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Bistability and displacement fluctuations in a quantum nanomechanical oscillator
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Remarkable features have been predicted for the mechanical fluctuations at the bistability transition of a
classical oscillator coupled capacitively to a quantum dot [Micchi et al., Phys. Rev. Lett. 115, 206802 (2015)].
These results have been obtained in the regime h̄ω0 � kBT � h̄�, where ω0, T , and � are the mechanical
resonating frequency, the temperature, and the tunneling rate, respectively. A similar behavior could be expected
in the quantum regime of h̄� � kBT � h̄ω0. We thus calculate the energy- and displacement-fluctuation spectra
and study their behavior as a function of the electromechanical coupling constant when the system enters the
Frank-Condon regime. We find that in analogy with the classical case, the energy-fluctuation spectrum and the
displacement spectrum widths show a maximum for values of the coupling constant at which a mechanical
bistability is established.
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I. INTRODUCTION

Nanoelectromechanical systems (NEMS) have proved to
be devices of great interest, both from fundamental and
applicative points of view [1]. A paradigmatic example of
such devices is represented by suspended carbon-nanotube
mechanical resonators [2–5]. Due to their low mass (10−18 g)
and high Young modulus (1 TPa), carbon-nanotube mechanical
oscillators are ideal candidates for developing a new generation
of ultrasensitive force and mass sensors. A lot of effort was
thus devoted in the past decades in order to propose efficient
schemes to actuate and detect the mechanical motion of such
devices.

The mixing technique is one of those approaches [2,5].
Initially proposed in Ref. [2], it enables one to mechanically
excite a nanotube quantum dot by applying suitable time-
dependent gate and bias voltages. The resulting mechanical
oscillation of the nanotube in the frequency range ω0/2π ≈
100 MHz–10 GHz [6,7] is then transduced toward a mea-
surable lower-frequency electronic mixing current. The latter
contains information about both quadratures of the nanotube
displacement and thus about its mechanical susceptibility. This
technique was used to measure tiny variations of the resonance
frequency in real time, upon adsorption of molecules on the
surface of the nanotube [8]. This enabled one to perform
mass-sensing experiments with a record sensitivity reported
at the yoctogram resolution (proton mass) [8] and to detect the
backaction of single-electron tunneling events as a measurable
softening of the mechanical resonance frequency [3,4,9,10].
The optimum sensitivity achievable with the mixing technique
was investigated theoretically in Ref. [11] and was shown
to arise from a compromise between maximizing the mixing
signal to overcome electronic shot noise and minimizing the
added noise corresponding to electronic backaction.

The higher the electromechanical coupling, the higher
the achieved sensitivity, thus justifying the goal of reaching
the strong-coupling regime between tunneling electrons and
one mechanical degree of freedom of the nanotube. Recent
progress in fabrication techniques was reported that goes along

that direction [12,13] by designing local quantum dots on the
surface of the nanotube, with full control of their electrical
and mechanical properties. This enables one to probe regimes
where the height of the tunneling barriers � is either smaller
or larger than ω0, as well as to spatially image the excited
mechanical mode by changing the location of the quantum dot
along the nanotube direction [13]. In those experiments, the
electromechanical coupling strength is given by the polaronic
energy scale εP = F 2

0 /k, with F0 the excess of force applied
on the oscillator upon tunneling of a single electron, and
k the nanotube spring constant. Typical electromechanical
coupling strengths obtained in the experiments of Ref. [13] are
estimated from the softening of the resonance frequency to be
of the order of εP ≈ 0.3 K at temperature T = 16 K [14]. Less
invasive and low-noise techniques were recently proposed, the
principle of which is to extract the oscillator displacement
fluctuation spectrum Sxx(ω) from a measurement of the current
fluctuations across the nanotube [15]. Large mechanical quality
factors Q up to 5 million were reported with this approach [16],
as well as force-sensing experiments with a resolution up to
≈12 zN Hz−1/2 [15].

Recently, some of the authors investigated theoretically
measurable mechanical properties of a classical and slow sus-
pended carbon nanotube [14,17], for which ω0 � V,T � �

(in the paper we use the notation that the Planck constant
h̄, the Boltzmann constant kB , and the elementary electron
charge e are all set to 1). They showed that entering the strong
electromechanical coupling regime has a dramatic impact on
the oscillator displacement spectrum Sxx(ω). Upon increasing
εP /�, the maximum frequency of the spectrum, ωmax, is
softened toward lower frequencies, while the full width half
maximum (FWHM) �ω of the spectral line increases up to
a maximum value reached for a critical coupling strength
εP = π�. At this critical point, the line shape of the spectrum
is dominated by a strong frequency noise induced by the
dominating quartic nonlinearities of the mechanical oscillator
[14]. Universal scaling behavior with bias voltage of both
ωmax and �ω ≈ ω0(V/�)1/4, as well as a universal quality
factor Q ≈ 1.7 [14], were predicted. Increasing further the
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electromechanical coupling εP > π�, the mechanical oscil-
lator becomes effectively bistable and the electronic cur-
rent across the nanotube is progressively blocked. This phe-
nomenon is analogous to the current-blockade transition that
was predicted for a classical oscillator coupled to incoherent
tunneling electrons (� � T ) when εP > V [18–21]. Interest-
ingly, the critical point at which the current blockade occurs
coincides with the point at which the dephasing rate due to
frequency noise is maximum [14] and the mixing technique has
a maximum sensitivity [22]. The full stability phase diagram
for the mechanical oscillator and the corresponding line shapes
of the position fluctuation spectra were derived as a function of
bias, gate voltage, and temperature in Ref. [17]. This effect can
be observed, in principle, in existing samples [13], provided
they are measured at a temperature of the order of 20 mK.

A similar phenomenon, known as the Franck-Condon
blockade, has been predicted [23–26] and observed [27,28] for
molecular systems in the opposite regime of large resonating
frequency � � T � ω0, for which the oscillator is close to its
quantum ground state. The consequences in electronic trans-
port of the Franck-Condon blockade have been investigated in
detail, but much less is known about the dynamical properties
of the mechanical oscillator in this regime [29–32].

The aim of the present paper is to investigate if there is a
quantum counterpart of the striking behavior of the displace-
ment fluctuation spectrum predicted in the classical regime:
namely, the existence and measurable manifestations of a
mechanical bistability and the coupling constant dependence
of the width �ω of the displacement fluctuation spectrum.
Concerning the bistability, it is well known that for strong
coupling, the current is blocked. This means that electrons
can no longer tunnel keeping the electronic dot in either the
empty or full state. Can one regard this system as a bistable
one in a similar manner to the classical system? What is
the relation between the quantum displacement fluctuation
spectrum and the appearance of the bistability? One can
anticipate that at weak coupling, �ω exhibits a quadratic
dependence on the coupling constant, coming from simple
perturbative arguments, but the strong-coupling limit demands
more insight since the width may have a different origin:
energy dissipation, classical phase fluctuations, and quantum
decoherence. In order to answer these questions, we calculate
in the quantum fast oscillator regime the (nonsymmetric)
displacement spectrum, the energy-fluctuation spectrum, and
the Wigner distribution for the oscillator. We find that the width
of the energy-fluctuation spectrum shows a clear maximum
for the same value of the coupling constant for which the
probability distribution develops a double peak. This can
be interpreted as the onset of the bistability. The energy
scale for this transition turns out to be εP = 2ωo. The same
energy scale controls the washing out of the bistability as
a function of the temperature εP ≈ T or the voltage bias
εP ≈ V . We present a detailed analytical analysis, indicating
that despite the similarity with the classical case, the origin
of the maximum of the dissipation has a different origin in
the quantum case. The behavior predicted could be observed
by detecting finite frequency current noise through suspended
carbon nanotubes where electronic transport is coupled either
to GHz flexural modes [6,7] or to THz nanotube breathing
modes [27].

