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Quantum ring with the Rashba spin-orbit interaction in the regime of strong light-matter coupling
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We developed the theory of electronic properties of semiconductor quantum rings with the Rashba spin-orbit
interaction irradiated by an off-resonant high-frequency electromagnetic field (dressing field). Within the Floquet
theory of periodically driven quantum systems, it is demonstrated that the dressing field drastically modifies
all electronic characteristics of the rings, including spin-orbit coupling, effective electron mass, and optical
response. In particular, the present effect paves the way to controlling the spin polarization of electrons with light
in prospective ring-shaped spintronic devices.
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I. INTRODUCTION

The rapidly developing field of spintronics deals with spin-
related phenomena in mesoscopic transport [1–5]. Generally,
the spins of individual carriers can be controlled either by
application of an external magnetic field or via a change
of the strength of the spin-orbit interaction (SOI) in the
system. The second approach forms the basis of so-called
nonmagnetic spintronics, which has attracted an enormous
amount of interest in the scientific community. In particular,
two mechanisms of the SOI are relevant for semiconductor
structures: the Dresselhaus SOI [6], which was caused by the
inversion asymmetry of the crystal lattice, and the Rashba SOI
[7–10], which originated from the inversion asymmetry of the
structure as a whole. The latter mechanism is of specific interest
for spintronic applications since it becomes dominant in con-
ventionally used InAs/GaSb-, AlSb/InAs-, and GaAs/GaAlAs-
based nanostructures [11–13], and it can be easily tuned by an
external gate voltage [14–16]. Recently, the alternative way of
tuning SOI by purely optical methods was developed [17–19].
It is based on the regime of strong light-matter coupling
when the system “electron + electromagnetic field” cannot be
divided into weakly interacting optical and electronic subsys-
tems. As a consequence, the hybrid electron-field object—the
so-called “electron dressed by electromagnetic field” (dressed
electron)—appears as an elementary quasiparticle [20,21]. The
physical properties of dressed electrons can differ sufficiently
from their “bare” counterparts, as was demonstrated for a wide
variety of condensed-matter structures, including bulk semi-
conductors [22–24], quantum wells [25–29], quantum rings
[30–35], graphene [36–44], topological insulators [45], etc.
From the viewpoint of spintronic applications, it is crucially
important that the SOI strength can be modified by laser
irradiation [19] since this allows direct optical tuning of the
spin relaxation time in a two-dimensional (2D) electron gas
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[17], and therefore it paves the way to optically controlled
spintronic devices [18].

Although the first ferromagnetic spintronic device (the
Datta-Das spin transistor [46,47]) has been realized exper-
imentally, its technological production remains challenging
due to the difficulties with the efficient spin injection from
ferromagnetic contacts. Therefore, the design of nonmagnetic
spintronic devices, which do not require the presence of
ferromagnetic elements, is still an actual problem. As a possible
way to solve the problem, it was proposed to use semiconductor
quantum rings (QRs) with the Rashba SOI, which induces
the phase shift between spin waves propagating in the clock-
wise and counterclockwise directions. In turn, this results in
the large conductance modulation due to the interference of
the spin waves [48]. As a consequence, the physical basis
of various QR-based nonferromagnetic spintronic devices—
including spin transistors, spin filters, and quantum splitters—
appears [49–64]. In the aforementioned previous studies on
the subject, the spin properties of QRs were assumed to be
controlled by gate voltage. As to the optical methods of the
spin control of QRs, they have escaped attention up to now.
The present theoretical research aims partially to fill this gap
in the spintronics of QRs.

The paper is organized as follows. In Sec. II, we derived the
effective Hamiltonian of the irradiated QR with the Rashba
spin-orbit interaction within the Floquet theory of periodically
driven quantum systems. In Sec. III, the elaborated theory
is applied to analyze spin and optical characteristics of the
irradiated QR. Section IV contains our conclusions.

