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Quantum phase transition with dissipative frustration
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We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative
frustration, provided by an interaction of the system with the environment through two noncommuting operators.
Such a model can be realized in Josephson junction chains with shunt resistances and resistances between
the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram
at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the
superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting
charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a
function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one
dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that
quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within
the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and
second order phase transition, showing that quantum frustration increases the range in which the phase transition
is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree
of correlation between the system and the environment, and in the logarithmic negativity as an entanglement
measure that encodes the internal quantum correlations in the chain.
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I. INTRODUCTION

Owing to the recent experimental progress, the investigation
of the properties of artificial quantum many-body systems,
or of synthetic quantum matter, has received great interest
[1–3]. Ultracold atoms in optical lattices [4,5], trapped ions
[6,7], exciton-polariton systems in semiconductor materials
[8], arrays of coupled QED cavities [9,10], and supercon-
ducting circuits made by qubits and cavities [11,12] are the
most remarkable experimental platforms. On one side, they
are considered as quantum simulators to investigate the many-
body problem in and out of thermal equilibrium. On the other
side, they exhibit features that distinguish them from other
strongly correlated systems in condensed matter. In these
systems, the individual interacting units have to be considered
as open or dissipative quantum systems as they are indeed
macroscopic objects and can have relevant interactions with
the environment. Typical examples are superconducting qubits
in which energy relaxation and dephasing are unavoidable
[13–15]. Generally, quantum dissipative systems or systems
with quantum reservoir engineering display a variety of inter-
esting phenomena [16–25].

This intense research activity revived the study of dissipa-
tive phase transitions, originally initiated with Josephson junc-
tion arrays [26]. One-dimensional (1D) Josephson junction
chains are an experimental realization of the 1D quantum phase
model [27–30]. They are formed by superconducting islands
with a Josephson tunneling coupling between neighboring
islands. Here the quantum phase transition corresponds to
a superconductor-insulator transition and occurs due to the
competition of the Josephson coupling, which favors global

phase coherence, and the electrostatic energy, which inhibits
Cooper pair tunneling and favors the charge localization. The
transition is activated by varying the ratio between the two
energy scales, the Josephson (potential) energy EJ and the
characteristic charging (kinetic) energy EC . This model—also
known as rotor model—represents a paradigmatic statistical
model to illustrate quantum phase transitions [31] and the
mapping from a 1D quantum system to a 1D+1 classical one
[32]. By mapping it into the XY model, theory predicts the
phase transition in the 1D chain to be of Berezinsky-Kosterlitz-
Thouless (BKT) type [28], with the superconducting phase
having quasi ordering. In the BKT scenario, the fluctuations of
the local phases diverge in the thermodynamical limit, while
the fluctuations of the phase differences between neighbors are
finite. In the rest of the paper we simply refer to the supercon-
ducting phase as ordered phase. Experiments on the scaling
behavior of the resistance as a function of the temperature
in finite size chains reported the predicted superconductor-
insulator transition [33,34]. The quantum phase model also
corresponds to the limit case of a large average number of
bosons per site in the lattice Bose-Hubbard model [26,35,36].
Applying a gate voltage (i.e., a chemical potential) to the chain,
this system has a very rich phase diagram [35–42]. In the
limit of strong local Coulomb repulsion and when the gate
voltage is set to a degeneracy point of two charge states of
each island, the model maps onto the Heisenberg XXZ model
[26,36]. The disorder also leads to interesting effects in the
phase diagram [43], with glass phases that have been recently
observed [44]. Similar complex phase diagrams have also been
studied in superconducting Josephson circuits suitably wired
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up to implement the Frenkel-Kontorova model [45], or in a
chain formed by superinductors and small Josephson junctions
[46].

Dissipation breaks the equivalence between the classical
and the quantum case as the dissipation strongly affects the
equilibrium phase diagram in the quantum regime, whereas
thermodynamics and dynamics are separated in classical sys-
tems. In terms of the mapping to the 1D+1 classical model, the
effect of dissipation is to change the isotropic XY model to an
anisotropic one leading to a dimensional crossover [47–50].
Being the local superconducting phase ϕ̂ and the electrical
charge on the islands Q̂ canonically conjugated operators
[ϕ̂,Q̂] = 2ei, the transition is affected by the interplay of
these degrees of freedom. The phases of the superconducting
condensate on the islands can be regarded as rotors where
the Josephson coupling represents a ferromagnetic interaction,
whereas the charging (kinetic) energy determines the strength
of the quantum fluctuations. An increase of the ratio EC/EJ

leads to the transition from an ordered, classical state to a
quantum, disordered state of the phases.

Dissipative quantum phase transitions have been intensively
studied in the 1D quantum phase model [47–56] with the main
result that dissipation suppresses quantum phase fluctuations
thus favoring states with spontaneously broken symmetry
and ordering of the phases. Experiments on linear Josephson
junction chains with a tunable ratio of EJ /EC and different
shunted resistance confirmed the predicted dissipative phase
diagram [57].

A counterexample was given by a recent work in which the
one-dimensional chain of Josephson junctions was assumed
to be capacitively coupled to a proximate two-dimensional
diffusive metal with a stabilization of the insulating ground
state given by increasing the dissipation strength [58]. From
these results, one concludes that dissipation suppresses gener-
ally certain types of fluctuations associated with one degree of
freedom, favoring one or other phases.

Remarkably, an open quantum system coupled to two
independent environments via two canonically conjugate op-
erators can yield interesting effects. This theoretical issues
of “dissipative frustration” was analyzed for a single open
quantum system as a harmonic oscillator [59–63], a single spin
[64–68], a Y shaped Josephson network [69], as well as a lattice
of interacting spins [70]. In other words, two environments
couple to noncommuting observables of a central system and
are continuously monitoring the system leading to different
and orthogonal conditioned states in the presence of a single
bath.

In this work we study the effect of dissipative frustration on
the quantum phase transition for the one-dimensional phase
model. The dissipative coupling through the conjugate opera-
tors is realized by assuming that each local phase difference
is coupled to a local bath (or conventional phase dissipation)
and each local momentum coupled to another local bath
(unconventional or charge dissipation), see Fig. 1(a). These
two kinds of dissipative interactions compete since, when they
are considered separately, they suppress different quantum
fluctuations, viz., phase or charge, whose product is bound
by the uncertainty principle.

We show that this model can be realized by a chain of
Josephson junctions with equal shunted resistance Rs between
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FIG. 1. (a) Model for dissipative frustration in the 1D quantum
phase model. The phase difference �ϕn for each link n is coupled
linearly to a bath (blue box) and the conjugated momentum of the
phase is linearly coupled to a second, independent bath (red box).
The external baths are represented as sets of independent harmonic
oscillators. (b) 1D chain of superconducting islands with Josephson
coupling of energy EJ and charging energy EC . The shunt resistance
Rs corresponds to a dissipative coupling for the difference of the
superconducting phases ϕn, whereas the resistance to ground Rg

yields dissipative coupling in the charge Qn.

neighboring islands—to encode the phase dissipation—and
resistances Rg between each superconducting island and
the ground—to encode the charge dissipation—as shown in
Fig. 1(b).

We use a variational approach, the self-consistent har-
monic approximation (SCHA) [51,53,71–77], to treat the
nonlinear Josephson coupling between the phases. The SCHA
allows us to take into account the anharmonic effects for
large quantum phase fluctuations eventually leading to the
transition. Within the SCHA, we construct a phase diagram
for the ordered-disordered phase transition (superconductor-
insulator) in terms of the dissipative coupling and the ratio
between the two energy scales EJ /EC that measures, quali-
tatively speaking, the amount of the intrinsic quantum phase
fluctuations in the ordered phase of the isolated chain. For a
given ratio between the two dissipative coupling strengths, our
main result is that the critical line has a nonmonotonic behavior
for increasing total dissipation of the system, see Fig. 2. On the
basis of the SCHA, we discuss the order of the phase transition
and the crossover from a first order to second order phase
transition.

A nonmonotonic dependence of the critical value was
previously reported in a dissipative 2D Josephson array in
different geometries due to nonlocal dissipation in Ref. [78]
or due to an applied magnetic field in Ref. [79]. However,
the critical line as a function of the dissipative strength was
monotonic in agreement with the expected behavior in the
presence of phase dissipation.
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FIG. 2. Sketch of the phase diagram of the 1D phase model with
dissipative frustration. The critical line between the ordered phase and
the disordered phase displays a nonmonotonic behavior.
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Since the dissipative phase transition is triggered by quan-
tum fluctuations at zero temperature, which are strongly
affected by the interaction of the system with the environments,
we study the purity of the system that quantifies the correlation
between the system and the environment. The purity shows a
nonmonotonicity close to the critical point at the phase transi-
tion, pointing out that the correlation with the environment
plays an important role. We also calculate the logarithmic
negativity as an entanglement measure that encodes the internal
quantum (nonclassical) correlations in the system and show
that this quantity can also have a nonmonotonic behavior
approaching the phase transition. From these results, we can
conclude that the dissipative phase transition has a spurious
nature in which internal (quantum) correlations as well as
extrinsic (statistical) correlations have similar weight.

