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Vibrations of single-crystal gold nanorods and nanowires

L. Saviot1,*

1Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS–Université Bourgogne Franche-Comté,
9 Avenue Alain Savary, BP 47 870, 21078 Dijon Cedex, France

(Received 19 July 2017; revised manuscript received 9 April 2018; published 19 April 2018)

The vibrations of gold nanowires and nanorods are investigated numerically in the framework of continuum
elasticity using the Rayleigh-Ritz variational method. Special attention is paid to identify the vibrations relevant
in Raman scattering experiments. A comprehensive description of the vibrations of nanorods is proposed by
determining their symmetry, comparing with standing waves in the corresponding nanowires, and estimating their
Raman intensity. The role of experimentally relevant parameters such as the anisotropic cubic lattice structure,
the presence of faceted lateral surfaces, and the shape of the ends of the nanorods is evaluated. Elastic anisotropy
is shown to play a significant role contrarily to the presence of facets. Localized vibrations are found for nanorods
with flat ends. Their evolution as the shape of the ends is changed to half-spheres is discussed.
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I. INTRODUCTION

Nonspherical gold nanoparticles have attracted consider-
able attention during the last few decades mainly because their
optical properties are strongly shape dependent. Gold nanorods
(NRs) in particular have been the focus of many studies, some
dedicated to understanding and controlling their synthesis
[1] while others focused on their properties. In this context,
their acoustic vibrations have been investigated as a means
to measure the dimensions of the NRs, but also to study their
acoustoplasmonic coupling with the localized surface plasmon
resonance (LSPR) [2,3]. Transient absorption measurements
are a tool of choice in this context in particular because
single-particle measurements are possible.[4] This enables us
to observe totally symmetric vibrations, i.e., the extensional
vibration, which consists of an oscillation of the length of
the NRs and the breathing vibration, which is an oscillation
of the radius. Low-frequency Raman scattering is also of
interest as it obeys distinct selection rules. The same totally
symmetric vibrations and other nontotally symmetric ones
have been observed experimentally [2,5,6]. A continuous-four-
wave mixing approach has also been proposed recently [7]. It
was shown to be sensitive to some Raman active vibrations.
Finally, another experimental technique known as extraordi-
nary acoustic Raman spectroscopy was also proposed [8]. It is
a promising approach enabling single-particle measurements,
which has not been applied to gold NRs yet.

Experimental measurements must be supported by calcu-
lations to understand the nature of the observed vibrations.
Most often, continuum isotropic elasticity is assumed for NRs
made of gold and other materials resulting in models based on
analytic expressions in cylindrical coordinates [9]. While this
assumption is sometimes valid, it is also known to be a poor one
in many cases. This is expected in particular for ultrathin gold
nanowires (NWs) [10] and NRs, which are single crystalline.
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Gold is strongly anisotropic (Zener ratio: 2.9), which results,
for example, in a large splitting of the quadrupolar vibrations
of nanospheres (NS) [11,12]. Such a splitting must also exist
for gold NRs but calculations of this splitting are lacking. In
addition, anisotropic elasticity has also an impact on the other
vibrations. It shifts the frequency of the extensional vibration
significantly enough that taking into account elastic anisotropy
is required [13,14]. Anisotropy also results in the existence of
several vibrations sharing the breathing character and therefore
a broadening of the corresponding peak. This effect must be
properly taken into account before discussing damping [15].
Finally, the impact of noncircular cross sections as observed
in pentatwinned gold NRs [16] or single-crystalline NRs must
also be evaluated.

The purpose of this paper is to investigate numerically the
vibrations of gold NRs and in particular those that play a role
in experiments. Vibrations of gold NWs are also calculated.
The influence of elastic anisotropy, of the cross section of
the NWs, and of the ends of the NRs are investigated. The
frequencies of the NRs are also compared with those of
standing waves built from propagating waves of the NWs in
order to provide a simple scaling law. A similar approach has
been used before to establish the effective wavelength scaling
for optical nanoantennas made of gold NRs [17,18].

