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Chiral Majorana interference as a source of quantum entanglement
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Two-particle Hanbury Brown–Twiss interferometry with chiral Majorana modes produces maximally entangled
electron-hole pairs. We promote the electron-hole quantum number to an interferometric degree of freedom and
complete the set of linear tools for single- and two-particle interferometry by introducing a key phase gate that,
combined with a Mach-Zehnder, allows full electron-hole rotations. By considering entanglement witnesses built
on current cross-correlation measurements, we find that the possibility of independent local-channel rotations in
the electron-hole subspace leads to a significant boost of the entanglement detection power.
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I. INTRODUCTION

Entanglement is at the core of quantum theory and repre-
sents a key resource for quantum information and computation.
Generation, manipulation, and detection of entangled electrons
is at the basis of quantum computing with integrated solid-state
devices. A great amount of attention has been devoted to entan-
glement generation in multiterminal mesoscopic conductors,
with most noticeable schemes relying on Cooper pair emission
from superconducting contacts [1,2], correlated electron-hole
(e-h) entangled states by tunnel barriers [3], and integrated
single-particle emitters [4] (see Refs. [5,6] for a review).
Detection of entangled fermions in the context of quantum
transport was first proposed as a particular consequence of
antibunching in current cross-correlation measurements for a
subclass of states (spin-entangled particles propagating along
different channels) by using a beam splitter (BS) analyzer
[7–9]. This was later generalized to the case of multiple mode
and occupancy entanglement [10–12], where current cross
correlations can provide entanglement witnesses [13,14].

Here, we suggest the use of chiral Majorana modes (χMMs)
as a tool for the generation, manipulation, and detection of
entanglement in the e-h and channel degree of freedom (DoF)
in multiterminal platforms. This is done by integrating setups
proposed in the literature, such as Mach-Zehnder (MZ) [15,16]
and Hanbury Brown–Twiss (HBT) [17,18] interferometers, to-
gether with a phase gate. The latter permits the implementation
of an energy-independent phase shift between electron and hole
states. Most importantly, the combined action of a MZ and a
phase gate allows for arbitrary rotations in the e-h DoF and to
perform local operations in each propagating channel.

The advantage of using chiral Majorana channels is twofold.
On the one hand, two-particle interferometry in topological
superconductors (TSCs) hosting χMMs at their boundary [19]
produces superpositions of maximally entangled states. In
particular, as pointed out in Ref. [17], postselecting states with
one fermion per lead yields maximally entangled pairs in the
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electron-hole space. This guarantees the production of exactly
maximally entangled states. On the other hand, the possibility
to arbitrarily rotate the state in the e-h DoF independently
in each channel allows for measurements of the e-h state in
any basis, boosting the power of the entanglement witness
far beyond the limits of the proposals with ordinary particle
currents. Our approach makes it possible to exploit single- and
two-particle interferometry in the e-h DoF as a platform for
quantum computation in dual-rail architectures [20,21].

Our proposal can be easily generalized to ordinary electrons
and holes in hybrid normal/superconductor heterostructures.
Interferometry in the e-h DoF is in principle possible with
chiral channels in contact with a superconductor [22–25],
where e-h superpositions copropagate in the same channel, in
analogy with copropagating spin-resolved edge states in the in-
teger quantum Hall effect (IQHE) [26–29]. Recent experiments
with chiral one-dimensional (1D) channels in contact with
s-wave superconductors opened the way to exploring Andreev
reflection on 1D chiral channels [23,25]. At the same time, no
proposal for controlled BS, MZ, or HBT e-h interferometers
is currently available with ordinary superconductors.

The paper is structured as follows: in Sec. II we describe
the system under study, characterized by Dirac and Majorana
edge channels; in Sec. III we describe the interferometric
setup, by reviewing interferometric elements proposed in
the literature and by introducing a fundamental phase gate;
in Sec. IV we assess the presence of entanglement in the
output channels by studying the current cross correlations and
their relation to entanglement witnesses, showing how the
possibility to perform independent local-channel rotations in
the e-h subspace greatly enhances the entanglement detection
power. In Sec. V we conclude the work with a summary of the
results.

