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Investigating the nature of chiral near-field interactions
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In recent years, there have been reports of enhanced chiroptical interactions in the near-fields of antennas,
postulated to be mediated by high spatial gradients in the electromagnetic fields. Here, using gigahertz
experimentation, we investigate the nature of the chiral near-field generated by an array of staggered-rod antennas
through its interaction with an array of aligned, subwavelength metallic helices. This allows us to eliminate many
potential origins of enhancements, such as those associated with plasmon-exciton interactions, and search solely
for enhancements due to the high spatial gradients in the chirality of the fields around chiral antennas (so-called
‘superchiral fields’). By comparing the strength of the chiral interaction with our helices to that of a homogeneous
chiral layer with effective material parameters, we find that the strength of this chiral interaction can be predicted
using a completely local effective medium approximation. This suggests no obvious enhancement in the chiral
interaction in the near-field and indicates that nonlocal interactions are negligible in this system.

DOI: 10.1103/PhysRevB.97.155418

I. INTRODUCTION

Throughout nature we find objects and systems that are
distinguishable from their reflection in a mirror: from simple
amino acids to the complex proteins they constitute. These
objects are chiral and can exist in two states (enantiomers)
of opposite handedness, where one enantiomer is the mirror
image of the other. Handedness is fundamental in determining
how a molecule will interact with its environment, and there
are numerous examples of biologically inert or beneficial
molecules with an ‘evil twin’ [1]. The ability to distinguish
different enantiomers is therefore of paramount importance,
for example, for safe and efficient drug production.

One of the few ways to distinguish enantiomers is through
their differing chiroptical interactions with chiral electromag-
netic (EM) fields, such as in circular dichrosim. This problem
becomes particularly interesting when we step away from
the dipolar regime, i.e., when we can no longer assume that
molecules are subwavelength and act as dipoles under plane-
wave excitation. Several recently published papers report a
large enhancement (up to 6 orders of magnitude) in the strength
of chiroptical interactions involving biomolecules on chiral
plasmonic structures [2–5] and in the nodes of chiral standing
waves [6]. It has been proposed that these strengthened inter-
actions are mediated by ‘superchiral’ fields and allow more
sensitive detection and efficient selection of chiral molecules
and even indicate their hierarchical structure [7]. However,
the nature and origin of this enhancement remain difficult to
decipher [3,8,9] because many factors come into play in these
complex systems, and spin and orbital angular momenta are
not well defined [10–12]. There are also several measures of
chirality that may be employed [13–15], further complicating
analysis.
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One proposed interpretation of the observed chiral en-
hancement in the vicinity of nanoparticles has its origins
in multipolar contributions to the chiroptical interaction [2],
originating from spatial gradients in the electric field [16].
Normally multipolar contributions can be ignored, as they are
origin dependent and average to 0 within the random dipole
approximation (where the constituent molecules are small
and randomly oriented). However, for a surface composed of
resonant plasmonic antennas, which give rise to very large
spatial gradients in the fields, the contribution from such terms
to the strength of a chiral interaction with adsorbed molecules
remains unclear [17–20].

In this paper we study how chiral EM near-fields interact
with helical ‘molecules.’ The chiral fields are generated by
illuminating a staggered pair of rod antennas with gigahertz
radiation [21], while very subwavelength metallic helices
act as the molecules. It is thought that multipolar, nonlocal
contributions can be significant when the EM field changes
on a length scale comparable to the size of the chiral element
[22,23], as is the case in our strongly evanescent chiral near-
fields. Our experiment is designed to test whether contributions
to the chiral interactions exist that are not predicted by models
that assume an effective homogeneous chiral medium, i.e.,
one where there are no discrete chiral elements of a size
comparable to the wavelength scale. However, we discover that
the strength of this chiral interaction can be predicted using an
effective medium approximation, describing the helical layer
with wave-vector-independent permittivity, permeability, and
chirality material parameters. This indicates that multipolar
chiral effects do not contribute significantly to the chiroptical
interaction in the near-field.

II. THE STAGGERED-ROD ANTENNA ARRAY

Throughout this work we follow the definition of EM
chirality introduced by Tang and Cohen [24]. They define
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the chirality of a time-varying EM field as the time-even
pseudoscalar,

C = 2ωI(Ẽ∗ · B̃), (1)

where Ẽ and B̃ are complex electric and magnetic fields,
respectively, and ω is the angular frequency. In other words,
the chirality of a field is proportional to the product of parallel
components of the electric and magnetic fields that have a ±π

2
phase difference. The chirality of a circularly polarized wave,
assuming unit intensity, is therefore C = ±2ω/c, where the
± correspond to right- and left-handed waves. We use this
definition to design antennas that generate chiral fields on
resonance, following [21].

Consider the fundamental resonance of a half-wavelength
rod antenna: on resonance, a current maximum (and corre-
sponding maximum in magnetic field) is found at its midlength,
while the electric field is concentrated at both ends of the
rod. Though rod antennas do not possess chiral symmetry by
themselves, one can arrange them in two-dimensional chiral
ensembles by staggering them [21]. To obtain a strong overlap
between the electric- and the magnetic-field regions, they can
be arranged in pairs as shown in Fig. 1(a): for this arrangement,
and because of the fixed (±π

2 ) phase relationship between
electric and magnetic fields of the eigenmodes of the staggered
geometry, a chiral EM field is generated at the center of the
unit cell. The nature of this field differs from that of circularly
polarized waves, in that the EM chirality decays quickly in
space. This is illustrated in Fig. 1(a), which shows the chiral
density of the EM field above and below one unit cell of the
array as calculated using Eq. (1). This large spatial gradient
in the field, in principle, should allow coupling to multipolar
modes of an object in the vicinity of the field, as it contains
high wave-vector components.

