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Quantum dot in interacting environments
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A quantum impurity attached to an interacting quantum wire gives rise to an array of new phenomena. Using
the Bethe Ansatz we solve exactly models describing two geometries of a quantum dot coupled to an interacting
quantum wire: a quantum dot that is (i) side coupled and (ii) embedded in a Luttinger liquid. We find the eigenstates
and determine the spectrum through the Bethe Ansatz equations. Using this we derive exact expressions for the
ground-state dot occupation. The thermodynamics are then studied using the thermodynamics Bethe Ansatz
equations. It is shown that at low energies the dot becomes fully hybridized and acts as a backscattering impurity
or tunnel junction depending on the geometry and furthermore that the two geometries are related by changing
the sign of the interactions. Although remaining strongly coupled for all values of the interaction in the wire,
there exists competition between the tunneling and backscattering leading to a suppression or enhancement of
the dot occupation depending on the sign of the bulk interactions.
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I. INTRODUCTION

Coupling a quantum impurity to an interacting one-
dimensional lead produces some of the most striking phe-
nomena of low-dimensional physics. A simple backscattering
impurity is known to cause the wire to be split if the interactions
are repulsive while a junction between two leads can lead to
perfect conductance in the presence of attractive interactions
[1]. More interesting still are scenarios in which the impurity
has internal degrees of freedom. These allow for richer and
more exotic phases to appear [2]. Among these, systems
of quantum dots coupled to interacting leads have attracted
much attention [1,3–12]. The low-energy description of the
leads is typically given by Luttinger liquid theory, which
is the effective low-energy description of a large number
of interacting systems [2,13]. Here the individual electrons
are dissolved and the excitations are bosonic density modes.
In contrast, the relevant degrees of freedom on the dot are
electronic. A competition ensues between the tunneling from
lead to dot, which is carried out by electrons and the energy
cost of reconstituting an electron from the bosons in the lead.

Such systems are readily achievable in many experimental
settings allowing for confrontation of theory with experiment.
Luttinger liquids provide the effective description of carbon
nanotubes [14,15], fractional quantum Hall edges [16–18],
cold atomic gases [19–22], or 4He flowing through nanopores
[23,24] to name but a few. Additionally they are known to
describe tunneling processes in higher-dimensional resistive
leads [25,26] and more generally are the archetype of a
non-Fermi liquid. Luttinger liquid-quantum dot systems have
successfully been realized in a number of experiments [27,28].
These realize the embedded geometry, see Fig. 1(a), of a dot
placed between two otherwise disconnected leads. Measure-
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ment of the conductance has revealed interesting non-Fermi-
liquid scaling as well as Majorana physics.

Building on the work of Refs. [29,30] we use the Bethe
Ansatz to solve exactly Luttinger liquid-quantum dot systems
in both the embedded [see Fig. 1(a)] and side-coupled [see
Fig. 1(b)] geometries. The exact solution shows that the spectra
of the two geometries are related by changing the sign of the
bulk interaction, a fact previously known through bosonization
[8], and are described in terms of charge and chiral degrees
of freedom. At low energies we show that the dot becomes
fully hybridized and acts as a backscattering impurity for the
side-coupled model and as a tunnel junction for the embedded
system. This creates a competition between the charge and
chiral degrees of freedom when the backscattering or tunnel
junction is irrelevant, leading to non-Fermi-liquid exponents
in the ground-state dot occupation. We then go on to study
the finite-temperature properties of the system deriving the
thermodynamic Bethe Ansatz equations and using this to
obtain the finite-temperature dot occupation.

This paper is organized as follows. In Sec. II we introduce
the Hamiltonians and construct their exact eigenstates. We
derive the exact spectrum of both systems through their Bethe
Ansatz equations by means of the off-diagonal Bethe Ansatz
method (ODBA) [31]. In Sec. III we find the ground state of
the system and derive the exact dot occupation. From this we
extract the renormalization group picture of the system and find
the leading relevant and irrelevant operators in Sec. IV. The
thermodynamics of the system are studied in Sec. V where
we find the free-energy contribution from the dot and use it
to obtain the dot occupation at finite temperature. In the final
section we conclude.

II. MODELS AND EIGENSTATES

The systems we consider consist of a quantum dot attached
to an interacting lead, a Luttinger liquid, the attachment being
either in the embedded or the side-coupled geometry. The
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FIG. 1. We consider two geometries of Luttinger dot system;
(a) embedded and (b) side-coupled. The embedded geometry also
includes a Coulomb interaction between the dot and leads. Once
unfolded the side-coupled and embedded geometries are the same
but with the latter containing nonlocal interactions (2).

Hamiltonian of a Luttinger liquid is given by,

HLL = −i

∫
dx(ψ†

+∂xψ+ − ψ
†
−∂xψ−)

+ 4g

∫
dx ψ

†
+(x)ψ†

−(x)ψ−(x)ψ+(x), (1)

where ψ
†
± are right- and left-moving fermions, which interact

with a pointlike interaction of strength g [2]. For the side-
coupled geometry we have x ∈ [−L/2,L/2] while for the
embedded geometry we take two Luttinger liquids restricted
to x ∈ [−L/2,0] and x ∈ [0,L/2]. It is convenient to bring
the two systems into similar form by unfolding the embedded
geometry in the standard way [32] to give,

H emb
LL = −i

∫
dx(ψ†

+∂xψ+ − ψ
†
−∂xψ−)

+ 4g
∑
σ=±

∫
dx ψ†

σ (x)ψ†
σ (−x)ψσ (−x)ψσ (x). (2)

The embedded system now consists of one branch of left
movers and one branch of right movers restricted to x ∈
[−L/2,L/2] but unlike the side-coupled system where the
left and right fermions interact locally with each other, in the
embedded system after unfolding the interaction is between
particles of the same chirality and is nonlocal. Further, the
spectrum being linear a cutoff needs to be imposed to render the
energies finite. We shall impose it on the particle momenta: k �
−D. All physical quantities are taken to be small compared
with the cutoff and at the end of the calculation we send
D → ∞, to obtain universal results.

The quantum dot is modeled by a resonant level with energy
ε0 described by,

Hdot = ε0d
†d, (3)

coupled to Luttinger liquid via a tunneling term,

Ht = t

2
(ψ†

+(0) + ψ
†
−(0))d + H.c., (4)

which mediates both forward and backscattering in the model,
the latter changing left movers to right movers and vice versa.
Furthermore in the embedded system we add a Coulomb
interaction between the ends of the leads and the dot, which is

the same strength as the Luttinger interaction,

Hc = gd†d
∑
σ=±

ψ†
σ (0)ψσ (0). (5)

Both energy scales in the dot Hamiltonian are small compared
to the cutoff, ε0,� � D, where � = t2 is the level width.

