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Decaying spectral oscillations in a Majorana wire with finite coherence length
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Motivated by recent experiments, we investigate the excitation energy of a proximitized Rashba wire in
the presence of a position dependent pairing. In particular, we focus on the spectroscopic pattern produced
by the overlap between two Majorana bound states that appear for values of the Zeeman field smaller than the
value necessary for reaching the bulk topological superconducting phase. The two Majorana bound states can
arise because locally the wire is in the topological regime. We find three parameter ranges with different spectral
properties: crossings, anticrossings, and asymptotic reduction of the energy as a function of the applied Zeeman
field. Interestingly, all these cases have already been observed experimentally. Moreover, since an increment of
the magnetic field implies the increase of the distance between the Majorana bound states, the amplitude of the
energy oscillations, when present, gets reduced. The existence of the different Majorana scenarios crucially relies
on the fact that the two Majorana bound states have distinct k-space structures. We develop analytical models
that clearly explain the microscopic origin of the predicted behavior.
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I. INTRODUCTION

Majorana fermions are fermionic particles which are their
own antiparticles, i.e., γ = γ † [1]. In condensed matter
physics, these particles arise as quasiparticle excitations in
topological superconductors [2–4]. Models for engineering
topological superconductivity and its detection have been a
matter of extensive research over the last decade. The common
ingredient in most of these models consists in proximitizing s-
wave superconductivity into a system with strong spin-orbit in-
teraction [5–9]. Their interest is not only fundamental but also
practical because they exhibit non-Abelian statistics [10–12]
and therefore, can potentially be used in protocols for topo-
logical quantum computation. Signatures of Majorana bound
states (MBSs) are predicted to appear in electrical conduc-
tance [13–16], thermal conductance [17–19], ac-Josephson
effect [20–28], and studying the skewness of the 4π -periodic
supercurrent [29]. Indeed, experimental measurements con-
firm some of these predictions in the conductance [30–34],
Shapiro steps [35–37], Josephson radiation [38], and skewness
of the supercurrent profile [39].

In recent years, the quality of spin-orbit coupled quantum
wires substantially increased [40,41]. Moreover, a new genera-
tion of proximitized Rashba wires were fabricated that exhibit a
hard superconducting gap [42]. Some of these devices showed
robust zero bias conductance peaks [43,44], and others allowed
us to explore excitation energy oscillations produced by an
external magnetic field [45].

In this paper, we will focus on the study of conductance
oscillations that arise in the Majorana-Rashba wire. It is well
established [16,46–48] that the origin of these oscillations
resides in the spatial overlap between the MBSs typically
located at the ends of the wire: The MBS wave functions exhibit
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an oscillatory exponential decay towards the center. In the limit
of high magnetic fields, the finite energy resulting from the
overlap between the modes is approximately given by [46,48]

�E ≈ h̄2kF,eff

mχ
cos(kF,effL) exp

(
−2L

χ

)
, (1)

where kF,eff, L, and χ are the effective Fermi wave vector,
the length of the wire, and the localization length of the
MBS, respectively. Due to the fact that kF,eff and χ increase
with the magnetic field, the resulting overlap, and hence the
conductance, should exhibit an oscillatory pattern with an
increasing amplitude.

Recent experiments [45], performed in Coulomb blockade
Majorana islands [49–51], show, however, clear deviations
from this picture: For an increasing magnetic field, most
samples experience a decaying amplitude of the oscillations,
resulting in crossings and anticrossings. On top of that, some
samples feature that oscillations remain pinned at zero energy
for a wide range of magnetic field (∼40 mT). Furthermore,
other samples manifest a vanishing conductance at high
magnetic fields. Motivated by these experimental results,
some theoretical approaches introduced extra features into the
original model [7,8]: Adding Coulomb interactions between
the electrons in the wire and the dielectric environment leads
to zero energy pinning [52]. Including leakage current effects,
coming from the presence of a drain in the superconductor, this
leads to a vanishing conductance [53]. Finally, the emergence
of decaying oscillations can be obtained, taking into account
orbital effects [54], or wires with multiple occupied subbands,
high temperature, and simultaneous presence of Andreev
bound states and MBSs [55,56].

We, instead, study a simple scenario how topological
decaying oscillations [see Fig. 1(b)] can appear: We introduce
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FIG. 1. (a) Schematic of the system. The spin-orbit coupled
wire is placed on top of a substrate and partially covered by a
superconductor. We assume a space dependent proximity induced
pairing amplitude �(x). (b) Numerical tight-binding calculation of
the lowest energy eigenvalues, as a function of the Zeeman energy
B for N = 200, L = 2 μm, α = −20.2 meV nm, �0 = 1.26 meV,
μ = 0, ξ = 0.8 μm. (c) Density of the corresponding eigenfunctions
for B = 0.9Bc and (d) B = 1.1Bc as a function of x. In (c) and (d)
the unspecified parameters have the same value as in (b).