II. METHODS

In the following, the radius for the NSs and the circular
NRs and NWs is kept constant at R = 5 nm and their main
axis is along [001]. Octagonal NWs are also considered. Their
surface is delimited by {730} planes as observed in elon-
gated tetrahexahedral gold nanocrystals [19]. The half-lengths
along the 〈100〉 and 〈110〉 directions (d100/2 = 5.296 nm and
d110/2 = 5.243 nm) were chosen so that the surface area of the
cross section of all the NWs is the same. The results obtained
for the dimensions given above can be used to determine
the frequencies for different dimensions. The frequencies of
the NSs scale as 1/R. The same scaling applies to NRs
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provided the aspect ratio (length/diameter) is preserved. For
NWs, both the frequencies and the wave vectors scale as 1/R.
The stiffness tensor for gold is defined by C11 = 191 GPa,
C12 = 162 GPa, and C44 = 42.4 GPa, and its mass density is
ρ = 19.283 g/cm3 [20]. For the isotropic approximation of
gold, the stiffness tensor obtained from the three-dimensional
averaged sound speeds is given by C11 = 213.3 GPa and
C12 = 152.6 GPa.

Calculations for NWs are performed by taking into account
the translational symmetry starting from the method proposed
by Nishiguchi et al. [21] for rectangular quantum wires. The
calculations for circular NWs with isotropic elasticity are also
checked with exact analytical expressions [9]. Due to the
translational symmetry, the vibrations of NWs are not discrete
and form branches for varying wave vectors q. The vibrations
of the NRs and NSs are obtained using the Rayleigh-Ritz
variational method [22] to take into account anisotropy due to
the nonspherical shape or cubic elasticity. Similar calculations
exist in the literature mostly for isotropic NRs [23–27]. The
present work improves on such previous works in several ways.
All the vibrations are considered up to the first breathinglike
mode. Totally symmetric and nontotally symmetric vibrations
are investigated. The irreducible representations of the vibra-
tions of the NRs and NSs are determined in order to distinguish
them and also to bring out the vibrations of interest such as the
Raman active ones [12]. Similarly, the irreducible represen-
tation of the q = 0 phonons of the NWs are determined for
the same point group as the one of the corresponding NRs,
namely D∞h for isotropic elasticity and circular cross sections
and D4h otherwise, by taking into account a single symmetry
plane perpendicular to the symmetry axis at z = 0. In addition,
the variation of the volume of the NSs and NRs during the
vibration is calculated to help identify breathing vibrations
[12]. For comparison, the variation of the surface area of the
cross section is also calculated for NWs. Calculations for NWs
are then used to describe the vibrations of NRs in terms of
confined vibrations (standing waves) when possible.

III. RESULTS AND DISCUSSION

A. Nanowires

Figure 1 presents the phonon branches for the circular NW
with isotropic gold and the circular and octagonal NWs with
cubic gold. For the Rayleigh-Ritz variational calculation, the
displacements were expanded on the xlymeiqz basis with l

and m being integers and 0 � l + m � 23. For the octagonal
NW, numerical issues with the Cholesky decomposition in the
LAPACK ZHEGV routine [28] restricted this range to 0 � l +
m � 9. We first note the excellent agreement for the isotropic
circular NW with the exact analytic calculations [9]. Only
a few selected q are shown in Fig. 1 (left) for the analytic
method but the agreement is excellent over the 0–1 nm−1 range
(�ν/ν < 10−7).

The breathing and quadrupolarlike frequencies for NSs and
NWs with isotropic and cubic elasticity are given in Table I.
For the isotropic NS, only the spheroidal � = 0 (breathing) and
� = 2 (quadrupolar) vibrations are Raman active. In the other
cases, the modes were identified by checking the associated
displacements. When changing the shape from a NS to a NW,

the breathing frequency decreases much more (−70 GHz) than
the quadrupolarlike frequency (−10 GHz).

Introducing elastic anisotropy1 results in a significant split-
ting of the quadrupolarlike modes as already reported for NSs
[12]. This confirms that elastic anisotropy must be taken into
account for NWs too. As was discussed in a previous work for
NS [29], this splitting can be understood as transverse waves

with sound speeds
√

C11−C12
2ρ

and
√

C44
ρ

confined over the same

distance (diameter). The ratio of these sound speeds is the
square root of the Zener anisotropy ratio (1.7105 for cubic
gold). In this simple approach, it is equal to the frequency
ratio after splitting. Indeed, the ratio of the q = 0 B2g and B1g

frequencies is 1.7044. Therefore, the square of this ratio as
measured for example from Raman spectra is expected to be
an accurate estimate of the Zener anisotropy ratio.