We shall determine the spectrum and the full set of exact
eigenstates of both Hamiltonians, H sc = HLL + Ht + Hdot

and H emb = H emb
LL + Ht + Hdot + Hc, using the Bethe Ansatz

approach, and then proceed to the ground state (T = 0) and
thermodynamic (T > 0) properties. The Bethe Ansatz method
we employ here is distinct from that which has been typically
used for quantum impurity models [33,34]. As the problem
contains both forward scattering and backscattering we must
formulate it in an in-out basis with the configuration space
being partitioned in regions labeled by both the order of
the particles and by their closeness to the origin. The large
degeneracy present in the bulk system due to the linear
derivative is then used to find a consistent set of wave functions
[29]. We illustrate this by explicitly constructing the one- and
two-particle eigenstates from which we can determine the
N -particle states.

After the unfolding procedure the two systems differ only in
the two-particle interaction meaning the single-particle eigen-
states are the same in both models. The tunneling to and from
the dot takes place at the origin hence we may expand the wave
function in plane waves on either side of it, the most general
form for the single-particle state of energy E = k being,∑

σ=±

∫
eσikx

[
θ (−x)A[10]

σ + θ (x)A[01]
σ

]
ψ†

σ (x)|0〉 + Bd†|0〉,

(6)

where θ (±x) are Heaviside functions. The amplitudes A
[10]
+

and A
[01]
− are those of an incoming particle and are related to the

outgoing amplitudes A
[10]
− and A

[01]
+ [see Fig. 2(a)] by the bare

single-particle S matrix S, which takes an incoming particle to
an outgoing one. Trading in the particle momentum k for the
rapidity variable z, defined as k − ε0 = Dez/2, we have,(

A
[01]
+

A
[10]
−

)
= S(z)

(
A

[10]
+

A
[01]
−

)
(7)

S(z) =
(

ez/2

ez/2+iec
−iec

ez/2+iec

−iec

ez/2+iec
ez/2

ez/2+iec

)
(8)

d†
A

[10]
+

A
[10]
−

A
[01]
+

A
[01]
−

− +

−D −D

−K −K

(a) (b)

FIG. 2. (a) The single-particle wave function given by (6) is
depicted. Particles are either incoming on the left or right with
amplitudes A

[10]
+ ,A

[01]
− or outgoing on the left or right with amplitudes

A
[10]
− ,A

[01]
+ . (b) The linear derivative requires that we cut off the bottom

of the Dirac sea so that k > −D, which we will take to infinity in
the end. When the rapidity notation is used the dot energy acts as a
local chemical potential and in the ground-state levels are filled up to
−K = −De−B/2, with B = B(ε0).
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with ec = �/D. In addition the dot amplitude B is

B =
∑
σ=±

1

2
e(c−z)/2

(
A[10]

σ + A[01]
σ

)
. (9)

From here periodic boundary conditions can be imposed
ψ

†
±(−L/2) = ψ

†
±(L/2) resulting in

e−iDez/2L−iε0L

(
A

[10]
+

A
[01]
−

)
= S(z)

(
A

[10]
+

A
[01]
−

)
, (10)

which can then be solved for the allowed values of the
rapidity z.

We now proceed to the two-particle case wherein the bulk
interaction g enters differently in both models. We will first
consider the side-coupled model and discuss the embedded
model subsequently. Since the two-particle interaction is point-
like as is the tunneling to the dot we may divide configuration
space into regions such that the interactions only occur at the
boundary between two regions. Therefore away from these
boundaries we write the wave function as a sum over plane
waves. For two particles we require eight regions, which are
specified not only by the ordering of the particle positionsx1, x2

and the impurity but also according to which position is closer
to the origin. For example if x1 is to the left of the impurity, x2 to
its right with x2 closer to the impurity then the amplitude in this
region is denoted A[102B]

σ1σ2
, σj = ± being the chirality of the par-

ticle at xj . The region in which x1 is closer is denoted A[102A]
σ1σ2

.
The consequence for the wave function is that we include Heav-
iside functions θ (xQ), which have support only in the region Q,
e.g., θ (x[102B]) = θ (x2)θ (−x1)θ (−x1 − x2) and θ (x[102A]) =
θ (x2)θ (−x1)θ (x1 + x2). The most general two-particle state
with energy E = k1 + k2 = ∑2

j=1 Dezj /2 + 2ε0 is therefore

|E〉 =
∑
Q

∑
σ1,σ2=±

∫
θ (xQ)AQ

σ1σ2

2∏
j

eiσj kj xj ψ†
σj

(xj )|0〉

+
∑
σ=±

∫ [
θ (−x)B[10]

σ + θ (x)B[01]
σ

]
ψ†

σ (x)d†|0〉. (11)

The amplitudes AQ
σ1σ2

are related to each other by S matrices,

which are fixed by the Hamiltonian and in turn fix B
[10]
± and

B
[01]
± . To define these S matrices we form column vectors of

the amplitudes,

�A1 =

⎛
⎜⎜⎜⎜⎝

A
[120B]
++

A
[102B]
+−

A
[201B]
−+

A
[021B]
−−

⎞
⎟⎟⎟⎟⎠ �A2 =

⎛
⎜⎜⎜⎜⎝

A
[210A]
++

A
[102A]
+−

A
[201A]
−+

A
[012A]
−−

⎞
⎟⎟⎟⎟⎠ �A3 =

⎛
⎜⎜⎜⎜⎝

A
[201A]
++

A
[012A]
+−

A
[210A]
−+

A
[102A]
−−

⎞
⎟⎟⎟⎟⎠

�A4 =

⎛
⎜⎜⎜⎜⎝

A
[201B]
++

A
[021B]
+−

A
[120B]
−+

A
[102B]
−−

⎞
⎟⎟⎟⎟⎠ �A5 =

⎛
⎜⎜⎜⎜⎝

A
[021B]
++

A
[201B]
+−

A
[102B]
−+

A
[120B]
−−

⎞
⎟⎟⎟⎟⎠ �A6 =

⎛
⎜⎜⎜⎜⎝

A
[012A]
++

A
[201A]
+−

A
[102A]
−+

A
[210A]
−−

⎞
⎟⎟⎟⎟⎠

�A7 =

⎛
⎜⎜⎜⎜⎝

A
[102A]
++

A
[210A]
+−

A
[012A]
−+

A
[201A]
−−

⎞
⎟⎟⎟⎟⎠ �A8 =

⎛
⎜⎜⎜⎜⎝

A
[102B]
++

A
[120B]
+−

A
[021B]
−+

A
[201B]
−−

⎞
⎟⎟⎟⎟⎠, (12)