FIG. 1. Representation of a nanomechanical oscillator with reso-
nance frequency ω0. The oscillator is coupled to a quantum dot, de-
scribed by a single electronic level of energy ε0. Charge is transferred
from the left (right) lead to the dot with a tunneling rate �L (�R). An
externally applied bias voltage V leads to a difference between the
chemical potentials of the electronic reservoirs, μL − μR = V .

The organization of the paper is the following. In Sec. II,
we introduce the microscopic Hamiltonian describing a me-
chanical oscillator coupled to a single-level quantum dot. In
Sec. III, we derive the generalized master equation with the
Born-Markov approximation, which enables one to compute
the dynamical properties of the mechanical oscillator. We find
that for this purpose, it is necessary to compute the evolution
of the off-diagonal elements of the density matrix, even if we
are dealing with incoherent transport. The energy and position
fluctuation spectra are computed, respectively, in Secs. IV and
V. The dissipation and decoherence mechanisms are analyzed
in relation to the crossover toward bistability of the mechanical
oscillator. Finally, the bias-voltage dependence of both energy
and displacement spectra is shown in Sec. VI.

II. THE MECHANICAL SYSTEM

We consider a nanomechanical oscillator capacitively cou-
pled to a quantum dot (see Fig. 1). We assume that transport
is dominated by a single electronic level. Assuming spinless
electrons, the microscopic Hamiltonian of the full electrome-
chanical system is given by

H = H0 +
∑

α=L,R

Hα + HT , (1)

H0 = [ε0 + gω0(a + a†)]d†d + ω0a
†a, (2)

Hα =
∑

k

(εαk − μα)c†αkcαk, (3)

HT =
∑

α=L,R

∑
k

{tαkc
†
αkd + t∗αkd

†cαk} , (4)

where d† and a† are, respectively, the creation operator for an
electron on the dot and a vibron on the mechanical oscillator.
The first term H0 describes the mechanical oscillator of bare
resonance frequency ω0 and the single-level quantum dot of
energy ε0. The charge operator on the dot nd = d†d couples
linearly to the oscillator displacement operator,

x = x0(a + a†), (5)
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with x0 = √
1/2mω0 its zero-point motion. The electrome-

chanical coupling strength in units of the vibron energy is
written gω0, with the excess force acting on the oscillator
when one electron is added, F0 = gω0/x0. The second term
Hα is the Hamiltonian of the α = L (left) and = R (right) free
electronic reservoirs, both characterized by an electronic band
structure εαk and a chemical potential μα . A voltage bias V is
externally applied, which we will suppose to be equally shared
between left and right metallic reservoirs, namely, μL = V/2
and μR = −V/2. Finally, the last term HT is the tunneling
Hamiltonian. It describes charge transfer from the electronic
reservoir α = L,R to the quantum dot, with a corresponding
tunneling rate �α = 2π |tα|2ρα . The former is proportional to
the hopping term tαk ≡ tα supposed to be real and independent
of the wave vector k and to the electronic density of states
ρα evaluated at the Fermi energy (wideband approximation).
Note that the relevant energy scale of the problem is the
polaronic energy defined above as εP = F 2

0 /k = 2g2ω0. We
will see that when εP crosses the other relevant energy scales,
as the temperature T , the bias voltage V , or the zero-point
motion energy ω0, the strong-coupling effects appear to be
relevant. When only ω0 matters, one can either use g or
εP /2ω0 = g2 as the dimensionless coupling. We will use both
in the following since certain expressions and dependences are
more transparent in terms of g2.

We begin by performing the Lang-Firsov unitary transfor-
mation [33] U = egnd (a−a†) to the Hamiltonian of Eq. (1). The
transformed Hamiltonian H̃ = UHU † is obtained as

H̃0 = ε̃0d
†d + ω0a

†a, (6)

H̃T =
∑

α=L,R

tα
∑

k

{c†αkD + D†cαk}. (7)

The meaning of Eq. (6) is the following: upon tunneling of
a single electron, the quantum dot is excited into a charged
electronic state. The corresponding excess energy can be
partially released by relaxation of the mechanical oscillator
into a new equilibrium position, X̃eq = −2gx0. The energy of
the single-level quantum dot, ε̃0 = ε0 − εP /2, is consequently
reduced by the polaronic shift. Any explicit term involving
the electromechanical coupling has thus disappeared from the
expression of H̃0, at the price of modifying the tunneling
Hamiltonian given by Eq. (7). The hopping terms tα belong-
ing to H̃T are renormalized by the polaron cloud operator
Q = eg(a−a†) and incorporated into a redefinition of the dot
annihilation operator, D ≡ d Q. The displacement operator is
modified also by the same transformation and can be written as

x → UxU † = X − 2gndx0, (8)

where X = x0(a + a†) and the dynamics of the operators a

and nd is now ruled by H̃ .
In the following, we consider the regime of electron

incoherent transport and quantum oscillator. This regime is
achieved when the reservoir temperature T is larger than
the total tunneling rate � = �L + �R , but smaller than the
mechanical frequency ω0. The corresponding hierarchy of
frequencies � � T � ω0 is obtained, for example, for the
following realistic values of the parameters: � = 500 MHz,

FIG. 2. Symmetrized energy-fluctuation spectrum S
sym
EE (ω) of the

mechanical oscillator as a function of frequency ω. Numerical
results using the secular approximation developed in Sec. III B.
Inset: Relative error in % between the analytical Lorentzian shapes
provided by Eq. (33) and the previous numerical curves. Various elec-
tromechanical coupling strengths are probed: g2 = 0.04,0.4,1.0,5.8.
Parameters common to all curves: � = 0.05ω0, ε̃0 = 0, T = 0.1ω0,
and V = 0.2ω0.

T = 50 mK, and ω0/2π = 10 GHz. We chose to perform our
numerical calculations in Figs. 2 and 7 with those parameters.
This gives rise to the well-known Franck-Condon regime of
electronic transport as studied in Refs. [23,24,26,34].

III. MASTER EQUATION

A. Born-Markov approximation

We define ρ(t) as the reduced density matrix of the
mechanical oscillator and quantum-dot subsystem, obtained
after tracing out the degrees of freedom of the electronic
reservoirs. In the sequential tunneling regime (� � T ), we
derive a generalized master equation ruling the dynamics of the
reduced density matrix within the Born-Markov approximation
[31,32,35–37],

ρ̇(t) = Lρ(t), (9)

where L = Lc + Ld and

Lcρ = −i[H̃0,ρ], (10)

Ldρ = [Dhρ − ρDe,D
†] + H.c. (11)

The term Lc describes the coherent (unitary) evolution of the
reduced density matrix induced by the Hamiltonian H̃0, andLd

describes dissipation and decoherence of the electromechani-
cal subsystem due to its weak coupling (tunneling term) to the
electronic bath. It involves the operator Dν=e,h defined as

Dν =
∫ +∞

0
dτCν(−τ )DI (−τ ), (12)

Cν(τ ) =
∑
αk

|tα|2fνα(εαk)eiεαkτ , (13)

with DI (−τ ), and the operator D written in interaction
representation with respect to H̃0. The correlation functions
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Cν=e,h(τ ) for the metallic reservoirs are written in terms
of the Fermi-Dirac distributions for electrons, feα(ω) ≡
f (ω − μα), and holes, fhα(ω) ≡ 1 − f (ω − μα), withf (ω) =
{eβω + 1}−1. The wideband approximation enables one to
obtain a compact expression for the correlation functions
Cν(ω) = ∫ +∞

0 dτCν(τ )e−i(ω−iη)τ as

Cν(ω) =
∑

α

�α

2

{
isν

π
Re �

[
1

2
+ iβ

2π
(ω − μα)

]
+ fαν(ω)

}
,

(14)

with �[ω] the Euler digamma function [38], obtained from
the Hilbert transform of Fermi distribution functions [39] and
sν=e(h) = 1(−1).