Figure 1(b) shows the transmission spectrum of the
staggered-rod array: both experimental data and the results
of a finite-element method (FEM) model (COMSOL Multi-
physics). (Note that the frequency range of the presented data
is limited by the parameter extraction technique, explained
below.) A resonant dip in the intensity of transmission at
16 GHz, where the wavelength is roughly equal to twice
the length of one rod, is evident when the polarization of
the incident electric field is parallel to the major rod axis.
At this resonance the fields around the antennas satisfy the
definition in (1) and the chirality of the near-fields is strong.
Hence it is in this region (and below, as the resonance shifts
to lower frequencies upon placing a chiral material next to the
antenna array) that we focus most of our attention. The circular
transmission coefficients τ can be calculated from the four
complex linear transmission coefficients t , using the equations

τ±± = txx + tyy ± i(txy + tyx)

2
, (2)

τ±∓ = txx − tyy ∓ i(txy − tyx)

2
. (3)

The first subscripts on τ and t denote incident polarization
[right-handed (+) and left-handed (−) circular polarizations,
or x and y linear polarizations]; the second subscript is the
detected polarization. These are used in the calculation of
circular dichroism (CD). Since circular polarization conversion

FIG. 1. (a) Schematic of the staggered-rod antenna array. The
surface plots at the right illustrate the chirality of the modeled
fields 0.4 and 0.8 mm above and below a unit cell at the resonant
frequency of 16 GHz, normalized to a circularly polarized plane
wave. The dimensions are α = 2.6 mm, β = 300 μm, px = 3 mm,
py = 9.1 mm, lrod = 6.4 mm, and wrod = 200 μm; the rods have
a thickness of β = 35 μm. (b) Finite-element-method (FEM) model
predictions of the transmission of linearly polarized radiation through
the staggered-rod array, with polarization along the rod axis (y
polarized). Inset: Comparison between experimental (circles) and
simulated (line) transmission in the frequency region of interest. (c)
FEM predictions of the circular dichroism (CD) of the staggered-rod
array. Inset: Comparison between experimental (circles) and predicted
(line) CD in the region of interest.

is a signature of anisotropy, not chirality, we ignore these con-
tributions and consider only the conserved circular polarization
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components in the calculation:

CD = |τ++|2 − |τ−−|2
|τ++|2 + |τ−−|2 . (4)

Figure 1(c) shows the CD of the staggered-rod antenna
array obtained from both the FEM model and the experimental
measurements. With the extremely subwavelength thickness
(35 μm) of the antenna array, its CD is small but nonzero due
to the presence of the substrate, which breaks the out-of-plane
symmetry.

III. THE HELICAL MATERIAL

To probe the interaction of the chiral near-fields gener-
ated by the array of staggered-rod antennas, we use a two-
dimensional rectangular array of steel helices. The helices each
have three turns, and dimensions [illustrated in Fig. 2(a)] such
that they are subwavelength across the investigated frequency
range and can be considered to be perfectly electrically con-
ducting. The pitch of the array was also chosen to mismatch
that of the staggered-rod antenna array, so that on average
the relative positions of individual helices and antennas will
not contribute to the measurements; i.e., we eliminate any
origin-dependent effects. The major axes of all the helices are
aligned in the same direction, making the array anisotropic as
well as chiral, hence ensuring that we are able to probe any
contributions to the chirality of the interaction from spatial
gradients in the near-fields. The helices are placed into an array
of rectangular-cross-section indentations in an additive-layer
printed dielectric plate (relative permittivity of 2.73 + i0.27
across the frequency band of interest, determined from strip-
line measurements). A thin layer of paraffin wax was used to
secure the helices in place.

We now study the EM response of the helix array (plus
dielectric plate) in isolation: its transmission and CD are
measured using the approach described for the staggered-rod
antennas [Eqs. (2)–(4)] and are shown in Figs, 2(b) and 2(c).
When the incident radiation is polarized along the major axis
of the helices, the resonant dip in transmission occurs for a
wavelength equal to roughly twice the length of the wire in the
helix. Importantly the CD of the helix array in the frequency
range where the staggered rods are resonant is relatively small,
shown in the inset in Fig. 2(c). Working below the fundamental
resonance of the helical material is reminiscent of typical
biosensing experiments [1] and provides the opportunity to
enhance the CD in a spectral region where it is not already
large.

Since the helices in the layer are very subwavelength, one
might assume that a homogenized description of the helix array
may be sufficient. However, the effective medium approxima-
tion, by definition, assumes that the elements comprising the
material are infinitely small compared to the wavelength, hence
this model will not encompass any multipolar contributions
to the chiral interaction. It should be noted that, as there is
only a single layer of helices, the system is best described as
a metasurface, rather than bulk metamaterial. This is evident
because the value of extracted parameters will change with
the addition of extra layers. However, an effective medium
description of a metasurface of this kind has proven useful in
various other systems [25,26]. Such an effective medium is

FIG. 2. (a) Schematic of the helical layer with an enlargement of
one unit cell. The dimensions arephelix = 0.4 mm,dhelix = 0.72 mm,
lx = 2.0 mm, and lt = 1.4 mm. (b) Simulated transmission of lin-
early polarized radiation through this layer with the polarization along
the helix axis (x polarized). Inset: Comparison between experimental
(circles) and simulated (line) transmission in the frequency region
of interest, i.e., around the resonance of the staggered-rod array
[Fig. 1(b)], and reliable parameter extraction. (c) Simulated circular
dichroism for this layer. Inset: Comparison between circular dichro-
ism of the array of helices extracted from a full FEM model with a
helix unit cell (line) using the unit cell in (a), a FEM model using
an effective medium description of the array (open red circles), and
experimental data (filled black circles).