(a) (b)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

FIG. 3. The amplitudes in the two-particle wave function are
arranged into eight vectors given by (12) and according to whether
the particles are incoming or outgoing as well as their ordering with
respect to the impurity. (a) The amplitudes in �A1 consist of both
particles incoming but particle 2 (black) closer to the impurity than
particle 1 (red). (b) The amplitudes in �A8 consist of particle two
outgoing. These vectors are related by S20(z2).

which have the following interpretation: �A1 ( �A2) are the
amplitudes where both particles are incident on the impurity
but particle 2 (1) is closer, �A5 ( �A6) are the amplitudes in
which both particles are outgoing with particle 2 (1) closer to
the impurity, �A8 ( �A3) describes particle 2 (1) having scattered
off the impurity and is still closer to the impurity than 1 (2)
while �A7 ( �A4) also describes particle 2 (1) having scattered
but with 1 (2) is closer. �A1 and �A8 are explicitly depicted in
Fig. 3. After applying the Hamiltonian to (11) we find that it
is an eigenstate provided,

�A8 = S20(z2) �A1, �A3 = S10(z1) �A2, (13)

�A5 = S20(z2) �A4, �A6 = S10(z1) �A7, (14)

�A7 = S12 �A8, �A4 = S12 �A3, (15)

�A2 = W 12(z2 − z1) �A1, �A6 = W 12(z2 − z1) �A5. (16)

The S matrices S20 and S10, which take a particle past the
impurity, i.e., from incoming to outgoing are

S20(z2) = S(z2) ⊗ 1, S10(z1) = 1 ⊗ S(z1), (17)

with S(z) the same as in the single-particle state (8), the S

matrix S12 scatters an incoming particle past an outgoing
particle and is

S12 =

⎛
⎜⎝

1 0 0 0
0 eiφ 0 0
0 0 eiφ 0
0 0 0 1

⎞
⎟⎠, (18)

where φ = −2 arctan (g) encodes the bulk interaction and
W 12(z2 − z1), which scatters an incoming (outgoing) particle
past another incoming (outgoing) particle is given by

W 12(z) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0
sinh 1

2 (z)

sinh 1
2 (z−2iφ)

− sinh iφ

sinh 1
2 (z−2iφ)

0

0 − sinh iφ

sinh 1
2 (z−2iφ)

sinh 1
2 (z)

sinh 1
2 (z−2iφ)

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠. (19)
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S20

S12
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FIG. 4. The amplitudes are related by applying the operators as
in (13) and depicted here. For consistency we require the amplitudes
obtained by proceeding clockwise or counterclockwise are the same
resulting in (22).

In addition the dot amplitudes are given by

B
[10]
± = 1

2
e(c−z2)/2

∑
σ=±

[
A

[210A]
σ± + A

[201A]
σ±

]

−1

2
e(c−z1)/2

∑
σ=±

[
A

[120B]
±σ + A

[102B]
±σ

]
, (20)

B
[01]
± = 1

2
e(c−z2)/2

∑
σ=±

[
A

[102A]
σ± + A

[012A]
σ±

]

−1

2
e(c−z1)/2

∑
σ=±

[
A

[201B]
±σ + A

[021B]
±σ

]
. (21)

Inserting these expressions for the amplitudes into (11) we get
the two-particle eigenstate of the side-coupled model. Since all
amplitudes are generated from �A1 by successive application
of the various S matrices, as depicted in Fig. 4, there are two
ways to obtain each �Aj both of which must be equivalent for the
construction to be consistent. This consistency imposes that the
S matrices satisfy a generalized Yang-Baxter equation, which
takes the form of the reflection equation

S20S12S10W 12 = W 12S10S12S20, (22)

which can be checked to hold by substitution.
It is important to note that while no interaction between two

incoming (outgoing) particles is present in the Hamiltonian,
W 12 is introduced in order to obtain the correct eigenstates and
satisfy the generalized Yang-Baxter consistency conditions. To
do so we exploit the freedom to introduce discontinuities of
the form θ [±(x1 − x2)] into the part of the wave function that
describes two right movers or two left movers (or θ [±(x1 +
x2)] into the part of the wave function that describes one
left mover and one right mover). The kinetic term in the
Hamiltonian referring to these particles is of the form ±i(∂x1 +
i∂x2 ) [or ±i(∂x1 − i∂x2 )] and vanishes when acting on these
discontinuities. This freedom arises from the linear spectrum
that brings about a infinite degeneracy of the energy levels,
the level k1 + k2 being degenerate with (k1 + q) + (k2 − q)

for any q. The introduction of the discontinuities corresponds
then to the correct choice of basis states in this degenerate
subspace from which the perturbation can be turned on, as we
are instructed to do carrying out perturbation theory from a
degenerate level. For more detail see Ref. [33].

We can then go on to impose periodic boundary conditions
giving

e−ik1L �A1 = S12S10W 12 �A1 (23)

e−ik2LW 12 �A1 = S12S20 �A1, (24)

which can be solved to determine z1,2.
The eigenstates for higher particle number are constructed

similarly and the N -particle state with energy E = ∑N
j=1 kj =∑N

j=1 Dezj /2 + Nε0 is,

|E〉 =
∑
Q

∑
�σ

∫
θ (xQ)AQ

�σ

N∏
j

eiσj kj xj ψ†
σj

(xj )|0〉

+
′∑
P

′∑
�σ

∫
θ (xP )BP

�σ

′∏
j

eiσj kj xj ψ†
σj

(xj )d†|0〉. (25)

Here θ (xQ) are Heaviside functions, which partition config-
uration space into 2NN ! regions. As before Q are labeled
by the ordering of the N particles as well as according to
which particle is closest to the origin while �σ = (σ1, . . . ,σN )
with σj = ±. In the second line the primed sums indicate
that one particle is removed—being on the dot—and the sums
are over the remaining (N − 1)-particle system. Just as in the
two-particle case the amplitudes are related to each other via
S matrices, which act on the 2N -dimensional space

Sj0 = Sj (zj ) ⊗k 
=j 1, (26)

Sij =

⎛
⎜⎝

1 0 0 0
0 eiφ 0 0
0 0 eiφ 0
0 0 0 1

⎞
⎟⎠

ij

⊗k 
=i,j 1, (27)

Wij =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0
sinh 1

2 (zj −zi )

sinh 1
2 (zj −zi−2iφ)

− sinh iφ

sinh 1
2 (zj −zi−2iφ)

0

0 − sinh iφ

sinh 1
2 (zj −zi−2iφ)

sinh 1
2 (zj −zi )

sinh 1
2 (zj −zi−2iφ)

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

ij

⊗k 
=i,j1, (28)

where the subscripts denote which particle spaces the operators
act upon. In order for this wave function to be consistent it must
satisfy the following Yang-Baxter and reflection equations,

Sk0SjkSj0Wjk = WjkSj0SjkSk0 (29)

WjkWjlWkl = WklWjlWjk (30)

WjkSjlSkl = SklSjlWjk. (31)

The first of these being the generalization to N particles of
(22) while the remaining two come from the consistency of the
wave function away from the dot. These are indeed satisfied
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by (26), (27), and (35), which is a sufficient condition for the
consistency of the wave function [35]. The expressions for
BP

�σ in terms A
Q

�σ can also be found and are straightforward
generalizations of (20) and (21). Therefore we have success-
fully constructed the N -particle eigenstates of the side-coupled
model.