The master Eq. (9) is finally projected onto the basis of
eigenstates |q,n〉 of the Hamiltonian H̃0, corresponding to
q = 0,1 charge populating the quantum dot and n vibrons
populating the mechanical mode. The eigenvalue associated
to the |q,n〉 eigenstate is εqn = qε̃0 + nω0. The resulting
linear equations for the reduced density matrix can be solved
numerically (exact Born-Markov approximation).

B. Secular approximation

The dynamics of the coupled electromechanical system,
as described by Eq. (9), is quite complicated. A series of
approximations can be derived in order to simplify the master
equation: (i) first, by dropping in the dissipative evolution
[Eq. (11)] terms that can be incorporated into a renormalization
of H̃0 (Lamb-shift terms), and (ii) second, by performing
a secular approximation, which enables one to separate the
evolution of diagonal elements of the density matrix π(q,n)(t) ≡
ρ(q,n)(q,n)(t) (populations) from the evolution of off-diagonal
terms σ

(r,m)
(q,n) (t) ≡ ρ(q,n)(r,m)(t) (coherences). The secular ap-

proximation, however, has to be done with some care due to
the equidistance between the energy levels of the mechanical
oscillator [40]. We finally obtain the following set of linear
equations describing the dynamics of the damped mechanical
oscillator capacitively coupled to a quantum dot:

π̇(q,n)(t) =
∑
m∈N

{
�

(q̄,m)
(q,n) π(q̄,m)(t) − �

(q,n)
(q̄,m)π(q,n)(t)

}
, (15)

σ̇
(r,m)
(q,n) (t) = −

[
i�

(r,m)
(q,n) + �

(r,m)
(q,n)

2

]
σ

(r,m)
(q,n) (t)

+ δq,r

∑
p∈N

�
(q̄,p)(q̄,p+m−n)
(q,n)(q,m) σ

(q̄,p+m−n)
(q̄,p) (t), (16)

with δq,r the Kronecker delta and q̄ = 1,0 when q = 0,1.
Equation (15) is the Pauli rate equation giving the evolution
of populations. The transition rates �

(q,n)
(q̄,m) between the states

|q,n〉 and |q̄,m〉 coincide with the expressions given by the
Fermi golden rule [24,26],

�
(0,n)
(1,m) =

∑
α

�α|Qn,m|2feα(ε̃0 + (m − n)ω0), (17)

�
(1,n)
(0,m) =

∑
α

�α|Qn,m|2fhα(ε̃0 − (m − n)ω0), (18)

with Qn,m ≡ 〈n|Q|m〉 the overlap integral between the state
of the mechanical oscillator with n vibrons and the state of
the displaced mechanical oscillator with m vibrons [24,26].
Equation (16) provides the evolution of the off-diagonal
elements of the density matrix. We introduced the following
quantities:

�
(r,m)
(q,n) = [(q − r)ε̃0 + (n − m)ω0], (19)

�
(r,m)
(q,n) =

∑
p∈N

[
�

(q,n)
(q̄,p) + �

(r,m)
(r̄ ,p)

]
, (20)

with �
(r,m)
(q,n) the Bohr frequency associated to the states |q,n〉

and |r,m〉, and �
(r,m)
(q,n) the decay rate that is responsible for

the damping of the corresponding off-diagonal element of the
density matrix. Finally, the matrix element �

(q̄,p)(q̄,p+m−n)
(q,n)(q,m) is

associated to the transfer of coherences between the couple
of states {|q,n〉,|q,m〉} and {|q̄,p〉,|q̄,p + m − n〉} for the
damped mechanical oscillator. It is explicitly given by

�
(0,p)(0,p+m−n)
(1,n)(1,m) =

∑
α

�αQ∗
p,nQp+m−n,mfeα

(
�

0,p

1,n

)
, (21)

�
(1,p)(1,p+m−n)
(0,n)(0,m) =

∑
α

�αQn,pQ∗
m,p+m−nfhα

(
�

0,n
1,p

)
. (22)

The evolution of the off-diagonal elements of the density
matrix as described by Eqs. (16) was not taken into account in
Refs. [24,26]. This is due to the fact that they are not needed
to compute the average electronic current in the sequential
tunneling regime. However, when dealing with the study of the
mechanical-oscillator dynamics, these terms are necessary.

C. Fluctuation spectrum

We wish now to study observable properties characterizing
the dynamical state of the mechanical oscillator. For this
purpose, we will investigate the average value Ā ≡ 〈A〉 as well
as the correlation function SAA(t) ≡ 〈δA(t)δA(0)〉 associated
to fluctuations δA(t) = A(t) − Ā of the observable A acting
on the mechanical oscillator. In the following, A will stand
for either the mechanical energy operator E = ω0n that is
proportional to the phonon-number operator n = a†a or for the
position operator as defined in Eq. (8). We further introduce
the vector ρ(t) made of the matrix elements of the reduced
density matrix ρ(t) (including both diagonal and off-diagonal
terms). The master Eq. (9) can be given the compact form

ρ̇(t) = Ľρ(t), (23)

with Ľ the superoperator associated to the linear operator L.
Assuming a given initial condition for the density matrix ρ(0),
we obtain, for ρ(t),

ρ(t) = eĽt ρ(0). (24)

The stationary density matrix ρst is the solution of the equation

Ľρst = 0, from which the average value of the quantum
mechanical observable A is obtained,

Ā = tr(ρstA) ≡ wtǍρst , (25)
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with wt the null left eigenvector of the Ľ operator (wt Ľ = 0).
wt applied to any vector A reproduces the action of the quan-
tum mechanical trace wtA = tr(A). Defining the fluctuation
spectrum of A as SAA(ω) = ∫ +∞

−∞ dteiωtSAA(t) and using the
quantum regression theorem [40,41], we finally obtain

SAA(ω) = −2Re

{
wtδǍ

1

(iω − η)Ǐd + Ľ
δǍρst

}
. (26)

In the following, we will consider the symmetrized
fluctuation spectrum of the A operator, S

sym
AA (ω) =

[SAA(ω) + SAA(−ω)]/2.

IV. ENERGY-FLUCTUATION SPECTRUM

A. Dissipation of energy

We first characterize the dissipation rate γE of the
mechanical-oscillator energy. For simplicity, we consider the
regime of symmetric tunneling to the leads (�L = �R = �),
electron-hole symmetric point for the dot-level position
(ε̃0 = 0), and symmetric bias-voltage drop (μL = −μR =
V/2). In this regime, we find that the transition rates in
Eqs. (17) and (18) are equal, namely, �(0,n)

(1,m) = �
(1,n)
(0,m) ≡ �n→m.