II. THE SYSTEM

The main ingredients are chiral Dirac modes (χDMs) and
χMMs in quantum anomalous Hall insulator/SC structures,
as those proposed in Refs. [15,16]. The recent experimental
detection of χMMs in these systems [30,31] makes the present
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proposal feasible and particularly appealing. The system con-
sists in the two-dimensional (2D) surface of a topological insu-
lator (TI) on top of a substrate divided in ferromagnetic (FM)
and SC regions. The TI surface hosts a single 2D fermionic
Dirac cone described by H0 = −iv(∇ × s)z, with s a vector of
spin Pauli matrices. A FM domain wall acts as Hfm = M(r)sz

and gaps the system everywhere apart from a line where the
domain wall changes sign. Along this line a 1D χDM forms,
analogous to the edge states of the IQHE, and can be used as an
electronic waveguide. Similarly, SC proximity induces singlet
pairing described by HSC = �

∑
k c

†
k,↑c

†
−k,↓ + H.c that opens

a topological gap, thus realizing a 2D TSC. Gapless χMMs
form along the border between the SC and the FM regions.
By properly arranging these regions it is possible to realize an
interferometric setup composed by several linear elements. We
now characterize the transport in terms of scattering matrices in
the Landauer-Büttiker formalism adapted to describe χMMs
[32].

III. INTERFEROMETRIC SETUP

The setup is illustrated in Fig. 1. We follow the notation of
Ref. [17] and denoteχDMs with double arrow lines andχMMs
with single arrow lines. Given that χDMs have 〈sy〉 = −1,
we can regard the fundamental excitations as spinless Dirac
fermions described by fermionic operators a(ε) at energy ε. For
energies 0 < ε � � we define electron- and holelike states in
channel i at energy ε as ai,+(ε) = ai(ε) and ai,−(ε) = a

†
i (−ε),

and introduce an e-h DoF τ = ±1 = e,h. Analogously, at the
boundary of the TSC a single χMM flows, either clockwise
γ1(ε) at the boundary between the TSC and the M↑ magnetic
domain, or anticlockwise γ2(ε) at the boundary between the
TSC and the M↓ magnetic domain.

Current is injected in the system upon biasing contacts 1
and 2 and it is collected in contacts 3 and 4, that are kept
grounded. The resulting current and noise in contacts 3 and
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FIG. 1. Setup: a domain wall on top of a TI 2D surface state gen-
erates χDMs (double arrows) and an s-wave SC opens a topological
gap, at whose boundary with the domain wall χMMs form (single
arrow). Carriers are injected into the system by biasing contacts 1
and 2 and go first through the four-terminal device, which acts as a
two-particle interferometer. The outgoing carriers then undergo local
operations through phase shifts and MZs and collide into a QPC that
mixes the channels. Currents and correlations are measured in contacts
3 and 4. The MZs and phase shifts can be also placed after the QPC.

4 can be obtained in terms of unitary scattering matrices
S relating incoming Dirac modes aj,σ to outgoing Dirac
modes bi,τ ,

bi,τ (ε) =
∑

j=1,2;σ=±
Si,τ ;j,σ (ε)aj,σ (ε). (1)

Particle-hole symmetry implies S(ε) = τxS
∗(−ε)τx .

The setup in Fig. 1 is characterized by four kinds of linear
elements: (i) a BS, (ii) a MZ interferometer, (iii) a phase shifter,
and (iv) a four-terminal element. Additionally, an ordinary
quantum point contact (QPC) is introduced to mix χDMs,
in analogy with interferometry in the IQHE edge states [33].
Some of these elements have been suggested in the literature,
so that we here review them in the spirit of two-particle
interferometry.

A. Beam splitter

In this context, we denote a BS as an element that takes
an incoming χDM and produces two outgoing χMMs. The
trijunction between a magnetic domain wall and a TSC forces
the incoming electron a+ and hole a− states to split into two
χMMs, γ1 and γ2 [15,16]. For energies much smaller than the
SC gap, we can assume the BS scattering matrix to be energy
independent, reading [15,16](

γ1(ε)

γ2(ε)

)
= 1√

2

(
1 1

i −i

)(
a+(ε)

a−(ε)

)
. (2)

B. Mach-Zehnder

By combing two BSs separated by a region where the two
χMMs propagate along two paths of different length one can
realize a MZ interferometer for electrons and holes described
by [15,16,34](

a+
a−

)
R

= S
†
BS

(
eiπnv+ikL1 0

0 eikL2

)
SBS

(
a+
a−

)
L

, (3)

where k(L1 − L2) = εδL/vM is the phase difference gathered
at energy ε and nv is the number of vortices in the SC, with vM

the velocity of the χMMs. The scattering matrix thus mixes
incoming chiral electron and hole states in the left (L) lead to
outgoing chiral electron and hole states in the right (R) lead.
At finite energy, by varying the path length difference δL it
is possible to perform arbitrary rotations around the τx axis
between incoming and outgoing states in a given channel. At
zero energy this element is expressed as a τx scattering matrix
in the e-h space, that represents a Z2 MZ interferometer being
able only to change an electron into a hole, and vice versa.

