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Ferromagnetic Peierls insulator state in AMg4Mn6O15 (A = K,Rb,Cs)
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Using the density-functional-theory-based electronic structure calculations, we study the electronic state
of recently discovered mixed-valent manganese oxides AMg4Mn6O15 (A = K,Rb,Cs), which are fully spin-
polarized ferromagnetic insulators with a cubic crystal structure. We show that the system may be described
as a three-dimensional arrangement of the one-dimensional chains of a 2p orbital of O and a 3d orbital of Mn
running along the three axes of the cubic lattice. We thereby argue that in the ground state the chains are fully
spin polarized due to the double-exchange mechanism and are distorted by the Peierls mechanism to make the
system insulating.
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Magnetism and electronic transport properties of materials
are closely related to each other; e.g., insulating transition-
metal oxides are typically antiferromagnetic, and ferromag-
netism usually goes hand in hand with metallicity [1,2].
One of the rare exceptions to this rule is a hollandite chro-
mate K2Cr8O16 [3–9] where the double-exchange mechanism
[10–13] induces a three-dimensional (3D) full spin polarization
in the system below Tc = 180 K, and then the metal-insulator
(MI) transition follows in its fully spin-polarized quasi-one-
dimensional (1D) conduction band by the Peierls mecha-
nism at TMI = 95 K without affecting its 3D ferromagnetism
[5,14,15]. Thus, the uncommon ferromagnetic insulating state
is realized in the ground state of this material.

Recently, Tanaka and Sato [16] discovered a novel series
of manganese oxides AMg4Mn6O15 (A = K, Rb, and Cs),
which were reported to be insulating ferromagnets with a
highly symmetric body-centered-cubic structure (see Fig. 1).
The Mn ions are in a mixed-valent state of Mn3+ and Mn4+

with an average oxidation state of 3.5 + (3d3.5) and are
fully spin polarized in the ground state with a ferromagnetic
transition temperature of Tc � 170 K. The electric resistivity
shows an insulating behavior in the entire temperature range
observed (i.e., below 300 K). The materials reveal a large
negative magnetoresistance: In KMg4Mn6O15, the resistivity
is suppressed by ∼40% under 5 T of magnetic field.

In this Rapid Communication, we will show that a similar
mechanism of insulating ferromagnetism to that of K2Cr8O16

applies also in this manganese series. Namely, we will use
the density-functional-theory- (DFT-) based electronic struc-
ture calculations to demonstrate that an unexpectedly simple
electronic state resides in this series with a rather complicated
crystal structure: The ground state of the system may be
described as a 3D arrangement of the three 1D chains of an O
2p orbital and a Mn 3d orbital, which are pα − d3α2−r2 − pα −
d3α2−r2 − · · · (α = x,y,z) running along the α axis of the cu-
bic lattice. We will argue that the calculated localized/itinerant
dualistic nature of electrons in the chains leads the system to
ferromagnetism due to the double-exchange mechanism. We

will also predict that these chains are dimerized by the Peierls
mechanism so that the system is insulating with a band gap
in agreement with experiment; the system must be metallic if
there were no lattice dimerizations.

We employ the WIEN2K code [17] based on the full-
potential linearized augmented-plane-wave method for our
DFT calculations. We present calculated results obtained in the
generalized gradient approximation (GGA) for electron corre-
lations with the exchange-correlation potential of Ref. [18].
To improve the description of electron correlations in Mn
3d orbitals, we use the rotationally invariant version of the
GGA + U method with the double-counting correction in the
fully localized limit [19,20]. In the following, we will present
the results obtained at U = 0 and 4 eV. The spin polarization
is allowed when necessary. The spin-orbit coupling is not
taken into account in the following calculations, but we have
checked that the spin-orbit coupling does not change our results
qualitatively; e.g., the band gap does not open by the spin-orbit
coupling.