This paper is structured as follows. In Sec. II we introduce
the quantum phase model with dissipative frustration in terms
of the path integral formalism [80–82], namely we introduce
the effective action in the imaginary time representation.
We also present the self-consistent harmonic approximation
(SCHA) and the results of the phase difference fluctuations
between neighboring phases, a quantity that plays a central role
in the SCHA. In Sec. III we discuss the results for the phase
diagram in the presence of dissipative frustration whose main
effect is sketched in Fig. 2. In Sec. IV we classify the order of
the phase transition within the SCHA by analyzing the behavior
of the variational expansion for the free energy that represents
an upper bound estimation of the exact free energy. In Sec. V we
present the results for the purity and the logarithmic negativity.
Finally, in Sec. VI we summarize our work and draw our
conclusions. Appendixes A and B contain the derivation of
the path integral action related to the unconventional (charge)
dissipation. In Appendix C we recall the method to calculate
the logarithmic negativity using the correlation matrix. In
Appendix D we report further results for the entanglement
measure that confirm the behavior discussed in the main text
for different configurations of the two subsystems in which the
chain is bipartite.

II. MODEL AND APPROXIMATIONS

In this section we introduce the dissipative phase model and
the corresponding effective action. We then present the SCHA
and report the main steps of our calculations in obtaining the
analytic expressions of the quantum phase fluctuations.

A. Hamiltonian

We consider a 1D chain of N rotors of radius R whose
dynamics is described by the local phase operators x̂n =
Rϕ̂n and momenta p̂n = (h̄/iR)∂/∂ϕ̂n, with the commutation
relation [x̂n,p̂m] = ih̄δnm. The phases interact via a nearest-
neighbor pairwise potential U (�ϕ̂n) = −V cos(�ϕ̂n), where
�ϕ̂n = ϕ̂n+1 − ϕ̂n. We assume periodic boundary conditions
ϕ̂N ≡ ϕ̂0. The Hamiltonian of the considered system reads

ĤS =
N−1∑
n=0

[
−K

2

(
∂2/∂ϕ̂2

n

)− V cos(�ϕ̂n)

]
, (1)

where K = h̄2/(mR2) is the energy scale associated with the
kinetic energy of the rotors.

This is the same Hamiltonian as for a chain of super-
conducting islands with a Josephson coupling EJ between
nearest neighbors and a capacitance to the ground C0 with
charging energy EC = 4e2/C0. In the representation of the
charge operator N̂n = ∑

Nn
Nn|Nn〉〈Nn| with |Nn〉 the number

states and Nn corresponding to the Cooper pair number in each
superconducting island, the system Hamiltonian takes the form

ĤS = EC

2

N−1∑
n=0

(N̂n − N0 )
2 − EJ (T̂n,n+1 + T̂

†
n,n+1), (2)

with the quantum tunneling operator describing the coherent
hopping of Cooper pairs given by [14,83]

T̂a,b = |Na,Nb + 1〉〈Na + 1,Nb|. (3)

Introducing the phase operator ϕ̂n conjugate to N̂n, we have
the Hamiltonian [14,83]

ĤS =
N−1∑
n=0

[
−EC

2

(
∂2/∂ϕ̂2

n

)− EJ cos(�ϕ̂n)

]
. (4)

The Hamiltonian (4) is based on the assumption that the
quasiparticle excitations (above the gap) can be neglected, see
Ref. [26]. At zero temperature, the behavior of the quantum
phase model is fully described by the dimensionless ratio
g = √

V/K = √
EJ /EC . In the limit of small phase differ-

ence fluctuations for EJ � EC (g � 1), one can expand the
potential in Eq. (4) to harmonic order and obtains that the
average quantum phase difference fluctuations are controlled
by the inverse of this ratio, viz., 〈�ϕ̂2〉har = √

2/g.

B. Effective action and dissipation

Dissipation arises when we consider the interaction of the
chain with the environment. Then, to discuss the equilibrium
properties of an open quantum system, the imaginary time path
integral formalism allows us to integrate out the degrees of
freedom associated with the environment and focus only on
the partition function associated with the degrees of freedom of
the system, viz., the phases. In our case, the effective partition
function Zeff describing the phase model reads

Zeff =
N−1∏
n=0

∮
c

D[ϕn(τ )] e−S[{ϕn(τ )}]/h̄, (5)

where the symbol
∮
c

refers to the path integral over imaginary
time for the interval 0 < τ < β, with β = h̄/(kBT ) and to
periodic boundary conditions for the phase variable ϕ, i.e.,
ϕ(0) = ϕ(β) [84,85]. The effective Euclidean action for the
system is given by

S = Sdiss −
∫ β

0
dτEJ cos [�ϕn(τ )], (6)

where the quadratic action is

Sdiss = −
N−1∑
n=0

1

2

∫ β

0

∫ β

0
dτdτ ′ F (τ −τ ′) |�ϕn(τ ) − �ϕn(τ ′)|2

+
N−1∑
n=0

1

2

∫ β

0

∫ β

0
dτdτ ′ F̃ (τ −τ ′) ϕ̇n(τ ) ϕ̇n(τ ′), (7)
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with ϕ̇ = dϕ/dτ . Note that the action (7) is locally invariant
under a variation of 2π of the phase.

The first term of Eq. (7) corresponds to the conventional or
phase dissipation associated with the shunt ohmic resistance
between two superconducting islands [26,49–51,53,54]. Using
the Fourier transform in the imaginary time for the β-periodic
function x(τ ) = ∑

	 x	e
iω	τ with the Matsubara frequencies

ω	 = (2π/β)	 and 	 integer, the component of the ohmic
kernel F (τ ) is [26,49–51,53,82]

F	 = h̄

4πβ

(
Rq

Rs

)
|ω	|fc(ω	), (8)

with F	=0 = 0 and the Drude cutoff function at large frequency
ωc of the form fc(ω) = 0 for ω/ωc → ∞. The parameter that
quantifies the dissipative coupling strength is associated with
the ratio between the quantum resistance Rq = h/(4e2) and
the shunt resistance Rs ,

α = Rq/Rs = γ (h/EC) with γ = 1/(RsC0), (9)

whereas the rate γ corresponds to the friction coefficient. In
the limit Rs/Rq → ∞, the current flowing through the shunt
resistances vanishes and the 1DJJ chain is not affected by the
conventional dissipation.

The second term of Eq. (7) includes the kinetic energy and
the unconventional or charge dissipation, with the Matsubara
components given by the expression

F̃	 = h̄2

βEC

(
1 − RgC0|ω	|fc(ω	)

1 + RgC0|ω	|fc(ω	)

)
, (10)

whose explicit derivation is provided in Appendixes A and B.
Here we simply observe that this expression can be derived by
duality between the two conjugate quadratures of a harmonic
oscillator coupled separately to two baths [60,63]. In other
words, it is possible to show that unconventional dissipation as
given by Eq. (10) yields a quenching of the momentum quan-
tum fluctuations which is exactly equivalent to the quenching
of the phase quantum fluctuation for an oscillator affected
by ohmic damping given by Eq. (8). In the quantum phase
model, the parameter that quantifies the strength of the charge
dissipative coupling is related to the characteristic time scale
of the impedance due to the resistance to the ground Rg in
series with the capacitance C0, see Fig. 1(b). In contrast to the
phase dissipation, the dissipative coupling vanishes in the limit
Rg → 0. It is useful to introduce the parameter

α̃ = Rg/Rq = τg(EC/h) with τg = RgC0 (11)

playing the role of the dimensionless coupling constant of the
unconventional dissipation.

To be specific, we assume as a cutoff frequency fc(ω	) =
1/(1 + |ω	|/ωc) in the following. For Rg = 0, the model of the
action (6) corresponds to the dissipative quantum rotor model
discussed extensively in the literature [26,47–56]. Note that
we focus on the case of homogeneous dissipation assuming
the two kernel functions F (τ) and F̃ (τ) to be independent of the
position on the lattice (index n).

C. The self-consistent harmonic approximation SCHA

In the limit in which the average phase difference fluc-
tuations are small

√
〈�ϕ2〉 
 π , we can use the harmonic

approximation and expand the potential to obtain

Sharm. = Sdiss +
N−1∑
n=0

∫ β

0
dτ EJ

[
−1 + 1

2
�ϕ2

n(τ )

]
. (12)

If the fluctuations are strongly localized, paths of large fluctu-
ations ϕ(τ ) ∼ π are extremely unlikely to occur.

Beyond the harmonic approximation valid at
√

〈�ϕ2〉 
 π ,
the model of Eq. (6) cannot be solved exactly in general due
to the presence of the interaction potential and we have to
resort to an approximated scheme. For larger values of the
phase fluctuations, further anharmonic terms of the pairwise
potential have to be taken into account. To treat this regime, we
employ the self-consistent harmonic approximation (SCHA)
[51,53,71–77]. Within this approach, a quadratic trial action
Str is introduced as

Str = Sdiss − βNEJ +
N−1∑
n=0

∫ β

0
dτ

1

2
Vtr �ϕ2

n(τ ), (13)

which is formally equivalent to the harmonic expansion of
Eq. (12). However, one assumes Vtr as a free variational
parameter, different from the bare energy constant of the
potential Vtr �= EJ . Similarly to the harmonic expansion, the
partition function associated with the action (13) can be
computed by Ztr = ∏N−1

n=0

∮
D[ϕn(τ )] exp(−Str/h̄), together

with the Helmoltz free energy Ftr = −(h̄/β) ln[Ztr]. Using
the Bogoliubov inequality, an upper bound for the exact free
energy Feff = −(h̄/β) ln[Zeff ],

Feff � Fv, Fv = Ftr + (h̄/β)〈S − Str〉tr , (14)

where the average 〈S − Str〉tr is performed on the variational
action Str. The minimum of the right-hand side of Eq. (14)
is determined by taking the derivative with respect to the
variational parameter Vtr and setting it to zero. This leads
to the following self-consistent equation for the variational
parameter:

Vsc = EJ e− 1
2 〈�ϕ2〉sc , (15)

containing the fluctuations of the phase difference 〈�ϕ2〉sc
calculated on the variational action (13) for Vtr → Vsc, i.e.,
the self-consistent parameter, representing the effective spin-
wave stiffness constant [51]. This way, the SCHA captures
the anharmonic behavior of the phase fluctuations by an
effective harmonic potential Vsc which approximates the actual
anharmonic fluctuations.