a finite coherence length in the superconducting pairing, that
is,

�(x) = �0 tanh(x/ξ ), (2)

where ξ is the coherence length of the superconduc-
tor [16,47,57,58] [see Fig. 1(a)]. Such a model is appropriate
in a wide range of experimentally relevant situations. Indeed,
in genuinely one-dimensional problems, such as the one we
aim to describe, the superconducting pairing potential varies
on length scales comparable to the coherence length as the
geometrical end of the superconductor is approached [59–61].
The one-dimensional character of the physical setup is plau-
sible, for instance, when superconductivity is induced by
coating the nanowire with a thin film. Moreover, a smooth pair-
ing potential is expected to be present if atoms of the coating
are diffusing into the wire. In the latter case, however, the
length ξ is not directly related to the coherence length of the
superconductor [62]. The strength of the induced gap �0 does
not only depend on the bare gap of the superconductor, but also
on the contact between the wire and the Al film. To take all these
options into account, we hence keep �0 and ξ as independent
variables. Under such a pairing potential, the critical field for
observing MBSs reduces from Bc =

√
�2

0 + μ2 to B ≈ |μ|
with μ the chemical potential [16]. When the wire is globally
in the topological phase, the Majorana fermions are located
close to the left and right ends of the wire [see Fig. 1(d)].
When, on the other hand, |μ| < B < Bc, two MBS arise,
placed close to the left end of the wire and the position xB

satisfying B =
√

�(xB)2 + μ2 [see Fig. 1(c)]. It is interesting
to note that in this case the magnetic field shifts the distance
between MBSs, and thus, the maximum overlap between
them decreases, which is reflected in their spectrum [see
Fig. 1(b)]. Although some numerical results along these lines
have been presented in Ref. [16], new experimental results
motivate a more careful analysis and understanding of a
position dependent pairing. Here, we study numerically and

analytically the shape of MBS wave functions arising below
the critical bulk field |μ| � B < Bc for an arbitrary coherence
length ξ . In striking contrast to the constant pairing scenario,
we find two different Majorana fermion solutions with different
k space structure. A decaying oscillatory wave function placed
close to the left end of the wire and a Gaussian-like wave
function placed at xB characterize the system. The difference
in the nature of the two Majorana fermions crucially influences
their overlap, which, as α, μ, and ξ are varied, can result in
decaying oscillations, anticrossings, or asymptotic decrease.
All three scenarios have been observed in experiments. As a
further analysis of the properties of the model, we calculate
the local linear conductance G as a function of the applied
magnetic field. We find that, in correspondence to the crossings
and anticrossings in the lowest lying eigenvalues, G develops
nonquantized peaks. Interestingly, whenever ξ is nonzero, the
sharp transition between G = 0 and G = 2e2/h, routinely
associated to the topological phase transition, takes place for
magnetic fields smaller than the value needed for the bulk
topological phase transition. This behavior is in accordance
with the above mentioned possibility of having Majorana
bound states before the topological phase transition.

The outline of the paper is as follows: In Sec. II we present
the Majorana-Rashba model [7,8]. Then, in Sec. III, we discuss
qualitatively the main results. In Sec. IV, we complement
the qualitative analysis with quantitative calculations of the
differential conductance. In Sec. V, we present analytical
approaches to the problem and carefully characterize the
oscillations as a function of the Rashba spin-orbit coupling
strength and the chemical potential. Finally, we conclude in
Sec. VI.

II. MODEL

We study the Hamiltonian presented in Refs. [7,8] Hc =
1
2

∫ L

0 dx�†(x)H(x)�(x) with

H(x) =
(−∂2

x

2m∗ − μ

)
τz ⊗ σ0

− iα∂xτz ⊗ σz + Bτz ⊗ σx + �(x)τx ⊗ σz, (3)

where �†(x) = (ψ†
↑(x),ψ†

↓(x),ψ↓(x),ψ↑(x)). The operators
ψ↑,↓(x) annihilate a ↑ / ↓ particle at position x and the Pauli
matrices σi,τi with i ∈ {x,y,z} act on spin- and particle-hole
space, respectively. In addition, B = 1

2gμBBx is the Zeeman
energy, originating from a magnetic field applied in the x

direction Bx (B > 0 throughout the paper), m∗ = 0.015me

if we choose the InSb effective mass, and μ is the chemical
potential. The pairing potential �(x) is given by Eq. (2).

Using standard finite difference methods, we discretize
Eq. (3) yielding a 4N × 4N matrix, henceforth called Ĥw.
Here, we use N for the total number of sites, and thus, L = a0N

is the length of the wire with a0 the lattice spacing. This Hamil-
tonian has 4N eigenstates, denoted as ψν(x) = (uν

↑,uν
↓,vν

↓,vν
↑)

with corresponding eigenvalues εν . Conductance calculations
are obtained by coupling the Majorana wire to normal contacts
at each end. We account for the coupling to the leads by adding
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a constant and diagonal self-energy �̂
r/a

L,R = ±i�̂L,R, where

�̂L = γLdiag(1̂,0̂,0̂, · · · ,0̂)N, (4)

�̂R = γRdiag(0̂,0̂,0̂, · · · ,1̂)N . (5)