described by a tensorial permittivity, ε, permeability, μ, and
chirality, κ , which characterize the electromagnetic response
of the system under plane-wave excitation. The constitutive
relations for a such a material are

D̄ = ¯̄ε · Ē + ¯̄ξ · H̄ (5)

and

B̄ = ¯̄ζ · Ē + ¯̄μ · H̄ , (6)
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where D̄ and B̄ are the electric displacement and magnetization
of the material, Ē and H̄ are the electric and magnetic fields, ¯̄ε
and ¯̄μ are the permittivity and permeability of the material, and
¯̄ζ = − ¯̄ξ are the cross-coupling material parameters. Through-
out the analysis we assume an eiωt time dependence to the
waves. In general the material parameters are 3 × 3 tensors that
may have off-diagonal components. However, as we assume
that the material is uniaxially anisotropic, the permittivity and
permeability take the forms

¯̄ε =
⎛
⎝εxε0 0 0

0 εtε0 0
0 0 εtε0

⎞
⎠ (7)

and

¯̄μ =
⎛
⎝μxμ0 0 0

0 μtμ0 0
0 0 μtμ0

⎞
⎠, (8)

where the subscript t denotes the direction transverse to the
major helix axis, equivalent to both y and z. ε0 and μ0 are the
permittivity and permeability of the free space, respectively.
A further simplification we make is that the material only has
chirality, κ , along one direction (the major helix axis, x), and
so the cross-coupling parameters have the form

¯̄ξ =
⎛
⎝−iκ

√
μ0ε0 0 0

0 0 0
0 0 0

⎞
⎠ (9)

and

¯̄ζ =
⎛
⎝iκ

√
μ0ε0 0 0
0 0 0
0 0 0

⎞
⎠. (10)

We ignore the small chiral response perpendicular to the
helix axis, which is due to the finite number of turns in each
helix. An analytical description of the complex reflection and
transmission coefficients through an anisotropic chiral material
can be derived by substituting the above constitutive relations
into the wave equation and applying appropriate boundary
conditions to the electric and magnetic fields, following [27].
More details on the calculations are given in Appendix C.
The homogenized parameters describing our chiral material
are derived by fitting the complex reflection and transmission
spectra predicted from a full FEM model to these analytical
predictions. The frequency-dependent extracted parameters
are plotted in Appendix C, along with an outline of the
extraction technique and limitations. It should be noted that
this extraction technique will only yield reliable results at
frequencies away from the helix resonance, where the layer
has a subwavelength thickness, in the frequency range where
the staggered-rod array is resonant. Hence the spectra are only
reported to a maximum frequency of 16 GHz. The inset in
Fig. 2(c) shows the CD of the effective (i.e., homogenized)
medium (open red circles) compared to the experimental
results and full (helix unit-cell) FEM model.

IV. PROBING THE CHIRAL NEAR-FIELDS

We now consider the response of the combined system: the
helical layer placed on one face of the rod antenna array. To

FIG. 3. (a) Experimental chiral antenna dichroism (CAD) of the
helix layer, for helices oriented parallel (gray triangles) and perpen-
dicular (black circles) to the major rod axis. (b) Simulated (FEM)
CAD using an effective medium representation of the helical array
with the chirality material parameter, κ , oriented parallel (dashed gray
line) and perpendicular (solid black line) to the major rod axis.

define the strength of interaction between the chiral fields gen-
erated by the staggered-rod antennas and the helical layer, it is
necessary to introduce a new quantity: chiral antenna dichroism
(CAD) [2]. As a near-field analogy of circular dichroism, where
field handedness is generated by the symmetry of the antenna,
CAD is a measure of the difference in intensity of the radiation
transmitted through the combined system when the handedness
of the antenna (staggered-rod array) is switched, normalized
to the sum of the two measurements:

CAD = |τLH|2 − |τRH|2
|τLH|2 + |τRH|2 , (11)

where the subscript on τ represents the handedness of the
antenna array (as seen from the side closest to the helices). We
expect a nonzero value of CAD only when a chiral material is
within the near-fields of the antennas, indicating a difference in
coupling between RH and LH antennas. Figure 3(a) shows the
experimentally measured CAD when the helices are parallel
and perpendicular to the major axis of the rods. It is clear
that, since the CAD is nonzero, we are able to probe the chiral
interaction between the antenna array and the helical array in
a manner similar to that in [2].

At this point, we consider the nature of this chiral interac-
tion. It is interesting to note that the CAD [Fig. 3(a)] of the
helical array is of a similar magnitude to its circular dichroism
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[Fig. 2(c)] in the same frequency range. This suggests that any
enhancement in the interaction due to the presence of rapidly
decaying near-fields is too small to contribute significantly to
the measurement. Furthermore, the measured CAD of helices
oriented parallel and perpendicular to the rod axis are very
similar. This indicates that the helical array is not especially
sensitive to the spatial variation of the chiral near-fields around
the staggered-rod antennas.

