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Valley qubit in a gated MoS, monolayer quantum dot
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The aim of the presented research is to design a nanodevice, based on a MoS, monolayer, performing operations
on a well-defined valley qubit. We show how to confine an electron in a gate-induced quantum dot within the
monolayer, and to perform the NOT operation on its valley degree of freedom. The operations are carried out
all electrically via modulation of the confinement potential by oscillating voltages applied to the local gates.
Such quantum dot structure is modeled realistically. Through these simulations we investigate the possibility of
realization of a valley qubit in analogy with a realization of the spin qubit. We accurately model the potential
inside the nanodevice accounting for proper boundary conditions on the gates and space-dependent materials
permittivity by solving the generalized Poisson’s equation. The time evolution of the system is supported by
realistic self-consistent Poisson-Schrodinger tight-binding calculations. The tight-binding calculations are further
confirmed by simulations within the effective continuum model.
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I. INTRODUCTION

Structures consisting of several atomic layers are modern
materials which may find applications in devices for quantum
computing or quantum cryptography. Two-dimensional layers
exhibit quite different properties than bulk crystals. A truly
ground-breaking experiment was isolation and examining of
graphene [1-3].

Graphene is characterized by a very high carrier mobility
at room temperature [4], which makes it a perfect material
for applications in electronics. High carrier mobility translates
into ultrafast transistors for digital electronics. However, the
absence of a band gap makes graphene field effect transistors
hard to control/turn off by an electric field. Also, the linear dis-
persion relation makes the electrostatic confinement of individ-
ual electrons in the quantum dot (QD) structure impossible due
to the Klein tunneling [5,6]. Moreover, graphene is of limited
usefulness for spintronics because of a rather low spin-orbit
coupling [7]. Currently, modifications of the graphene structure
to lift these limitations are being actively researched [8—16].

Another approach is to search for atomic-thin layers of
other materials having similar properties to graphene yet
without mentioned disadvantages. Some of such promising
materials are monolayers of molybdenum disulfide, tungsten
diselenide, and other transition-metal dichalcogenide mono-
layers (TMDC) [17-19].

TMDC are atomic-thin two-dimensional materials and,
as opposed to graphene, have direct band gaps between
1.5-2.0 eV in the optical range [17]. Deposition of gates (gat-
ing) in nanostructures made of monolayers is experimentally
challenging, yet a considerable progress has been made in
this field opening a path towards construction of electrostatic
quantum dots [20-25]. A finite band gap allows for confining
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carriers in a monolayer in the area between gates by applying
voltages to them (with respect to the substrate), and thus
creating confinement. The electrons or holes confined in the
QD have a spin degree of freedom which can be used to define a
quantum bit (qubit). Strong spin-orbit interaction (SOI) in these

materials [26] (0.03 A” for MoSa, up t0 0.2 A” for WSe») [26]
allows for fast operations on the spin qubit.

Electrons and holes, in these materials, have additional,
aside from the spin, discrete “valley” degree of freedom [27,28]
that can be used to define a unit of quantum information, a
qubit. The valley degree of freedom originates from the lattice
structure. The vectors connecting two neighboring molybde-
num atoms form two nonequivalent families: R;,R3,Rs and
R>, R4, Rg with the nearest sulfur neighbor on the left (right)
side, as shown in Fig. 2. This reflects on the reciprocal lattice
where in the corners of the first (hexagonal) Brillouin zone, the
K points form two nonequivalent families: K and K’. Note that
both the bottom of the conduction band and the top of the va-
lence band are located at the points K and K’ (we have a direct
band gap) not at the I point. These bands form two nonequiva-
lent valleys K and K’ which can be occupied by qubit carriers.

This additional degree of freedom can be used to encode
a quantum of information creating a new field of electronics
called valleytronics [27,29-31], analogous to spintronics, in
which interesting ideas for nanodevices using mentioned mate-
rials have also been proposed [32,33]. The aim of the presented
research is to design a nanodevice based on a MoS, monolayer
able to perform operations on a well-defined valley qubit.

II. NANODEVICE MODEL

The proposed nanodevice consists of a MoS,; monolayer
flake with nearby gates [21,22,24,25,34]. By applying appro-
priate voltages to the gates, we create confinement in a flake
area, which traps a single electron. This way, an electrostatic
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FIG. 1. The structure of the proposed nanodevice containing a
MoS; monolayer flake with a layout of local gates responsible for
creating the confinement potential of the QD.