The difference between the octagonal and circular NWs
is very small. Again, the same conclusion was reached for
nanocrystals having similar shapes (sphere, cuboctahedron,
and truncated cuboctahedron) provided the volume was the
same [12]. For this reason, only circular NWs and NRs are
considered in the following. The phonon branches starting
with the NWs vibrations listed in Table I are highlighted in
Fig. 1. The branch starting from the q = 0 breathing vibration
is not highlighted in the same way because it couples with
other branches making its dispersion interesting up to the
first anticrossing feature only. Instead, a dashed thick blue
curve is plotted as a guide for the eye. It was obtained by
following the modes having the largest surface area variation
during vibration. It was determined for the anisotropic circular
NW and fitted to ωbreathing = 236 + 782q2 − 1207q4 + 945q6

where ω is in GHz and q in nm−1. The same curve is plotted for
the three NWs. The breathing modes are very similar for the
three NWs except for the position of the anticrossing patterns.

B. Nanorods

The calculation for the NRs were performed by expanding
the displacements on the xlymzn basis [22], where l, m,
and n are integers and 0 � l + m + n � 20. The NRs have
a circular cross section and are made of gold with cubic
elasticity. Therefore, the vibrations will be compared to those
of the circular NW with cubic elasticity. Calculations were
performed for NRs with straight ends (NW cut by two planes
perpendicular to the [001] symmetry axis) and also for NRs
with half-sphere ends. In the following, L always corresponds
to the total length of the NRs.

1. Extensional modes

Let us start by considering the extensional modes of the
NRs. They correspond to dilatational phonons of the NWs
(blue curves in Fig. 1) confined along the length of the NR.
Their frequencies can be derived assuming free boundary
conditions at both ends. For a NR with flat ends and considering
first the totally symmetric modes, which are Raman active,

1The slope at q = 0 of the torsional and longitudinal branches
are identical for anisotropic NWs in Fig. 1. This is an accidental
coincidence for the Cij chosen in this work.
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FIG. 1. Top: phonon dispersion for the isotropic circular NW (left) and the anisotropic circular (center) and octagonal (right) NWs. Analytical
calculations for the isotropic circular NW are shown with circles (left) for a few selected q. Zone center A1g modes are shown with blue arrows,
B1g with red arrows and B2g with black arrows. The dilatational branch is colored in blue, the branch starting from the lowest frequency B1g

mode is colored in red, and the B2g one in black. The isotropic E2g modes are shown with both red and black arrows and the branch starting
from the lowest frequency E2g mode is dashed in red and black (left). The same dashed thick blue curve is plotted as a guide for the eye for a
breathing branch without anticrossing patterns. Bottom: displacement in the xy plane of the lowest frequency q = 0 phonons of the anisotropic
circular cylinder. For the Eg vibrations, the displacements are along z and the black and white areas move in opposite directions.

q = (2n + 1)π
L

with n = 0,1, . . . We compare the frequencies
of the lowest A1g vibrations with this expression in Fig. 2 (top
left). The agreement is remarkable for the first few overtones. A

TABLE I. Breathing(like) and quadrupolar(like) frequencies for
NSs, circular, and octagonal NWs with isotropic and cubic elasticity.
The irreducible representations are given (D4h point group), � is given
for the spherical symmetry (isotropic NS) and m for the cylindrical
one (isotropic circular NW).

breathing quadrupolar

isotropic cubic isotropic cubic

NS 310.93 310.12 106.20 Eg 74.62
� = 0 A1g � = 2 T2g 120.47

circular NW 241.06 235.63 93.94 B1g 64.99
q = 0 m = 0 A1g m = 2 B2g 110.77
octagonal NW 240.50 235.97 B1g 93.80 B1g 64.93
q = 0 A1g A1g B2g 94.11 B2g 110.88

very good agreement is also obtained for the lowest frequency
A2u vibrations (Raman inactive), which are their antisymmetric
analogues corresponding to q = 2nπ

L
.

This first successful comparison demonstrates that deter-
mining the phonon frequencies of the NW as a function of q

(in this case for the dilatational branch) can be sufficient to
calculate the frequency of some vibrations of the NRs with flat
ends (in this case the extensional ones) for arbitrary diameters
and lengths. The agreement is very good including above
40 GHz where the NW dilatational phonon frequency is no
longer proportional to q. This frequency range is relevant for
short NRs and for overtones.