II. MODEL

To describe an irradiated QR (see Fig. 1), we have to
start from the Hamiltonian describing an irradiated two-
dimensional (2D) electron system with the Rashba spin-orbit
interaction [17]

Ĥ2D = (p̂ − eA)2

2m
+ α[σx(p̂y − eAy) − σy(p̂x − eAx)],

(1)
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FIG. 1. Sketch of the system under consideration: The quantum
ring (QR) with the radius R irradiated by a linearly polarized
electromagnetic (EM) wave with the electric-field amplitude E0.
The electron spin (the dark blue arrow) is directed along the local
quantization axis (the dashed blue line) with the spin angle ξ .

where p̂ = (p̂x,p̂y) is the operator of electron momentum, m

is the effective electron mass, e is the electron charge, α is
the Rashba spin-orbit coupling constant, σx,y,z are the Pauli
matrices, A = (Ax,Ay) = ([E0/ω]cos ωt,0) is the vector po-
tential of a linearly polarized electromagnetic wave (dressing
field) in the 2D plane, E0 is the electric field amplitude of the
wave, and ω is the wave frequency, which is assumed to be
far from resonant electron frequencies. Applying the standard
approach [66] to transform the 2D electron system into the
one-dimensional (1D) ring-shaped one, we arrive from the 2D
Hamiltonian (1) at the Hamiltonian of an irradiated QR,

ĤQR = Ĥ′ +
[

2∑
n=1

V̂ne
inωt + H.c.

]
, (2)

where the stationary part,

Ĥ′ = l̂2
z

2mR2
+ α

R

[
σρ l̂z − ih̄

σϕ

2

]
+ e2E2

0

4mω2
, (3)

is the Hamiltonian of the unperturbed QR up to a field-induced
constant shift of energy,

V̂1 = eE0

2mRω

(
sin ϕ l̂z − ih̄

cos ϕ

2

)
+ αeE0

2ω
σy, (4)

V̂2 = e2E2
0

8mω2
, (5)

is the periodic part with the two harmonics originated from the
irradiation, R is the QR radius, l̂z = −ih̄ ∂/∂ϕ is the operator
of angular momentum along the z axis, ϕ is the polar angle
of an electron in the QR, and σρ = cos ϕ σx + sin ϕ σy and
σϕ = − sin ϕ σx + cos ϕ σy are the Pauli matrices written in
polar coordinates. Applying the conventional Floquet-Magnus
approach [67–69] to renormalize the Hamiltonian of an irradi-
ated QR and restricting the consideration by the leading terms
in the high-frequency limit, we can reduce the time-dependent
Hamiltonian (2) to the effective time-independent one,

Ĥ = Ĥ′ +
2∑

n=1

[V̂n,V̂
†
n ]

h̄nω
+

2∑
n=1

[[V̂n,Ĥ′],V̂ †
n ] + H.c.

2(h̄nω)2
. (6)

Substituting Eqs. (3)–(5) into Eq. (6), one can rewrite the
effective Hamiltonian (6) as

Ĥ = Ĥ0 + V̂ , (7)

where

Ĥ0 = l̂2
z

2m∗R2
+ α

R

[
σρ l̂z − ih̄

σϕ

2

]
−

(
eE0α

Rω2

)2
l̂zσz

mh̄

+ e2E2
0

4mω2
+ 1

2m

(
h̄eE0

4mR2ω2

)2

, (8)

V̂ =
[

3

16
γ 2

1 cos 2ϕ − γ 2
1 γ2

(
γ 2

2 − 1

4

)
iσx sin ϕ

]
h̄2

2mR2

+
[
iγ 2

1 sin 2ϕ

2
− 2γ 2

1 γ2

(
γ 2

2 − 1

4

)
σx cos ϕ

]
h̄ l̂z

2mR2

+ γ 2
1 cos 2ϕ

8mR2
l̂2
z , (9)

where

m∗ = m

1 + 3(eE0/2mRω2)2
(10)

is the effective electron mass renormalized by the irradiation,
γ1 = |e|E0/(mRω2) is the dimensionless parameter describing
the strength of electron-field coupling, and γ2 = mRα/h̄ is
the dimensionless parameter describing the strength of Rashba
spin-orbit coupling. As expected, the Hamiltonian (7) exactly
coincides with the Hamiltonian of an unirradiated QR [66] in
the absence of the field (E0 = 0).