This one-component theory of the phase transition provides
a (qualitative) phase diagram in the following way: By varying
one of the parameters g, α, or α̃, one can determine the
critical value above which there is no solution of Eq. (15). This
solution corresponds to a spinodal point which, in the SCHA,
is associated with the transition between the ordered phase,
characterized by (an)harmonic fluctuations of the phases, and
the disordered phase without any long-range correlations.
An alternative criterion to derive the critical line consists of
comparing the upper bound of the exact free energy evaluated
at the self-consistent solution Feff (Vtr = Vsc) with the value
for vanishing stiffness constant Feff (Vtr = 0): then the critical
point corresponding to the situation in which Feff (Vsc) �
Feff (0), identifies the transition to the disordered phase. The
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latter criterion allows us to distinguish between a first and
second order phase transition.

In the following, we discuss both criteria to obtain the
phase diagram for the 1D dissipative system of phases with
conventional (or phase) dissipation and unconventional (or
charge) dissipation.

D. Calculation of the quantum phase fluctuations

In this subsection we discuss the analytic expression for
the quantum phase difference fluctuations, in the limit of zero
temperature β → ∞ (T → 0), calculated on the quadratic trial
action (13). The Gaussian trial action can be decomposed in
terms of noninteracting quadratic modes which are defined by
the relation ϕn = (1/

√
N )
∑N−1

k=0 e−i2πkn/Nϕk [86]. Then the
average phase fluctuations are expressed as

〈�ϕ2〉sc = 4

N

N−1∑
k=1

sin2

(
πk

N

)
〈|ϕk|2〉sc (16)

in which each term corresponds to the fluctuations of a
harmonic mode. To calculate 〈|ϕk|2〉sc, we express {ϕn} as
functions of {ϕk} in the Gaussian action (13), and obtain the
Lagrangian of N independent harmonic oscillators, each of
them affected by conventional and unconventional dissipation.

By proceeding in a similar way as in Ref. [53], we arrive at
the expression

〈|ϕk|2〉sc=
+∞∑

l=−∞

EC/(h̄β)(
ω

(sc)
k

)2 + 4 sin2 ( πk
N )|ωl |αEC/h

1+ |ωl |
ωc

+ ω2
l

1+ τg |ωl |
(1+ |ωl |

ωc
)

,

(17)

where the eigenfrequencies

ω
(sc)
k = 2

√
ECVsc

h̄
sin (πk/2N ) (18)

correspond to the frequency of the normal modes of the Joseph-
son chain. Since we are interested in the quantum regime, we
take the zero temperature limit β → ∞, and the sum over
Matsubara frequencies transforms into an integral that can be
calculated analytically. Thus we obtain the expression

〈|ϕk|2〉sc = φa + φb

πg2
+ 2α̃

ln
[
ωc/ω

(sc)
k

]
1 + σ 2

k

, (19)

where we introduced σ 2
k = 4 sin2(πk/N )αα̃, the two phases

φa = 2πg2α̃

1 + σ 2
k

[
ln
(
1 + σ 2

k

)+ σk arctan(σk)
]
, (20)

φb = 1

1 + σ 2
k

(
EJ

h̄ω
(sc)
k

+ 2πg2α̃ �
(sc)
−

)
F
[
�

(sc)
− ,�

(sc)
+
]
, (21)

and the function

F[x,y] =
{

1√
1−x2 arctan

(√
1−x2

y

)
, for x < 1,

1√
x2−1

arctanh
(√

x2−1
y

)
, for x > 1,

(22)

with the parameter �
(sc)
± = sin2 (πk/N )αEC/(πh̄ω

(sc)
k ) ±

π (h̄ω
(sc)
k /EJ )g2α̃. We recover the previous result [63] for

Vsc = EJ . The analytical expression (19) for each harmonic
mode was obtained in the presence of a high frequency cutoff
ωc � ω

(sc)
k , γ , 1/τg . Note the logarithmic dependence on ωc in

Eq. (19), characteristic for the ohmic dissipation with a Drude
cutoff [82].

Once the fluctuations 〈�ϕ2〉sc are expressed in terms of
both coupling constants α, α̃, and g, we use Eqs. (16) and
(19) to solve the self-consistent equation (15) numerically. As
explained above, within the SCHA framework the existence of
a solution of (15) corresponds to the ordered state of the rotors,
whereas one associates its disappearance to a phase transition
of the system towards a disordered state. The SCHA approach
can only be justified, a priori, for fluctuations

√
〈�ϕ2〉sc �

π . Nonetheless, we use this approximation to gain a first
qualitative understanding of the influence of the conjugate
baths on the quantum phase transition.

E. Absence of dissipation (α = α̃ = 0)

As discussed in the Introduction, in absence of dissipation,
decreasing g below a critical value leads to a phase transition.
Before presenting the numerical results including dissipation,
we illustrate the prediction of the SCHA equation for this case.
For α = α̃ = 0 and in the limit N � 1, the self-consistent
Eq. (15) simplifies to

Vsc/EJ = e
− 1

πg

√
EJ /Vsc . (23)

We denote the maximum value corresponding to the critical
solution of Eq. (23) by g(0)

s . In correspondence of this point, the
left- and right-hand sides of (23) have the same derivative with
respect to the variable x = Vsc/EJ . Using the latter condition
together with Eq. (23), we find

√
Vsc/EJ = 1/(2πg(0)

s ) that
yields Vsc/EJ = 1/e2 and corresponds to a critical value g(0)

s =
e/(2π ) ≈ 0.43 [87].

III. RESULTS: SOLUTION OF THE
SELF-CONSISTENT EQUATION

We here present the results for the solutions of the self-
consistent equation (15). We consider a high frequency cutoff
h̄ωc = 100EC corresponding to the regime ωc � ωk,γ,1/τg ,
and N = 150 for which the phase difference fluctuations are
converged and close to the thermodynamical limit, i.e., further
doubling of N affects the results by less than 0.07 percent.
In this section we set the notation δϕsc = √〈�ϕ̂2

n〉sc for the
quantum phase difference fluctuations calculated with the self-
consistent parameter Vsc.

We first discuss the conventional dissipation α > 0 and
α̃ = 0 for which we recover previous results obtained with the
SCHA [51,53]. In Fig. 3(a) we show δϕ for different values
of α, by varying the system parameter g. For reference, we
also plot the dissipationless case α = 0 (black solid line). The
endpoint of each line corresponds to the critical value gs(α),
where the SCHA solution vanishes.

For a fixed value of g, the phase fluctuations decrease with
increasing damping. As a consequence, the critical value gs ,
determined by the critical solution of the self-consistent equa-
tion, decreases. The corresponding phase diagram is shown
in Fig. 3(c), reporting the critical values gs . From this result,
one can conclude that the dissipation stabilizes the ordered
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FIG. 3. δϕsc as a function of the parameterg, for different values of
the conventional damping α in (a), and of the unconventional damping
α̃ in (b). The endpoints determine the critical values of gs(α) and gs (̃α)
below which there is no solution of the self-consistent equation. In
(c) and (d) the sets of the critical points gs(α) and gs (̃α) are shown for
the different damping coefficients. The gray area denotes where the
self-consistent equation has no solution.

phase of the system. Indeed, a more refined treatment beyond
the SCHA yields the same qualitative behavior of the critical
line, namely the negative slope of α vs gs with a shift towards
smaller critical values [47–49].

We now consider the opposite limit of purely unconven-
tional dissipation affecting the system, i.e., α̃ > 0 and α =
0. The behavior of the fluctuations as a function of g and
for different values of α̃ is shown in Fig. 3(b). Again, the
black solid line corresponds to the dissipationless case α̃ = 0.
Compared to the previous results, the system displays now an
opposite behavior: for a fixed value of g, the phase fluctuations
increase with increasing damping. This can be explained by
the Heisenberg uncertainty relation: the unconventional dissi-
pation quenches the zero-point fluctuations of the momentum
(charge) δp leading to an increase of the phase and phase-
difference fluctuations δϕ ∼ h̄/δp. As shown in Fig. 3(d), the
unconventional dissipation leads to an increasing critical value
gs (̃α). A qualitatively similar result was obtained for the phase
diagram of the superconductor/insulator transition occurring in
a chain of Josephson junctions that was capacitively coupled
to a metallic conducting film in the diffusive regime [58].

We now analyze the general case when both types of
dissipation are present: α > 0 and α̃ > 0.