QD is formed within the monolayer. The nanodevice structure
is shown in Fig. 1. The lowest layer of the nanodevice is a
substrate made of highly donor-doped Si"*™, which constitutes
a bottom gate. Upon this layer we place 20 nm of an SiO;
insulator. Next, we place a MoS, monolayer flake of diameter
of atleast 10 nm, necessary to accommodate the confinement of
the QD. The entire structure is again covered with an insulator,
however, this time it is a 5-nm-wide layer of hexagonal boron
nitride ABN;. On top of that sandwiched structure we deposit
four gates, symmetrically surrounding the flake. Voltages
applied to these gates (relative to the substrate) are used to
create the confinement in the flake. To make the potential
landscape sharp enough, the distance between the top gates
and the substrate should not be excessively long compared to
the clearance between the gates (where the flake is placed).
The distance defined by the thickness of the insulating layers
is 25 nm as compared to 15 nm of clearance. The potential
in the entire nanodevice, controlled by the gate voltages,
is calculated by solving the generalized Poisson’s equation,
while the electron states in the flake are described with the
tight-binding formalism.

A. Monolayer

The monolayer flake is made of molybdenum disulfide. It
has a hexagonal shape with sides made of Ng = 20 molyb-
denum atoms, which results in the side size of b >~ 20a,
for a crystal lattice constant a = 0.319 nm. We chose the
smallest sufficient size for the flake to speed up the calculations,
however, any larger size will give the same qualitative results.
MoS; monolayers are formed of hexagonally packed Mo and
S atoms arranged in three layers, the upper and lower ones
containing S atoms and the middle one Mo atoms. Monolayers
comprise a planar honeycomb lattice with top and bottom S
layers arranged in a triangular lattices lying directly upon each
other, while the middle Mo layer is also made of a triangular
lattice, but rotated by . The lattice is shown in Fig. 2(b) with
big gray dots (molybdenum) and smaller yellow dots (sulphur)
forming shifted triangular lattices. Let us define lattice vec-
tors R; for the Mo lattice (which are at the same time the
nearest neighbors in our tight-binding model): R; = a(1,0),
Ry = 5(1,4/3), Ry = §(=1,v/3) and Ry = =Ry, Rs = — Ry,
Re = —Rs.
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FIG. 2. Modeled molybdenum disulfide hexagonal flake with
Np =20 Mo atoms on the flake edge (left). The MoS, monolayer
crystal lattice structure: gray Mo and yellow S atoms (@ = 0.319 nm),
with marked R, hopping directions (right).

MoS,; monolayers were successfully described by several
tight-binding (TB) models of various levels of complexity,
with different numbers of orbitals used, including nearest,
next-nearest, or farther neighbors. Seven [35] or, for better
results, eleven [36] (model rederived successfully in [37] and
further developed in [38]) orbitals were used for the basis
construction in the TB model to reproduce the low-energy band
structure in the entire Brillouin zone, also near the I" point.
Although the standard three-band TB model [39] fails around
the ' point, it correctly represents the orbital composition
around the K point near the band edges (both for conduction
and valence bands), where Bloch states mainly consist of
Mo d orbitals [19,40—43]. In our case, only states near the
K(K’) points will be occupied, thus the three-band model is
sufficient. This simplest model is successfully employed by
other researchers [44-46].

Consequently, we have described the monolayer structure
using only the Mo d.2, d.,, d,>_,» orbitals and the nearest-
neighbor hoppings [39]:
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with an assumption (s,,) = o,. Onsite energies €, of the d,2
orbital equals €9 = 1.046 eV, and of the d,, and d,:_ > orbitals
equal €; = €, = 2.104 eV [39]. Additionally, there is an onsite
electrostatic potential energy contribution ¢; = ¢(x;,y;) in the
node i originating from the external gates. The hopping matrix
element of an electron from the localized orbital § in the jth
lattice site to the « localized orbital on the ith unit cell is
denoted by 74(Ryg j)). In a compact form we can write Eq. (1)
as

H=Y (LeD+S® M+ LT

i (i)
Onsite on-diagonal matrices D; and off-diagonal hopping
matrices 7;; are expressed explicitly as (Dj)yq = €4 +
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FIG. 3. The electronic eigenvalues for the subsequent states. Col-
ors describe occupation of the confinement (dot) potential localized
at the flake center. The black dots denote eigenstates with the electron
density on the flake border, edge states, which defines the energy band
gap for electrons (holes) confined within the quantum dot.