Here, 1̂ and 0̂ denote the identity and zero 4 × 4 matrices.
The subindex N refers to the number of 4 × 4 matrix entries,
yielding a 4N × 4N matrix �̂L,R. Here, γl = πρlt

2
l is the

broadening of the level coupled to the normal lead, and ρl

is the density of states of the l lead, and tl a coupling constant.
Thus, we can construct the retarded and advanced Green’s

function of the open system as

Gr/a(ω) = lim
η→±0

[
ω − Ĥw − �̂

r/a

L − �̂
r/a

R + iη
]−1

, (6)

where Ga = (Gr )†. Using Keldysh techniques [63], and assum-
ing a negligible quasiparticle contribution, one can express the
zero bias conductance in the l lead as

Gl = 2e2

h
(TLAR,l + TCAR,l), (7)

where

TLAR,l = 4Tr
[
�̂e

l Gr (0)�̂h
l Ga(0)

]
, (8)

TCAR,l = 4Tr
[
�̂e

l Gr (0)�̂h

l
Ga(0)

]
, (9)

are the local and crossed Andreev reflection at the l lead,
respectively. Here, l = L,R and l = R,L. Besides, �̂

e/h

l are
4N × 4N matrices, keeping only the electron/holelike con-
tributions of Eqs. (4) and (5).

III. MAIN RESULTS

In this section, we characterize the effects that a finite
coherence length introduces in the critical field and the os-
cillating pattern resulting from the hybridization of MBSs. To
this aim, we diagonalize the discretized version of Eq. (3) and
compare in Fig. 2 the lowest energy states in the parameter
space (B,μ) for different coherence lengths: ξ = 10 nm, ξ =
200 nm, ξ = 400 nm, and ξ = 1 μm. We can observe that for
B >

√
�2

0 + μ2 ≡ Bc (see blue curve in Fig. 2) the qualitative
topological properties of the Rashba wire are still present, i.e.,
MBSs localized close to the two ends of the wire arise and
oscillate with increasing amplitude for increasing magnetic
fields.

For B < Bc, MBSs arise for an increasing ξ , see Figs. 2(a)–
2(d). The reason for this appearance can be understood if we
consider a slowly varying pairing potential. In this situation,
the critical condition Bc(x) =

√
�(x)2 + μ2 can be satisfied

locally, and thus, two MBSs arise: One is placed close to the
left end of the wire, xν ∼ 0, and another one at xB , where
the relation B =

√
�(xB)2 + μ2 is satisfied. Note that xB ,

and thus, the distance between the MBSs, increases for an
increasing magnetic field. Roughly speaking, the requirement
for having Majorana fermions is hence no longer B > Bc,
but becomes related to the existence of the point xB , that is
guaranteed to exist for B > Bμ ≡ |μ|. This behavior is indeed
what we observe in Fig. 2: For an increasing coherence length,
zero energy states approach asymptotically to B = |μ| (see

(a) (b)

(c) (d)

FIG. 2. Numerical results for the lowest energy eigenvalues of
the spin-orbit coupled wire as a function of Zeeman energy B and
chemical potential μ in meV. The calculations are done for N = 200,
L = 2 μm,α = −20.2 meV nm,�0 = 0.63 meV and different values
for the coherence length ξ : (a) ξ = 10 nm, (b) ξ = 200 nm, (c) ξ =
400 nm, and (d) ξ = 1 μm. We highlight the lines B = |μ| and μ =
±√

B2 − �2 in black and blue, respectively.

black curves in Fig. 2). Interestingly, this means that MBSs are
present whenever the system is in the quasihelical regime of the
spin-orbit coupled wire [64–67], that is, whenever the system
in the absence of superconductivity is effectively spinless. We
observe deviations from this behavior for shorter coherence
lengths [see Fig. 2(b)], and zero-energy states can arise even
for B < |μ|.

The existence of MBSs below Bc is not the only interesting
effect of a finite coherence length. The dependence that the low-
est energy level has as a function of the applied magnetic field is
also remarkable. Since the distance between the two Majorana
fermions increases when the magnetic field is increased, the
resulting overlap decreases, see Figs. 1(b) and 3(a) and 3(b).
This feature is often observed in experiments and is difficult
to interpret. However, in the context of a finite coherence
length, decaying oscillations for B < Bc appear naturally. In
this scenario, decaying oscillations are, interestingly, just one
of the possible behaviors. It is worth noticing that decaying
oscillations [Fig. 3(a)] can evolve into anticrossings [Fig. 3(c)]
and finally into a monotonic decay to zero [Fig. 3(d)] as the
chemical potential or the spin-orbit coupling are increased. In
order to understand the microscopic mechanisms that induce
the different patterns, we analyze the physical properties of
the lowest energy BdG wave functions. The Majorana fermion
around xB is expected to be a nonoscillating function of x,
in particular for μ = 0, a Gaussian [8]. An oscillating hy-
bridization energy can hence only emerge from an oscillating
wave function of the Majorana fermion located at xν . For a
qualitative discussion of the wave function around xν , we start
by considering the case of a constant superconducting pairing.
In this picture, MBSs mainly have dominant contributions from
momenta k around k ≡ k0 = 0 and k = ±kF . Thus, the MBS
wave function can be expressed as the linear combination ψ ∼
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FIG. 3. Numerical results of the low energy eigenvalues of a
spin-orbit coupled wire of total length N = 200, L = 2 μm with
α = −22.7 meV nm, �0 = 0.76 meV, ξ = 0.2 μm and different
chemical potential: (a),(b) μ = 0.63 meV, (c) μ = 0.76 meV, (d)
μ = 1.01 meV. (a) and (b) have the same parameters with different
scaling of the axes. The vertical dashed line in (b) represents B = |μ|.