This simplification enables one to write a rate equation for the
phonon distribution πn(t) ≡ π0,n(t) + π1,n(t) using Eq. (15),

π̇n(t) =
∑

m∈N,m�=n

{�m→nπm(t) − �n→mπn(t)}. (27)

In the limit of low voltage and temperature (T ,V < ω0), the
transition rates simplify to

�m→n ≈ 2�|Qm,n|2θm−n + �|Qn,n|2δn,m, (28)

with θm−n = 1 if m > n, and θm−n = 0 otherwise. The mean-
ing of Eq. (28) is that close to equilibrium, only transitions
from higher-energy states m to lower-energy ones n < m are
allowed. The stationary phonon distribution πst

n is thus the one
obtained for a mechanical oscillator in its equilibrium quantum
ground state, namely, πst

n = δn,0.
In order to find the energy relaxation for the mechan-

ical oscillator, we consider the time evolution towards the
steady state of a weak fluctuation, πn(t) ≈ πst

n + δπn(t), with
|δπn(t)| � 1. Using Eqs. (27) and (28), the average vibron
population n̄(t) = ∑+∞

n=1 nδπn(t) evolves as

˙̄n(t) ≈ 2�

+∞∑
n=1

n

+∞∑
m=n+1

|Qm,n|2δπm(t)

− 2�

+∞∑
n=1

n

n−1∑
m=0

|Qn,m|2δπn(t), (29)

which is not a closed equation in n̄(t). However, we remark
that in the regime T ,V < ω0, it is very unlikely that high-
energy vibrational sidebands are significantly excited. We thus
truncate the vibron distribution to the ground and first excited
states, δπn(t) ≈ δπ0(t)δn,0 + δπ1(t)δn,1, such that the average
vibron population becomes n̄(t) ≈ δπ1(t). This assumption is
verified a posteriori and enables one to rewrite Eq. (29) in a
closed form,

˙̄n(t) ≈ −γEn̄(t), (30)

FIG. 3. FWHM of the energy-fluctuation spectrum �ωE as a
function of electromechanical coupling g2. Circles: numerical result
using the secular approximation developed in Sec. III B. Plain curve:
analytical result given by Eq. (34). Parameters common to both curves:
same as in Fig. 2.

with

γE = 2�|Q1,0|2 = 2�g2e−g2
. (31)

Since Ē(t) = n̄(t)ω0, one can identify γE with the energy-
dissipation rate. Its interpretation is straightforward. The
energy of the mechanical oscillator is damped due to the
tunneling of single electrons on the dot, which happens on
a typical timescale given by the inverse electronic tunneling
rate 1/�. The damping rate is thus proportional to � and to
the Franck-Condon overlap matrix element, |Q01|2 = g2e−g2

,
which quantifies the probability of a single tunneling electron
to lose the energy of the vibrational mode and change the
charge state of the dot.

Interestingly, γE is a nonmonotonous function of the
electromechanical coupling g (see Fig. 3). At low coupling
strengths (g < 1), it is proportional to the square of the
electromechanical coupling g2, as provided by perturbation
theory. At higher coupling strengths (g > 1), the damping
rate decreases exponentially due to Franck-Condon block-
ade: the charge state of the quantum dot becomes frozen,
thus prohibiting dissipation to occur through charge fluctu-
ations. Finally, the damping rate reaches a maximum value,
γ max

E = 2�/e for g = 1.

B. Energy fluctuations

We now consider energy fluctuations of the mechanical
oscillator. Consistent with the Born-Markov approximation
(see Sec. III A) and with Eq. (30), the time evolution for the
mechanical energy E(t) is ruled by the following Langevin
equation:

Ė(t) = −γEE(t) + ξE(t). (32)

The fluctuating part of the mechanical energy ξE(t) is of zero
average 〈ξE(t)〉 = 0 and is δ correlated in time, 〈ξE(t)ξE(t ′)〉 =
DEδ(t − t ′). The diffusion coefficient DE = 2γE�n2 is re-
lated to the dissipation rate γE and to fluctuations of the phonon
population �n2 =〈n2〉−n̄2. At thermal equilibrium, we obtain
DE =2γEnB , with the Bose distribution nB ={eβω0 −1}−1.
After Fourier transform, Eq. (32) enables one to find an
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analytical expression for the symmetrized spectrum S
sym
EE (ω),

S
sym
EE (ω) = 2γE�n2

ω2 + γ 2
E

. (33)

The energy-fluctuation spectrum is thus a Lorentzian centered
around zero frequency with FWHM �ωE given by twice the
dissipation rate,

�ωE = 2γE = 4�g2e−g2
. (34)

The energy-fluctuation spectrum S
sym
EE (ω) is presented in

Fig. 2, in the regime T = 0.1ω0 and V = 0.2ω0, for which the
mechanical oscillator is close to equilibrium. The main curves
are computed numerically using the secular approximation
developed in Sec. III B. The inset shows the relative error in %
between the analytical Lorentzian shapes provided by Eq. (33)
and the previous numerical curves. The extraction of the
FWHM from the numerical curves is shown as a function of the
electromechanical coupling g2 in Fig. 3 (red circles). The plain
red curve is obtained from the analytical formula in Eq. (34).
In both Figs. 2 and 3, the excellent agreement (most of the
time below 1%) between the numerics and the analytics stands
for a confirmation that the broadening mechanism for energy
fluctuations is indeed controlled by electronic dissipation, so
ultimately by tunneling of single electrons in and out of the
quantum dot.

C. Bistability of the mechanical oscillator

In this section, we compute the stationary probability
distribution π (x) of the mechanical-oscillator position. The
stationary density matrix of the mechanical oscillator coupled
to the quantum dot is approximatively diagonal in the basis of
the eigenstates |qn〉, namely, ρst ≈ ∑

q,n π(q,n)|qn〉〈qn|. The
stationary distribution π (x) is thus approximated by

π (x) ≈
∑
n∈N

{π(0n)|φn(x)|2 + π(1n)|φn(x + 2gx0)|2}. (35)

In Eq. (35), φn(x) is the wave function of the mechanical
oscillator’s nth eigenstate,

φn(x) = (2π )−
1
4√

x02nn!
Hn

[
x

x0

√
2

]
exp

[
−

(
x

2x0

)2
]
, (36)

with Hn[x] the nth Hermite polynomial [42].
We present in Fig. 4 the probability distribution π (x)

obtained with the same parameters as in Sec. IV A, for which
the mechanical oscillator is close to its quantum ground state,
n = 0. We find that at low electromechanical coupling (g < 1),
the probability distribution π (x) has a single peak and the me-
chanical oscillator is monostable. At larger couplings (g > 1),
the distribution develops two peaks and the mechanical oscil-
lator becomes bistable. The transition between the monostable
behavior and the bistable one happens for g = 1, for which the
distribution has a very flat top. The mechanism responsible for
this transition is the following. For any value of the coupling
strength g, the mechanical oscillator has two stable equilibrium
positions located at x = 0 and x = −2gx0, for which the

FIG. 4. Stationary probability distribution of the oscillator posi-
tion π (x). Various electromechanical coupling strengths are probed:
g2 =0.04,0.4,1.0,5.8. Parameters common to all curves: �=0.05ω0,
ε̃0 = 0, T = 0.1ω0, and V = 0.2ω0.

charge state of the dot is, respectively, frozen at q = 0 and
q = 1. The double-peak structure is resolved whenever the
average shift of the equilibrium position �x = −2gx0〈q〉 ≡
−gx0 induced by electromechanical coupling overcomes the
zero-point quantum fluctuations, −�x = gx0 > x0. It is in-
teresting to notice that the transition point (g = 1) coincides
with the value of the electromechanical coupling for which the
damping of the mechanical oscillator is maximum (see Fig. 3 in
Sec. IV B).