It is therefore prudent to question whether we observe any
evidence of nonlocality in the chiral interaction, i.e., whether
the spatial gradients allow coupling to multipolar modes
and whether this affects the observed CAD. If a nonlocal
contribution is significant, a completely local description of
the helical material, as described above, would be inadequate
to describe the interaction. Instead, we would need to adopt
a nonlocal description of the helical metamaterial, where the
material parameters are a function of both the frequency and the
wave vector. To determine if this is indeed the case, in Fig. 3(b)
we present the CAD calculated from a FEM model with an
effective medium, described by ε, μ, and κ , substituted for
the array of helices. Results are shown for the chiral material
parameter, κ , oriented both parallel and perpendicular to the
major rod axis. (Note that we do not expect good agreement
with experiment [Fig. 3(a)] in the parallel chirality case, due to
approximations made in the analytical description [27].) The
pivotal point is that the orders-of-magnitude enhancements
predicted in previous works [2,3,7] are not observed here. Con-
sidering the approximations used in the model, it is remarkable
that, although the exact frequency dependence of the spectra
are not perfectly replicated, the sign and magnitude closely
resemble those of the experimentally measured CAD. This
suggests that nonlocal effects and multipolar enhancements
do not contribute significantly to our CAD measurement; the
array of helices is essentially behaving as a local material.
Indeed, it is clear that the contribution to the chiral interaction
from multipolar components in the field is minimal.

V. SEPARATION DEPENDENCE OF CHIRAL
ANTENNA DICHROISM

To further understand the interaction between the helices
and the evanescently decaying fields close to the staggered-rod
array, a study of the separation dependence of the CAD was also
carried out. The experimental results in Fig. 4(a) show a slightly
counterintuitive result. If we were to assume that the CAD is a
near-field effect, we would predict that as the helices are moved
out of the near-fields the CAD should decrease exponentially.
However, we see that the CAD actually increases with in-
creasing separation. This can be explained as a Drexhage-like
effect [28]. When the helical material, comprised of discrete
scatterers, is close to the rod array (which acts like a poor mir-
ror), image currents and image polarizations in the mirror act
to cancel the field scattered by the helices [29]. These ‘image’
helices are of the opposite handedness to the helices in the real
helical material, so it is no surprise that the CAD is small when
the helices and the rod array are close to each other [30]. As the
separation is increased, but is still less than one wavelength,
the image helices become weaker and the CAD increases. This
effect is also seen when the electric-field intensity is measured
just above the rod array using a dipole antenna. If the sepa-

FIG. 4. (a) Experimentally measured chiral antenna dichroism
(gray circles, corresponding to left y axis) as a function of the
separation, for helices perpendicular to the major rod axis at 16 GHz.
Black triangles (corresponding to right y axis) show the electric-field
intensity measured by a small dipole antenna as a function of its
distance from the rod array, also at 16 GHz. (b) Simulated chiral
antenna dichroism of the effective medium (gray line, corresponding
to left y axis) at 16 GHz as a function of the separation; electric-field
intensity (black line, corresponding to right y axis) extracted from a
FEM model from the center of a staggered-rod unit cell, as a function
of the distance from the rod array at 16 GHz.

ration is increased beyond one wavelength, the characteristic
oscillations of the Drexhage effect are also observed.

However, this effect is not seen in the case of the effective
medium model, as here there are no discrete scatterers, which
are necessary to observe the Drexhage effect. Therefore we
see a decay of the CAD with increasing separation. This decay
follows well the decay of the electric-field intensity away
from the center of one unit cell in the antenna array, extracted
from the FEM model, as plotted in Fig. 4(b).

From these data we can draw the conclusion that the
presence of discrete chiral elements in the helical array does
influence the CAD as a function of the separation between
the helical material and the antenna array. Still, no significant
enhancement is present over the effective medium approxima-
tion. It also highlights the fact that interactions between chiral
materials and structured surfaces are more complicated than is
apparent at first glance, and the full details of the mechanisms
behind such interactions have yet to be fully understood.

VI. CONCLUSION

In this paper, the chiral EM near-fields generated by an array
of staggered-rod antennas were investigated using an array
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of metallic helices as a probe. The chiral antenna dichroism
(CAD) was used as a measure of the interaction strength be-
tween the chiral near-fields and the helices. This was measured
experimentally and compared to a model of an equivalent
homogeneous medium. It was found that the CAD of the helical
array could be predicted fairly accurately by approximating it
as a homogeneous chiral material. It is therefore clear that the
nonlocal contribution to the chiral interaction is minimal.

However, there are a number of important differences
that may account for discrepancies between our experiments
and those in [2]. First, the frequency of radiation used in
this report is much lower than that reported in [2]. As a
result, the contribution to the interaction from the plasmonic
behavior of the antennas is not included. It is well accepted
that the concentrated electric fields around plasmonic particles
can increase the excitation rate of molecules, increasing the
sensitivity with which they are detected in general [31]. Recent
works have also claimed large enhancements in the circular
dichroism measured from chiral molecules placed on achiral
plasmonic structures [32], [33], proposing that the enhanced
circular dichroism is due to strong absorption in the metal at the
plasmon frequency [34]. In such circumstances the plasmon-
exciton interaction is key, and the spatial structure of chiral
evanescent fields around the particles themselves is likely to
play little, if any, role. Another important factor may be the
alignment of molecules adsorbed on a surface in [2]. The ori-
entation of molecules with respect to the electric-field vectors
in the vicinity of the plasmonic particles has been shown to play
an important role in the magnitude of CD signals in [35] and,
also, suggested in [36] and [37]. Once again this effect seems to
rely on plasmonic enhancement through a Purcell-type effect,
and not directly on the spatial structure of chiral evanescent
fields. In any respect, it is explicit that the origin of the signal
enhancement in [2] demands further investigation.

