtain 0.5 and 1.5 μHa/atom for the average and
maximum deviations in atomization energies, respectively. The
excellent agreement between the highly converged LAPW +
lo and the MRA calculations allows us to argue that these
two methods provide essentially exact answers. The obtained
discrepancy, thus, can be considered as the error estimate of
the two methods.

As argued above, the employed LCAO basis sets are
not supposed to yield exact answers. Indeed, the average
absolute deviations in the total (atomization) energies of
LAPW + lo from LCAO calculations are three (two) orders
of magnitude larger compared to those from the MRA. Still,
with the only exception of the SO2 molecule [error of 1.9 ×
10−3 μHa (1.2 kcal/mol)], the LCAO atomization energies
are within the chemical-accuracy limit of 1.0 kcal/mol.

The high precision of the LAPW + lo method obtained
in calculations of atoms and molecules suggests a similar
performance for solids. Although it would be desirable to
benchmark against other methods also for periodic systems,
we are not aware of implemented alternative approaches that
are expected to be exact. On the other hand, the nature of the
LAPW + lo method opens a door for “self-validation” through
the partitioning of space that introduces two very different
ways of representing wave functions. More specifically, if the
atomic-sphere volume is reduced, a certain region that was
previously described by atomiclike orbitals is now described
by plane waves. We argue that, if such a rearrangement does
not introduce a change in the total energy, the complete-basis
limit has been reached.

We demonstrate the performance of the LAPW + lo method
for periodic systems with the example of ferromagnetic α

iron. This material presents numerical challenges as reflected
in Ref. [3] where the corresponding results show scattering
well above the average over the 71 elements of the Periodic
Table. The need for a precise and thus unique result given
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TABLE II. The equilibrium volume V0 (in atomic units), bulk
modulus B0 (in gigapascals), and its pressure derivative B ′ for α iron
as obtained from a fit of nonrelativistic LSDA results to the Birch-
Murnaghan equation of state. 
Etot (in microhartrees) is relative to
the value in the first row. All results above the separating line are fully
converged.

RMT RMTGmax V0 B0 B ′ 
Etot

1.4 14 71.3298 236.296 4.5992 0.0
1.8 14 71.3299 236.295 4.5994 0.4
2.1 14 71.3302 236.295 4.5994 0.8

2.1 12 71.3297 236.298 4.5998 3.8
2.1 10 71.3243 236.337 4.5968 95.0
2.1 8 71.1087 239.443 4.6320 2253.0

a certain functional is also motivated by the fact that all-
electron calculations are commonly taken as a reference for
benchmarking pseudopotentials as was performed in a recent
DFT study of the thermoelastic properties of iron [46].

The aspherical density distribution due to the magnetic
moment as discussed above requires particular care. In order
to handle the anisotropy of the potential in the atomic spheres
we introduce local orbitals with angular momenta � up to six.
Using this setup and a sufficiently high LAPW cutoff, we vary
RMT in the range of 1.4–2.1a0. Note that such a variation of
the atomic sphere corresponds to a change in its volume by a
factor of 3. Remarkably, the total energy stays within the 1-μHa
range. This is the case for any considered volume within a 10%
deviation from the equilibrium volume of the primitive unit
cell. Thus, we argue that the 1-μHa precision has been achieved
also for this case. The outstanding agreement is obtained for
the entire energy-versus-volume dependence as demonstrated
by the Birch-Murnaghan equation of state based on 21 data
points within ±5% of the volume change, shown in Table II.
As soon as convergence is reached in terms of the plane-wave
cutoff, we obtain extremely stable values of the equilibrium
volume V0, the bulk modulus B0, and its pressure derivative
B ′. The former two fluctuate only in their sixth decimal places
and the latter one in its fifth decimal place. A polynomial fit
considering a wider range of volumes (±10%) exhibits the
same stability (see the Supplemental Material [16]).

Using the same settings as above, we obtain also highly pre-
cise values for the equilibrium lattice constant and bulk mod-
ulus from scalar-relativistic Perdew-Burke-Ernzerhof (PBE)
functional calculations, shown in Fig. 3 together with data
from the literature. The scattering of the calculations (wider
than the experimental ones) do not allow for conclusions about
the exact result unless a highly reliable reference calculation is
available. Strikingly, our reference value obtained in this Rapid
Communication is located far from the middle of the cloud of
the PBE functional data from Refs. [3,33] and farthest away
from experiment. Note that our results also allow for comparing
the performance of different functionals as we illustrate by
comparing the PBE functional and PW91 [47] results. The
spread of data obtained with these two GGAs implies that,

FIG. 3. Bulk moduli and lattice constants of α iron. The yellow
triangles correspond LAPW + lo calculations, and the red circles
correspond to results by other methods taken from Ref. [3]. The open
and blue triangles represent older LAPW(+ lo) calculations [33].
The lines indicate results obtained in this Rapid Communication. The
diamonds correspond to experimental data [33–45].

without reference data, a distinction between the accuracy of a
given functional and the numerical precision introduced by a
specific implementation would not be possible. Indeed, besides
a few exceptions [48], these two GGAs were often considered
synonymous. Our calculations clearly show that PW91 yields
a smaller lattice constant and a larger bulk modulus than the
PBE functional.

In conclusion, we have challenged the numerical accuracy
of the LAPW + lo method. In order to demonstrate its
capability, calculations for atoms and molecules have been
benchmarked against two completely unrelated highly precise
methods. The differences in absolute total energies are on
average 1 μHa/atom. Furthermore, we have shown that we
reach the same precision also for solids. The presented results
allow us to claim that, once properly converged, LAPW + lo is
an essentially exact method for DFT calculations. Overall, this
Rapid Communication presents also a justification for using
LAPW + lo as a reference method, backing up its reputation as
the gold-standard method for DFT for condensed matter. The
ability to reach the complete-basis limit will be indispensable
for benchmarking less precise methods and for quality control
of data collections. Furthermore, it opens perspectives towards
reliably computing numerically sensitive quantities, such as
magnetization anisotropy, weak noncovalent interactions,
relative stabilities of isomers or polymorphs, etc., where high
precision is crucial.

The Rapid Communication has received partial support
from the European Union’s Horizon 2020 Research and In-
novation Programme, Grant Agreement No. 676580 through
the Center of Excellence NOMAD (Novel Materials Discovery
Laboratory) [49]. A.K. acknowledges helpful discussions with
R. J. Harrison on the MRA method.

The calculated data are available in the NOMAD repository
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