ψk0 + ψkF + ψ−kF [68]. All these contributions have a spinor
structure and decay exponentially, with a typical localization
length related to the corresponding direct energy gap, that is,

ψj ∝ exp(−�jx + ikj x), (10)

where the index j resembles k0 and ±kF. Around k0 the
gap is given by �k0 =

√
B2 − μ2 − �0 and does not depend

on α. In contrast, at k = ±kF , the gap is given by a frac-
tion of the bare induced superconducting coupling �±kF

=
a�(α,μ,B)�0. The behavior of a�(α,μ,B) as a function of α,
for different values of μ is depicted in Fig. 4(a) [23]. We can
observe that as α or μ are decreased, a(α,μ,B) and hence �±kF

decrease. Note in passing that the contributions ψ±kF , oscillate

0.0 0.2 0.4 0.6 0.8
- 0.10

- 0.05

0.00

0.05

0.10

(a) (b)

FIG. 4. (a) a�(α,μ,B) as a function of spin-orbit coupling α in
meV nm with B = 0.35 meV, �0 = 0.63 meV and μ = 0.33 meV
(dotted), μ = −0.33 meV (dashed), μ = 0 (solid). (b) R(α,μ,B) for
3 different values of a: a�(α,μ,B) = 1 (dotted), a�(α,μ,B) = 0.8
(dashed), a�(α,μ,B) = 0.6 (solid).

with the wave vector kF. Therefore, whenever �±kF
/�k0 < 1,

the wave function will exhibit a spatial oscillatory pattern.
In the limit of a slowly varying pairing potential, i.e.,

kF  1/ξ , it is possible to find similar expressions as in
the constant pairing case (see Sec. V). Due to the position
dependent pairing, the exponents are then replaced by

�jx →
∫ x

0
�j (x ′)dx ′, (11)

where �j (x) is the result of substituting �(x) into the direct
gap expressions. An oscillatory pattern of the hybridization
energy is observed when the oscillating contribution of the
wave function located at xν is dominant around the location
of the second Majorana (x = xB). This condition is indeed
fulfilled whenever ∫ xB

0 �kF (x)dx∫ xB

0 �k0 (x)dx
< 1. (12)

As shown in Fig. 4(b) [see also Eq. (36) for more details], the
relation is satisfied for small values of a�(α,μ,B), i.e., weak
spin-orbit coupling and/or small μ close to the topological
phase transition. For strong spin-orbit coupling and large μ,
however, the relation does not hold anymore and the oscilla-
tions disappear. A deeper analysis of the wave functions, going
beyond simple scaling arguments, is presented in Sec. V. Note
that some physical behaviors described in this section could be
transposed into the scenario where the superconducting pairing
is roughly constant while the chemical potential acquires a
spatial dependence due to, for instance, the presence of smooth
confinement [16,69,70].

IV. CONDUCTANCE

We complement the analysis of the previous section with a
quantitative calculation of the zero bias conductance GL := G

in the notation of Eq. (7). In the following, we will analyze two
different scenarios: crossings/anticrossings and the asymptotic
approach to zero.

Crossings/anticrossings. Anticrossings with an energy gap
δε give rise to hG/(2e2) ∼ 2γ 2

L/(δε)2 � 1, for δε  γL (see
Fig. 5). In turn, the crossing points exhibit conductance
peaks with values between 4e2/h < G < 2e2/h, see Fig. 5(b).
Evidently, each MBS can contribute to the conductance since
both MBS wave functions exhibit a finite weight at x = 0 [71].
In this situation, the left (right) MBS is (not) perfectly spin
polarized [71,72]. This is known as a reason why it contributes
to the conductance with G ≈ 2e2/h (G � 2e2/h), yielding a
total subgap conductance of G < 4e2/h. This situation is sim-
ilar to the crossings that can emerge when a nonproximitized
part is added to the system before the leads [73].