We use the crystal structure measured at room temperature
[16], which has the cubic symmetry [space-group Im3̄m

(No. 229)] with the lattice constants of a = 8.3034(4),
8.3049(3), and 8.3476(5) for A = K, Rb, and Cs, respec-
tively, in units of angstroms. The primitive unit cell contains
6 Mn and 15 O ions. All the Mn ions are crystallographically
equivalent, but there are two crystallographically inequivalent
O ions (which we call O1 and O2). There are 12 O1 and
3 O2 ions in the primitive unit call. In the self-consistent
calculations, we use 15 × 15 × 15 k points in the Brillouin
zone. Muffin-tin radii (RMT) of 2.50 (A), 1.96 (Mg), 1.94 (Mn),
and 1.67 (O) bohrs are used, and we assume the plane-wave
cutoff of Kmax = 8.50/RMT. Because of a large RMT value of
the A ion, we choose the maximum value for the partial waves
used in the computations of nonsphere matrix elements to be 6.
We use VESTA [21] and XCRYSDEN [22] for graphical purposes.

Now, let us discuss the calculated densities of states (DOSs),
which are shown in Fig. 2. First, we find in Fig. 2(a) that the
A-site dependence of DOSs is very small, in particular near
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FIG. 1. Schematics of the crystal structure ofAMg4Mn6O15 (A =
K,Rb,Cs). Atoms are distinguished by colors: A (blue), Mg (orange),
Mn (purple), O1 (pink), and O2 (red). The 1D MnO chains are
depicted in the right panel.

the Fermi level, which is consistent with experiment where no
qualitative differences in their electronic properties have been
observed among AMg4Mn6O15 (A = K, Rb, and Cs) [16].
Hereafter, we will therefore discuss the electronic structure
of KMg4Mn6O15 only.

Next, we show the calculated partial DOSs for
KMg4-Mn6O15 projected onto each ion in Fig. 2(b) where the
spin polarization is allowed and U = 0 eV is assumed. We find
that the 3d orbitals of Mn are fully spin polarized and form a
half-metallic state where the majority-spin band crosses the
Fermi level but the minority-spin band exhibits a large band
gap. The calculated magnetic moment of 21μB per primitive
unit cell is consistent with experiment [16]. The opposite spin
polarization of 2p orbitals of an O ion common in the negative
charge-transfer-gap situation [4,23,24] does not occur in the
present case.

Then, in Fig. 2(c), we show the calculated majority-spin
partial DOSs projected onto each 3d orbital of a Mn ion at
U = 0 eV. We find that the partial DOSs coming from the
t2g orbitals are well localized around −2 eV, whereas those
from the eg orbitals, the d3z2−r2 orbital in particular, are rather
extended between −1.5 and 1.5 eV. This dualistic nature, i.e.,
the presence of both localized and itinerant electrons in the
same system, suggests that the ferromagnetism of this system
may be caused by the double-exchange mechanism [10–13]
just as in CrO2 [24,25] and K2Cr8O16 [4,5]. The same situation
also occurs at U = 4 eV [see Fig. 2(d)]. We also note that the
partial DOS curve of the Mn 3d3z2−r2 orbital exhibits the shape

FIG. 2. Calculated total DOS and partial DOSs. (a) A-site dependence of DOS [per formula unit (f.u.)] for the hypothetical paramagnetic
AMg4Mn6O15 (A = K,Rb,Cs) at U = 0 eV. A sharp peak at −7.8 eV in A = Cs comes from the 5p orbital of a Cs ion. (b) Partial DOS
projected onto each ion in ferromagnetic KMg4Mn6O15 at U = 0 eV where the majority-spin (minority-spin) DOS is illustrated in the upper
(lower) panel. A half-metallic situation is clearly seen. (c) Majority-spin partial DOS projected onto each 3d orbital of Mn in ferromagnetic
KMg4Mn6O15 at U = 0 eV. (d) The same as in (c) but at U = 4 eV. The vertical line in each panel represents the Fermi level.
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FIG. 3. Calculated majority-spin band dispersions for the ferro-
magnetic phase of KMg4Mn6O15 at (a) U = 0 eV and (b) U = 4 eV
where the red, blue, and green curves represent the weight of the
dx2−y2 , d3z2−r2 , and t2g contributions, respectively. The horizontal
lines in each panel indicates the Fermi level. (c) Calculated Fermi
surfaces for the ferromagnetic phase of KMg4Mn6O15 at U = 4 eV.
The constant energy surfaces of 25 meV below the Fermi level are
illustrated so that the two sheets are slightly separated. (d) Calculated
charge-density distribution in the energy window of ±0.1 eV around
the Fermi level. U = 4 eV is assumed.

of the DOS typical of the 1D tight-binding band, suggesting
that the chain structure of Mn ions is formed in this system.
We will discuss this aspect further below.