We complete the picture of the transition to bistability
by showing in Fig. 5 the two-dimensional (2D) plots repre-
senting the mechanical-oscillator Wigner distribution [43,44]
defined as W (x,p) = 1

2π

∫
dy〈x + y

2 |ρ|x − y

2 〉e−ipy , with p

the oscillator momentum expressed in units of p0 = √
2mω0.

We find that the Wigner distribution goes smoothly from a
single-peak distribution at low electromechanical coupling
g2 = 0.2 towards a double-peak distribution at higher coupling
g2 = 6.0. The critical coupling g2 = 1 is characterized by a
flattened distribution, in agreement with Fig. 4. It is to be
noted that no negative contribution to the Wigner distribution is
obtained. This is due to the fact that the Wigner distribution of
a harmonic oscillator in its quantum ground state is a Gaussian
positive distribution [44].

FIG. 5. Wigner distribution W (x,p) for the mechanical oscillator
as a function of the oscillator position x and momentum p. Two-
dimensional maps obtained for various values of the electromechani-
cal coupling: g2 = 0.2,1.0,

√
2,6.0. Parameters common to all panels:

� = 0.05ω0, ε̃0 = 0, T = 0.1ω0, and V = 0.2ω0.
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V. DISPLACEMENT-FLUCTUATION SPECTRUM

A. Oscillator decoherence time

In this section, we investigate the evolution of the average
of the X operator, X(t) = x0{a(t) + a†(t)}, obtained as

X(t) = 2x0

+∞∑
n=0

√
n + 1 Re

{
ρ

(mec)
nn+1(t)

}
, (37)

with ρ(mec)
nm (t) = ∑

q=0,1 ρ(qn)(qm)(t) the reduced density matrix
of the mechanical oscillator, obtained after tracing out the
charge degrees of freedom of the dot. Note that the physical
displacement is given by Eq. (8) and also implies the charge
operator nd . We will see that the relevant fluctuations of nd

are at low frequency, allowing one to regard x ≈ X at high
frequency, ω ≈ ω0.

We consider the same regime of low voltage and tempera-
ture (T ,V < ω0) and symmetric electron-hole point (ε̃0 = 0)
as in Sec. IV A. Within the same approximation consisting of
truncating the oscillator reduced density matrix to, at most, one
vibron excitation (n,m = 0,1), the average position is obtained
as X(t) ≈ 2x0 Re{ρ(mec)

01 (t)}. Using Eqs. (16) and (28), one can
show, after some algebra, that in this quasiequilibrium regime,
the time evolution of ρ

(q)
01 (t) ≡ ρ(q0)(q1)(t) is given by

ρ̇
(q)
01 (t) ≈

{
iω0 − �

[
|Q10|2 + |Q00|2 + |Q11|2

2

]}
ρ

(q)
01 (t)

+�Q00Q11ρ
(q̄)
01 (t). (38)

The first term in Eq. (38) describes the coherent evolution
between the states of the same charge q = 0,1 and different
number of phonons n = 0 and m = 1. The second (third)
term describes the incoherent evolution between the states of
the same (different) charge q = 0,1 (q̄ = 1,0) and different
number of phononsn = 0 andm = 1, due to electromechanical
coupling. We deduce from Eq. (38) the evolution of the
oscillator reduced density matrix,

ρ̇
(mec)
01 (t) ≈ {iω0 − γX}ρ(mec)

01 (t), (39)

γX = �

{
|Q10|2 + |Q00|2 + |Q11|2

2
− Q00Q11

}
, (40)

with γX the decoherence rate of the mechanical oscillator.
Equation (39) enables one to write the equation for X(t):

Ẍ(t) + 2γXẊ(t) + (
ω2

0 + γ 2
X

)
X(t) = 0 , (41)

γX = �g2

[
1 + g2

2

]
e−g2

. (42)

Equation (41) coincides with the equation of motion of a
classical damped harmonic oscillator. Interestingly, the deco-
herence rate γX as given by Eq. (42) does not coincide with
the energy-dissipation rate γE/2 obtained in Eq. (31). The

FIG. 6. Schematics of the microscopic processes responsible for
the decoherence rateγX of the off-diagonal element of the mechanical-
oscillator density matrix ρ

(mec)
01 (t) = ∑

q=0,1 ρ
(q)
01 (t). (a),(b) Inelastic

processes (red dashed lines) responsible for energy dissipation γE .
One mechanical vibron is absorbed while the charge state of the
quantum dot is modified. (c)–(f) Elastic processes (red dashed lines)
responsible for dephasing γφ . No mechanical vibron is emitted or
absorbed, while the charge state of the quantum dot is modified.
(e) Transfer of coherences (red dashed lines). In all figures, the red
circles in the charge sector q = 0,1 stand for the matrix element ρ(q)

01 (t)
in Eq. (38). It is coupled either to itself or to the matrix element ρ(q̄)

01 (t)
of the complementary charge sector q̄ = 1,0.

decoherence rate can also be written as

γX = γE

2
+ γφ, (43)

γφ = g2 γE

4
= �

2
g4e−g2

. (44)

The first term γE/2 in Eq. (43) gives the standard contribution
of the dissipation to the decoherence of the mechanical oscil-
lator. The second term γφ is an additional dephasing rate. This
term has some interesting consequences. First of all, the deco-
herence rate γX of the mechanical oscillator is larger than the
contribution induced by pure energy dissipation: γX � γE/2.
Then, γX as a function of g2 reaches a maximum for a value
of the electromechanical coupling g2 = √

2 that is larger than
the value g2 = 1 for which dissipation is maximal (see Fig. 8).
In other words, the maximal decoherence rate is obtained after
entering in the region of bistability of the mechanical oscillator,
while the maximal dissipation rate coincides with the frontier
between the monostable and bistable region (see Figs. 4 and 3).

B. Microscopic mechanism for decoherence

The decoherence rate is obtained by the additive contribu-
tion of several elementary microscopic processes in Eq. (40).
The first term ∝�|Q10|2 is the degenerate contribution of the
processes pictured in Figs. 6(a) and 6(b). Those processes,
responsible for energy dissipation γE , are inelastic processes
during which one mechanical vibron is absorbed, while the
charge state of the quantum dot is modified. The second and
third terms, ∝�/2(|Q00|2 + |Q11|2), are purely elastic pro-
cesses for which no mechanical vibron is emitted or absorbed,
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while the charge state of the quantum dot is modified. They
are presented in Figs. 6(c) and 6(d), respectively. The last
terms ∝ − �Q00Q11 are elastic processes corresponding to
the transfer of coherences between pair of states (00),(01) and
(10),(11). They are pictured in Fig. 6(e).

It is interesting to notice that the dephasing rate γφ in
Eq. (42) originates entirely from the elastic processes. Those
are higher-order terms in the electromechanical coupling. Note
that the standard description of a quantum damped harmonic
oscillator [35] does not predict a difference between the
decoherence rate and half the dissipation rate. This originates
here from the presence of the additional charge degree of
freedom.

C. Displacement fluctuations

It is possible to describe the fluctuations of the variable X

by introducing a stochastic force ξX(t) into Eq. (41) for the
average of X,

Ẍ(t) + 2γXẊ(t) + (
ω2

0 + γ 2
X

)
X(t) = ξX(t). (45)

This phenomenological description allows taking into account
the fluctuating force due to the thermal and off-equilibrium
fluctuations.

We will assume that the correlation function of the
force 〈ξX(t)ξX(t ′)〉 = DXδ(t − t ′) satisfies the fluctuation-
dissipation theorem [45]: DX = 4ω2

0x
2
0γX coth(βω0/2).