VII. DATA AVAILABILITY

All data created during this research are openly available
from the University of Exeter’s institutional repository in
Ref. [38].
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APPENDIX A: FABRICATION

The staggered-rod antennas were manufactured using a
lithographic technique; 1.6-mm-thick printed circuit boards
with a 35-μm-thick layer of copper and a positive resist
were exposed under a UV lamp with an appropriate mask,
then developed and etched in ferric chloride to produce an

array of copper rods. Two of these were created, one of each
handedness, as the presence of the FR4 substrate prevented
the use of both sides of the one piece. The final arrays were
260 × 260 mm in size and contained 54 × 9 unit cells in a
rectangular lattice.

The helices, manufactured by Huidong Linglong Spring
Co., Ltd., were placed within a dielectric grid made using
a selective laser sintering technique from 3D Systems On
Demand Manufacturing, QuickParts. No attempt was made
to azimuthally align the helices. A thin layer of paraffin wax
(permittivity, 2.2 + i0.0044) was poured on top to secure the
helices in place, then polished to a smooth surface.

APPENDIX B: MEASUREMENT

The experimental measure of the transmission was obtained
by placing the sample between two collimating mirrors, with
standard-gain horn antennas at the focus of each of the mirrors,
both of which are connected to a vector network analyzer (An-
ritsu MS4644A). One horn antenna emits linearly polarized
microwave radiation, which, upon reflection from the mirror,
becomes a near-collimated beam with approximately planar
wave fronts. The second horn antenna collects the refocused
radiation after it has passed through the sample and been re-
flected from the second collimating mirror. All measurements
are carried out at normal incidence. Each of the horn antennas
can be azimuthally rotated by 90◦, allowing the collection of
four polarization-dependent, complex S parameters.

APPENDIX C: PARAMETER EXTRACTION

1. Analytic reflection and transmission coefficients

In the text, a material consisting of a single layer of aligned
metallic helices embedded in a dielectric host is described
using an effective parameter approximation. The resultant
homogenized material is uniaxially anisotropic and chiral, with
the chirality acting only along one direction (the major axis of
the helices, x). The effective material parameters are extracted
by fitting analytical complex reflection and transmission coef-
ficients to those obtained from a FEM model. These analytical
reflection and transmission coefficients are found by deriving
the wave equation in a material with constitutive relations as
given in Eqs. (5) and (6) in the text from the standard Maxwell’s
equations and eliminating D̄, B̄, and H̄ :

� × ( ¯̄μ−1 · � × Ē) + iω[� × ( ¯̄μ−1 · ¯̄ξ · Ē) − ¯̄ζ · ¯̄μ−1

·(� × Ē)] + ω2( ¯̄ζ · ¯̄μ−1 · ¯̄ξ · Ē − ¯̄ε · Ē) = 0. (C1)

Solving this wave equation for the case of a plane wave
propagating in the +z direction we find the wave numbers
of the two elliptically polarized modes for the material:

k2
1,2 = ω2

⎡
⎣εx μt + εtμx

2
±

√(
εxμt − εtμx

2

)2

+ εtμtζ ξ

⎤
⎦.

(C2)

Considering a plane wave normally incident on the material
from the −z direction we define the incident, reflected, and
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transmitted electric fields and use these to find the reflection
and transmission coefficients for waves co- and cross-polarized
to the incident wave polarization:

Rco = Er
coe

−ikdzin

E0eikdzin
, (C3)

Rcr = Er
cre

−ikdzin

E0eikdzin
, (C4)

Tco = Et
coe

ikdzout

E0eikdzin
, (C5)

Tcr = Et
cre

ikdzout

E0eikdzin
, (C6)

where kd = ω
√

μdεd is the wave vector in the dielectric
medium surrounding the helices, zin is the plane of the material
where the plane wave is incident, and zout is the plane of the
material through which the wave is transmitted.
By matching the tangential E and H fields at the two bound-
aries of the material we arrive at an analytical description of the
reflection and transmission coefficients in terms of the material
parameters,

⎡
⎢⎣

Rco

Rcr

Tco

Tcr

⎤
⎥⎦ = ( ¯̄N − ¯̄M2 · ¯̄

M−1
1 · ¯̄N

)−1 · (
W̄ + ¯̄M2 · ¯̄

M−1
1 · W̄

)
, (C7)

where the matrices are

¯̄N =

⎡
⎢⎣

sin φ − cos φ 0 0
cos φ sin φ 0 0

0 0 sin φ cos φ

0 0 − cos φ sin φ

⎤
⎥⎦, (C8)

W̄ =

⎡
⎢⎣

sin φ

cos φ

0
0

⎤
⎥⎦, (C9)

¯̄M1 =

⎡
⎢⎢⎢⎢⎣

−ik2
t k0κ

k1

ik2
t k0κ

k1

−ik2
t k0κ

k2

ik2
t k0κ

k2

k2
x − k2

1 k2
x − k2

1 k2
x − k2

2 k2
x − k2

2
−ik2

t k0κe−ik1d

k1

ik2
t k0κeik1d

k1

−ik2
t k0κe−ik2d

k2

ik2
t k0κeik2d

k2(
k2

1 − k2
x

)
e−ik1d

(
k2

1 − k2
x

)
eik1d

(
k2

2 − k2
x

)
e−ik2d

(
k2

2 − k2
x

)
eik2d

⎤
⎥⎥⎥⎥⎦, (C10)

and

¯̄M2 = ktηd

ηt

⎡
⎢⎢⎢⎢⎣

ik0κ ik0κ ik0κ ik0κ

k2
1−k2

x
k1

k2
x−k2

1
k1

k2
2−k2

x
k2

k2
x−k2

2
k2

−ik0κe−ik1d −ik0κeik1d −ik0κe−ik2d −ik0κeik2d

(k2
1−k2

x)e−ik1d

k1

(k2
x−k2

1)eik1d

k1

(k2
2−k2

x)e−ik2d

k2

(k2
x−k2

2)eik2d

k2

⎤
⎥⎥⎥⎥⎦, (C11)

where φ is the angle of incident polarization, k0 is the free-
space wave vector of the incident radiation, k1,2 are the wave
vectors in the material as defined in Eq. (C2), kt = ω

√
μtεt

is the wave vector transverse to the direction of the chirality,

ηt =
√

μt

εt
is the impedance in this direction, kx = ω

√
μtεx is

the wave vector along the direction of the chirality, ηd =
√

μd

εd

is the impedance of the dielectric medium in which the helices
are embedded, and d is the thickness of the material. A more
complete derivation of these equations can be found in [27].