It should be noted that all effects that originated from
the direct spin interaction with the magnetic component of
the dressing field (particularly, the Zeeman effect and the
Aharonov-Bohm effect) are relativistically negligible since the
amplitude of magnetic induction of the field, B0 = E0/c, is
very small for reasonable field intensities. Therefore, they are
omitted in the developed theory. We also neglected effects that
arose from overlying electronic modes, assuming the typical
distance between transverse electronic minibands (tens of meV
for state-of-the-art QRs [65]) to be sufficiently larger than the
photon and electron energies under consideration.

III. RESULTS AND DISCUSSION

To consider the Schrödinger problem with the effective
Hamiltonian (7), let us start from its part (8). Two exact
eigenstates of the Hamiltonian (8) can be written as


1(ϕ) = eijzϕ

(
cos(ξ/2)e−iϕ/2

− sin(ξ/2)eiϕ/2

)
(11)

and


2(ϕ) = eijzϕ

(
sin(ξ/2)e−iϕ/2

cos(ξ/2)eiϕ/2

)
, (12)

where

ξ = arctan

[
2m∗Rα/h̄

2(m∗/m)(eE0α/ω2h̄)2 + 1

]
(13)

is the angle between the local spin quantization axis and the
z axis (see Fig. 1). It follows from single-valuedness of the
eigenstates, 
1,2(ϕ) = 
1,2(ϕ + 2π ), that the z component of
total angular momentum of the electron, jz, must satisfy the
condition, jz = λn + 1/2, where n = 0,1,2, . . . is the orbital
quantum number corresponding to the electron rotation in the
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QR, and the sign λ = ± describes the direction of the rotation
(counterclockwise/clockwise). Omitting constant terms that
only shift the zero energy, one can write the electron energy
spectrum of the eigenstates (11) and (12) as

εs
λn = h̄2

2m∗R2

(
λn + 1

2

)2

+ h̄2

2m∗R2

∣∣∣∣λn + 1

2

∣∣∣∣s

×

√√√√[
2

(
m∗

m

)(
eE0α

h̄ω2

)2

+ 1

]2

+
[

2αm∗R
h̄

]2

, (14)

where s = ±1 is the quantum number describing the spin
direction along the local quantization axis (see Fig. 1), and the
spin s = +1 corresponds to the greater energy (14). Within
the conventional notation [70] based on the three quantum
numbers, |n,λ,s〉, the eigenstates (11) and (12) can be written
as

|n, + , − 1〉 = einϕ

(
cos(ξ/2)

− sin(ξ/2)eiϕ

)
, (15)

|n, + , + 1〉 = einϕ

(
sin(ξ/2)

cos(ξ/2)eiϕ

)
, (16)

|n, − , + 1〉 = e−inϕ

(
cos(ξ/2)

− sin(ξ/2)eiϕ

)
, (17)

|n, − , − 1〉 = e−inϕ

(
sin(ξ/2)

cos(ξ/2)eiϕ

)
(18)

for n = 1,2,3, . . . and

|0, + , − 1〉 =
(

cos(ξ/2)

− sin(ξ/2)eiϕ

)
, (19)

|0, + , + 1〉 =
(

sin(ξ/2)

cos(ξ/2)eiϕ

)
(20)

for n = 0. It follows from Eq. (14), in particular, that εs
−n =

εs
n−1. This means that the states |n, − ,s〉 and |n − 1, + ,s〉 are

degenerated.
The eigenstates and eigenenergies (11)–(20) can be easily

verified by direct substitution into the Schrödinger equa-
tion with the Hamiltonian (8). However, the total effective
Hamiltonian (7) consists of the two parts, including both the
discussed Hamiltonian Ĥ0 and the term V̂ . Therefore, we have
to analyze the effect of the term V̂ on the found solutions of
the Schrödinger problem with the Hamiltonian Ĥ0. It follows
from Eqs. (9) and (15)–(20) that 〈n′,λ′,s ′|V̂ |n,λ,s〉 ∼ δλ′λ for
n,n′ � 1. Thus, the term V̂ does not split the degenerate states
|n, − ,s〉 and |n − 1, + ,s〉. It should be noted also that the
discussed regime of strong light-matter coupling is convention-
ally defined as a light-induced renormalization of electronic
properties without the light absorption by electrons (see, e.g.,
the discussion in Ref. [29]). Particularly, the main absorption
mechanism for semiconductor structures dressed by an off-
resonant electromagnetic field—the collisional absorption of
the field by conduction electrons—can be neglected if ωτ � 1,
where τ is the electron relaxation time [28]. Therefore, we have
to consider the case of high frequencies, ω, when the condition
γ1 � 1 can take place. It follows from this that the discussed
term V̂ ∼ γ 2