Equivalently, the diffusion coefficient for the fluctuations
of X defined as DX can be expressed in terms of its variance

DX = 4ω2
0γX�X2, with �X2 = 〈X2〉 − X

2
. After Fourier

transforming Eq. (45), we obtain, in the limit of weak electronic
damping (γX � ω0),

S
sym
XX (ω) ≈

∑
s=±1

γX�X2

(ω + sω0)2 + γ 2
X

. (46)

The symmetrized X fluctuation spectrum is thus a sum of
Lorentzians centered at frequencies ω = ±ω0. Its FWHM
�ωX is given by

�ωX = �ωE

2
+ �ωφ = 2�g2

[
1 + g2

2

]
e−g2

, (47)

with the contribution of dephasing �ωφ = 2γφ .
The displacement-fluctuation spectrum for the oscillator

position x = X − 2gx0nd reads

Sxx(ω) = SXX(ω) + 4g2x2
0Sndnd

(ω) (48)

− 2gx0
{
SXnd

(ω) + SndX(ω)
}
. (49)

It is the sum of three terms: (i) the contribution of ther-
momechanical noise SXX(ω), (ii) a contribution of charge
noise Sndnd

(ω) randomly shifting the mechanical-oscillator
equilibrium position, and (iii) a contribution associated to cor-
relations between the charge state of the dot and the oscillator
position, SXnd

(ω) + SndX(ω). The symmetrized charge noise
contribution can be evaluated with the same methods as derived
in Sec. IV A. We obtain, for the total symmetrized displacement
spectrum,

Ssym
xx (ω) ≈

∑
s=±1

γX�X2

(ω + sω0)2 + γ 2
X

+ 2g2x2
0

γE

ω2 + γ 2
E

, (50)

FIG. 7. Fluctuation spectrum of the oscillator displacement
Sxx(ω) as a function of frequency ω. (a) Asymmetric spectrum
Sxx(ω) computed within the secular approximation developed in
Sec. III B. Various electromechanical coupling strengths are probed:
g2 = 0.1,0.4,1.4,4.4. (b) Corresponding symmetrized displacement
spectrum Ssym

xx (ω) around the phonon-emission peak at ω ≈ ω0. Inset:
Relative error in % between the analytical Lorentzian shapes provided
by Eq. (46) and the previous numerical curves. Parameters common
to both panels: � = 0.05ω0, ε̃0 = 0, T = 0.1ω0, and V = 0.2ω0.

where we neglected the mixed terms Xnd since the two
quantities fluctuate at very different frequency scales: nd

at low frequencies ω < γE � ω0, and X at |ω − ω0| � γX.
Figure 7(a) shows the displacement spectrum Sxx(ω) of the
mechanical oscillator as a function of frequency, computed
numerically within the secular approximation. The spectrum of
this quantum noise is strongly asymmetric. It has a main peak
at ω ≈ ω0 associated to phonon emission, which dominates
the spectrum at low temperature and voltage (only phonon
emission is possible at low temperature). A secondary peak
is observed at ω ≈ −ω0 associated to phonon absorption.
Its height is very weak since phonon absorption is strongly
suppressed for a mechanical oscillator close to its quantum
mechanical ground state. Finally, a last peak is observed
at low frequencies ω ≈ 0, associated to the contribution of
charge noise in Eq. (48). The symmetrized noise S

sym
xx (ω)

is computed numerically and presented in Fig. 7(b) close to
the phonon-emission peak. In the inset is plotted the relative
error in % between the analytical Lorentzian shapes obtained
with Eq. (46) and the previous numerical curves. The overall
agreement between the analytics and the numerics is below 1%.

The dependence of the FWHM �ωx as a function of
electromechanical coupling g2 is shown in Fig. 8. Here, also,
the agreement between the analytical formula in Eq. (47) (solid
curve) and the numerics (circles) is very good. This validates
the scenario of decoherence presented in Sec. V B, which
results from the combination of dissipation due to inelastic
processes and dephasing induced by elastic processes.

VI. VOLTAGE DEPENDENCE

A. Heating of the mechanical oscillator

In Sec. V, we studied the dynamical properties of the
mechanical oscillator at low voltages and temperatures
(T ,V < ω0). In this section, we will unravel the effect of im-
posing a bias-voltage larger than the typical vibron frequency,
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FIG. 8. FWHM of the displacement-fluctuation spectrum �ωx

as a function of electromechanical coupling g2. Circles: numerical
result using the secular approximation developed in Sec. III B. Dashed
curve: analytical result for the contribution induced by dissipation,
�ω

(d)
X = �ωE/2. Solid curve: analytical result including the addi-

tional contribution of dephasing �ωφ (filled blue sector) as given by
Eq. (47). Parameters common to both curves: same as in Fig. 7.

V/2 > ω0, keeping the temperature of the electronic environ-
ment at low values, T � ω0. The main physical consequence
of increasing the bias voltage is to open an additional inelastic
channel each time the bias voltage crosses a multiple of the
vibron frequency, V/2 > nω0, thus modifying the expression
for the transition rates in Eq. (28) to

�m→n ≈ �
∑
α=±

|Qm,n|2θ
[
α

V

2
− (n − m)ω0

]
. (51)

This gives rise to new possibilities of exciting vibrons in the
rate equation (27) and thus to heat up the mechanical oscillator.

We show in Fig. 9(a) the stationary out-of-equilibrium
phonon distribution πn under a bias voltage V = 4.5ω0. In
contrast to Sec. V, where only the ground state of the me-

FIG. 9. (a) Stationary distribution of the vibronic population πn.
Histograms obtained for various values of the electromechanical
coupling: εP [ω0] = 1.0,5.0,9.1,21.0. Corresponding average phonon
population, n̄ = 2.29,1.05,0.99,0.42, and effective temperature,
Teff [ω0] = 2.76,1.49,1.44,0.82. Circle curves: thermal distributions
πth

n with effective temperature Teff having the same average phonon
number n̄. (b) Corresponding stationary probability distribution of
the oscillator position π (x). Parameters common to both panels:
� = 0.05ω0, ε̃0 = 0, T = 0.1ω0, and V = 4.5ω0.

FIG. 10. (a) Effective temperature Teff [ω0] of the mechanical
oscillator as a function of bias voltage V , for various values of the
electromechanical coupling: εP [ω0] = 0.4,1.0,2.0,9.0. (b) Same plot
as a function of electromechanical coupling εP /2, for various values
of the bias voltage: V [ω0] = 0.2,2.5,4.5,6.5. Parameters common to
both panels: � = 0.05ω0, ε̃0 = 0, T = 0.1ω0.

chanical oscillator was significantly populated, the phonon
distribution now spreads up to high-energy excited vibronic
states. In the regime we investigate, this spreading is interpreted
as a bias-induced heating of the mechanical oscillator. In order
to quantify it more precisely, we compared the phonon distri-
bution πn [histograms in Fig. 9(a)] computed numerically to
an effective thermal distribution πth

n [circle curves in Fig. 9(a)]
defined as

πth
n = (1 − e−βeff ω0 )e−nβeff ω0 , (52)

βeff ≡ 1

Teff
= 1

ω0
ln

(
1 + n̄

n̄

)
. (53)