The spectrum can then be determined by imposing periodic
boundary conditions ψ

†
±(−L/2) = ψ

†
±(L/2). As we are inter-

ested in studying properties of the dot in the thermodynamic
limit the type of boundary condition imposed at x = ±L/2
will not affect the result. This results in an eigenvalue problem,
which determines the kj through

e−ikj LAσ1...σN
= (Zj )

σ ′
1...σ

′
N

σ1...σN
Aσ ′

1...σ
′
N

(32)

Zj = Wj−1j ..W 1j S1j ..SjNSj0WjN..Wjj+1, (33)

where the matrix Zj takes the j th particle past all others and
past the impurity. By using (22), (30), and (31) one can show
that the Zj commute with each other [Zj ,Zk] = 0∀j,k. They
are therefore simultaneously diagonalizable and the spectrum
of the side-coupled model is determined by the eigenvalues
of the Zj operators. Before obtaining these we return to
constructing the eigenstates of the embedded model.

For the embedded impurity model we note that the unfold-
ing procedure carried out previously allows us to construct its
eigenstates in the same manner as we did for the side-coupled
model. The N -particle eigenstate is of the same form as (25)
but owing to the different bulk interaction in (2) the two particle
S matrices are

S
ij

emb =

⎛
⎜⎝

eiφ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

⎞
⎟⎠

ij

⊗k 
=i,j 1, (34)

W
ij

emb =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0
sinh 1

2 (zj −zi )

sinh 1
2 (zj −zi+2iφ)

sinh iφ

sinh 1
2 (zj −zi+2iφ)

0

0 sinh iφ

sinh 1
2 (zj −zi+2iφ)

sinh 1
2 (zj −zi )

sinh 1
2 (zj −zi+2iφ)

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

ij

⊗k 
=i,j1 (35)

and the single-particle S matrices Sj0 the same as (26). The
inclusion of the Coulomb term (5) is essential for this and in
its absence the model is not integrable.

Imposing the boundary condition ψ±(−L/2) =
eiφψ

†
±(L/2) we have another eigenvalue problem,

e−ikj LAσ1...σN
= (

Zemb
j

)σ ′
1...σ

′
N

σ1...σN
Aσ ′

1...σ
′
N
, (36)

where Zemb
j is defined similarly to Zj in (32) but using W

ij

emb

and S
ij

emb and is related to Zj by

Zemb
j = Zj |φ→−φ. (37)

Therefore, the spectrum of the embedded model is obtained
from the side-coupled model by changing the sign of the
interaction, φ → −φ.

We can replace the bare phase shift φ by the universal
Luttinger liquid parameter K using [29,30]

K =
{

1 + φ

π
side-coupled

1
1− φ

π

embedded (38)

meaning that in the thermodynamic limit the two models are
related by taking K → 1/K , which recovers the duality shown
by bosonization [8]. In the subsequent sections all calculations
will be done for the side-coupled model the results of which can
then be translated to the embedded model by taking K → 1/K .
Note that as φ is a phase shift and restricted to [−π,π ] we see
that the side-coupled system may realize values of K ∈ [0,2]
whereas the embedded system has K ∈ [1/2,∞].

III. DERIVATION OF THE BETHE ANSATZ EQUATIONS

Our task now is to determine the eigenvalues of Zj . To
this end we note that Wij is actually the R matrix of the XXZ

model, and further that Zj takes the form of the transfer matrix
of an inhomogeneous open XXZ model [36]. The problem
of diagonalizing this operator has recently been achieved by
means of the off-diagonal Bethe Ansatz [31]. Inserting these
results into (32) and simplifying the resulting equations using
ec � 1 in the same manner as in Ref. [29] we obtain the Bethe
equations for the side-coupled model

e−iDezα/2L = eiNφ/2+iε0L

[
ezα/2 − iec

ezα/2 + iec

] 1
2

×
N/2∏
k

sinh
[

1
2 (zα − λk − iφ)

]
sinh

(
1
2 (zα − λk + iφ)

) (39)

N∏
α

sinh
[

1
2 (λj − zα + iφ)

]
sinh

[
1
2 (λj − zα − iφ)

] = −
{

cosh
[

1
2 (λj −2c + iφ)

]
cosh

[
1
2 (λj −2c − iφ)

]
} 1

2

×
N/2∏
k

sinh
[

1
2 (λj −λk + 2iφ)

]
sinh

[
1
2 (λj −λk − 2iφ)

] ,

(40)

where the parametersλj describe the chiral degrees of freedom,
zα describe the charge degrees of freedom, and the energy of
the system is

E =
∑

α

Dezα/2 + Nε0. (41)

The solution of (39), (40), along with (41) give the exact
energies of the system.

IV. GROUND-STATE DOT OCCUPATION

Having obtained the Bethe equations governing the system
we can now construct the ground state. To do this we first must
fill the empty Dirac sea with negative energy particles from
the cutoff, −D up to some level determined by minimisation
of the energy [and depending on ε0, see Fig. 2(b)]. After this the
thermodynamic limit N,L → ∞ is taken holding the density
D = N/L fixed and finally we take the universal limit by
removing the cutoff D → ∞ while holding some other scale,
which has been generated by the model, fixed. We will see
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below that this scale is the level width �. Once the ground
state has been found we will use it to derive exact expressions
for the occupation of the dot, nd = 〈d†d〉 as a function of ε0.

The form of the possible negative energy states entering the
ground state depends upon the value of K , whether it is greater
or less than 1 and so the ground state must be constructed
separately in each case. Nevertheless we will find a single
expression for the dot occupation valid in both regimes.