Asymptotic decay to zero. The magnetic field shifts the MBS
placed at xB, yielding an exponential reduction of the energy.
When the energy spectrum reaches zero, the conductance
jumps abruptly to the quantized value G = 2e2/h, even for
B < Bc. Interestingly, as ξ is increased, the transition shifts
towards smaller values of B, see Fig. 5(d). The behavior
discussed in this section is consistent with the qualitative
discussion given in Sec. III and with the analytical results given
in the following section.
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(a) (b)

(c) (d)

FIG. 5. (a)–(c) Lowest energy eigenvalue of the system (red, left
vertical axis) and zero-energy conductance (blue, right vertical axis)
as a function of B/Bc with the parameters N = 180, L = 1.8 μm,
�0 = 0.66 meV, μ = 0.2 meV. Further ξ = 0 in (a), while ξ =
0.5 μm for (b) and (c), as well as α = 20.16 meV nm in (a), (b),
and (d), while α = 25.2 meV nm in (c). In (d), we illustrate the
conductance calculation of (a) (yellow), (b) (blue), and a third one
with the parameters of (c) but ξ = 0.25 μm. Furthermore, γL = γR =
2.52 meV.

V. ANALYTICAL ANALYSIS

In order to derive simple relations explaining the behavior
observed by means of the numerical solution, we are inspired
by Ref. [68] and simplify the model in two regimes: strong and
weak spin orbit coupling. Beyond Ref. [68], we will then solve
the models in the presence of a nonuniform pairing potential.

A. Effective model for strong spin-orbit coupling

In the strong spin-orbit coupling regime,m∗α2  B,�0, we
complement the continuum model with the assumptions of a
slowly varying superconducting pairing potential m∗α  1/ξ .
Then, the continuum Hamiltonian can be further simplified to
effective (linear) Hamiltonians around zero average momen-
tum (i) and momentum kF

∼= 2m∗α (ii) [see also Figs. 6(a)
and 6(b) for a schematic]:

(i) 〈−i∂x〉 � 0, (ii) 〈−i∂x〉 � ±kF . (13)

For case (i), we are allowed to neglect the quadratic part of
Eq. (3), resulting in the low energy Hamiltonian

HI =
∫ l

0
dx�†(x)[−iα∂xτz ⊗ σz − μτz ⊗ σ0

+Bτz ⊗ σx + �(x)τx ⊗ σz]�(x). (14)

In case (ii), we can perform a spin-dependent gauge transfor-
mation

�(x) = e−2im∗αx(τ0⊗σz)�̃(x), (15)

where �̃(x) is a slowly varying function of x with respect to
1/(m ∗ α) at low energy. After plugging Eq. (15) into Eq. (3)

(a)

(c) (d)

(b)

FIG. 6. Dispersion relation of the full continuum model with
E(k) in meV and k in nm−1 in the strong spin-orbit regime [(a),(b)]
with α = −100 meV nm, �0 = 0.35 meV, μ = 0 and (a) B = 0.1
meV, (b) B = 0.33 meV and weak spin-orbit regime [(c),(d)] with
α = −15 meV nm, �0 = 0.35 meV, μ = 0 and (c) B = 0.7 meV,
(d) B = 0.33 meV.

and linearizing, the transformed Hamiltonian becomes

HE =
∫ l

0
dx�̃†(x)[iα∂xτz ⊗ σz

−μτz ⊗ σ0 + a�(α,μ,B)�(x)τx ⊗ σz]�̃(x), (16)

where the fast oscillating terms are integrated out.
Here, a�(α,μ,B) ∈ {0,1} is determined by the dispersion

relation of the lowest energy eigenvalue of Eq. (3) (assuming
constant superconducting pairing �0). In case of strong spin
orbit coupling, we obtain a�(α,μ,B) → 1. The full behavior
of a�(α,μ,B) as a function of α is illustrated in Fig. (4)(a). For
small α, we find the analytical expression

a�(α,μ,B) =
√

�2
0 + B2 − B

�0

+ 4m∗2(B + μ)

�0

√
B2 + �2

0

α2 + O(α3). (17)

The rational behind the approximation scheme leading to
Eqs. (14) and (16) is that, for strong spin-orbit coupling
and for weak translational symmetry breaking by the applied
superconducting pairing, we expect that the main effect of
superconductivity is to renormalize the helical gap close to
zero momentum and open a gap close to kF , as schematically
shown in Fig 6. Any low-energy eigenstate is then evaluated
as linear combination of eigenstates of HI and HE .

B. Effective model for weak spin-orbit coupling

In case of weak spin-orbit coupling, m∗α2 � B, we ad-
ditionally assume

√
m∗B  1/ξ . To develop effective linear

models for our purposes, in this case, we explicitly distinguish
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two regimes in parameter space: deep inside the topological
phase and close to the phase transition. Far away from any
boundary, the latter case is hence described within the linear
Hamiltonian of Eq. (14) [see Fig. 6(d)], while, close to the
boundaries, the contribution around k = ±kF is still important.
Deep inside the topological phase, the gap opened at k = 0
is large compared to the gap opened at k = ±kF given by
a�(α,μ,B)�0 [see Fig. 6(c)]. For weak spin-orbit coupling,
a�(α,μ,B) � 1, the low energy physics is described around
the points k = ±kF . An appropriate linear model has to take
into account that spins are not (quasi)helical in the weak
spin-orbit regime but acquire a spin tilting. To implement
this feature in the linear model we demand an artificial ε, γ ,
and ν, acting as magnetic field, chemical potential, and Fermi
velocity. The momentum-space Hamiltonian in the absence of
superconductivity is given in the spin-resolved basis as