Since conventional (or phase) dissipation quenches the
phase fluctuations, whereas unconventional (or momentum)
dissipation yields a quenching of the momentum fluctuations,
we expect a competition of the two types of dissipative inter-
actions as they affect two canonically conjugate operators. In
Figs. 4(a) and 4(c) we show the results for a given ratio α̃/α =
0.1, for which we obtain a qualitatively similar behavior to the
case of α̃ = 0. A different behavior occurs in the regime when
momentum dissipation has a stronger influence. As an example
of this regime, we show in Figs. 4(b) and 4(d) the results
for the ratio α̃/α = 0.3. In this case, the trend appears to be
inverted: increasing the overall dissipative coupling strength,
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FIG. 4. δϕsc as a function of the parameter g, for different values
of the conventional damping α at a given ratio of α̃/α = 0.1 in (a),
and α̃/α = 0.3 in (b). The endpoints determine the critical value
of gs(α,̃α), below which there is no solution of the self-consistent
equation. These are reported in (c) for α̃/α = 0.1, and in (d) for
α̃/α = 0.3. The gray area denotes where the self-consistent equation
has no solution.

the values gs(α,̃α) exhibit a nonmonotonic behavior. Starting
from a small value of the dissipation (α = 0.2 or α̃ = 0.06), the
critical value increases, as in the case of purely unconventional
dissipation. However, for larger values of dissipation (α > 0.6
or α̃ > 0.18) gs(α,̃α) decreases, as in the case of a purely
conventional dissipation.

In order to gain a better understanding of this regime, we
also report the phase fluctuations as a function on the damping
coefficient at a fixed ratio α̃/α, and for different values of
g (see Fig. 5). For large values (2π/e)g � 1.42, we always
obtain a solution for the self-consistent equation for all values
of the damping coefficient. As long as (2π/e)g � 1.42, there

(2π/e)g=1.31

α~

δϕ
sc

/π

=1.39
=1.42
=1.46

0.2
α~

(2π/e)g

2.0 3.00 1.0
0.4

0.6

0.8

1

0.3

0.1

0
1 1.2 1.4

no solution

FIG. 5. δϕsc as a function of the parameter α̃ (with the ratio
α̃/α = 0.3), for different values of g. The endpoints determine the
critical value(s), above which there is no solution of the self-consistent
equation (see shaded area in the inset displaying the phase diagram
in α̃ and g).
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FIG. 6. Critical line gs(α,̃α) with dissipative frustration. Right
to the transition line is the ordered phase, on the left the rotors are
randomly orientated (see Fig. 2). By increasing the ratio α̃/α the
nonmonotonic behavior is more pronounced.

is a solution for both small and large values of the dissipative
strength interaction, whereas there is a region of no solution
at intermediate values. This result stems from the behavior
of the quantum fluctuations for the position or momentum
of a harmonic oscillator with two noncommuting dissipative
interactions. In this case, the fluctuations show a nonmonotonic
behavior as a function of the dissipative coupling strength [63].
For instance, at (2π/e)g = 1.42, in Fig. 5, it is possible to
observe a weak nonmonotonic behavior. However, in contrast
to a pure harmonic oscillator for which strong fluctuations
are always allowed at any scale, the solution for the self-
consistent equation vanishes at large phase fluctuations and this
produces a cut of the lines for values (2π/e)g < 1.42, shown
in Fig. 5.

Finally, we analyze the evolution of the phase diagram
between the two regimes of Figs. 4(c) and 4(d), and plot the
critical line gs(α,̃α) and for different ratios α̃/α in Fig. 6. The
region to the right of the transition line presents a solution of the
self-consistent equation and is associated with the phase with
phase ordering, whereas in the region to the left there is no
self-consistent solution. Furthermore, as previously reported
(see Ref. [53] for example), above the critical damping αC = 1
the system is always in the ordered phase.

As discussed above, at small dissipative coupling strengths
we observe an evolution from the regime of negative to positive
slope of the critical line. Moreover, the critical line exhibits a
change in the global behavior. In the regime α̃/α < ξ , with the
critical threshold ξ ≈ 0.1, the critical value gs decreases with
the dissipative coupling. In the opposite regime α̃/α > ξ , the
critical value gs first increases with the dissipative coupling and
then decreases again at larger damping. Such nonmonotonic
behavior is more pronounced for larger values of the ratio α̃/α.
The phase diagram reported in Fig. 6 implies the interesting
possibility that, for a given ratio of the parameter g, the system
exhibits two phase transitions by increasing the dissipation: the
first one from the ordered phase to the disordered phase and
then, by further increasing the damping, one drives the system
back to the ordered phase, see Fig. 5.
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FIG. 7. Upper bound Fv(Vtr) for free energy in Eq. (14) as a
function of Vtr in the presence of dissipative frustration, for the
ratio α̃/α = 0.3 and (a) α = 0.2, (b) α = 0.6, (c) α = 1.0, and (d)
α = 1.5. The empty circles correspond to the spinodal point, i.e., the
disappearance of the finite solution Vsc in the self-consistent equation
(23). The solid dots correspond to the phase transition according to
the criterion Fv(Vsc) = Fv(0).

IV. ORDER OF THE PHASE TRANSITION

In this section we consider the phase diagram of the system
by using a criterion of Eq. (14) based on the upper bound
Fv(Vtr = Vsc) of the free energy Feff , where Vsc is the self-
consistent solution of Eq. (23). When Fv(Vsc) � Fv(0), the
real local minimum in the SCHA corresponds to the solution
Vtr = 0 which represents the real upper bound estimation of the
exact free energy. Within the SCHA, this point corresponds to
the phase transition in which the spin-wave stiffness vanishes
and the system is in the disordered state.

An example of the behavior of Fv(Vtr ) is reported in Fig. 7,
showing the free energy for different values α with frustrated
dissipation. In this figure, the circle corresponds to the spinodal
point of the self-consistent equation, while the black dots to
the condition Fv(Vsc) = Fv(0). The latter condition occurs at
a value of gc which is generally larger than the gs found by
the self-consistent Eq. (23). Hence, the phase transition shifts
to larger values of g. This jump, from a finite value of Vsc to
zero, corresponds to a first order phase transition.

However, by increasing the coupling strength α we see
that the difference between the spinodal point and the global
minimum disappears. In particular, for values α > 1 the system
is always in the ordered state and the point at Vtr = 0 is a
maximum for all values of g > 0. At the point αC = 1 the
transition turns to be of second order.

To summarize, we can identify three regimes. In the low
damping regime we have a first order phase transition, see
Figs. 7(a) and 7(b). Increasing the damping the jump in the
parameter gets smaller and we call the transition “weakly”
first order, Fig. 7(c). Further increasing the damping, Vsc tends
continuously to zero and we have a second order phase transi-
tion, Fig. 7(d). We illustrate those three regimes by plotting the
phase diagrams originating from the self-consistent equation
discussed in the previous section with the one obtained from
the free energy minimum. Figure 8 shows the phase diagrams

155427-7



D. MAILE, S. ANDERGASSEN, W. BELZIG, AND G. RASTELLI PHYSICAL REVIEW B 97, 155427 (2018)

0

0.2

0.4

0.6

0.8

1

0.8 1 1.2 1.4 1.6 1.8

/e)g

(2 /e)g

Fv(Vsc)=Fv(0)
no solution

0

0.5

1

0 0.5 1

first order

weakly
first order

second order

FIG. 8. Quantum phase diagram with dissipative frustration for
the ratio α̃/α = 0.3. The solid line and the dashed line correspond, re-
spectively, to the phase transition according to the criterionFv(Vsc) =
Fv(0) and the vanishing of the solution in the self-consistent equation.
The inset shows the case with conventional dissipation (̃α = 0).

of the two different criteria (dashed black line for the spinodal
points, blue solid line for the free energy approach).

V. PURITY AND ENTANGLEMENT

A natural question is whether the two ordered phases at
weak and strong dissipative coupling can be characterized by
another intrinsic property beyond the (classical) ordering of the
phases. We discuss this issue in the next section by studying
the purity and the logarithmic negativity.

In the SCHA, the system is described by an effective
density matrix ρ̂sc which is formally Gaussian. Using the
representation with the amplitudes of the harmonic modes, the
elements of ρ̂sc read

〈{ϕk}|ρ̂sc|{ϕ′
k}〉 =

∏
ν=Re,Im

N−1∏
k=1

1√
π〈|ϕk|2〉sc

e− Sk,ν
h̄ , (24)

with {ϕk} = {ϕk=1,ϕk=2, . . . } and ϕk = (ϕk,Re + iϕk,Im). The
exponent reads

Sk,ν

h̄
= (ϕk,ν + ϕ′

k,ν)2

4〈|ϕk|2〉sc
+ (ϕk,ν − ϕ′

k,ν)2

4
〈|ϕ̇k|2〉sc, (25)

where we used 〈ϕ2
k,Re〉 = 〈ϕ2

k,Im〉.
However, even if ρ̂sc is a Gaussian functional of the fluctua-

tions, we calculate the quantities in this section by solving the
self-consistent equation, which takes the anharmonicity of the
cosine potential into account.

A. Purity

As a measure of the correlations between the system and
the environment, we calculate the purity of the system which
is defined as

P = Tr
[
ρ̂2

sc

]
, (26)

where ρ̂sc is the reduced density matrix describing our system,
the one-dimensional superconducting chain. For pure quantum

states, one has P = 1 (isolated system), whereas P < 1 for
statistical mixture of states [88].