A. K > 1

We begin with φ ∈ [0,π ], which corresponds to K ∈ [1,2].
Here the ground state consists of so-called two-strings [37]
wherein the rapidities form complex conjugate pairs with their
real part coinciding with one of the chiral variables,

zj = z∗
N+1−j = λj + 2πi + iφ. (42)

with each pair having bare energy −2 cos (φ/2)Deλj , see
Fig. 7.

Inserting these expressions into (39) and (40) we obtain
equations for the real parts of the pairs, λj . In the thermody-
namic limit we are not interested in the solutions per se, but in
their distribution,

ρ1(λj ) = 1

L(λj − λj−1)

on the real line. The distribution has contributions from the
bulk as well as from an O(1/L) term from the dot, allowing
us to write it as ρ1(λ) = ρb

1 (λ) + 1
L
ρd

1 (λ). The dot occupation
is then given as,

nd = 2
∫

ρd
1 (λ). (43)

The factor of 2 appears here as each λ corresponds to a pair of
rapidities. These distributions, ρb

1 (λ), 1
L
ρd

1 (λ) are determined
by the Bethe equations in their continuous form which for the
bulk part is,

cos φ/2

2π
Deλ/2 = ρb

1 (λ) +
∫ ∞

−B

a2(λ − μ)ρb
1 (μ) (44)

an(x) = i

2π

d

dx
log

sinh
[

1
2 (x − niφ)

]
sinh

[
1
2 (x + niφ)

] , (45)

where B = B(ε0) is the λ value of the highest filled level.
When the dot energy vanishes we have that B(0) = ∞ and
bulk distribution is found to be

ρb
1 (λ) = Deλ/2

4π cos (φ/2)
(46)

with the bulk part of the ground-state energy being

E0 = −
∫ ∞

−∞
2 cos (φ/2)Deλ/2ρb

1 (λ). (47)

To confirm this is indeed the ground state one can introduce
excitations and check the energy is increased, the simplest type
of which consists of adding holes to the distribution. As is
typical for Bethe Ansatz models, the energy of a hole turns out
to be proportional to the ground-state distribution, i.e., a hole at
λ = λh has energy εh(λh) = 4πρb

1 (λh), increasing the energy.
The other excitations consist of breaking up a pair and placing

them above the Fermi surface such they have real rapidity. Each
particle then has energy εp(z) = 2Dez/2 in addition to the hole
introduced in the ρ1(λ) distribution.

When ε0 
= 0 the additional term in the energy [see (41)]
needs to be balanced by the addition of holes to the ground
state with rapidities starting at −B(ε0). The form of the hole
energy, εh(λ) gives us that [30]

B(ε0) = log

(
α
D
ε0

)
, (48)

where α is a constant.
Considering now the dot part of the Bethe equations, the

dot contribution to the density satisfies,

f1(λ − 2c) = ρd
1 (λ) +

∫ ∞

−B

a2(λ − μ)ρd
1 (μ), (49)

with fn(x) = 1

2π

∫ ∞

−∞
eiωx sinh (π − nφ)ω

sinh 2πω
. (50)

The solution is obtained by the Wiener-Hopf method (see
Refs. [34,38], or [37] and references therein). Upon integrating
over the result as in (43) we find that the exact dot occupation
in the ground state is,

nd = −i

2
√

π

∫ ∞

−∞
dω

e−iω(2 log ( ε0
� )+a)

sinh (2πω)

× �
[

1
2 + i(K − 1)ω

]
�(1 + iω)�[1 − i(2 − K)ω]

, (51)

where �(x) is the Gamma function, a is a nonuniversal
constant, and we have used (38) to write nd in terms of the
Luttinger K . As there is no dependence on the cutoff we can
safely take the universal limit D → ∞ while holding the level
width � fixed. The width serves as both the coupling constant
and as the strong coupling scale parameterizing the model,
with respect to which all quantities are measured. It appears
here, rather surprisingly, unrenormalized by the interactions
that are present in the system and independent of the raw
cutoff, unlike the case for a dot placed on the boundary [30].
We will comment on this further in the next section but for
now we examine the expression (51). First we can check that
upon inserting K = 1 in the above expression we recover the
noninteracting result

nd = 1

2
− 1

π
arctan

(ε0

�

)
. (52)

For other values we may evaluate (51) by contour integration
and obtain an expansion of nd for ε0 < � or ε0 > � giving

nd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 −

[∑∞
n=0 dn

(
ε0
�

)2n+1

+ bn

(
ε0
�

)(2n+1)/(K−1)
]

for � > ε0∑∞
n=0 cn

(
�
ε0

)n+1
for � < ε0

, (53)

where dn,bn, and cn are constants. Furthermore the capacitance
of the dot is

χ = ∂nd

∂ε0

∣∣∣∣
ε0=0

= 1

π (K − 2)�
. (54)

We see that at low energy, ε0 < � the system is strongly
coupled with the dot becoming hybridized with the bulk. At
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FIG. 5. The dot occupation at small (left) and large (right) dot
energy, ε0/�, for different values of K > 1. The effect of attractive
interactions is to suppress the dot occupation as compared to the
noninteracting case (dashed line). This effect becomes stronger for
increasing K .

the low-energy fixed point (ε0 = 0) the dot is fully hybridized
and has nd = 1/2. The leading term in the expansion about
this is ε0/�, which indicates that the leading irrelevant operator
has dimension 2. We identify it as the stress energy tensor [39].
The next-order term (ε0/�)1/(K−1) is due to the backscattering,
which is generated at low energies but is irrelevant for K > 1.
At high energies, ε0 > �, the system becomes weakly coupled
with the fixed point (ε0 → ∞) describing a decoupled empty
dot, nd = 0. The expansion about this fixed point is in terms of
integer powers indicating that the tunneling operator d†ψ(0)
has dimension 1/2. The first few terms of the expansion are
plotted in Fig. 5 from which we see that the dot occupation is
suppressed as a function of ε0 for K > 1 as compared to the
noninteracting case due to the backscattering.