In Fig. 2 (top right), the same approach is used for NRs
with half-sphere ends. The agreement is not as good as before,
but the simple calculation using the NW dilatational branch
still provides a rather good approximation of the frequency.
The agreement is improved for large L by using q determined
from the equivalent length Leq = L − 2

3R, which corresponds
to the length of a NR with flat ends having the same volume.
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FIG. 2. Frequencies of the extensional (top) and torsional (bot-
tom) vibrations of anisotropic circular NRs as a function of their length
L. The NRs ends are flat (left) or half-spheres (right). The lowest
frequency even vibrations are plotted with full circles (blue online)
and the odd ones with empty circles (red online). The frequencies
derived from the dilatational phonon branch of the NW at q = nπ

L

are plotted with continuous lines for odd n and dashed lines for
even n.

2. Torsional modes

A similar treatment can be applied to torsional vibrations,
which consist in rotations around the symmetry axis of the
NRs. These vibrations are of course associated to the NW
torsion phonon branch whose frequency is proportional to q

(linear variation in Fig. 1). Odd torsional vibrations of the
NRs correspond to the A2g irreducible representation and even
vibrations correspond to A1u. The confinement along L results
in q = nπ

L
with odd values of n for A1u and even values for

A2g. Figure 2 (bottom) shows the resulting frequencies for both
kinds of NRs. As before, the agreement for NRs with straight
ends is remarkable. However, the deviation observed for NRs
with half-sphere ends is larger.

3. Bending modes

The third NW phonon branch with a vanishing frequency
at q = 0 is for flexural phonons [21]. It is related to the
bending vibrations of the NR with irreducible representations
Eu and Eg. These vibrations can be modeled analytically
using the Euler-Bernoulli or Timoshenko beam theory [25].
The resulting frequencies vary as 1/L2. This variation is
reproduced at large L by considering confined modes at
q = nπ

L
because the slope of the NW flexural phonon branch

vanishes at q = 0. However, the frequencies are significantly
different (not shown). This is because this trivial approach does
not reproduce the displacements obtained in the framework
of the Timoshenko beam theory, which contain hyperbolic

FIG. 3. Bottom: lowest frequency vibrations of anisotropic circu-
lar NRs as a function of their length L. The NRs ends are flat (left)
or half-spheres (right). The Eg branches are plotted with full circles
and a continuous line (blue online) and the Eu branches with empty
circles and a dashed line (red online). All the other modes are plotted
with black circles and a continuous line. Three slopes 0, −1, and −2
are plotted for comparison. Top: Eg branches in the frequency range
of the q = 0 Eg vibration of the NW. The continuous black curves
are the confined vibrations calculated from the NW phonon branch at
q = nπ

L
with odd n.

functions of spatial coordinates (sinh and cosh). Therefore,
a given NR bending vibration can not be easily matched to
a NW flexural phonon with eiqz dependence and real q. To
check the 1/L2 variation, all the lowest frequency branches
of the NRs are plotted in Fig. 3 (bottom). Logarithmic scales
are used in order to distinguish between different behaviors at
large L. Branches whose frequency does not depend on L have
a constant frequency (slope 0). This is the case for phonons
confined along a direction perpendicular to the axis of the NRs.
Some of them will be discussed later. Modes whose frequency
vary as 1/L have slope −1. This is the case for vibrations
confined along the length of the NRs. These branches are
the extensional and torsional vibrations discussed above. The
remaining branches whose slopes tend to −2 at large L are the
Eu and Eg bending vibrations.

4. Quadrupolarlike modes

Let us now consider vibrations of the NRs whose frequency
does not tend to zero as L increases and how they relate or
not to phonon branches of the NWs whose frequency does
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FIG. 4. Frequencies of the quadrupolarlike vibrations of NRs as
a function of L. The left plot is for NRs with flat ends and the center
plot for half-sphere ends. The full circles and lines are for the even
[B1g (bottom) and B2g (top)] branches (blue online). The empty circles
and lines are for the odd [B2u (bottom) and B1u (top)] branches (red
online). The continuous black curves in the left and center plots are the
confined vibrations calculated from the NW phonon branch at q = nπ