2. Fitting and parameter extraction

Equation (C7) can be used to describe the reflection and
transmission through the helical material under plane-wave

excitation. The complex material parameters embedded in this
equation (εx, εt, μx, μt, and κ) were extracted using data
from a finite-element method (FEM) model of an infinite
array of metallic (perfectly electrically conducting) helices
within a dielectric host. This is in good agreement with
the experimentally measured results, as shown in Figs. 2(a)
and 2(b).

For this extraction, a nonlinear least-squares algorithm was
employed to minimize the difference between co- and cross-
polarized reflection and transmission coefficients taken from
the FEM model and those calculated from Eq. (C7). This was
performed for a single frequency at a time, for four angles of
incident polarization (φ), equally spaced across 2π radians,
ensuring that the system was not undersampled. By starting
at very low frequencies, where the chirality is almost 0 and
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FIG. 5. (a) Real and (b) imaginary parts of the relative material
parameters: chirality (κ), which acts along the x axis, equivalent to
the major helix axis; permittivity (ε), along the x and y axes: and
permeability (μ), which is the same along both the x and the y axis.

the permeability is almost 1, we were able to use a simplified
model to extract only the permittivity and use this as an initial
value in the fitting algorithm. The frequency was progressed,
and the parameters extracted at the previous frequency were
used as the initial guess for the next. In this way the global
minimum of the function was found at each frequency.

However, the extraction becomes increasingly difficult
as the frequency is further increased towards the resonant
frequency of the helical metamaterial. Once the thickness
and index of the material become such that more than one
wavelength fits inside the layer, the extracted parameters are no
longer representative of the material. Therefore, the extracted
parameters are presented up to 16 GHz in Fig. 5. It should also
be noted that, close to the helix resonance, the meta-atoms are
no longer significantly subwavelength, and the reliability of
any local effective parameter approximation is greatly reduced.
The range covered does include the resonant frequency of the
staggered-rod antennas and, so, is acceptable for this work.

APPENDIX D: SIMULATION

1. Helix unit cell and antenna array models

The FEM modeling reported here was performed using
COMSOL Multiphysics. Similar models are used for both the
staggered-rod antenna array and the helical material. A ‘vac-
uum box’ of a height greater than one wavelength is constructed

to define a unit cell, with Floquet periodic boundary conditions
in thex andy directions to simulate an infinite two-dimensional
array. Floquet ports are placed on parallel faces and used to
launch and detect linearly polarized plane waves above and
below the sample. All metallic elements are modeled using
perfect-electric-conductor boundary conditions.

2. Effective chiral medium model

When modeling an effective chiral material in COMSOL,
simply adjusting the constitutive parameters of the layer is not
adequate. It is necessary to adjust the wave equation in one
domain of the model to take into account the cross terms in
the constitutive relations [Eqs. (5) and (6)]. New definitions
of the polarizability are set to take care of the contribution to
polarization from the incident magnetic field according to

Px = ε0(εxxEx + εxyEy + εxzEz − Ex) − iκxxHx

c
, (D1)

Py = ε0
(
εyxEx + εyyEy + εyzEz − Ey

) − iκyyHy

c
, (D2)

Pz = ε0(εzxEx + εzyEy + εzzEz − Ez) − iκzzHz

c
. (D3)

The magnetization from the incident electric field is included
by adjusting the time derivative of the magnetization,

dHx

dt
=

(
dBx

dt
+ k0κxEx

)
(μ0μxx)−1, (D4)

dHy

dt
=

(
dBy

dt
+ k0κyEy

)(
μ0μyy

)−1
, (D5)

dHz

dt
=

(
dBz

dt
+ k0κzEz

)
(μ0μzz)

−1, (D6)

and defining the magnetization of the material based on these
equations:

Hx = dHx

dt
(iω)−1, (D7)

Hy = dHy

dt
(iω)−1, (D8)

Hz = dHz

dt
(iω)−1. (D9)

In the above equations, Px,y,z and Hx,y,z are the polarization
and magnetization of the material along the direction specified
in the subscript, respectively. Ex,y,z and Bx,y,z are the electric
and magnetic fields acting on the material along the directions
in the subscript, respectively. ε0 and μ0 are the permittivity
and permeability of the free space. k0 and ω are the free-space
wave vector and angular frequency of the incident wave. εnm,
μnm, and κnm are components in the relative permittivity,
permeability, and chirality tensors of the material, where n

specifies the direction in which the exciting field acts, and m

is the direction along which the material response is as defined
in Eqs. (7)–(10) in the text.

155418-8



INVESTIGATING THE NATURE OF CHIRAL NEAR-FIELD … PHYSICAL REVIEW B 97, 155418 (2018)

[1] W. Francote and E. Linder (eds.), Chirality in Drug Research
(Wiley/VCH, Weinheim, Germany, 2006).