1 can be considered as a weak perturbation for a
broad range of QR parameters. In particular, the conventional

FIG. 2. Electronic characteristics of InGaAs-based QR (the elec-
tron effective mass is m = 0.045m0, the Rashba coupling constant
is α = 104 m/s, and the QR radius is R = 200 nm) irradiated
by a dressing field with the frequency ω = 1.6 × 1012 rad/s: (a)
Dependence of the spin angle, ξ , on the irradiation intensity, I ;
(b) dependence of the first nine electron energy levels, εs

λn, on the
irradiation intensity, I , for the counterclockwise electron rotation in
the ring (λ = +), where the dashed and solid lines correspond to
different spin orientations (s = ±1).

criterion of perturbation theory,∣∣∣∣∣ 〈n
′,λ′,s ′|V̂ |n,λ,s〉
εs ′
λ′n′ − εs

λn

∣∣∣∣∣ � 1, (21)

can be satisfied for the first tens of energy levels (14) in
the typical case of InGaAs-based QRs with the effective
mass m = 0.045me, radius R ≈ 200 nm, and the Rashba cou-
pling constant α ≈ 104 m/s. As a consequence, the effective
Hamiltonian (7) can be reduced to the simplified Hamiltonian
(8). Correspondingly, the found eigenstates and eigenenergies
(11)–(20) can be applied to describe electronic properties of
the irradiated QR.

It follows from the Hamiltonian (8) that the irradiation of
the QR results in two main effects: First, it renormalizes the
electron effective mass (10), and second it leads to the unusual
spin-orbit coupling ∼ lzσz described by the third term of the
Hamiltonian (8). In turn, these effects lead to the dependencies
of the spin angle (13) and the energy levels (14) on the
irradiation intensity, which are plotted in Fig. 2. It follows
from Fig. 2(a) that the irradiation has a very strongly effect on
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the spin angle (13). Namely, the relatively weak irradiation can
decrease the angle to tens of percent of its initial value in the
unirradiated QR, ξ0 = arctan (2αmR/h̄). Since the modulation
of spin orientation by various external actions lies in the core of
modern spintronics [1–4], the found strong dependence of the
spin polarization on the irradiation can be used, particularly in
prospective ring-shaped spintronic devices operated by light.
It follows from Fig. 2(b) that the irradiation also strongly
effects the energy of the electron levels in the QR and their
spin splitting. Such a light-induced modification of the energy
spectrum (14) can manifest itself, particularly in the optical
measurements discussed below.

Let us consider a QR irradiated by a two-mode electro-
magnetic wave consisting of a strong dressing field (which
renormalizes the energy spectrum of electrons according to
what was mentioned earlier) and a relatively weak probe
field with the frequency � (which can detect the discussed
renormalization of the energy spectrum). The optical spectrum
of absorption of the probe field can be obtained with use of the
conventional Kubo formalism [71]. Within this approach, the
longitudinal conductivity describing the response of the QR to
the probe field polarized along the j = x,y axis reads

σjj =
∑
n,λ,s

n′,λ′,s ′

[
f

(
εs ′
λ′n′

) − f
(
εs
λn

)]|〈n′,λ′,s ′|v̂j |n,λ,s〉|2(
εs ′
λ′n′ − εs

λn

)(
εs ′
λ′n′ − εs

λn + h̄� + i�
) h̄e2

iπR2
,

(22)