The calculated majority-spin band dispersions of
KMg4Mn6O15 are shown in Figs. 3(a) and 3(b) at U = 0 and
U = 4 eV, respectively, where 6 red, 6 blue, and 18 green
curves representing the dx2−y2 , d3z2−r2 , and t2g contributions,
respectively, are illustrated. We find that at U = 0 eV there is
an electron pocket of the band coming predominantly from the
dx2−y2 orbital at the H point of the Brillouin zone. This band
shifts upward with increasing U so that the electron pocket at
the H point disappears at U = 4 eV. The bands forming the
Fermi surfaces are thus predominantly from the d3z2−y2 orbital.

Note that the two bands cross each other at the Fermi level,
giving rise to the “surface-node” Fermi surfaces, which are
three pairs of the parallel flat plates, as shown in Fig. 3(c). The
flat plates are made of two sheets with the “nesting vector” Q =
0, which indicates that when the unit cell contains more than
two ions the Peierls instability causing the dimerization of ions
may occur, keeping the unit cell unchanged. A good nesting
feature of the nesting vectors Q � (2π/a,0,0), (0,2π/a,0),
and (0,0,2π/a) is also noted, indicating that the Peierls

instability may also occur, which doubles the size of the unit
cell of the system, i.e., from the body-centered-cubic structure
to the simple-cubic structure (see below).

To envisage the electronic state of the system in real space,
we calculate the density distribution of electrons ±0.1 eV
around the Fermi level. The result is shown in Fig. 3(d) where
we clearly find that the 3d3z2−r2 orbitals of Mn and one of the
three 2p orbitals (2pz) of O2 form the 1D chain structure along
the c direction of the cubic lattice. Similarly, we find the chain
structures formed by the 3d3x2−r2 orbital of Mn and the 2px

orbital of O2 along the a direction and by the 3d3y2−r2 orbital
of Mn and the 2py orbital of O2 along the b direction of the
cubic lattice. Note that the contributions from the O1 ions to
the states near the Fermi level are very small.

Now, let us describe the low-energy electronic structure
of this system by the tight-binding approximation where the
atomic orbitals form the 1D chains as shown in Fig. 4(a).
The unit cell contains the six 3d orbitals (d3z2−r2 and its
equivalents) of Mn and six 2p orbitals (pz and its equivalents).
The Hamiltonian for the majority-spin bands reads

H = εd

∑

iμ

d
†
iμdiμ + εp

∑

iμ

p
†
iμpiμ + Hdp + Hdd ,

Hdp =
∑

〈iμ,jν〉
t
pd

iμ,jν(d†
iμpjν + H.c.),

Hdd =
∑

〈iμ,jν〉
tdd
iμ,jν(d†

iμdjν + H.c.),

where d
†
iμ creates an electron on the orbital μ at Mn site i and

p
†
jν creates an electron on the orbital ν at O site j. 〈iμ,jν〉

denotes the nearest-neighbor pair of orbital μ at site i and
orbital ν at site j. εd and εp are the on-site energies of Mn 3d

and O 2p orbitals, respectively, and tpd and tdd are the hopping
integrals between the neighboring 2p and 3d orbitals and
between the neighboring 3d orbitals, respectively. Hdp forms
the 1D chains in the system, and Hdd introduces the coupling
between the chains giving rise to the 3D ferromagnetism. We
calculate the maximally localized Wannier orbitals using the
method of Refs. [26,27], which provides a good fitting of the
band dispersions in a wide energy range with a large number
of the tight-binding parameters. However, we instead assume
the values of εp = −4.5, εd = −2.5, and |tpd | = 2.2 in units
of eV and tdd/|tpd | = −0.1 for simplicity, which give accurate
band dispersions at least near the Fermi level.