[2] E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V.
Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron,
N. Gadegaard, and M. Kadodwala, Nat. Nanotechnol. 5, 783
(2010).

[3] T. J. Davis and D. E. Gómez, Phys. Rev. B 90, 235424
(2014).

[4] Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, Nat.
Commun. 8, 14180 (2017).

[5] W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A.
Kotov, Nat. Commun. 4, 2689 (2013).

[6] Y. Tang and A. E. Cohen, Science (NY) 332, 333 (2011).
[7] R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N.

Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn,
and M. Kadodwala, J. Am. Chem. Soc. 137, 8380 (2015). .

[8] E. Gorecka, M. Čepič, J. Mieczkowski, M. Nakata, H. Takezoe,
and B. Žekš, Phys. Rev. E 67, 061704 (2003).

[9] N. Meinzer, E. Hendry, and W. L. Barnes, Phys. Rev. B 88,
041407 (2013).

[10] K. Bliokh, F. Rodríguez-Fortuño, F. Nori, and A. Zayats, Nat.
Photon. 9, 796 (2015).

[11] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, Nat. Commun. 5,
3300 (2014).

[12] K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello,
Phys. Rev. A 82, 063825 (2010).

[13] M. M. Coles and D. L. Andrews, Phys. Rev. A 85, 063810 (2012).
[14] L. V. Poulikakos, P. Gutsche, K. M. McPeak, S. Burger, J.

Niegemann, C. Hafner, and D. J. Norris, ACS Photon. 3, 1619
(2016).

[15] D. L. Andrews and M. M. Coles, Proc. SPIE 8274, 827405
(2012).

[16] L. Barron, Mol. Phys. 21, 241 (1971).
[17] K. Y. Bliokh and F. Nori, Phys. Rev. A 83, 021803(R) (2011).
[18] J. S. Choi and M. Cho, Phys. Rev. A 86, 1 (2012).

[19] M. Finazzi, P. Biagioni, M. Celebrano, and L. Duò, Phys. Rev.
B 91, 195427 (2015).

[20] S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J.
Padgett, F. C. Speirits, and A. M. Yao, J. Opt. 18, 064004 (2016).

[21] E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala,
and T. J. Davis, Nano Lett. 12, 3640 (2012).

[22] L. D. Barron, Bio Syst. 20, 7 (1987).
[23] N. Yang and A. E. Cohen, J. Phys. Chem. B 115, 5304 (2011).
[24] Y. Tang and A. E. Cohen, Phys. Rev. Lett. 104, 163901 (2010).
[25] Z. Li, M. Mutlu, and E. Ozbay, J. Opt. 15, 023001 (2013).
[26] B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis,

J. Opt. A: Pure Appl. Opt. 11, 114003 (2009).
[27] C. Y. Chung and K. W. Whites, J. Electromagn. Waves. Appl.

10, 1363 (1996).
[28] K. H. Drexhage, J. Lumin. 1-2, 693 (1970).
[29] W. L. Barnes, J. Mod. Opt. 45, 661 (1998).
[30] E. Plum, Appl. Phys. Lett. 108, 241905 (2016).
[31] P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne,

Annu. Rev. Anal. Chem. 1, 601 (2008).
[32] Y. Liu, W. Zhao, Y. Ji, R.-Y. Wang, X. Wu, and X. D. Zhang,

Europhys. Lett. 110, 17008 (2015).
[33] A. García-Etxarri and J. A. Dionne, Phys. Rev. B 87, 235409

(2013).
[34] M. V. Gorkunov, A. N. Darinskii, and A. V. Kondratov, J. Opt.

Soc. Am. B 34, 315 (2017).
[35] F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A. O. Govorov, and O.

Gang, Nano Lett. 13, 3145 (2013).
[36] W. Zhang, T. Wu, R. Wang, and X. Zhang, J. Phys. Chem. C

121, 666 (2017).
[37] M. L. Nesterov, X. Yin, M. Schäferling, H. Giessen, and T. Weiss,

ACS Photonics 3, 578 (2016).
[38] https://doi.org/10.24378/exe.244.

Correction: The author name Jake K. Eager has been changed
to Jake K. Eager-Nash.