C. Phase shifter

A fundamental ingredient appearing in the setup of Fig. 1
is the phase shifter between electrons and holes in a given
Dirac channel. This can be easily accomplished by a top gate
that locally shifts the chemical potential. For a gate voltage Vg

such that |Vg| � M , where M is the magnitude of the Zeeman
splitting of the magnetic domains, electrons and holes will in
general acquire an opposite phase,

a+(ε) → eiϕga+(ε), a−(ε) → e−iϕg a−(ε), (4)
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with ϕg = (e/v)
∫ L

0 dx Vg(x). Importantly, this phase is energy
independent so that also carriers at ε = 0 acquire it. The
scattering matrix associated to the phase shift realizes a phase
gate

P = exp(iϕgτz). (5)

This element is of paramount importance in that, combined
with the MZ, it provides a way to rotate the states in the
e-h space and generate any superposition state. Moreover, a
channel-dependent shift can be obtained by modifying the path
length of a given channel. This can be achieved by moving the
domain wall through a magnetic field.

D. Four-terminal element

Finally, the core of the setup in Fig. 1 is a four-terminal
device that mixes two incoming χDMs into two outgoing
χDMs. In terms of electron and hole channels, the element
mixes four incoming states into four outgoing states. This
four-terminal element was introduced in Refs. [15,17] and it is
described by the scattering matrix

⎛
⎜⎜⎜⎝

b1+
b1−
b2+
b2−

⎞
⎟⎟⎟⎠ = 1

2

⎛
⎜⎜⎜⎝

1 1 1 1

1 1 −1 −1

1 −1 −η η

1 −1 η −η

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a1+
a1−
a2+
a2−

⎞
⎟⎟⎟⎠, (6)

with η = (−1)nv eiεδL/h̄vM a phase due to the propagation of
the χMMs in the interferometer (here δL is the path length
difference between the two-particle trajectories [15,17]). At
zero energy the phase can be only η = ±1, depending on the
number of vortices nv in the system. A more generic four-
terminal element can be obtained by allowing for a cross talk
between the χMMs in the SC region.

IV. CROSS CORRELATIONS AS ENTANGLEMENT
WITNESSES

The general idea developed in Refs. [7–11] is that, given
an unknown initial state that is possibly entangled in the e-h
and channel DoF, it is possible to establish the presence of
entanglement via measuring current cross correlations after
mixing the channels through a QPC and relate the cross
correlator to an entanglement witness. We now show that
witnessing entanglement in an e-h system is not only possible,
but also much more effective, thanks to the possibility to insert
MZs before and after the QPC.

The most general unknown two-particle state at the input
of the QPC can be cast in the generic form

|�〉 = sin θ (cos φ|�11〉 + sin φ|�22〉) + cos θ |�12〉, (7)

with θ,φ ∈ [0,π/2] and |�ij 〉 two-particle states at energy ε

in leads i and j , |�ij 〉 = ∑
α,β �

(ij )
α,βa

†
i,α(E)a†

j,β(E)|0〉, where

|0〉 is the grounded Fermi sea. The states satisfy �
(jj )
α,β =

−�
(jj )
β,α and the normalization conditions

∑
α,β |�(12)

α,β |2 = 1

and
∑

α,β |�(jj )
α,β |2 = 1/2. The state described by Eq. (7) dis-

plays entanglement in the occupation number and channel DoF
[35,36].

Before the QPC, we induce a phase difference between the
electron and hole in each channel by local gate voltages and
domain-wall displacement. For the moment we do not consider
the MZs that are present in the setup of Fig. 1. The QPC mixes
the channel of the incoming particles without changing the
electron/hole character of the particle injected. The outgoing
states after the combined system phase shifter plus QPC is
given by bj,τ = ∑

j ′=1,2 Sτ
j,j ′aj ′,τ , where bj,τ are the outgoing

states after the QPC in lead j with electron/hole character τ ,
where the scattering matrix is given by

Sτ =
(

r t ′eiϕτ

t r ′eiϕτ

)
. (8)

The phase ϕτ accumulated before the QPC has two contribu-
tions: the gate contribution ϕg , which is opposite for electrons
and holes, and a dynamical phase difference due to the different
path length between the four-terminal scattering region and the
QPC along the two possible paths. This contribution is the same
for electrons and holes, so that we can write ϕτ = ϕL + τϕg ,
with ϕL = εδL/v and v the velocity of Dirac modes. We now
consider the dimensionless current cross correlator between
the output channels 3 and 4,