The tight-binding bands thus obtained are shown in Fig. 4(b)
where the results for three cases are plotted: (i) only tpd is
included, (ii) both tpd and tdd are included, and (iii) tpd , tdd ,
and lattice dimerizations (adding a ± 0.2-eV alternation to tpd ,
denoted asH�) are included. We find that the inclusion of only
the tpd terms can reproduce the essential features of the bands,
such as the crossing of the two bands at the Fermi level. We
also find that the addition of the tdd terms can explain the shift
of the k point (from P to H ) at which the two bands cross as
well as the lifting of the band degeneracy. A better agreement
with the results of the DFT-based band-structure calculations
in a wider energy range down to around −2 eV is obtained if
we take into account the hopping integrals between Mn and
O1 ions [see Fig. 2(b)].
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FIG. 4. (a) Schematic of the 1D chains of orbitals for
KMg4Mn6O15 where the orbitals pα − d3α2−r2 − pα − d3α2−r2 −
· · · (α = x,y,z) are illustrated. (b) Calculated majority-spin band
dispersions of our tight-binding model where we assume only tpd

(red), both tpd and tdd (green), tpd , tdd , and lattice dimerizations with
alternating ±0.2-eV modulations to tpd (blue). Six d3α2−r2 bands,
some of which are degenerate, are drawn in each case. For the lattice
dimerization, we assume the pattern illustrated in Fig. 5(a).

Then, we find that the inclusion of the lattice dimerization
actually leads to the opening of the band gap in the entire
Brillouin zone, making the system insulating [see Fig. 4(b)].
There are a variety of spatial patterns of the lattice dimerization
(or relative phase of the Peierls distortions), but the pattern is
unique if we assume that the primitive unit cell does not change
of which the pattern is illustrated in Fig. 5(a). If the primitive
unit cell is extended (e.g., from the body-centered-cubic to
the simple-cubic lattices), we may have different patterns of
which an example is illustrated in Fig. 5(b). We performed
the DFT-based band-structure calculations and checked that
the band gap actually opens for the former pattern but the gap
does not open for the latter of which the results are found to
be consistent with our tight-binding model calculations. We
also performed the structural optimization calculations based

FIG. 5. Schematics of the lattice distortions (a) keeping the
body-centered-cubic symmetry [space-group Im3 (No. 204)] and
(b) keeping only the simple-cubic symmetry [space-group Pm3m

(No. 221)]. The [100] plane of the crystal, on which Mn ions are
located, is illustrated. The arrows indicate the shifts of Mn ions along
the 1D chain directions on the [100] plane.

on DFT where we assume the space-group Im3 (No. 204)
keeping the body-centered-cubic structure. We thus obtained
the structural distortion as shown in Fig. 5(a) and confirmed
the opening of the band gap. We hope that further experimental
studies will be performed in the future to confirm the existence
of the lattice distortion and to clarify what pattern is actually
realized in the present materials.

Finally, let us discuss the finite-temperature behavior of
KMg4Mn6O15 in comparison with that of K2Cr8O16. In the
ground state, both materials are ferromagnetic insulators where
the double-exchange mechanism leads to ferromagnetism and
the Peierls mechanism leads to the band-gap formation. We
should however point out that, above the transition temperature
of the ferromagnetic insulator state, K2Cr8O16 is a ferromag-
netic metal, whereas KMg4Mn6O15 is a paramagnetic insula-
tor. The former situation is natural because we have a metallic
band structure with the Peierls instability. However, the latter
situation may also be possible if we consider the following:
The uniform magnetic susceptibility of KMg4Mn6O15 obeys
the Curie-Weiss law [16], indicating that the local magnetic
moment persists even at high temperatures [28–30]. In other
words, the ferromagnetic spin correlation extends to a spatially
wide region even in the paramagnetic state at T > Tc so
that the fully spin-polarized electronic state remains locally
and hence the Peierls mechanism of the lattice dimerization
works there. In fact, a slow ferromagnetic spin fluctuation
above Tc has recently been observed by a muon spin rotation
experiment [31]. The spin-fluctuation theory in the double-
exchange ferromagnetism at finite temperatures should be
developed in the future to quantify this argument.

Summarizing, we have used the DFT-based electronic struc-
ture calculations to study the electronic state of recently dis-
covered mixed-valent manganese oxides AMg4Mn6O15 (A =
K,Rb,Cs), which are fully spin-polarized ferromagnetic in-
sulators with a cubic structure at the lowest temperatures.
We have shown that the system may be described as a 3D
arrangement of the 1D chains of a 2p orbital of O and a 3d

orbital of Mn running along the three axes of the cubic lattice.
We have argued that in the ground state the chains are fully
spin polarized due to the double-exchange mechanism and
are distorted by the Peierls mechanism to make the system
insulating. We have thus predicted the presence of the lattice
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dimerization in the wide temperature range and the possible
occurrence of the Peierls metal-insulator transition at a much
higher temperature for which further experimental studies are
desirable.
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