155418-9

https://doi.org/10.1038/nnano.2010.209
https://doi.org/10.1038/nnano.2010.209
https://doi.org/10.1038/nnano.2010.209
https://doi.org/10.1038/nnano.2010.209
https://doi.org/10.1103/PhysRevB.90.235424
https://doi.org/10.1103/PhysRevB.90.235424
https://doi.org/10.1103/PhysRevB.90.235424
https://doi.org/10.1103/PhysRevB.90.235424
https://doi.org/10.1038/ncomms14180
https://doi.org/10.1038/ncomms14180
https://doi.org/10.1038/ncomms14180
https://doi.org/10.1038/ncomms14180
https://doi.org/10.1038/ncomms3689
https://doi.org/10.1038/ncomms3689
https://doi.org/10.1038/ncomms3689
https://doi.org/10.1038/ncomms3689
https://doi.org/10.1126/science.1202817
https://doi.org/10.1126/science.1202817
https://doi.org/10.1126/science.1202817
https://doi.org/10.1126/science.1202817
https://doi.org/10.1021/jacs.5b04806
https://doi.org/10.1021/jacs.5b04806
https://doi.org/10.1021/jacs.5b04806
https://doi.org/10.1021/jacs.5b04806
https://doi.org/10.1103/PhysRevE.67.061704
https://doi.org/10.1103/PhysRevE.67.061704
https://doi.org/10.1103/PhysRevE.67.061704
https://doi.org/10.1103/PhysRevE.67.061704
https://doi.org/10.1103/PhysRevB.88.041407
https://doi.org/10.1103/PhysRevB.88.041407
https://doi.org/10.1103/PhysRevB.88.041407
https://doi.org/10.1103/PhysRevB.88.041407
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1103/PhysRevA.85.063810
https://doi.org/10.1103/PhysRevA.85.063810
https://doi.org/10.1103/PhysRevA.85.063810
https://doi.org/10.1103/PhysRevA.85.063810
https://doi.org/10.1021/acsphotonics.6b00201
https://doi.org/10.1021/acsphotonics.6b00201
https://doi.org/10.1021/acsphotonics.6b00201
https://doi.org/10.1021/acsphotonics.6b00201
https://doi.org/10.1117/12.906360
https://doi.org/10.1117/12.906360
https://doi.org/10.1117/12.906360
https://doi.org/10.1117/12.906360
https://doi.org/10.1080/00268977100101381
https://doi.org/10.1080/00268977100101381
https://doi.org/10.1080/00268977100101381
https://doi.org/10.1080/00268977100101381
https://doi.org/10.1103/PhysRevA.83.021803
https://doi.org/10.1103/PhysRevA.83.021803
https://doi.org/10.1103/PhysRevA.83.021803
https://doi.org/10.1103/PhysRevA.83.021803
https://doi.org/10.1103/PhysRevA.86.1
https://doi.org/10.1103/PhysRevA.86.1
https://doi.org/10.1103/PhysRevA.86.1
https://doi.org/10.1103/PhysRevA.86.1
https://doi.org/10.1103/PhysRevB.91.195427
https://doi.org/10.1103/PhysRevB.91.195427
https://doi.org/10.1103/PhysRevB.91.195427
https://doi.org/10.1103/PhysRevB.91.195427
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1021/nl3012787
https://doi.org/10.1021/nl3012787
https://doi.org/10.1021/nl3012787
https://doi.org/10.1021/nl3012787
https://doi.org/10.1016/0303-2647(87)90014-1
https://doi.org/10.1016/0303-2647(87)90014-1
https://doi.org/10.1016/0303-2647(87)90014-1
https://doi.org/10.1016/0303-2647(87)90014-1
https://doi.org/10.1021/jp1092898
https://doi.org/10.1021/jp1092898
https://doi.org/10.1021/jp1092898
https://doi.org/10.1021/jp1092898
https://doi.org/10.1103/PhysRevLett.104.163901
https://doi.org/10.1103/PhysRevLett.104.163901
https://doi.org/10.1103/PhysRevLett.104.163901
https://doi.org/10.1103/PhysRevLett.104.163901
https://doi.org/10.1088/2040-8978/15/2/023001
https://doi.org/10.1088/2040-8978/15/2/023001
https://doi.org/10.1088/2040-8978/15/2/023001
https://doi.org/10.1088/2040-8978/15/2/023001
https://doi.org/10.1088/1464-4258/11/11/114003
https://doi.org/10.1088/1464-4258/11/11/114003
https://doi.org/10.1088/1464-4258/11/11/114003
https://doi.org/10.1088/1464-4258/11/11/114003
https://doi.org/10.1163/156939396X00135
https://doi.org/10.1163/156939396X00135
https://doi.org/10.1163/156939396X00135
https://doi.org/10.1163/156939396X00135
https://doi.org/10.1016/0022-2313(70)90082-7
https://doi.org/10.1016/0022-2313(70)90082-7
https://doi.org/10.1016/0022-2313(70)90082-7
https://doi.org/10.1016/0022-2313(70)90082-7
https://doi.org/10.1080/09500349808230614
https://doi.org/10.1080/09500349808230614
https://doi.org/10.1080/09500349808230614
https://doi.org/10.1080/09500349808230614
https://doi.org/10.1063/1.4954033
https://doi.org/10.1063/1.4954033
https://doi.org/10.1063/1.4954033
https://doi.org/10.1063/1.4954033
https://doi.org/10.1146/annurev.anchem.1.031207.112814
https://doi.org/10.1146/annurev.anchem.1.031207.112814
https://doi.org/10.1146/annurev.anchem.1.031207.112814
https://doi.org/10.1146/annurev.anchem.1.031207.112814
https://doi.org/10.1209/0295-5075/110/17008
https://doi.org/10.1209/0295-5075/110/17008
https://doi.org/10.1209/0295-5075/110/17008
https://doi.org/10.1209/0295-5075/110/17008
https://doi.org/10.1103/PhysRevB.87.235409
https://doi.org/10.1103/PhysRevB.87.235409
https://doi.org/10.1103/PhysRevB.87.235409
https://doi.org/10.1103/PhysRevB.87.235409
https://doi.org/10.1364/JOSAB.34.000315
https://doi.org/10.1364/JOSAB.34.000315
https://doi.org/10.1364/JOSAB.34.000315
https://doi.org/10.1364/JOSAB.34.000315
https://doi.org/10.1021/nl401107g
https://doi.org/10.1021/nl401107g
https://doi.org/10.1021/nl401107g
https://doi.org/10.1021/nl401107g
https://doi.org/10.1021/acs.jpcc.6b09435
https://doi.org/10.1021/acs.jpcc.6b09435
https://doi.org/10.1021/acs.jpcc.6b09435
https://doi.org/10.1021/acs.jpcc.6b09435
https://doi.org/10.1021/acsphotonics.5b00637
https://doi.org/10.1021/acsphotonics.5b00637
https://doi.org/10.1021/acsphotonics.5b00637
https://doi.org/10.1021/acsphotonics.5b00637
https://doi.org/10.24378/exe.244