C34 ≡ h2ν2

2e2
lim
T →∞

∫ T

0

dt1dt2

T 2
〈I3(t1)I4(t2)〉, (9)

where T is the measurement time. The current operator of
chiral fermions in lead i is written in terms of electron and
hole contributions as

Ii(t) = e

hν

∑
ε,ω,τ=±

e−iωt τb
†
i,τ (ε)bi,τ (ε + h̄ω), (10)

and the average 〈· · · 〉 is taken over the incoming state by
assuming a discrete spectrum characterized by a density of
states ν in each lead. Importantly, electrons and holes con-
tribute with different sign to the current, which is accounted
for by the τ in Eq. (10). In each lead there are incoming and
outgoing states. However, due to the chirality of states localized
at the domain-wall boundary, there is no backscattering and the
current can be described only in terms of outgoing channels.

The quantityC34 has the advantage of being a linear function
of the input state [11]. Assuming a QPC characterized by
r ′ = r = √

1 − T and t ′ = t = i
√

T , with T the transmission
probability of the QPC we find

C34(�) = T (1 − T )[w cos2 θ − sin2 θ + v sin2 θ sin(2φ)]

+ 1

2
cos2 θ

∑
τσ

τσ
∣∣�(12)

τ,σ

∣∣2
, (11)

where v and w are real quantities satisfying |v|,|w| � 1 that
can be expressed in terms of the phases ϕτ as

v = 2Re
∑
τ,σ

(
�(11)

τ,σ

)∗
�(22)

σ,τ eiϕτ +iϕσ , (12)

w =
∑
τ,σ

σ τ
(
�(12)

τ,σ

)∗
�(12)

σ,τ ei(ϕτ −ϕσ ). (13)

The correlator C34 is very similar to that of Ref. [11]. An-
tisymmetry of the |�jj 〉 states implies that ϕg drops from v.
Analogously, the phase ϕL drops from w. By further redefining
ϕg → π/2 + ϕg we have that w = ∑

τ,σ (�(12)
τ,σ )∗�(12)

σ,τ eiϕg (τ−σ ).
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As a particular case we consider incoming states with singly
occupied channels 1 and 2 by choosing θ = 0 in the generic
input state (7). The current correlator is found to be

C34(�12) = 1

2

∑
τσ

τσ |�(12)
τ,σ |2 + T (1 − T )w. (14)

The quantity w captures all the relevant information on the in-
put state. One can show that w is non-negative for separable in-
put states [10]. The first term in Eq. (14) is nothing but the cross
correlator before the QPC, C12(�12) = 1

2

∑
τσ τσ |�(12)

τσ |2. Ex-
perimentally one can act on the QPC and switch the tunneling
between counterpropagating states on and off (by setting
T = 0 or T = 1) and measure separately C34(�12) and
C12(�12). It then follows that the case C34(�12) − C12(�12) <

0 witnesses the presence of entanglement in the state |�12〉.
For θ �= 0, i.e., incoming channels 1 and 2 with fluctu-

ating local occupancy in (7), C34(�) can be related to the
entanglement of formation Ef (�) [37]: generalized Werner
states [38,39] are defined by introducing a joint orthonormal
basis for ports 1 and 2 formed by states |χk〉1 ⊗ |χk〉2 and
|�(±)

kk′ 〉 = (|χk〉1 ⊗ |χk′ 〉2 ± |χk′ 〉1 ⊗ |χk〉2)/
√

2 with k < k′,
where k enumerates all configurations with two or fewer
particles per port. It then follows that the entanglement of
formation of a state ρ can be lower bounded by the quantity
W (ρ) = ∑

kk′ 〈�(−)
kk′ |ρ|�(−)

kk′ 〉/2. Analogously, we can relate the
net correlator

δC34(�) ≡ C34(T = 1/2) − C34(T = 0) (15)

= C34(�) − C12(�), (16)

which depends only on the quantities v, w, and the angle θ , to
a lower bound to the entanglement of formation through

W (�) = −2δC34(�) + cos2(θ )/2. (17)

By noticing that W (�) > −2δC34(�) we find that W (�) >

1/2 and, consequently, Ef (�) > 0 whenever δC34(�) <

−1/4 (see Refs. [10,11]). Thus, the sign of −2δC34(�) − 1/2
is sufficient to witness the presence of entanglement in the
initial state �. We can further postprocess the data and obtain
full information about the state. First of all, we use that
v(ϕL + π/2) = −v(ϕL). This allows one to define δC

(±)
34 =

[δC34(ϕL + π/2) ± δC34(ϕL)]/2 such that

δC
(+)
34 (ϕg) = [w(ϕg) cos2 θ − sin2 θ ]/4, (18)