H0
lin(k) =

(
νk − γ ε

ε −νk − γ

)
. (18)

Unlike former linear models of this paper, here we require
γ � ε to make the model appropriate for our purpose. To
connect those parameters to the physical parameters of the
spin-orbit coupled wire, we demand three conditions to hold:
(i) Fermi surface, (ii) velocity at the Fermi points, and (iii) spin
tilting at the Fermi surface have to coincide in both models.
The demands (i)–(iii) result in the following conditions

kF,lin = kF,SOC ≡ kF,

vF,lin = vF,SOC ≡ vF,

νkF +
√

ν2k2
F + ε2

ε
=

kF α −
√

B2 + k2
F α2

B
, (19)

where the last equation originates from the eigenvectors of
Eq. (3) with �(x) = 0 and Eq. (18). The equation system (19)
has the unique solution

ν = (1 + κ2)vF

−1 + κ2
, ε = 2κ(1 + κ2)vF kF

(−1 + κ2)2
,

˜γ = (1 + κ2)2vF kF

(−1 + κ2)2
(20)

with the replacements

κ =
kF α −

√
B2 + k2

F α2

B
,

vF = 4m∗kF − kF α2√
B2 + k2

F α2
, (21)

kF =
√

2
√

m∗2α2 + m∗μ + m∗
√

B2 + m∗2α4 + 2m∗α2μ.

A feature that does not coincide in both models is the spin
rotation length along the dispersion relation. However, this
feature only plays a minor role for spectroscopic properties.
The direction of the spin rotation along the dispersion, however,
is the same in both models. Including superconducting pairing,

the linearized model then becomes

Hlin =
∫ l

0
dx�†(x)[iα∂xτz ⊗ σz − γ τz ⊗ σ0

+ ετz ⊗ σx + a�(α,μ,B)�(x)τx ⊗ σz]�(x). (22)

C. Wave function at xB and new critical field

The existence of zero energy MBS in the trivial phase can
be fully understood within this analytical approach. We first
focus on the large ξ limit. In this regime, we can apply the
linear approximations of Eqs. (14), (16), and (22). As a starting
point, we concentrate on a system with no boundaries and
demand the existence of one point in space, x = xB , which
satisfies the relation �2(xB) = B2 − μ2. Around this point, the
low-energy physics (for strong and weak spin-orbit coupling)
is described within the linear approximation of Eq. (14) only,
since it becomes gapless. We, therefore, search for zero-energy
solutions HI (x)�(x) = 0, where we demand �(x) to be of the
form �(x) = Uχ (x), with

U = 1√
2

(τ0 ⊗ σ0 − iτx ⊗ σy). (23)

This unitary transformation reorganizes the Hamiltonian in the
Majorana basis. For χ (x) we further assume a solution of the
form

χ (x) = (a,b,c,d)T exp[f (x)]. (24)

After plugging in this ansatz [74–77], we obtain the solution

f (x) = ±
∫

dx
�(x) ±

√
B2 − μ2

α
. (25)

In the case of linear behavior of �(x) with respect to x and
μ = 0, we restore the ground-state solution of the displaced
harmonic oscillator, solved in Ref. [8]. With the solutions of
Eq. (25), we obtain the corresponding spinor structure of �(x)

(u,v,ṽ,ũ)T = U (a,b,c,d)T

= 1√
2

(±e±iϕ + i,ie±iϕ ± 1,

− ie±iϕ ± 1, ± e±iϕ − i)T , (26)

where ϕ = arccos(B/μ). To fulfill the Majorana condition ũ =
u∗ and ṽ = v∗, we need exp[iϕ] ∈ R, which is only true for

B � |μ|. (27)

For a slowly varying �(x), the latter relation represents a bound
for the formation of Majorana zero modes. The hand-waving
argument given in the previous section can hence be put on a
formal basis. Compiling Eqs. (24), (25), and (26) and imposing
that the wave function is normalizable and centered around xB ,
we explicitly obtain

�(x) = 1√
N

⎛
⎜⎜⎝

eiϕ + i

ieiϕ + 1
−ieiϕ + 1
eiϕ − i

⎞
⎟⎟⎠e

− ∫ x

0 dx ′ 1
α

(
�(x ′)−

√
B2−μ2

)
, (28)

with the normalization constant N .