Due to the fact that our system is described by an effective
ensemble of independent harmonic modes, the purity is simply
related to the inverse product of the phase difference 〈|ϕk |2〉 and
momentum (charge) fluctuations 〈|ϕ̇k|2〉 (we drop the subscript
sc for the fluctuations from now on). For the isolated system,
without dissipation (α = α̃ = 0), increasing the parameter g,
the phase fluctuations decrease while the charge fluctuations
increase. Anyway, the product of the two fluctuations is
invariant and the purity remains P = 1, viz., the system is
in a pure quantum state. Hence, we express the purity of the
general case as

P =
∏
k

Pk =
∏
k

√
〈|ϕk|2〉0〈|ϕ̇k|2〉0

〈|ϕk|2〉〈|ϕ̇k|2〉
, (27)

where 〈|ϕk|2〉0 and 〈|ϕ̇k|2〉0 denote the fluctuations without
dissipation and the expression for the velocity fluctuations is
given by

〈|ϕ̇k|2〉 = g2 (φc + φd )

π
+ α sin

(
πk
N

)
π2

ln
[
ωc/ω

(sc)
k

]
1 + σ 2

k

, (28)

with

φc = α

πg2

sin
(

πk
N

)
1 + σ 2

k

[
ln
(
1 + σ 2

k

)+ σk arctan(σk)
]
, (29)

φd = 1

1 + σ 2
k

(
h̄ω

(sc)
k

EJ

− α sin
(

πk
N

)
πg2

�
(sc)
−

)
F
[
�

(sc)
− ,�

(sc)
+
]
,

(30)

where σk , F, and �
(sc)
± have been introduced in Sec. II. Inserting

the expressions (19) and (28) into (27), we calculate the purity
and discuss the influences of the baths.

The interaction with the external environment always leads
to a mixing of the quantum states with a purity lower than one.
This occurs for each single harmonic mode Pk < 1. Then, the
purity of the whole system is given by the product of all {Pk}
corresponding to a small number in the limit of large N � 1.
Therefore, it is more convenient to analyze the behavior of the
geometric mean of the purity defined as P1/N .

Figure 9(a) shows the mean purity as a function of g for
different values of α in the case of conventional dissipation
(̃α = 0), whereas Fig. 9(b) reports the mean purity in the case
of pure unconventional dissipation (α = 0). The black solid
dots in Fig. 9 correspond to the critical value Fv(Vsc) = Fv(0)
and the endpoints (open circles) correspond to the vanishing
of the solution in the self-consistent equation. In both cases,
as expected, the purity of the system decreases by increasing
the dissipative coupling with the bath, with conventional
dissipation α or the unconventional α̃. However, the purity
shows the opposite behavior by varying g, in particular close
to the critical point: it decreases for the conventional dissipation
and increases for the unconventional one.

The mean purity in the case of frustrated dissipation (α > 0
and α̃ > 0) is shown in Fig. 9(c). Remarkably, for α = 0.1
and α = 0.2, the mean purity has a nonmonotonic behavior
as a function of g. This nonmonotonicity is a characteristic
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FIG. 9. Geometric mean purity P1/N , for N = 150, as a function
of g. The solid dot corresponds to the phase transition Fv(Vsc) =
Fv(0) while the open circles mark the disappearance of the self-
consistent solution. (a) Conventional dissipation for different values
of α. (b) Unconventional dissipation for different values of α̃. (c)
Frustrated case for the ratio α̃/α = 0.3. The inset is a zoom for the
case α = 0.2.

feature of the dissipative frustration acting on the system since
it combines the two opposite trends on the purity in the presence
of a single type of dissipative interaction (phase or charge)
affecting the system, see Figs. 9(a) and 9(b).

B. Entanglement

In this section we analyze an entanglement measure to
describe the nonclassical correlations present in the quantum
phase model with dissipative frustration. Specifically, we dis-
cuss the behavior of the logarithmic negativity EN , a suitable
entanglement measure to characterize Gaussian states [89,90].

Before we discuss the logarithmic negativity and the results
for our system, a remark is needed. To compute EN we use
a Gaussian density matrix ρ̂sc, see Eqs. (24) and (25). The
results we obtain in this way naturally can be different from
the exact measure of the quantum phase model with the cosine
interaction having non-Gaussian correlations. Since EN fails
to be superadditive, the results obtained with the Gaussian
state do not represent a lower bound and can overestimate the
amount of entanglement [91]. However, EN is a simple and
straightforward quantity to compute and it can provide a first,
rough estimate of the possible behavior of the entanglement in
our problem.

The logarithmic negativity is based on the Peres-Horodecki
criterion (or positive partial transpose, PPT) [92,93] which
states that if the global density matrix ρ̂ for two combined

subsystems A and B is separable (=no entanglement but only
classical correlations), then the partial transpose density matrix
with respect to one of the two subsystems, for instance ρ̂TA , still
has positive eigenvalues. Hence, the amount of negativeness of
the eigenvalues of ρ̂TA can be considered as a measure of the
nonseparability between A and B, viz., entangled states are
present. Following this criterion, one defines the logarithmic
negativity in our case as

EN [ρ̂] = log2(||ρ̂TA ||1) = log2

(
1 − 2

∑
λk<0

λk[ρ̂TA ]

)
, (31)

where λk[ρ̂TA ] are the eigenvalues of ρ̂TA and ||M||1 denotes
the trace norm of a matrix M , ||M||1 = tr(

√
M†M), and

corresponds to the sum of the absolute values of its eigenvalues
[94]. The PPT criterion is a sufficient condition, implying that
even for EN = 0, the two subsystems can still have some
entanglement [95].

We calculate the logarithmic negativity EN [ρ̂sc] for our
system using the correlation covariance matrix [89,90,96].
A more detailed discussion of the formalism is given in
Appendix C, illustrating the case of two coupled oscillators.

We introduce the canonical conjugated variables q̂n =
Q̂n/(2e), i.e., the scaled charge operators on each super-
conducting island forming the chain, with the commutation
relation [ϕ̂n,q̂m] = iδnm. We also define the vector

R̂ = (R̂1,R̂2, . . . ,R̂N )T , (32)

with R̂n = (ϕ̂n,q̂n). The full symmetric covariance matrix
σ̂ [ρ̂sc] of size (N × N ) is formed by the block elements (2 × 2)
that read

σ̂nm[ρ̂sc] = 〈R̂lR̂m + R̂mR̂l〉/2. (33)

The correlation functions are given by

〈
ϕ2

n

〉 = 〈ϕ2〉 = 1

N

N−1∑
k=1

〈|ϕk|2〉, (34)

〈ϕlϕm〉 = 1

N

N−1∑
k=1

cos

(
2π

N
k(m − l)

)
〈|ϕk|2〉, (35)

and similar expressions for 〈q2
n〉 = 〈q2〉 ∝ 〈ϕ̇2〉 and 〈qnqm〉 ∝

〈ϕ̇nϕ̇m〉, whereas we have 〈ϕ̂n q̂m〉 = 0.
After having partitioned the superconducting Josephson

chain into two subsystems formed by the local variables
nA = 1, . . . ,NA and nB = 1, . . . ,NB , it is possible to show
that the covariance matrix σ̂ [ρ̂TA

sc ] associated with ρ̂TA
sc is easily

obtained by time reversal symmetry operations [96], viz., by
inverting all momenta of subsystem A, namely

σ̂ [ρ̂sc] → σ̂
[
ρ̂TA

sc

]
with 〈qnA

qmB
〉 → −〈qnA

qmB
〉, (36)

and leaving unmodified the products in each subsystem
〈qnA

qmA
〉 and 〈qnB

qmB
〉. Finally, the connection between the

logarithmic negativity and the covariance matrix of the partial
transpose matrix σ̂ [ρ̂TA

sc ] is given by the formula [97]

EN [ρ̂sc] = −
∑

k

log2 {min[1,(2ck)]}, (37)

where the quantities {c1,c2, . . . ,cN } are the symplectic eigen-
values (spectrum) associated with the covariance matrix
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σ̂ [ρ̂TA
sc ]. The symplectic spectrum is computed by finding the

real eigenvalues of the real symmetric matrix Ŝ = −iOσ̂ [ρ̂TA
sc ],

namely the product of the covariance matrix with the symplec-
tic block diagonal matrix

O =
N⊕

n=1

(
0 1

−1 0

)
. (38)

In the diagonal form, the matrix Ŝ reads diag{±c1, ±
c2, . . . , ± cN } [97] (see Appendix C for more details).

The symplectic eigenvalues {ck} are continuous functions
of the correlation functions of the system.

We find that the symplectic spectrum and hence the log-
arithmic negativity does not vary with g without coupling
with the environment. This result can be understood by scaling
analysis of the symplectic spectrum as a function of the normal
modes. In other words, for Gaussian states, the degree of
quantum correlations between coupled harmonic oscillators
(viz., the local phases) does not depend on the amount of the
phase-difference quantum fluctuations ∼〈�ϕ̂2〉0 ∼ 1/

√
g. By

contrast, when the chain is coupled to the environment, we find
that a such dissipation interaction always yields a decreasing
of the entanglement with respect to the value of the isolated
system.