L

with odd n. The dashed black curves are for even n. Double-head
arrows mark the frequencies of the corresponding quadrupolarlike
q = 0 NW phonons. The right plot is for L = 30 nm with different
shapes for the NR ends (see text).

not vanish at q = 0. Vibrations similar to the quadrupolar
vibrations of the NSs are of course of interest since they
correspond to the most intense low-frequency Raman peak for
NSs. As presented in Table I, the branches of interest for the
NRs are the B1g and B2g ones. They are plotted in Fig. 4. The
B1g vibrations correspond to out of phase elongations along
both 〈100〉 directions perpendicular to the symmetry axis of
the NRs. For the B2g vibrations, the elongations are along the
〈110〉 directions. See Fig. 1 (bottom).

The first notable feature is the existence of isolated low-
frequency B1g and B2g modes for NRs with flat ends [Fig. 4
(left)]. Their frequencies at about 62 and 91 GHz hardly
depend on L. This is at odd with most other branches which
tend to stack up to form the phonon branches of the NWs as
L → ∞. These two isolated branches of the NRs can not be
related to the NW phonon branches plotted in Fig. 1. Looking
at the corresponding displacements reveals that the vibrations
are localized at both ends of the NRs. Libov [30] reported the
existence of such localized vibrations as m = 2 vibrations for
isotropic NRs with flat ends. In the present case they split due
to cubic anisotropy into B1g and B2g.

No such isolated branch is observed for NRs with half-
spheres at both ends [Fig. 4 (center)]. Obviously, the frequency
of vibrations localized at the ends depend on the shape of the

ends. Figure 4 (right) presents the variation of the frequencies
of the same vibrations for L = 30 nm as a function of the shape
of both ends of the NRs. The shape is defined by a spheroid
with two radii equal to R and the other radius Re varying from
0 for flat ends to R for half-sphere ends. The frequency of
the localized vibrations increases with Re and the isolated
branches couple and merge with the other branches. These
localized vibrations can be related to vibrations of the NSs. By
considering the associated displacements and the symmetry of
the vibrations, they were shown to be equivalent to the torsional
vibrations of an isotropic NS with � = 3 and m = ±2 whose
frequency is 154.39 GHz, which is larger than that of the l = 2
spheroidal mode at 106.20 GHz. They also split into B1g and
B2g when elastic and shape anisotropies are taken into account.
In all of these cases, the lowest-frequency quadrupolarlike
vibrations (see Table I) have a frequency lower than that of the
torsional-like vibrations coming from the � = 3 and m = ±2
vibrations. Therefore, for NRs with half-sphere ends, there are
no separate localized vibrations branches but rather coupled
localized and quadrupolarlike vibrations.

The frequency of confined quadrupolarlike B1g and B2g

vibrations was determined from the corresponding NW phonon
branch using q = (2n + 1)π

L
. The corresponding branches are

plotted in Fig. 4 (left and center). For NRs with flat ends,
the agreement between the frequencies for the NRs and the
ones determined from the NW phonon branches is good for
the B1g vibrations. The agreement is excellent for the B2g

vibrations above 110 GHz. The antisymmetric vibrations of
the same origin (B2u for B1g and B1u for B2g) are also plotted
for completeness. The agreement is not so good for NRs
with half-sphere ends. As discussed above, this is due to the
coupling with the localized vibrations. This coupling manifests
as complex anticrossing patterns due to the fact that branches
having the same irreducible representation do not cross. The
same rule explains the complex frequency variations for B2g

vibrations between 105 and 110 GHz. Contrarily to the exten-
sional and torsional vibrations discussed before, the frequency
variations of the NW quadrupolarlike B1g and B2g phonon
branches with q are not monotone. Their frequencies decrease
slightly at small q and then increase. The decrease is more
pronounced for B2g. As a result, the branches for the different
overtones of the calculated confined vibrations cross. This is
hardly noticeable for B1g but it is clearly visible for B2g. This
results in anticrossing patterns, which render the assignment
of the B2g vibrations to a specific overtone sometimes difficult
in this frequency range. This also explains why the lowest
B2g frequency does not match with the frequency of the NW
phonon branch at q = 0. It corresponds to the lowest frequency
of the phonon branch, which is at �105.7 GHz, i.e., about
5 GHz less than the q = 0 value. For B1g, this difference is
two orders of magnitude less (−0.07 GHz).