The effective temperature Teff in Eq. (53) is chosen in such
a way as to reproduce the exact average vibron population n̄

computed from the distribution πn. We find that for various
electromechanical couplings g2 = εP /2ω0, the vibron distri-
bution πn is not far from the fitted thermal distribution πth

n of
Eq. (52). At low εP = ω0, the mechanical oscillator is heated
above the temperature of the electronic environment, Teff ≈
2.76ω0 � T = 0.1ω0. Upon increasing the electromechanical
coupling to εP = 21.0ω0, the effective temperature decreases
down to Teff ≈ 0.82ω0. The obtained effective temperature
depends on both voltage V and electromechanical coupling εP

[31,46–48], as shown in Figs. 10(a) and 10(b). We find that at
voltages much lower than the vibron frequency (V/2 � ω0),
the effective temperature converges to the environment tem-
perature Teff ≈ 0.1ω0, independently of the coupling strength,
as expected for a mechanical oscillator at thermal equilibrium.
Upon increasing the bias voltage with V/2 > ω0, the effective
temperature Teff becomes larger than T [48], consistent with
Fig. 9(a). The main tendency is a stepwise increase of Teff

each time a vibronic sideband is excited. At sufficiently high
voltage, the stepwise increase of Teff becomes, on average,
linear in V with a slope that increases with decreasing εP :
the smaller the electromechanical coupling, the higher the
effective temperature [29].
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Finally, we plot in Fig. 9(b) the stationary probability
distribution of the oscillator position π (x), for the same range
of parameters as in Fig. 9(a). We find that similarly to the
quasiequilibrium case (see Fig. 4), π (x) undergoes a transition
from a monostable situation (one peak) at low coupling
εP = ω0 to a bistable situation (two peaks) at sufficiently
high-coupling strength, εP = 21.0ω0. However, in contrast to
Fig. 4, the intermediate regime (εP ≈ 9.1ω0) is characterized
by a multistable situation for which the distribution π (x)
develops two minima rather than a single broad maximum.
This difference is due to the fact that in this regime, n̄ ≈ 1, so
that not only does the ground state of the mechanical oscillator
(n = 0) contribute significantly to Eq. (35), but the first excited
states (n = 1,2) do also.

B. Displacement-fluctuation spectrum

In this section, we investigate the role of the bias voltage
on the displacement-fluctuation spectrum Sxx(ω). In contrast
to Sec. V, it is more difficult to obtain analytical insight on the
Sxx(ω) curves. This is due to the heating of vibron excitations,
which precludes a simple truncation of the master equation
[see Eqs. (15) and (16)] for the vibron mode.

One can consider the limit of vanishing damping and
decoherence rates γE,γX → 0. In this limit, we compute the
correlation function 〈δA(t)δA(0)〉 of any operator A taking
into account only the coherent evolution with respect to the
free Hamiltonian H̃0 in Eq. (9). Similarly to Eq. (50), the
displacement-fluctuation spectrum Sxx(ω) can be approxi-
mated as the sum of a thermomechanical noise SXX(ω) plus a
contribution due to low-frequency charge noise fluctuations of
the dot,

SXX(ω) = Sabs(ω) + Sem(ω) + 2πg2x2
0δ(ω), (54)

Sabs(ω) ≈ 2πx2
0 n̄δ(ω + ω0), (55)

Sem(ω) ≈ 2πx2
0 (1 + n̄)δ(ω − ω0). (56)

The thermomechanical noise spectrum in Eq. (54) is composed
of an absorption noise Sabs(ω) of height proportional to the
(voltage- and coupling-dependent) average phonon population
n̄plus an emission noiseSem(ω) of height proportional to 1 + n̄.
The ratio between the emission noise and absorption noise,
Sem(ω)/Sabs(ω), is proportional to (1 + n̄)/n̄ = eβeff ω0 , and is
thus related to the oscillator effective temperature Teff [see
Eq. (53)]. The symmetrized thermomechanical noise is readily
obtained as

S
sym
XX (ω) ≈ 2πx2

0

(
n̄ + 1

2

) ∑
s=±

δ(ω + sω0). (57)

S
sym
XX (ω) thus has a height that is proportional to the oscillator

average mechanical energy. Interestingly, Eq. (57) recovers
the limits γE,γX → 0 in Eq. (46), obtained for the case of an
oscillator in the low-bias and -temperature regimes.

We present in Fig. 11(a) the displacement-fluctuation spec-
trum computed numerically, using either the full Born-Markov
result (solid curve) as developed in Sec. III A or the secular
approximation (dashed curve) developed in Sec. III B. In

FIG. 11. Fluctuation spectrum of the oscillator displacement
Sxx(ω) as a function of frequency ω. (a) Asymmetric spectrum Sxx(ω)
computed numerically. Solid curve: full Born-Markov result as devel-
oped in Sec. III A. Dashed curve: secular approximation developed
in Sec. III B. (b) Same curves for the symmetrized displacement
spectrum Ssym

xx (ω) computed around the phonon-emission peak at
ω ≈ ω0. Parameters common to both panels: � = 0.05ω0, ε̃0 = 0,
T = 0.1ω0, εP = 5.0ω0, and V = 4.5ω0.

contrast to Fig. 7, the spectrum now presents a nonvanishing
absorption peak at ω ≈ −ω0. For voltage V = 4.5ω0 and
electromechanical coupling εP = 5.0ω0, we find the computed
ratio Sem(ω)/Sabs(ω) ≈ 2.0, which is consistent with having
heating of the mechanical oscillator, with an average number
of phonons n̄ ≈ 1.0 and an effective temperature Teff ≈ 1.5ω0

[see Fig. 9(a)].
Moreover, we find an overall good agreement between

the Born-Markov and secular approximation results. Some
differences emerge in the tails of the three main peaks of
the spectrum. A zoom onto the symmetrized spectrum close
to the emission peak at ω ≈ ω0 is plotted in Fig. 11(b).
It is shown there that the Lamb-shift terms generated by
Eq. (14) are responsible for a weak softening of the mechanical
mode frequency that is otherwise neglected within the secular
approximation.

Finally, we investigate in Fig. 12 the dependence of the
FWHM �ωx for the displacement-fluctuation spectrum with

FIG. 12. FWHM of the displacement-fluctuation spectrum �ωx

as a function of electromechanical coupling εP /2. Numerical results
using the secular approximation developed in Sec. III B. Various volt-
age biases are probed: V [ω0] = 0.2,2.0,3.0,4.5. Parameters common
to all curves, apart from voltage: same as in Fig. 7.
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FIG. 13. Locus of the points (εP /2,V ) of maxima in the FWHM
�ωmax

E (blue triangles) and �ωmax
x (red circles). Numerical results

using the secular approximation developed in Sec. III B. Red dashed
curve: critical coupling for the current blockade transition in the
classical regime εP /2 = V . Blue dashed curve: critical coupling for
the current blockade transition induced by ground-state quantum
fluctuations εP = 2.0ω0. Chosen parameters: � = 0.05ω0, ε̃0 = 0,
and T = 0.1ω0.

both bias voltage and electromechanical coupling. Upon in-
creasing the bias voltage from V = 0.2ω0 to V = 4.5ω0, we
show that the maximum of the FWHM �ωmax

x is shifted
toward higher values of εP . We attribute this effect to the
entering of additional vibronic sidebands into the bias-voltage
window, which opens new electric channels for decoherence
and dephasing �ωmax

φ of the mechanical oscillator.
The distribution �ωx as a function of εP also becomes

much broader at higher voltages compared to the low-bias
case. This implies more sensitivity of the mechanical oscil-
lator to decoherence. Indeed, the unavoidable fluctuations in
experimental εP values due to disorder will induce an enhanced
inhomogeneous broadening of the spectral line through the flat
dependence of �ωx with εP .