155425-6



DECAYING SPECTRAL OSCILLATIONS IN A MAJORANA … PHYSICAL REVIEW B 97, 155425 (2018)

D. Wave function at xν in the strong spin-orbit coupling regime

At the left end of the wire, where the proximity induced
pairing decreases to zero, we have to distinguish between
effective models of strong and weak spin-orbit coupling. For
strong spin-orbit coupling, the low-energy physics is captured
by a linear combination of eigenstates of Eqs. (14) and (16)

�(x) � a1�I (x) + b1e
−2im∗αx(τ0⊗σz)�E(x) (29)

with the coefficients a1 and b1 to be derived by the boundary
conditions, and �l(x), l ∈ I,E, satisfying

Hl(x)�l(x) = 0. (30)

The solution for �I (x) is constructed by means of
Eqs. (24), (25), and (26). The solution for HE(x) can be
found in an analogous way after multiplying Eq. (30) (with
l = E) from the left with τz ⊗ σz. Using the properties of Pauli
matrices, especially [τy ⊗ σ0,τ0 ⊗ σz] = 0, where [.,.] denotes
the commutator, integration yields the solution

�E(x) = exp

[ ∫ x

0
dx ′ i

α

(
�(x ′)(τy ⊗ σ0)

−μ(τ0 ⊗ σz)

)]
�0. (31)

Subsequently, the spinor �0 has to be chosen such that
the wave function satisfies the Majorana condition �(x) =
[u(x),v(x),v∗(x),u∗(x)]T , which results in four possible so-
lutions. Furthermore, assuming a semi-infinite system (x >

0), we have to satisfy the boundary condition �(0) = 0.
Moreover, the solution has to decay away from x = 0. The first
condition implies that the spinors �I (0) and �E(0) are linearly
dependent. Hence, from Eq. (31), we select the solutions for
�E(x) which decay away from x = 0 and combine them with
their linearly dependent counterparts �I (x). This leads to the
only physical solution

�(x) = 1√
N

⎛
⎜⎜⎝

i − eiϕ

ieiϕ − 1
−ieiϕ − 1
−eiϕ − i

⎞
⎟⎟⎠e

∫ x

0 dx ′ 1
α

(�(x ′)−
√

B2−μ2)

− 1√
N

e−i(2m∗α+ μ

α
)x(τ0⊗σz)

⎛
⎜⎜⎝

i − eiϕ

ieiϕ − 1
−ieiϕ − 1
−eiϕ − i

⎞
⎟⎟⎠e− ∫ x

0 dx ′ �(x′)
α

(32)

with normalization constant N .

E. Wave function at xν in the weak spin-orbit coupling regime

The wave function at xν for the case of weak spin-orbit
coupling (a�(α,μ,B) � 1) is given by linear combination of
eigenstates of Eq. (22), which indeed have the same form
as the eigenstates of Eq. (14) with the replacements B → ε,
μ → γ , and α → −ν. A consequence of neglecting all other
contributions in this linear approach is that we can only
accomplish the boundary condition �(0) = 0 if we neglect
the contribution of the spin orbit coupling in the spinors. If so,

the only reasonable wave function is obtained by

�(x) = 1√
N

(−1 + i,i − 1, − i − 1, − 1 − i)T

sin (kF x) exp

[
−

∫ x

0
dx ′ a�(α,μ,B)�(x ′)

ν

]
. (33)

F. Overlap of wave functions

The analysis of Secs. V C-V E is done for isolated Majorana
fermions in (semi-)infinite space with a spatial variation of the
superconducting pairing. However, since Majorana fermions
always appear in pairs and our system is finite, there can be a
finite hybridization energy between them. The hybridization
energy is directly related to the overlap of the two wave
functions. For �(x) defined in Eq. (2), in the regime where
B < Bc, we can approximate the solution at the left end of the
wire, where the proximity induced pairing decreases to zero, by
the wave function of Eqs. (32), (33), when spin-orbit coupling
is strong/weak. On the other hand, around x = xB we have to
take into account the wave function of Eq. (28). For the strong
spin orbit coupling regime, Eq. (32) has an oscillatory and a
nonoscillatory part, while Eq. (28) is nonoscillatory. Therefore,
the hybridization energy will also be constituted by an oscil-
latory and a nonoscillatory part. Which of them is dominant
is strongly dependent on the corresponding decay length and
the relative position of the states. The hybridization energy is
expected to show an oscillatory nature if the oscillatory part of
Eq. (32) is dominant when x = xB is approached, This is the
case if∫ xB

0
dx(1 + a�(α,μ,B))�(x) −

√
B2 − μ2 < 0. (34)

For �(x), following Eq. (2) with B2 < �2
0 + μ2, xB is deter-

mined by

xB = ξarctanh

(√
B2 − μ2

�0

)
. (35)

After performing the integration, we obtain

R(α,μ,B) ≡ − 1
2 [1 + a�(α,μ,B)]ln(1 − η2)

− ηarctanh(η) < 0, (36)

with η =
√

B2 − μ2/�0. R(α,μ,B) is illustrated for different
values of a�(α,μ,B) in Fig. 4. If a�(α,B,μ) → 1, which
is the case in the strong spin-orbit regime, Eq. (36) cannot
be fulfilled. Hence, the long wave contribution will always
dominate the behavior of the wave function at x = xB and
the hybridization energy will show a nonoscillatory behavior,
which is coherent with numerical results [Figs. 7(e) and 7(f)].
For very large α, similar arguments hold for the hybridization
energy in the topological phase. Since the decay length of the
wave function in the strong spin-orbit regime is proportional to
α, the overlap of the different wave functions is large, resulting
in a suppression of zero modes before the topological phase
for large α (see Fig. 8).
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 7. Lowest energy eigenfunctions as a function of x (left) with
B = 1.134 meV and eigenenergies (right) of the spin orbit coupled
wire with proximity induced s-wave pairing with �0 = 1.25 meV,
N = 250, L = 2.5 μm, ξ = 0.8 μm, μ = 0 for three different values
of the spin orbit coupling: (a),(b) α = −15.12 meV nm, (c),(d) α =
−37.8 meV nm, and (e),(f) α = −75.6 meV nm.