Generally, the logarithmic negativity depends on the spe-
cific configuration for the partition of the system into two
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FIG. 10. Logarithmic negativity for N = 9 sites and subsystem
sizes NA = 4,NB = 5 as a function of g. The solid dot corresponds
to Fv(Vsc) = Fv(0) while the open circles mark the disappearance of
the self-consistent solution Eq. (23). (a) Conventional dissipation for
different coupling of α. (b) Unconventional dissipation for different
couplings α̃. (c) Frustrated dissipation with the ratio α̃/α = 0.3.The
inset is a zoom for the case α = 0.2.

subsystems A and B since the correlation functions between
different sites are long ranged, see Eq. (35). Here, as an exam-
ple of results, in Fig. 10 we present the case for the logarithmic
negativity by dividing the periodic lattice (ring) formed by
N = 9 sites partitioned into two compact subsystems of size
NA = 4 and NB = 5. Our qualitative results and conclusions
do not depend on this specific choice and further configurations
are discussed in Appendix D.

Figures 10(a) and 10(b) show the logarithmic negativity
as a function of g when only one type of dissipative inter-
action is affecting the system, α̃ = 0 or α = 0, respectively.
The global behavior is very similar to the results obtained
for the purity. However, the logarithmic negativity shows a
noncontinuous behavior of the derivative, with kinks appearing
for lower values of g. This can be explained by considering the
formal definition of EN : decreasing g, the kinks correspond
to the point where a symplectic eigenvalue becomes less
than the fixed threshold (ck < 1/2), yielding an additional term
in the sum of Eq. (37).

Finally, we report the most interesting case of dissipative
frustration with α̃/α = 0.3 in Fig. 10(c). As for the purity,
for a given ratio α̃/α < 1, the logarithmic negativity can
display a nonmonotonic behavior for not too large values of
the dissipative interaction.

VI. SUMMARY

To summarize, we studied a 1D quantum phase model
with dissipative frustration defined as a system coupled to the
environment through two noncommuting observables, namely
the phase and its conjugated operator, Fig. 1(a). We showed that
this system can be readily implemented using one-dimensional
Josephson junction chains formed by superconducting is-
lands connected by Josephson coupling. In these systems,
the local phases and charges are the canonically conjugated
variables. The conventional (phase) dissipation arises from the
shunt resistances in parallel between two neighboring islands,
whereas the unconventional (charge) is related to the resistance
connecting the local capacitance to the ground, Fig. 1(b).
When the two dissipative interactions affect separately the
system, they yield quenching of, respectively, the quantum
phase fluctuations or quantum charge fluctuations. When both
two dissipative interaction are present, frustration emerges due
to the uncertainty relation that sets a lower bound to the product
of the two fluctuations.

Quantum fluctuations play a crucial role in the quantum
phase transition occurring in the 1D quantum phase model.
This corresponds to the superconductor vs insulator phase
transition in the Josephson chain, associated with the presence
of phase ordering or not. Using the self-consistent harmonic
approximation (SCHA), we derive the qualitative phase di-
agram of the system under the influence of the dissipation.
The dissipative frustration operating in the system leads to
a nonmonotonic behavior of the quantum fluctuations [60,63]
which translates into the nonmonotonic behavior of the critical
line in the phase diagram at fixed ratio of the two dissipative
coupling strengths.

The dissipative frustration has a genuine quantum origin
since it is related to the noncommutativity of quantum op-
erators. Hence, we analyzed the effects of the dissipative
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Φ0

M

M 1

(a)

(b)

C

Φ

C0 CgLg

Φ
1ϕ

ϕn

n

Rg0

FIG. 11. (a) One superconducting island of the Josephson junc-
tion chain with local phase ϕ connected to the ground through
the series formed by the capacitance C0 and the resistance Rg .
(b) Equivalent circuit simulating the dissipation by using the Caldeira-
Leggett model, with a transmission line formed by discrete elements
that contains the inductance Lg and the capacitance Cg , with the
characteristic impedance Rg = √

Lg/Cg .

frustration in the average quantities characterizing the state of
the system. In particular, we discussed two quantum thermo-
dynamical quantities, the purity and the entanglement measure
of the logarithmic negativity, which have no analog in classical
systems. We found that, within the SCHA approach, both
quantities show a nonmonotonic behavior approaching the
critical point associated with the dissipative phase transition.

In conclusion, our results for a specific system demonstrate
that dissipative frustration can lead to interesting effects and
novel features in the physics of open quantum many-body
systems.
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APPENDIX A: UNCONVENTIONAL OR CHARGE
DISSIPATION IN THE EQUATIONS OF MOTIONS

In this Appendix we discuss the dissipation obtained by cou-
pling a superconducting island to the ground via an impedance
formed by the series of capacitances. We directly include
capacitances in the equation, whereas the resistive elements are
taken into account by a standard Caldeira-Leggett approach,
i.e., introducing a discrete line formed by capacitances Cg and
inductances Lg , as shown in Fig. 11. This line is formed by M

elements. We will consider the limit M → ∞ to recover the
full dissipative ohmic behavior. To simplify the notation, we set
the local superconducting phase in the island of the Josephson
junction chain ϕn → ϕ.

Referring to Fig. 11(b), we discuss the circuit using the
equations of motion for a lumped number of circuit elements
[98]. We use the phase nodes variables φm, with m = 0, . . . ,M ,
with the boundary condition φM = 0. We start by the Kir-
choff’s equation for the energy conservation at each node
m = 1, . . . ,M − 1 of the circuit Fig. 11(b),

Cg

d2φm

dt2
= − 1

Lg

(2φm − φm−1 − φm+1). (A1)

Introducing the vector �φ′ = (φ1,φ2, . . . ,φm, . . . ,φM−1) and the
frequency ω2

g = 1/(LgCg), the previous equation can be cast
in the matrix form

d2 �φ′

dt2
= −ω2

g

⎛⎜⎜⎜⎜⎜⎝
2 −1 0 · · · · · ·

−1 2 −1 0 · · ·
0 −1 2 −1 · · ·
· · · · · · · · · · · · −1

· · · · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎠ �φ′ + ω2
g

⎡⎢⎢⎢⎣
φ0

0

· · ·
0

⎤⎥⎥⎥⎦.

(A2)
The eigenvectors ek(m) = √

2/M sin [πkm/M] of the matrix
¯̄M , with m = 1, . . . ,M − 1, span the matrix ¯̄M = ¯̄U ¯̄D ¯̄U

−1
,

where ¯̄D is the diagonal form and ¯̄U ( ¯̄U−1) contains the
(normalized) eigenvectors. This corresponds to the unitary
transformation φm = ∑M−1

k=1 ek(m)�k for m = 1, . . . ,M − 1.
Equation (A2) reads then in terms of the normal modes �k ,

d2�k

dt2
= −�2

k�k + ω2
g

M−1∑
k=1

εkφ0, (A3)

with the spectrum �k = 2ωg sin [πk/(2M)] and εk = ek(1) =√
2/M sin [πk/M]. The solution of Eq. (A3) is given by

�k(t) = �
(0)
k (t) + ω2

g

�k

εk

∫ t

t0

dt ′ sin[�k(t − t ′)]φ0(t ′)

= �
(0)
k (t) + ω2

g

�2
k

εk{φ0(t) − cos [�k(t − t0)]φ0(t0)}

− ω2
g

�2
k

εk

∫ t

t0

dt ′ cos[�k(t − t ′)]
dφ0(t ′)

dt ′
, (A4)

with �
(0)
k (t) being the solution of the associated homogeneous

Eq. (A3). Then we write the dynamics equation for the node
m = 0,

C0
d2(φ0 − ϕ)

dt2
= − 1

Lg

(φ0 − φ1)

= − φ0

Lg

+ 1

Lg

M−1∑
k=1

εk�k(t). (A5)

Inserting the solution (A4) for �k(t) into Eq. (A5), after some
algebra, we obtain

C0
d2(φ0 − ϕ)

dt2
= − φ0

MLg

+ δI0(t)

−
∫ +∞

−∞
dt ′Y (t − t ′)

dφ0(t ′)
dt ′

, (A6)

where we set the initial time t0 → −∞ and δI0(t) is a time
function depending on the initial conditions. This function
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corresponds to the noise and we can ignore it for the rest of the
discussion. The relevant quantity appearing in Eq. (A6) is the
response function given by

Y (t) = θ (t)
2

MLg

M−1∑
k=1

(
1 − �2

k

4ω2
g

)
cos [�kt]. (A7)

Finally, we take the thermodynamic limit for the number of
the elements in the line M → ∞ such that the real part of
the Fourier transform of the response function Y (t), associated
with the dissipation, becomes finite and reads

lim
M→∞

Re[Y (ω)] = (1/Rg)fc(ω), (A8)

with the high frequency cutoff ∼ωg that we neglect hereafter
to simplify the notation. Omitting the noise and using the
Markovian approximation [viz., the decay rate ∼1/ωg of the
function Y (t) much larger than the time scale of the evolution
of the phases], we have

d2φ0

dt2
= − 1

τg

dφ0(t)

dt
+ d2ϕ

dt2
, (A9)

with τg = C0Rg . We then consider the particular solution
φ0(t) = ∫ t

−∞dt ′ exp [−(t − t ′)/τg]dϕ(t ′)/dt ′ with the property

dφ0(t)

dt
= dϕ(t)

dt
− 1

τg

∫ t

−∞
dt ′ exp[−(t − t ′)/τg]

dϕ(t ′)
dt ′

.

(A10)

In this way we can show that

d2(φ0 − ϕ)

dt2
= − 1

τg

dϕ(t)

dt
+ 1

τ 2
g

∫ t

−∞
dt ′e− t−t ′

τg
dϕ(t ′)
dt ′

.