C. Phase diagram

We summarize our findings in a phase diagram represented
in Fig. 13. The locus of the points (εP /2,V ) of maxima
in the FWHM �ωmax

E is plotted with blue triangles. For
0 < V/2 < ω0, namely, when the mechanical oscillator is
close to its quantum ground state, we find that the position
of those maxima is independent of voltage and located at
values of the electromechanical coupling g2 = εP /2ω0 = 1
(blue dashed curve). This is consistent with the results of
Sec. IV A, for which the point of maximum energy dissipation
coincides with the transition from a monostable mechanical
oscillator (for g2 < 1) to a bistable one (for g2 > 1). Upon
increasing voltage above the first vibrational sideband (ω0 <

V/2 < 2ω0), the location of the maxima increases toward a
larger voltage-independent value εP /2ω0 ≈ 1.3. Consistently
with Sec. VI A, we assign this increased energy-dissipation rate
to the opening of new inelastic electronic channels each time a
vibron sideband (n) is excited by the bias voltage (V/2 > nω0).

Finally, the corresponding curve representing the location of
the maxima in the FWHM �ωmax

x is presented with red circles.
The obtained red curve is always on the right of the previous
blue curve. This is consistent with the analysis performed in

Sec. V A, for which it is shown that the decoherence rate of
the mechanical oscillator is larger than the dissipation rate of
energy because of additional dephasing induced by elastically
tunneling electrons. At low voltages (0 < V/2 < ω0), the red
curve is voltage independent and pinned at electromechanical
coupling g2 = εP /2ω0 = √

2 > 1. This coincides with the
value of g2 maximizing the decoherence rate. Upon increasing
voltage to the range ω0 < V/2 < 2ω0, we find that the locus of
maximum decoherence increases in a steplike manner towards
a larger value of the coupling strength, εP /2ω0 ≈ 3.3. This
corresponds to the entering of a new vibron sideband n = 1,
which increases both the dissipation rate (through inelastic
transitions) and the dephasing rate (through enhanced elastic
transitions).

Interestingly, we find that upon sufficiently increasing
sufficiently the bias voltage, the location of the maxima in the
FWHM �ωmax

x gets closer to the red dashed curve V = εP /2.
We give a simple explanation of this phenomenon based on a
semiclassical argument (at high voltage, indeed, many phonons
populate the mechanical oscillator, which becomes semiclassi-
cal). The argument closely follows the analysis of the current-
blockade phenomena in semiclassical mechanical oscillators
[18–21]. We use for this the Hamiltonian written in Eq. (2). The
tunneling electrons on the dot induce a backaction force on the
mechanical oscillator, 〈F 〉 = −F0〈nd〉. This backaction force
in turn produces a shift of the oscillator equilibrium position,
�Xeq = −F0/k〈nd〉. The work performed by the force 〈F 〉
for displacing the equilibrium position of the oscillator by an
amount �Xeq can be interpreted as a reorganization energy
of the dot-level position, �ε0 = −〈F 〉�Xeq . At half filling
(〈nd〉 = 1/2), we obtain �ε0 = −εP /4. If �ε0 is smaller
than −V/2, namely, that εP /2 > V , the dot-level position is
effectively shifted away from the conduction window and the
current is blocked. The critical value for this transition happens
at εP /2 = V (red dashed curve) and coincides at high voltage
with the transition from a monostable to a bistable state of the
semiclassical oscillator.

VII. CONCLUSION

It is well known that a nanoelectromechanical oscilla-
tor in the regime � � T � ω0 for large coupling constant
g2 = εP /2ω0 enters in the so-called Franck-Condon blockade
regime. We have shown that the blockade sets in with a
behavior similar to what is observed in the semiclassical case,
namely, the appearance of a double maximum in the probability
distribution for the position of the oscillator. This property
can be interpreted as a mechanical bistability present also in
the quantum regime, even if one cannot define an effective
potential as in the classical case. At T � ω0, the transition
point can be identified for εP = 2ω0 (g2 = 1) (see Fig. 4),
while in presence of bias voltage, εP /2 ≈ V (see Fig. 9). This
is similar to what is found in the classical case for � � T � ω0

for which the transition happens at εP = π� [14,17], with a
smoothing given by thermal or nonequilibrium fluctuations.
Despite the similarity, the main difference between the two
regimes is that in the classical case, the transition is controlled
by the change of the effective potential, while in the quantum
case, the quantum fluctuations are responsible for the disap-
pearance of the bistability.
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In analogy with the classical case, we have investigated the
displacement- and energy-fluctuation spectra. In the case of
a quantum and fast oscillator, the line shape of the spectra
remains Lorentzian. Somewhat surprisingly, we find that the
width �ω of both is not monotonic and that the spectra
are maximal exactly at the bistable transition for �ωE and
at slightly stronger coupling (εP = 2

√
2ω0) for �ωx . We

presented a simple analytical analysis valid at low excitation
probability of the oscillator (low T or V ) that allows one to
understand the origin of these widths. In the weak-coupling
limit, this is simply the lowest nonvanishing order in the
perturbative expansion which shows a quadratic behavior. In
the strong-coupling limit, the suppression of the tunneling due
to the Franck-Condon terms also suppresses dissipation and
decoherence, which can only be mediated by the electrons.
Like in the classical case, the width of the displacement
spectrum (decoherence rate) is larger than (half) �ωE , the
typical dissipation rate. In the quantum case, the origin is not
the nonlinear effective potential, but the elastic transitions that
introduce decoherence without dissipation. We also investigate
the same quantities as a function of the bias voltage and find
that the dissipation and decoherence rates increase abruptly
each time a new vibrational sideband enters into the conduction
window, namely, when V/2 becomes larger than a multiple of
the mechanical frequency ω0. This gives rise to a phase diagram
recovering the semiclassical limit for the current-blockade
transition (occurring when εP � V ) [21] at sufficiently high
voltages (V � ω0). We found that the Wigner distribution of
such an oscillator even close to its quantum ground state or to
the threshold for inelastic transitions does not exhibit negative
values. This is due to the incoherent nature of the electron
tunneling in this regime.

In conclusion, we have found that the classical picture
applies, at least partially, also in the quantum regime. This sce-
nario can be observed for high-frequency flexural mechanical

oscillators [6,7] or for breathing modes in suspended carbon
nanotubes [27]. In the case of flexural modes, the observation of
the displacement fluctuation spectrum has been demonstrated,
for the moment, only for relatively low-frequency modes [15].
The method could also be applied to higher frequencies, even
if reaching the strong-coupling limit becomes more difficult.
On the other side, for breathing modes, the strong-coupling
regime was reached long ago [27].

The detection of quantum current noise at high frequency
is now possible in carbon nanotubes [49], even if this still
has not been performed in the case of suspended carbon
nanotubes. From the theoretical point of view, other questions
are still open. It would be interesting to extend the present
work to regimes of higher tunneling rates �/T , taking into
account corrections induced by the cotunneling of electrons.
Addressing the fate of the bistability transition in the regime
of both coherent tunneling of electrons and quantum me-
chanical oscillator is still an open theoretical issue, even
if recently a mapping has been established to an effective
Kondo problem in the limit of a slow oscillator in equilibrium
[50]. Finally, it would be of interest for future works to
investigate the possibility of generating nonclassical states of
the mechanical oscillator by parametric driving [51] or by
a suitable coupling of the nanotube mechanical oscillator to
superconducting electrodes [52–54]. These results and per-
spectives contribute to show that nontrivial physical behavior
arises from the strong coupling between tunneling electrons
and a well-controlled mechanical degree of freedom of the
oscillator.
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