δC
(−)
34 (ϕL) = v(ϕL) sin2 θ sin(2φ)/4. (19)

We then notice that cos2 θ = 2C12(�)/(2w̄ − 1), where w̄ =∫ dϕg

2π
w(ϕg). Upon introducing

δC̄
(+)
34 =

∫
dϕg

2π
δC

(+)
34 (ϕg) = 1

4
[(1 + w̄) cos2 θ − 1], (20)

we can express

cos2 θ = 2
3 (4δC̄

(+)
34 − C12 + 1), (21)

allowing one to establish the occupation and channel admixture
as a function of measurable quantities. Finally, we notice
that the states |�jj 〉 can only be e-h singlets, so that v

depends only on the relative phase difference between �11

and �22. By varying ϕL one can then access sin(2φ) =

2(maxϕL
δC−

34 − minϕL
δC−

34)/(1 − cos2 θ ). The analysis allows
one to fully access the occupation-number (e-h) and channel
DoF entanglement by further exploiting the phase before the
QPC [11]. This result can be generalized to generic mixed input
states ρ, as the combination of the maps C12 and C34 preserves
the linearity of δC34.

A. HBT state

Having established the general entanglement witnessing
protocol via current cross-correlation measurements, we now
apply it to the output state of the two-particle interferome-
ter in the setup of Fig. 1. Upon biasing only the contacts
1 and 2 the incoming state at energy ε reads |�ε〉in =
a
†
1+(ε)a†

2+(ε)|0〉 and the outgoing state reads |�ε〉out =
Sj,μ;1,+Sk,ν;2,+b

†
j,μ(ε)b†k,ν(ε)|0〉 (summed over repeated in-

dexes), with S the scattering matrix in Eq. (6). In Ref. [17] the
system was studied as a HBT two-particle interferometer and it
was recognized that postselecting states with a single fermion
per lead yields maximally entangled states. In this case the cur-
rent cross correlations allows one to access v = −Re[ηe2iϕL ]
and w = {[1 + cos(2ϕg)] + Re[η][1 − cos(2ϕg)]}/2, and the
associated witness for T = 1/2 and η real is

W (�HBT) = 1
8 [3 − η + 2η cos(2ϕL) − (1 − η) cos(2ϕg)].

(22)

In particular, for η = −1, ϕL = π/2, and ϕg = π/2 one can
reach W = 1, which corresponds to Ef = 1. This means that
the phases are means to rotate the initial state to have maxi-
mum overlap with the generalized Werner states, confirming
that the state coming out from the HBT interferometer is a
superposition of maximally entangled states.

B. Local operations

The quantity C34 differs from that of Ref. [11] in the
measured observable: particle current in the original case in
contrast to charge current in the present case. This grants a
much more powerful characterization of the incoming states.
By inserting MZs before the QPC we can rotate the e-h state
on each channel and measure any linear combination of the
three Pauli matrices τi , with i = 1,2,3. This operation only
affects the state |�12〉 (the states |�jj 〉 are e-h singlets, so that
any single-particle rotation can only affect the global phase of
the state |�jj 〉) and C12 measurements can assess every local
single-particle observable. The insertion of MZs and phase
shifters together with the possibility of switching the QPC on
and off give us the opportunity to cross correlate the local
operation and to perform a full tomography of the input state.

V. CONCLUSIONS

In this work we suggest to use interferometry with chiral
Majorana modes to generate, manipulate, and detect quan-
tum entanglement in the electron-hole and channel degrees
of freedom in multiterminal hybrid normal-superconductor
platforms. A fundamental two-particle Hanbury Brown–Twiss
interferometer previously proposed in the literature allows one
to generate maximally entangled pairs in the electron-hole de-
gree of freedom. We integrate a set of single-particle elements,
such as beam splitters and Mach-Zehnder interferometers, with
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a fundamental phase gate that allows one to generate a phase
difference between electron and hole at zero energy and that,
combined with the Z2 Mach-Zehnder interferometer, allows
full rotation in the e-h space. Entanglement in the output states
is detected through the assessment of entanglement witnesses
by means of current cross-correlation measurements, extended
to the case of particle-hole current carrying states.

The completion of the set of single-particle and two-particle
linear elements allows one to perform any operation in the e-h
degree of freedom and to fully manipulate quantum states en-
coded in this platform. The possibility to perform independent
local-channel rotations in the e-h subspace greatly enhances
the entanglement detection power and makes electron-hole
systems an ideal platform for quantum computation in dual-rail
architectures.

Note added. Recently, B. Lian et al. [40] independently
studied chiral Majorana modes on a similar Corbino geometry.
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