For a�(α,μ,B) < 1, on the other hand, the inequality
Eq. (36) can be fulfilled for some values of B within B2 <

�2
0 + μ2 [see Fig. 4(b)]. The regime of dominant oscillatory

behavior is amplified for small a�(α,μ,B), i.e., weak spin-orbit
coupling, a behavior explaining the numerical results [see
Figs. 7(a) and 7(b)]. In this regime, the wave function at x = xν

provides strongly oscillatory character [Eq. (33)] leading to an
oscillatory behavior of the hybridization energy [see Figs. 7(a)
and 7(b)].

In the region between strong and weak spin-orbit coupling,
instead, it is difficult to determine the analytical form of the
wave function around xν . It will be a mixture of Eqs. (32)
and (33). This is the regime where we witness anticrossings in
the hybridization energy, as the oscillatory and nonoscillatory
contribution to the wave function at x = xB have similar decay
lengths (Figs. 7(c) and 7(d)].

For smaller values of the gap parameter �0, all results
remain qualitatively valid. However, the localization of the
wave functions is reduced resulting in two major physical
effects: Firstly, the overlap of the wave functions increases, and
so does the hybridization energies. Secondly, the wave function

(a) (b)

(c) (d)

FIG. 8. Numerical results for the lowest energy eigenvalue as a
function of Zeeman energy B and chemical potential μ in meV. The
calculations are done for: �0 = 0.63 meV, ξ = 0.5 μm, L = 2 μm
and different spin-orbit coupling: (a) α = −10.1 meV nm, (b) α =
−20.2 meV nm, (c) α = 50.4 meV nm, and (d) α = −100.8 meV nm.

centered around xB can significantly deviate from the Gaussian
profile and can acquire oscillating contributions. This results in
more complex hybridization energies close to the topological
phase transition. The reason is that when the localization
length of the wave function around xB , which increases as �0

decreases, becomes comparable with the distance to the right
end of the wire, then Friedel-like finite size oscillations become
prominent [78–81]. Since the two length scales involved are the
localization length of the wave function and the distance to the
boundaries of the wire, these effects become more pronounced
in short samples.

G. Role of the chemical potential

In the intermediate α regime, which ranges around α ∼
10–50 meV nm, the chemical potential μ plays a crucial
role since, especially as μ → B, a�(α,μ,B) is a strongly
asymmetric function with respect to μ → −μ [see Eq. (17)
and Fig. 4(a)]. As a�(α,μ,B) controls the gap size at k =
±kF , oscillations are more pronounced in the negative μ

regime, which is indeed consistent with numerical results [see
Fig. 2(d)]. This allows us to witness low energy eigenvalues
with oscillatory, anticrossing, or monotonous convergence to
zero also in dependence of the chemical potential μ.

For experimentally relevant values of α ∼ 20 meV nm, we
indeed expect to be in the transition regime between strong
and weak spin-orbit coupling. Interestingly, the tendency to
an asymmetric behavior with respect to μ is maintained qual-
itatively even for experimentally relevant coherence length.
With respect to our findings, the signature of a low energy
conductance measurement could give an indication to the
magnitude of the spin-orbit coupling as well as the chemical
potential inside the wire.
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VI. CONCLUSION

Majorana fermions, i.e., zero-energy bound states, in a
spin-orbit coupled quantum wire can exist even when the
wire is not in the topological regime. The requirement is a
finite coherence length ξ of the proximity induced supercon-
ducting pairing amplitude. For slowly varying �(x) (large
coherence length), we have given analytical and numerical
demonstrations that the existence of zero modes is possible in
the whole B � |μ| region. Moreover, we have demonstrated
that the momentum-space decomposition of the two Majorana
fermions that can form before the topological phase transition
are profoundly different. The one located at the end of the
wire has an oscillating wave function, while the one located
at the end of the locally topological region of the wire has
a nonoscillating structure. This particular behavior implies
a rich scenario for the hybridization energy. As a function
of spin-orbit coupling and chemical potential, different be-
haviors can be obtained, ranging from a pattern of decaying

oscillations, to anticrossings, and to a monotonous decay
to zero energy. Oscillations are favored by weak spin-orbit
coupling and tendentially small chemical potential, and their
amplitude decays as a function of the magnetic field because
the two Majorana fermions get separated in space. Stronger
spin-orbit coupling and higher chemical potential favor, on
the other hand, anticrossings and monotonous decay. We have
interpreted the results by means of effective Dirac-like models,
which allowed us to understand them as a consequence of
different decay lengths characterizing the various momentum
components of the Majorana fermion wave functions.
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