(A11)

In the final step, we recover the index for each element ϕ → ϕn

and write the equation for the phase ϕn (in the Markovian limit)
of the 1DJJ shown in Fig. 1 as

d2(ϕn − φ0)

dt2
= −ω2

0(2ϕn − ϕn−1 − ϕn+1) − γ
dϕn

dt
, (A12)

with ω0 = √
ECEJ /h̄ and γ = 1/(RsC0). Using the main

result Eq. (A11), the Fourier transform of Eq. (A12) reads

− ω2ϕn(ω)

1 + iτgω
= −ω2

0[2ϕn − ϕn−1 − ϕn+1]ω − iγ ωϕn(ω),

(A13)

in which we are interested only in the left-hand side describ-
ing the effect of the unconventional (charge) dissipation in
frequency space. Thus, we conclude that the unconventional
dissipation corresponds to a damped (imaginary) mass in the
equation of motion of the local phases ϕn.

We finally observe that, using the Wick’s rotation from real
frequency ω to Matsubara frequency −iω	 and restoring the
capacitance (mass) in the left-hand side of Eq. (A13), we get

C0ω
2
	

1 + τgω	

∼ F̃	 ω2
	, (A14)

where the propagator F̃	 is given by Eq. (10) with the cutoff
function fc = 1 and ω	 > 0. A rigorous derivation will be
given in Appendix B.

APPENDIX B: UNCONVENTIONAL OR CHARGE
DISSIPATION WITH THE PATH INTEGRAL

IN THE IMAGINARY TIME

In this Appendix we derive the unconventional or charge
dissipation introduced in the main text, in the path integral
formalism in imaginary time

As first step, we recall the Lagrangian in the imaginary time
of the Josephson junction chains with each junction shunted
by the resistance Rs ,

SJJ =
N−1∑
n=0

1

2

∫ β

0

∫ β

0
dτdτ ′ F (τ −τ ′) |�ϕn(τ ) − �ϕn(τ ′)|2

−
N−1∑
n=0

EJ cos [�ϕn(τ )], (B1)

where EJ is the Josephson energy and the function F (τ ) en-
coding the ohmic dissipation of Rs refers to Eq. (8) discussed in
the main text. Then we assume that each local superconducting
island n is coupled to an external bath (external impedance)
leading to the general form of the Lagrangian

S = SJJ +
∫ β

0
dτ

N−1∑
n=0

L(n)
0 . (B2)

The external impedance is formed by the capacitance C0 and a
resistance Rg , as depicted in Fig. 11(a). The dissipative element
Rg is described by the Caldeira-Leggett model, viz., as an
ensemble of M discrete elements forming a transmission line,
as depicted in Fig. 11(b). In the thermodynamic limit M → ∞,
such a line is equivalent to the resistance Rg , as we show in
the following.

To construct the Lagrangian we have to consider the electro-
static energy associated with each link containing a capacitance
and the associated inductive energy [98]. The result is

L(n)
0

μ0
= C0

2

(
ϕ̇n − φ̇

(n)
0

)2 +
(
φ

(n)
0 − φ

(n)
1

)2

2Lg

+
M−1∑
m=1

[
Cg

2

(
φ̇(n)

m

)2 +
(
φ

(n)
m+1 − φ(n)

m

)2

2Lg

]
, (B3)

with μ0 = �2
0/(4π2) and �0 = h/(2e) the flux quantum. Then

we express the partition function of the whole system in the
imaginary time path integral formalism [82]

Z =
∏
n,m

∮
D[ϕn(τ )]e− SJJ

h̄

∮
D
[
φ(n)

m (τ )
]
e− 1

h̄

∑N−1
n=0

∫ β

0 dτL(n)
0

≡
∏
n

∮
D[ϕn(τ )]e− SJJ

h̄ Fch[ϕ]. (B4)

Hereafter, we focus only on one superconducting island n

described by the phase ϕn, and to simplify the notation we drop
the index n. Hence, we consider the Lagrangian L0 (without
index n) in Eq. (B3). Now can diagonalize the part containing
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the transmission line for the phases m = 1, . . . ,M − 1 via the
unitary transformation introduced in Appendix A. Then the
ensemble of the harmonic modes �k represents the effective
bath affecting the phase φ0 and that eventually becomes
equivalent to a dissipative resistance. Only the phase φ0 is
directly coupled capacitively to the superconducting phase ϕ

of the local island forming the 1DJJ. Thus we obtain

Fch[ϕ] =
∮

D[φ0(τ )]e− 1
h̄

∫ β

0 dτ [ μ0C0
2 (ϕ̇−φ̇0)2]

×
M−1∏
k=1

∮
D[�k(τ )]e− 1

h̄

∫ β

0 dτLg , (B5)

where Lg is given by

Lg

μ0
= φ2

0

2Lg

− φ0

Lg

∑
k

εk�k + Cg

2

M−1∑
k=1

[
�̇2

k + �2
k

2
�2

k

]
(B6)

and the spectrum �2
k and εk are defined above. In order to derive

the final effective functional for the phase ϕ, we have first to
integrate out the harmonic modes �k and then the phase vari-
able φ0 directly coupled to the superconducting phase ϕ via the
capacitance C0. Using the Matsubara Fourier transformation
�k(τ ) = ∑

k �
(k)
	 exp(iω	τ ) and φ0(τ ) = ∑

k φ
(0)
	 exp(iω	τ ),

with ω	 = 2π	/β (	 integer), we express the action Lg as

1

h̄

∫ β

0
dτLg

= βμ0

h̄Lg

∞∑
	=0

(
1 − δ	,0

2

)∣∣φ(0)
	

∣∣2
− βμ0

h̄Lg

M−1∑
k

εk

[
φ

(0)
0 �

(k)
0 +

∞∑
	=0

(
φ

(0)
	 �

(k)∗
	 + φ

(0)∗
	 �

(k)
	

)]

+ βCgμ0

h̄

M−1∑
k=1

∞∑
	=0

[
ω2

	 + �2
k

(
1 − δ	,0

2

)]∣∣�(k)
	

∣∣2 (B7)

to be inserted in the path integral Eq. (B5) with the metric
[81,82]∮

D[�k(τ )]→
∫

d�
(k)
0√

2πh̄β/(μ0Cg)

∞∏
	=1

∫
d�

(k),Re
	 d�

(k),Im
	

π h̄/
(
βμ0Cgω

2
	

) ,
(B8)

with �
(k),Re
	 and �

(k),Im
	 the real and imaginary part of �

(k)
	 (	 �=

0), respectively. After performing the Gaussian integral, we
derive the effective action for the phase �M ,

F(φ) =
∮

D[φ0(τ )]e− 1
h̄

∫ β

0 dτ [ μ0C0
2 (ϕ̇−φ̇0)2]

×
[

M−1∏
k=1

Zh(�k)

]
e− 1

h̄
�Seff[φ0], (B9)

where Zh(�) is the partition function of a harmonic oscillator
of frequency � that we omit hereafter, and �Seff[φ0] is the
effective action for the phase φ0 which reads in Matsubara

space

�Seff[φ0]=βμ0

∞∑
	=0

[
1

LgM

(
1− δ	,0

2

)
+ ω	Y	

]∣∣φ(0)
	

∣∣2.
(B10)

In Eq. (B10), the first term represents an effective inductance
for the phase φ0 that vanishes in the limit M → ∞, whereas
the relevant term is the second one with the function

Y	 = 2ω	

MLg

M−1∑
k=1

(
1 − �2

k

4ω2
g

)
1

ω2
	 + �2

k

. (B11)

Note the similarity of Y	 in Eq. (B11) with Eq. (A7) for
the response function (admittance) of the transmission line.
With some algebra, setting Rg = √

Lg/Cg , we cast Y	 in the
following form:

Y	 = (1/Rg)
2

π

[
x	

π

2M

M−1∑
k=1

1 − sin2
(

πk
2M

)
x2

	 + sin2
(

πk
2M

)]
x	= ω	

2ωg

(M→∞) = (1/Rg)
2

π

[
x	

∫ π
2

0
dθ

1 − sin2(θ )

x2
	 + sin2(θ )

]
x	= ω	

2ωg

= (1/Rg)fc(ω	), (B12)

where in the second line we have taken the limit M → ∞
replacing the sum with the continuous integral. x	 = ω	/(2ωg)
corresponds to the cutoff function with high frequency ωc =
2ωg . For the specific choice of the circuit discussed here lead-

ing to Eq. (B12), we get fc(ω	) =
√

1 + x2
	 − x	. However,

details of the specific form of the cutoff functions are irrelevant
for the results analyzed in the main text. In the limit in which
ωc represents the high frequency involved in the problem,
we expect only logarithmic corrections to the average phase
difference fluctuations, see Eq. (19).

Summarizing we have shown that

�Seff[φ0] = β
h̄

2π

Rq

Rg

∞∑
	=1

ω	fc(ω	)
∣∣φ(0)

	

∣∣2, (B13)

where μ0 = �0/(2π ) = Rqh̄/(2π ). Indeed, this is exactly the
same form as for the dissipative function describing a shunt
resistance for the Josephson junction phase difference, see
Eq. (8) for which we have given, en passant, a demonstration.