The quadrupolar vibration of the isotropic sphere
(spheroidal modes with � = 2 and degeneracy 5) split into
A1g + B1g + B2g + Eg in D4h. We have considered the A1g

(extensional) and B1g and B2g modes above. The frequencies
of the Eg modes are plotted in Fig. 3. At low frequency,
they correspond to overtones of the bending modes as already
discussed. Anticrossing patterns appear at 86.9 GHz, which
is the frequency of the Eg modes (degeneracy 2, q = 0) of
the corresponding NW. These are thickness-shear vibrations
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[31] whose displacement is along the z axis of the NW. One
mode corresponds to the x > 0 part of the NW moving along
+z while the x < 0 part moves along −z. The other mode
is obtained by replacing x by y. During such vibrations, the
external shape of the NW remains unchanged. Therefore,
a very small coupling with the surface plasmon resonance
is expected for the NW. For NRs, the frequencies of the
corresponding modes are plotted in Fig. 3 (top) using the same
procedure as before. In that case, the shape of the NRs varies
during the vibrations because they correspond to phonons
propagating along z with a nonvanishing wave vector (q = nπ

L
)

and also because of the shape of the ends. Still, the intensity
of the corresponding Raman peaks must tend to zero as the
aspect ratio of the NRs increases to turn into a NW.

5. Breathinglike modes

Applying the same procedure to breathinglike vibrations is
more challenging because of the convergence issues and also
because of the mixing with other vibrations. Convergence is
very good for the lowest-frequency vibrations but it decreases
as the vibration index increases. For L = 10 nm, the vibration
index for the breathinglike vibrations is about 100. For L =
60 nm, it is about 350. This is due to vibrations whose fre-
quency decreases as L → ∞ to form the NW phonon branches
at lower frequency. Convergence issues render calculations for
large L less reliable. In addition, several totally symmetric
A1g branches couple with the breathinglike vibrations. They
come from the spheroidal vibrations of the isotropic NS with
even � and m = 0. This results in several anticrossing patterns
in the L range investigated in this work. As seen before,
this renders the interpretation in terms of confined vibrations
less reliable. Two modifications are introduced to overcome
this issue. First, the breathinglike vibrations are identified
by looking at the volume variations. This enables to weight
the numerous A1g vibrations according to their breathinglike
character. The modes corresponding to the largest circles are
those that are expected to add up to form the feature associated
to the breathing mode in pump-probe or Raman experiments.
In addition, the NW phonon branch used for the calculation
of the confined vibrations is the one that was used as a guide
for the eye in Fig. 1. This results in a simpler picture, which is
free of anticrossing patterns. Figure 5 displays the resulting
branches and the confined vibrations calculated with q =
(2n + 1)π

L
. As expected, the calculated confined vibrations fail

to capture all the details of the complex coupling between the
numerous A1g branches. However, the first confined branch
matches quantitatively the vibrations having the largest volume
variation for both kinds of NRs. The following branch with the
largest volume variation is also reproduced for L > 40 nm.
A closer investigation of the anticrossing patterns in Fig. 1
reveals that the breathing branch couples with two almost flat
branches starting from the next two q = 0 A1g phonons at 274
and 323 GHz. The A1g vibrations of the NRs at about these two
frequencies have larger volume variations. As a conclusion,
while a main breathinglike feature definitively exists in Fig. 5,
which is correctly described in terms of a fundamental confined
vibration, other factors come into play, which may manifest in
experiments as close peaks or a broader peak.
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FIG. 5. Frequency of the A1g vibrations of NRs as a function of
L compared with the frequency of the confined vibrations calculated
at q = (2n + 1) π

L
from the NW breathinglike branch. The left plot is

for flat ends and the right one for half-sphere ends. The surface area
of each circle and the thickness of the curves are proportional to the
variation of the volume during the vibration. The frequencies of the
q = 0 A1g phonons of the NW are indicated with arrows.