B. K < 1

The ground state takes a different form in the region φ ∈
[−π,0], which corresponds to K ∈ [0,1]. It is constructed by
taking the chiral parameters λj ∈ R to be real and the rapidities
placed on the 2πi line, i.e., Im(zα) = 2π . Inserting these values
into the Bethe equations and then passing to the continuous
form we obtain a set of coupled integral equations for the dis-
tributions of the charge, ρ−(zj ) = 1/L(zj − zj−1) and chiral
variables σ1(λj ) = 1/L(λj − λj−1), which we can again split
into bulk and dot contributions. The bulk contributions ρb

−(z)
and σ b

1 (λ) are governed by the continuous Bethe equations,

Dez/2

4π
= ρb

−(z) −
∫ ∞

−B ′
a1(z − y)σ b

1 (y)

∫ ∞

−B ′
a1(λ − y)ρb

−(y) = σ1(λ) +
∫ ∞

−∞
a2(λ − y)σ b

1 (y),

(55)

where the rapidities are bounded by −B ′(ε0). When the dot
energy is set to zero we have that B ′(0) = ∞ and the bulk
ground-state distributions are found to be,

ρb
−(z) = Dez/2

2π
, (56)

σ b
1 (λ) = Dez/2

4π cos (φ/2)
. (57)

The fundamental excitations above this ground state consist of
adding holes to either of these distributions. The energy of these
are εh(z) = 4πρb

−(z) and εh(λ) = 4πσ b
1 (λ) for a charge hole

FIG. 6. The dot occupation at small (left) and large (right) dot
energy for different values of K . The effect of repulsive interactions
K < 1 is to enhance the dot occupation as compared to the noninter-
acting case (dashed line) with the effect increasing as K decreases.

and chiral hole, respectively. As in the previous section these
are used to determine B ′, which gives the same relation as (48).
The dot occupation is subsequently obtained by integrating
over the dot part of the charge distribution nd = ∫

ρd
−(z)dz,

which is determined by,

g2(λ − 2c) = ρd
−(λ) +

∫ ∞

−B ′
g1(λ − y)ρd

−(y), (58)

gn(x) = 1

2π

∫ ∞

−∞
eiωx sinh (π − φ)ω

2 cosh (φω) sinh (nπω)
. (59)

The solution is again determined using the Wiener-Hopf
method with the result that the dot occupation for K < 1
is also given by (51). Note however that the poles at ω =
i(K − 1)(2n + 1)/2 have shifted from the upper half plane
to the lower half plane. This changes the expansions at high
and low energy to be

nd =
⎧⎨
⎩

1
2 − ∑∞

n=0 dn

(
ε0
�

)2n+1
for � > ε0∑∞

n=0 cn

(
�
ε0

)n+1
+ bn

(
�
ε0

) 2n+1
1−K

for� < ε0

(60)

with the capacitance being given by (54). As in the K > 1
region, the dot is strongly coupled at low energy and weakly
coupled at high energy with the same leading terms in the
expansion about these points, however, the term generated by
the backscattering now appears in the expansion about the
high-energy fixed point. This stems from the fact that backscat-
tering is relevant for K < 1 and leads to an enhancement of the
dot occupation as compared to the K = 1 case, see Fig. 6. The
dot occupation for the embedded system is simply obtained
from (51) by using the mapping K → 1/K .

V. RG FLOW

In the previous section we derived exact expressions for
the dot occupation for the side-coupled model as a function
of ε0 measured with respect to the strong coupling scale. This
strong coupling scale is given by �, the level width. It does not
depend on K as might be expected for an interacting model
and in fact coincides with the free model. To understand why
the level width is not renormalized by K we can make use
of the mapping to the embedded model. The strong coupling
scale in the embedded model should behave similarly to the
single lead case, where a dot is placed at a Luttinger liquid
edge [8]. For an arbitrary Coulomb interaction, U this is
D(�/D)1/α where α = 1 + 2[arctan (g) − arctan (U )]/π [30].
Taking U = g, as required by the mapping [see (5)], reduces
this to �, the free value. The nonrenormalization of the level
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width suggests that the tunneling operator d†ψ±(0) should have
the same dimension as the free model, which is confirmed
by the high-energy expansions of the dot occupation. This
is in stark contrast to the fact that fermions in a Luttinger
liquid (away from the edge) have dimension (K + 1/K)/4.
Thus the remarkably simple expression for the strong coupling
scale and critical exponents present here stand in contrast to a
quite substantial modification of the fermions in the vicinity of
the dot.

We now have the following picture of the side-coupled
system. For all K ∈ [0,2] the system flows from weak coupling
at high energy to strong coupling at low energy. The low-energy
fixed point describes a dot, which is fully hybridized with
the bulk and has the fixed-point occupation nd = 1/2. The
hybridized dot then acts as a backscattering potential via
cotunnelling. The leading irrelevant operator, which perturbs
away from the fixed point is the stress energy tensor and results
in odd integer powers of ε0/� in the dot occupation. For
K > 1 the backscattering is irrelevant, which gives rise to odd
powers of (ε0/�)1/(K−1) resulting in a suppression of the dot
occupation at ε0 > 0. For K < 1 on the other hand it is relevant
and generates no other terms in the expansion. The high-energy
fixed point describes a decoupled dot, which has nd = 0 for
ε0 → ∞ or nd = 1 for ε0 → −∞. By reducing the energy
scale we flow away from the fixed point with the tunneling
operator d†ψ±(0), which is the leading relevant operator and
has dimension 1/2 as in the free model. This give rise to integer
powers of �/ε0 in nd . Additionally when K < 1 backscattering
is relevant and causes odd powers of (�/ε0)1/(1−K) to appear
resulting in an enhancement of the dot occupation.

VI. THERMODYNAMICS

A. K = ν−1
ν

In this section we study the finite-temperature properties
of the dot by calculating the free energy. To do so we use
the methods developed by Yang and Yang [40] and later
extended by Takahashi [37] based on the string hypothesis.
This states that in the thermodynamic limit the solutions
of the Bethe equations take complex values organized into
strings. The form of the strings depend upon the model and
the values of the parameters therein. To simplify matters we
take φ = ±π/ν with ν an integer so that K = ν±1

ν
. With

this value fixed the hypothesis states that the Bethe equa-
tions allow for the following forms of the charge and chiral
variables.

The rapidities can be real or complex with Im(z) = 0,2π .
These contribute bare energy ±Dez/2 and we denote the
distributions of these ρ±(z). The chiral variables can take on
complex values so that they arrange into n-strings with n < ν

such that

λ
(n)
l = λ(n) + iφ(n − 1 − 2l), l = 0, . . . ,n − 1 (61)

or λ on the iπ line, which is sometimes called a negative parity
string. The λ n-strings have no bare energy and we denote the
distributions of their real part, called the string center σn(λ)
with n = ν denoting the negative parity string. Also possible
are z − λ 2n-strings consisting of 2n zs and a λ n-string taking

φ < 0 φ > 0

2πi

-2πi

0

2-string
4-string

2ν-string

FIG. 7. At finite temperature the rapidity and chiral variables may
form z − λ strings where n λs and 2n zs form a set given by (62). On
the left we show how a two-string, four-string, and the negative parity
2ν-string are arranged for φ < 0. On the right we depict the same
for φ > 0. Note only the z positions are changed when going from
left to right, which results in a change in sign of the energy from the
strings.

the values

z
(n)
l+1 = λ(n) + iφ(n − 2j ) + iπ + sgn(φ)iπ (62)

z
(n)
l+n+1 = λ(n) + iφ(n − 2l) + iπ − sgn(φ)iπ, (63)

where j = 0, . . . ,n and l = 1, . . . ,n − 1. These contribute
bare energy En = −2sgn(φ) cos (nφ/2)Deλ(n)/2. In addition
there is also a negative parity z − λ string

λ = λ(ν) + iπ, z1,2 = λ(ν) ± i(π − φ), (64)

which has energy 2 sin (φ/2)Deλ(ν)/2. We denote the distribu-
tions of the centers of the z − λ 2n-strings by ρn(z) with n = ν

indicating the negative parity string. Several string type are
depicted in Fig. 7 for both φ > 0 and φ < 0.