In the last part, we have to perform the integral in Eq. (B9)
with the action Eq. (B13), with the use of the metric∮

D[φ0(τ )]→
∫

dφ
(0)
0√

2πh̄β/(μ0C0)

∞∏
	=1

∫
dφ

(0),Re
	 dφ

(0),Im
	

π h̄/
(
βμ0C0ω

2
	

) .
(B14)

The Gaussian integral is then carried out using the Matsubara
frequency representation, which yields

F(φ) ∼ exp

[
h̄β

EC

∞∑
	=1

h̄

2π

(
ω2

	

1 + ω	τgfc(ω	)

)
|ϕ	|2

]
. (B15)

The latter expression corresponds to the part containing the
unconventional or charge damping kernel F̃ (τ − τ ′) in the total
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action of the system for each local phase ϕn in Eq. (7), with
the propagator given by F̃	 in Eq. (10).

APPENDIX C: COVARIANCE MATRIX
AND LOGARITHMIC NEGATIVITY

To illustrate the method used in Sec. V to compute the
logarithmic negativity from the covariance matrix, we discuss
in this Appendix the simple example of two coupled oscillators.
In particular, we calculate the symplectic eigenvalues and show
how it is related to the Heisenberg uncertainty principle. We
refer to the works Refs. [89,90,96,97] for extended discussions.

We consider two harmonic oscillators described by the two
position and momentum operators which define the vector

R̂ = (R̂0,R̂1) = (x̂0,p̂0,x̂1,p̂1)T , (C1)

with the Hamiltonian

Ĥ = 1

2m

(
p̂2

0 + p̂2
1

)+ k0

2

(
x̂2

0 + x̂2
1

)+ k

2
(x̂0 − x̂1)2. (C2)

The corresponding commutator relation reads

[R̂i,R̂j ] = ih̄δij

(
0 1

−1 0

)
. (C3)

The (4 × 4) matrix

O =
1⊕

n=0

(
0 1

−1 0

)
(C4)

is the symplectic matrix, which is invariant under symplectic
transformations ST OS = O, with S ∈ Sp(4,R) denoting the
symplectic group. The covariance matrix reads

σ =

⎛⎜⎜⎜⎝
〈
x̂2

0

〉
0 〈x̂0x̂1〉 0

0
〈
p̂2

0

〉
0 〈p̂0p̂1〉

〈x̂0x̂1〉 0
〈
x̂2

1

〉
0

0 〈p̂0p̂1〉 0
〈
p̂2

1

〉
⎞⎟⎟⎟⎠. (C5)

The Heisenberg uncertainty principle is equivalent to the
condition that the eigenvalues of the matrix given by the sum
of σ and (ih̄/2)O are always positive or zero, namely[

σ + i
h̄

2
O

]
� 0. (C6)

In other words, the left-hand side of Eq. (C6) has to be positive
semidefinite such that the matrix σ has a physical meaning. As
the covariance matrix is positive and symmetric, according to
the Williamson’s theorem, it is always possible to cast it in a
diagonal form using a symplectic transformation

ST σS = B, with S ∈ Sp(4,R), (C7)

where

B =

⎛⎜⎜⎜⎝
b0 0 0 0

0 b0 0 0

0 0 b1 0

0 0 0 b1

⎞⎟⎟⎟⎠. (C8)

The quantities {b0,b1} are called symplectic eigenvalues and
build the symplectic spectrum of the covariance matrix. Hence

via the symplectic transformation of the left-hand side of
Eq. (C6) we get

ST

(
σ + i

h̄

2
O

)
S � 0 (C9)

⇔ B + i
h̄

2
O � 0. (C10)

Because of the positive semidefiniteness all eigenvalues λk

with k = 1, . . . ,4 of the left-hand side have to satisfy λk � 0.
This leads to b0 � h̄/2 and b1 � h̄/2. For instance, for a single
harmonic oscillator, one can obtain b2

0 = 〈x̂2
0 〉〈p̂2

0〉.
We now find the symplectic eigenvalues associated with the

correlation matrix σ by computing the orthogonal eigenvalues
of the matrix (−iOσ ) with {±b1,±b2} [97]. After some
algebra, one obtains

b0 =
√

(〈x̂2〉 + 〈x̂0x̂1〉)(〈p̂2〉 + 〈p̂0p̂1〉), (C11)

b1 =
√

(〈x̂2〉 − 〈x̂0x̂1〉)(〈p̂2〉 − 〈p̂0p̂1〉). (C12)

With the center of mass position X̂ and momentum P̂ as well
as the corresponding relative coordinates r̂ and p̂ we perform
the canonical transformation

x̂0 = X̂ + (1/2)r̂ , x̂1 = X̂ − (1/2)r̂ , (C13)

p̂0 = (1/2)P̂ + p̂, p̂1 = (1/2)P̂ − p̂. (C14)

With this we can rewrite the terms for the position

〈x̂2〉 + 〈x̂0x̂1〉 = 2〈X̂2〉, (C15)

〈x̂2〉 − 〈x̂0x̂1〉 = 1
2 〈r̂2〉 (C16)

and for the momentum

〈p̂2〉 + 〈p̂0p̂1〉 = 2〈P̂ 2〉, (C17)

〈p̂2〉 − 〈p̂0p̂1〉 = 1
2 〈p̂2〉 (C18)

and we obtain that the inequality for the symplectic eigenvalues
corresponds to the Heisenberg’s uncertainty principle

b0 =
√

〈X̂2〉〈P̂ 2〉 � h̄

2
, (C19)

b1 =
√

〈r̂2〉〈p̂2〉 � h̄

2
. (C20)

In the ground state of the system we know that 〈X̂2〉 =
h̄/(4mω0) and 〈P̂ 2〉 = h̄2mω0/2 yielding b0 = h̄/2. The rel-
ative coordinates are described by the same relations but
oscillate with the frequency ωr which also leads to b1 = h̄/2.

In order to calculate the logarithmic negativity, one has to
repeat the same procedure for the covariance matrix σ [ρ̂TA ]
associated with the partially transposed system ρTA . Since
the partial transpose operation corresponds to 〈p̂0p̂1〉 →
−〈p̂0p̂1〉, we obtain directly

b̃0 =
√

(〈x̂2〉 + 〈x̂0x̂1〉)(〈p̂2〉 − 〈p̂0p̂1〉), (C21)

b̃1 =
√

(〈x̂2〉 − 〈x̂0x̂1〉)(〈p̂2〉 + 〈p̂0p̂1〉) (C22)
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FIG. 12. Example of the ways to split the whole chain formed by
N sites in a bipartite system formed by subsystems A and B with NA

and NB sites, respectively. The red region denotes the subsystem A.
The case in (a) corresponds to the partition discussed in the main text,
whereas cases (b) and (c) show configurations discussed only in this
Appendix.

and with the Eqs. (C15)–(C18)

b̃0 = 2
√

〈X̂2〉〈p̂2〉, (C23)

b̃1 = 1

2

√
〈r̂2〉〈P̂ 2〉. (C24)

Note that the symplectic eigenvalues b̃0,b̃1 of σ [ρ̂TA ] contain
products of variables which are not conjugate. The explicit
expression reads

(2/h̄)b̃0 =
√

ωr

ω0
=
(

1 + 2k

k0

)1/4

> 1, (C25)

(2/h̄)b̃1 =
√

ω0

ωr

= 1(
1 + 2k

k0

)1/4 < 1. (C26)

Recalling that the logarithmic negativity is defined
by EN [ρ̂] = −∑1

k=0 log2 {min[1,(2/h̄)b̃k)]}, the symplectic
eigenvalue b̃1 < 1 will contribute to the logarithmic negativity
from which one concludes that the two oscillators are entan-
gled.

APPENDIX D: LOGARITHMIC NEGATIVITY
FOR DIFFERENT PARTITIONS

In this Appendix we report the logarithmic negativity EN
of the system for different configurations. We focus on the size

1

2

3

1 2 3 4

NA=2

E
N

(2π/e)g

NA=3
NA=4

(a)

1

1.2

1.4

1.6

1 2 3 4

E
N

(2π/e)g

neighbors
dis=1
dis=2

(b)

FIG. 13. Logarithmic negativity for a system with N = 9 as a
function of g. (a) The partition is fixed and corresponds to Fig. 12(a),
whereas the subsystem has different size NA = 2,3,4. (b) The size of
the subsystem is fixed NA = 3, whereas the different configurations
are reported as discussed in Fig. 12.

N = 9 with frustrated dissipation. Here we only deal with the
coupling α = 0.2 and the ratio α̃/α = 0.3.

The logarithmic negativity EN is an entanglement measure
defined for bipartite systems. To quantify the entanglement in
our single chain, we have to divide it into two parts and consider
the whole chain as formed by two subsystems A and B. A
priori, there are many possible choices for a such division. Few
examples of different configurations are reported in Fig. 12. In
the first partition Fig. 12(a), discussed in the main text, the
two subsystem are formed by neighboring islands. In the other
two examples, Figs. 12(b) and 12(c), the internal sites forming
the subsystem A are equally spaced by one or two sites of the
subsystem B, respectively.

At a fixed configuration, corresponding to the one of
Fig. 12(a), we show the result for various partition sizes
(NA,N − NA) with NA = 2,3,4 in Fig. 13(a). The logarithmic
negativity grows with NA and the nonmonotonic behavior is
more pronounced in the latter case. In Fig. 13(b) we fix the
size of the subsystem to NA = 3 and we show the results for
the different partitions of the chain.

We conclude that, even if the specific slope depends on the
configuration and size of the subsystem, the nonmonotonic
behavior still appears as a characteristic feature in the system
affected by dissipative frustration.
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