C. Raman intensities

In order to illustrate the previous results, low-frequency
Raman spectra have been calculated and are presented in Fig. 6.
Similar calculations have been carried out until now only for
isotropic spherical NPs [32,33] using analytic expressions for
the vibrations (Lamb modes) and the electric field inside the
NPs (Mie solutions). Analytic expressions are not available
for the anisotropic and nonspherical NPs considered in this
work. To overcome this problem, the spectra in Fig. 6 were
calculated according to the method described in Ref. [33] [Eqs.
(11) and (12)], using the vibrations obtained previously and
assuming a constant electric field inside the NPs. As a result,
the calculation of the intensity comes down to evaluating the
Brillouin scattering term of Ref. [34], i.e., a volume integral
involving only the displacement field and the retardation effect
(e−iq.R). By expanding this last term as 1 − iq.R + · · · , the
calculation only requires us to evaluate volume integrals of
xlymzn functions for which analytical expressions exist as in
the Rayleigh-Ritz approach presented before.

The validity of this approach is dubious since the variation
of the electric field inside the NPs is not taken into account.
For example, it fails to reproduce the depolarized scattering by
the quadrupolarlike modes. Still, the spectrum calculated for
the isotropic spherical NP is similar to the one in Ref. [33].
For this reason, the calculated spectra are expected to provide
an insightful first-order approximation of actual Raman mea-
surements.

The spectra in Fig. 6 were calculated using all the vibration
modes confirming that only the Raman-active ones contribute
to the spectra. All the Raman peaks were convoluted by a
Lorentzian function (full width at half-maximum 2 GHz). The
calculations were performed for the backscattering geometry
along [100] (line) and [110] (dotted line) with the light
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FIG. 6. Calculated low-frequency Raman spectra for a sphere
made of isotropic gold (top) and a sphere, a cylinder with flat ends
and a cylinder with half-sphere ends made of cubic gold from top to
bottom. The normalized spectra are calculated for the backscattering
geometry along [100] (line) and [110] (dashed line) with the light
polarization along [001]. The radius of the spheres and cylinders is
5 nm. The length of the cylinders is 30 nm (L/d = 3). The lines show
the frequency changes and splittings for the quadrupolar vibration
(left, blue online) and the breathing vibration (right, red online) as the
elasticity and shape change.

polarization along [001]. They clearly confirm the previously
discussed features, namely the presence of intense peaks for
the quadrupolarlike A1g (extensional), B1g, and B2g modes, no
significant scattering from the localized vibrations (flat ends)
and the Eg modes, and small peaks for the breathinglike vibra-
tions. Deviations from these calculations are expected because
of the variations of the electric field inside the nanoparticles
even for isotropic spheres [33]. Larger deviations can also
occur when NPs are close enough that the surface plasmons of

neighbor NPs couple. In that case, new low-frequency Raman
peaks may appear as recently observed in gold nanoparticles
supermolecules [35].

IV. CONCLUSION

The vibrations of gold NRs have been investigated in order
to point out the experimentally relevant ones and in particular
those that are expected to have the largest Raman cross
sections. To this end, gold NRs and NWs have been considered
using the Rayleigh-Ritz variational method. The symmetry and
the volume variation of the modes were determined. Raman
spectra have also been calculated by considering only the
Brillouin scattering mechanism. Elastic anisotropy is shown
to play a major role for NWs made of single-domain cubic
gold. The vibrations of NRs with flat ends have been compared
with confined vibrations obtained as phonons of the NW at
fixed wave vector q = nπ

L
. The frequencies of most vibrations

of the NRs can be estimated quickly and rather accurately
using only the dispersion curves of the NW and the length
of the NRs. This simple picture enabled us to understand
qualitatively and often quantitatively the origin of the main
Raman active vibrations including the totally symmetric ones,
which are of interest in time-domain measurements. Localized
B1g and B2g vibrations have been identified. Their Raman
scattering cross sections are small because they are related to
torsional vibrations of the NSs. However, the Raman intensities
calculated in this work would have to be reconsidered in
particular when surface-enhanced Raman scattering conditions
are met, for example when the ends of neighbor NRs are very
close. This study also quantifies the influence of the shape of
the ends of the NRs. Differences between flat and half-sphere
ends are small as far as fundamental vibrations are concerned.
Larger differences exist for overtones. Vibrations localized
at the ends of the NRs are also strongly affected. However,
observing these differences in experimental measurements is
very challenging. On the contrary, the major role played by
elastic anisotropy has been highlighted. The resulting splitting
of the quadrupolarlike vibrations is expected to be a clear
signature of the single-domain cubic gold inner structure as
already reported for NSs [11].
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