Having elucidated the string structure of the model, the free
energy is found, as in other Bethe Ansatz models following the
procedure laid out in Ref. [37]. The approach is well known and
we just provide the main steps. The free energy F = E − T S,
where E is the energy of an arbitrary configuration of strings
and S is its associated Yang-Yang entropy, is minimized
with respect to ρ±,ρn, and σn, which are solutions of the
Bethe Ansatz equations. The result of this minimization gives
the thermodynamic Bethe Ansatz (TBA) equations, which
determine the minimum of F . Owing to the different string
structures for K greater than or less than 1 we consider each
region separately.

We start with φ = −π/ν, corresponding to K = ν−1
ν

< 1,
describing repulsive interactions. In this region we find the dot
contribution to the free energy is

Fd = E0
d − T

∫
f0

[
x + 2 log

(
T

�

)]
log (1 + eϕ−(x))

− T

∫
f0 ∗ s

[
x + 2 log

(
T

�

)]
log (1 + e�1(x))

− T

∫
s

[
x + 2 log

(
T

�

)]
log (1 + e�ν−1(x)), (65)
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where E0
d is the ground-state energy due to the dot, s(x) =

sech(πx/2φ)/4φ and ∗ denotes the convolution f ∗ g =∫
f (x − y)g(y)dy. The thermodynamic functions ϕ±,ϕn, and

�n are related to the distributions ρ±,ρn, and σn, respectively,
and are solutions of the TBA equations, which in this case are

ϕ+ = s ∗ log

(
1 + eϕ1

1 + e�1

)
, ϕ− = −2ex/2 + s ∗ log

(
1 + eϕ1

1 + e�1

)
(66)

ϕn = s ∗ log (1 + eϕn−1 )(1 + eϕn+1 )(1 + e−ϕν )δn,ν−2

+ δn,1s ∗ log

(
1 + eϕ+

1 + eϕ−

)
(67)

�n = s ∗ log (1 + e�n−1 )(1 + e�n+1 )1+δn,ν−2 − δn,1

×
[

ex/2

cos (φ/2)
− s ∗ log

(
1 + eϕ+

1 + eϕ−

)]
(68)

along with ϕν−1 = s ∗ log (1 + eϕν−2 ) + νε0
T

= −ϕν + 2νε0
T

and
�ν−1 = s ∗ log (1 + e�ν−2 ) = −�ν . Just as in the calculation of
the dot occupation in the ground state the above equations are
independent of the cutof,f which has been removed while hold-
ing � fixed. These expressions give the exact dot free energy
of the system in all temperature regimes. Their complicated
nature precludes any analytic solution for the thermodynamic
functions but are straightforwardly determined numerically
through iteration of the integral equations.

Before doing this, however, we can examine them in the
limits of low and high temperature. The functions f0(x) and
s(x) appearing in the free energy are sharply peaked about
zero meaning that for T → 0,∞ the free energy is determined
by the solutions of the TBA in the x → ∞, − ∞ limits, re-
spectively. Setting ε0 = 0 and taking first the high-temperature
limit, x → −∞ we see that the driving terms in the TBA vanish
and the thermodynamic functions are constants eϕ±(−∞) = 1,

eϕj (−∞) = e�j (−∞) = (j + 1)2 − 1 (69)

eϕν−1(−∞) = e�ν−1(−∞) = ν − 1. (70)

Likewise in the opposite low-temperature limit x → ∞ we get
eϕ−(∞) = 0,eϕ+(∞) = 3,

e�j (∞) = j 2 − 1,e�ν−1(∞) = ν − 2 (71)

eϕj (∞) = (j + 2)2 − 1,eϕν−1(∞) = ν. (72)

The free energy thus becomes linear in T in both the high- and
low-temperature limit.

Using these we can check the RG picture we arrived at
earlier using the ground-state dot occupation still holds true
at finite temperature. First, note that the energy scale, the
temperature in this case, is measured with respect to �, which
serves as both the strong coupling scale and the level width
for the model. Thus the system is strongly coupled at low
temperature T � � and weakly coupled at high temperature
T � �. Furthermore by inserting (71), (69) into (65) we obtain
the g function of the model, defined to be the difference in the

UV and IR entropy of the impurity

g = SUV − SIR = log 2 + 1

2
log

(
1

K

)
. (73)

This is always positive for the range of values considered in
agreement with the requirement that as we move along the RG
flow by lowering the temperature, massless degrees of freedom
are integrated out. The first term comes from the charge degrees
of freedom and corresponds to the entropy of a decoupled dot at
high temperature, which is fully hybridized at low temperature.
The second term comes from the chiral degrees of freedom and
is the same as for the Kane-Fisher model of a backscattering
impurity [29,41]. We see from this that at high temperature the
dot is decoupled and as T is lowered it becomes hybridized
with the dot whereupon it acts as a backscattering impurity. In
the noninteracting limit the K → 1 this last term disappears
and we recover the expected result.

We may go beyond the fixed-point behavior to get the
leading-order corrections and determine the specific heat. Fol-
lowing [34,42] we expand about the low-temperature solution
log [1 + exp(ϕ−)] ≈ exp(−2ex/2) and log [1 + exp(�1)] ≈
exp(−ex/2/ cos (φ/2)) for x � 0. The low-temperature spe-
cific heat is then found to be

Cv ∼ T

�
, (74)

which agrees with the expectation that the irrelevant operator
is the stress energy tensor.

By numerically integrating the TBA and using them in (65)
we can obtain the finite-temperature dot occupation of the
system. This is plotted in Fig. 8 for K = 2

3 as a function of ε0/�

at different values of the temperature, T/�. For the same value
of K we plot the dot occupation at fixed ε0/� as a function
T/� in the Fig. 9. Comparing to the dashed lines, which are
the noninteracting values we see that the dot occupation is
enhanced just as it was at zero T . This enhancement is strongest
at low T and is washed out at high temperature as the system
becomes weakly coupled.