where f (ε) is the Fermi-Dirac distribution function, v̂j =
p̂j /m is the velocity operator, and � = h̄/τ is the broadening
of energy levels depending on the electron relaxation time,
τ . It should be noted that the used spin index, s = ±1,
describes the spin projection on the local quantization axis
(see the dashed line in Fig. 1), which depends on the electron
location in the QR and, correspondingly, on the direction of
the vector of electron velocity. As a consequence, the matrix
of the velocity operator in Eq. (22), 〈n′,λ′,s ′|v̂j |n,λ,s〉, is not
diagonal in this spin index. In particular, direct calculation re-
sults in 〈n′, ± ,s ′|v̂j |n, ± ,s〉 ∼ (δn−n′,1 + δn−n′,−1) and 〈n′, ∓
,s ′|v̂j |n, ± ,s〉 ∼ δn+n′,1. As a consequence, the probe field can
induce electron transitions between the electron states with
mutually opposite local spin directions. Substituting Eqs. (14)–
(20) into Eq. (22), one can calculate the sought-after absorption
spectrum of the probe field (see Fig. 3), which is represented
by the real part of the conductivity, Re(σjj ). In the absence of
the dressing field, the absorption spectrum of the QR plotted
in Fig. 3(a) consists of the three peaks corresponding to the
following electron transitions: |5, + , + 1〉 → |4, + , + 1〉,
|7, + , − 1〉 → |6, + , + 1〉, and |7, + , − 1〉 → |6, + , − 1〉
(peak 1); |6, + , + 1〉 → |5, + , + 1〉, |8, + , − 1〉 → |7, +
,1〉, and |8, + , − 1〉 → |7, + , − 1〉 (peak 2); |7, + , + 1〉 →
|6, + , + 1〉 and |9, + , − 1〉 → |8, + , − 1〉 (peak 3).

The evolution of this spectrum under the influence of the
dressing field is presented in Figs. 3(b)–3(d). In the absence
of the dressing field, the highest peak 3 originates from the
transitions |6, + , + 1〉 → |5, + , + 1〉 and |8, + , − 1〉 →
|7, + , − 1〉 since the chosen Fermi energy, μ = 1 meV, lies
in the middle between the corresponding levels [see Fig. 2(b)].
Since the dressing field increases the distance between the
energy levels (14), it shifts the peaks to the right and deforms

FIG. 3. Absorption spectra of the probe field with the frequency
� for the InGaAs-based QR (the electron effective mass is m =
0.045m0, the Rashba coupling constant is α = 104 m/s, the electron
relaxation time is τ = 70 ps, the temperature is T = 5 K, the Fermi
energy is μ = 1 meV, and the QR radius is R = 200 nm) irradiated by
a dressing field with the frequency ω = 1.6 × 1012 rad/s and different
irradiation intensities, I .

them [see Figs. 3(b)–3(d)]. It should be noted that the shape of
the spectrum at the irradiation intensity I = 1000 W/cm2 is
very similar to case of an unirradiated QR [compare Figs. 3(a)
and 3(d)]. Physically, the similarity appears since the Fermi
energy, μ = 1 meV, lies at this intensity again in the middle
between the corresponding levels [see Fig. 2(b)]. However, the
highest peak in this case arises from the peak 1 in Fig. 3(a),
and therefore it corresponds to the transitions |5, + , + 1〉 →
|4, + , + 1〉, |7, + , − 1〉 → |6, + , + 1〉, and |7, + , − 1〉 →
|6, + , − 1〉. Finalizing the discussion, let us formulate how the
dressing field parameters should be chosen in experiments. It
follows from the Hamiltonian (8) that the absolute value of the
light-induced renormalization of all electronic characteristics
is proportional to the squared ratio E0/ω

2. Therefore, we
have to keep this ratio not too small to observe the discussed
renormalization experimentally for reasonable dressing field
amplitudes, E0. This is why the dressing field frequency, ω, in
Figs. 2 and 3 is chosen to be in the THz range.

IV. CONCLUSIONS

In conclusion, we demonstrated that the key electronic
characteristics of QRs with the Rashba spin-orbit interaction —
the structure of electron energy levels and the spin polarization
of electrons — strongly depend on an off-resonant irradiation.
In particular, the modification of both electron effective mass
and spin-orbit coupling appears. It is shown that the irradiation-
induced renormalization of the electron energy spectrum can
be observed in state-of-the-art optical experiments, whereas
the light sensitivity of the spin orientation can be exploited in
prospective spintronic devices operated by light.
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