B. K = ν+1
ν

We turn now to the case of φ = π/ν or K = ν+1
ν

> 1,
(attractive interactions). In this regime the tunneling is relevant
while backscattering is irrelevant [1]. A competition therefore
ensues between these two processes. This competition makes
itself felt via changes in the free energy and TBA equations.
The dot contribution to the free energy is now given by

Fd = E0
d − T

∫
f0

[
x + 2 log

(
T

�

)]
log (1 + e−ϕ+(x))

− T

∫
f0 ∗ s

[
x + 2 log

(
T

�

)]
log (1 + eϕ1(x))

− T

∫
s

[
x + 2 log

(
T

�

)]
log (1 + e�ν−1(x)) (75)

with the TBA equations being

ϕ+ = 2ex/2 + s ∗ log

(
1 + eϕ1

1 + e�1

)
, ϕ− = s ∗ log

(
1 + eϕ1

1 + e�1

)
(76)
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FIG. 8. The finite-temperature dot occupation is plotted as a
function of ε0/� for several values of the temperature. Above we
plot the dot occupation with K = 2

3 (solid lines) and K = 1 (dashed
lines). The repulsive bulk interactions result in an enhancement of the
dot occupation in comparison to the noninteracting case. This is effect
is most pronounced for lower temperatures. At higher temperature
the interacting and noninteracting curves coincide owing to the fact
that the dot becomes decoupled. Below we plot the same for K = 4

3
(solid lines) and plot again K = 1 (dashed) for comparison. The dot
occupation is suppressed due to the attractive interactions wth the
effect becoming more pronounced for lower T/�.

ϕn = s ∗ log (1 + eϕn−1 )(1 + eϕn+1 )(1 + e−ϕν )δn,ν−2 − δn,1

×
[
s ∗ log

(
1 + e−ϕ+

1 + e−ϕ−

)
+ ex/2

cos (φ/2)

]
(77)

�n = s ∗ log (1 + e�n−1 )(1 + e�n+1 )1+δn,ν−2

− δn,1s ∗ log

(
1 + e−ϕ+

1 + e−ϕ−

)
(78)

and ϕν−1 = s ∗ log (1 + eϕν−2 ) + νε0
T

= −ϕν + 2νε0
T

as well as
�ν−1 = s ∗ log (1 + e�ν−2 ) = −�ν . Comparing to the K < 1
case we see that the roles of eφ− and e−φ+ have been exchanged
and that the exponential driving term now appears in the ϕj

equations rather than �j ones.
We gain insight to the K > 1 region by looking at the

asymptotic solutions of the TBA. The high-temperature so-
lutions, x → −∞ remain unchanged and are given by (69),
therefore as T → ∞ the system is the same regardless of K .
In the low-temperature limit however the solutions are different

FIG. 9. The dot occupation for fixed εo/� as a function of temper-
ature. The interaction is taken to be K = 4

3 (dot-dashed lines), K = 1
(dashed lines), and K = 2

3 (solid lines). We see the enhancement
and suppression of the dot occupation for repulsive and attractive
interaction with the effect most pronounced as the temperature is
lowered.

as should be the case given the ground state is of a different
form. We get that e−ϕ+(∞) = 0,eϕ−(∞) = 3,

eϕj (∞) = j 2 − 1,eϕν−1(∞) = ν − 2 (79)

e�j (∞) = (j + 2)2 − 1,e�ν−1(∞) = ν. (80)

Using these in theg function we obtain the same form as before,

g = log 2 + 1

2
log

(
1

K

)
. (81)

Note however that although g > 0, the second term, which
is due to the backscattering, is negative for K > 1. This
relative sign between the charge and chiral terms is related
to the competition between the tunneling and the backscatter-
ing. Upon taking the K → 1 we recover the noninteracting
result. The low-temperature corrections to the fixed point
can be obtained as they were in the previous section. This
time however the driving terms in the do not appear in
the �1 equation but in the ϕ1 equation instead and con-
sequently we take log [1 + exp(−ϕ+)] ≈ exp(−2ex/2) and
log [1 + exp(ϕ1)] ≈ exp(−ex/2/ cos (φ/2)) for x � 0 and
find the specific heat to be

Cv ∼ T

�
+ a

(
T

�

)α

‘. (82)

Again the leading-order term coincides with the stress tensor
being the leading irrelevant operator. The term scales as T α

where α = 2 for K = ν+1
ν

,ν > 2. It is expected however that
α becomes noninteger when increasing K beyond this as is the
case in the ground-state dot occupation.

The finite-temperature dot occupation can be obtained by
numerically integrating the TBA as in the previous section and
the results are plotted in Fig. 8 and Fig. 9. We see that the dot
occupation is suppressed as compared to K = 1 or K < 1, with
the effect being most pronounced at low temperature. At high
T the dot becomes decoupled and the occupation approaches
that of the noninteracting case.
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VII. CONCLUSION

In this paper we have solved two related models of quantum
dots coupled to Luttinger liquids. The first consists of a dot side
coupled to the Luttinger liquid while in the second the dot is
placed between two otherwise disconnected liquids. The latter
also requires that a Coulomb interaction between the occupied
dot and the end of the liquids is included and it is tuned to the
same value as the bulk interaction. The side-coupled model,
however, requires no such tuning.

The solution shows that the two models are related by taking
K → 1/K , which was shown previously through bosonization
[8]. We derived the Bethe equations for both models and used
them to construct the ground state and derive exact expressions
for the dot occupation in all parameter regimes. It was seen that
the side-coupled system is strongly coupled at low energies so
that the dot becomes fully hybridized with the bulk and acts as
a backscattering potential. The effect of the backscattering is
to either suppress or enhance the dot occupation depending on
the sign of the interactions.

The scaling dimensions of the leading relevant and irrele-
vant operators about the UV and IR fixed points were found to
coincide with that of the free model. The surprising result that

the fixed points appear, at least to leading order to be Fermi
liquid is in stark contrast to the non-Fermi-liquid nature of the
bulk system.

We then examined the finite-temperature properties of the
dot by deriving the thermodynamic Bethe equations and free
energy of the system. It was seen that at low-temperature dot
is fully hybridized with the bulk and the interactions resulting
in a suppression or enhancement of the dot occupation. The
effect of the interactions is washed out at high temperature
whereupon the dot decouples.

The lack of fine-tuned parameters in the side-coupled model
make it a good candidate for experimental realizations. Such
a system may be created placing a quantum dot near a carbon
nanotube, the edge of a quantum Hall sample, or a topological
insulator. The dot occupation can then be measured by means
of a quantum point contact and compared to (51).
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