@i» (Tij)ap = tap(Riij)). The intrinsic spin-orbit interaction
[43,47,48] is represented by (A)yp = Aqg, With the spin-orbit
coupling parameter A = 0.073 eV [39]. The three-band model
does not reproduce the band crossing (valley inversion) be-

J

(&0 + @i 0
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0 —iA
1L®D;, +SR® A= 0 0
0 0
L0 0

tween spin-split states next to the conduction band edge (see,
e.g., Fig. 3 in [26]). Thus, to restore the proper ordering of
spin-valley states next to the band minimum [49,50], we put a
negative A = —0.073 eV in our calculations. Let us write an
explicit form of D; and A:

g0 + (xi.yi) 0 0

D; = 0 &1 + @(xi, i) 0 )
L 0 0 &1+ o(xi,yi)
[0 0 0

A=1]0 0 iA
0 —ix 0

An appropriate Hamiltonian matrix size is given by tensor
products -®- with the z-Pauli matrix o, = S, (S)so’ = So0o’»
and the identity matrix (1,),, = 85,/. This gives an explicit
form of the onsite diagonal matrix:

0 0 0 0 7
ix 0 0 0
e+ i 0 0 0
0 &o + @i 0 0
0 0 &1+ @i —iA
0 0 ir &+ @i

The hopping elements f,4 of the off-diagonal T;; matrix depend on the Ry vector, which connects i and j nodes of the lattice. The
Ry has six possible directions depending on given i and j, numbered with the k index by labels shown in Fig. 2. Thus, k = k(i, j)
with k = 1...6, and finally .3 = 7,8(Rx,j)) what we simply denote by 7 = T (Ry). Explicitly [39,46],

to 181 1) fo
TR)= |-t tm |, TR)=|-1n+ ‘/7§t2
Lty I _73“ - %tz
4 —3h = Ln
TRy = | 11— %5’2 it 3

T(Re¢) = T(R3)T,

with matrix transposition (...)T. All can be simply derived
from the Slater-Koster (two center) interatomic orbitals’ el-
ements [51], with additional nonzero #; and #;, parameters.
All parameters are obtained by fitting TB results to those
obtained from the first-principles density functional theory
(DFT) calculations [39], giving the following hopping inte-
grals: to = —0.184, ¢t = 0.401, 1, = 0.507, ¢, = 0.218, t15 =
0.338, 1, = 0.057, all in eV.

The employed TB model is sufficient to capture electrons
occupying the band edge in the K and K’ valleys within the
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Brillouin zone [39]. Such an electron is a quantum information
carrier in our nanodevice.

B. Electrostatic quantum dot

The modeled nanodevice is made of a molybdenum disul-
fide monolayer (deposited on a quartz substrate) covered with
a layer of boron nitride insulator on which, subsequently,
control gates G4 are placed (see Fig. 1). For such a structure
consisting of various materials, we calculate the electrostatic
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potential ¢(r) taking into account the voltages applied to the
gates Vi 4 and the highly doped substrate V, = 0 together
with appropriately chosen boundary conditions. For this pur-
pose, we solve the generalized Poisson’s equation with the
inhomogeneous, space-dependent permittivity £(r) of different
materials:

V - [e0e(r)V e (r)] = —p.(r). 3

From the total potential ¢,(r), we subtract the electron self-
interaction
¢e(r) = (4mee) ! /dzr’&, “
Ir —r’|
and thus obtaining ¢(r) = ¢,(r) — ¢.(r). The electron po-
tential energy is ¢(r) = —|e|@(r). For the calculation of the
electron eigenstates in the flake we neglect the electron (or
hole) charge density setting p.(r) = 0. However, later on, dur-
ing the time evolution, we include the actual time-dependent
charge density of the confined electron p,(r) = —|e|p(r,). We
assume the following dielectric constants: e;,gn = 5.1 [52] (for
hexagonal boron nitride) and &s;0, = 3.9 (for quartz). At the
flake level, we take the ¢ as an average of two neighboring
materials: € = (&8N + €si0,)/2 = 4.5 (g0) [53].

Appropriately chosen voltages allow for creation of a
confinement potential within the monolayer, where a single
electron is trapped, forming a QD. Initially, we assume voltages
V1.4 = —1500 mV applied to the gates Gj_ 4, respectively,
with zero reference voltage on the substrate. By solving the
Poisson’s equation (3) and (4) we obtain an initial potential
¢(x,y) depicted in Fig. 7 (top left). This way, the energy at
ith lattice site includes the potential energy ¢ originating from
the external potential ¢ at this particular point in the atomic
lattice: o(x;,y;) = —le|p(x;,yi).

The nanostructure also includes two additional electrodes:
source S and drain D, depicted in Fig. 1, which allow for charge
flow through the flake for a given proper polarization. An
electron confined in the QD drawn from S charges a capacitor
formed by the substrate (i.e., backgate forming the lower plate)
and the monolayer (upper plate).

III. VALLEY QUBIT

We diagonalize the Hamiltonian matrix [Egs. (1) and (2)]
for the entire flake lattice obtaining a ladder of subsequent
eigenstates ¥, with their energies, as shown in Fig. 3, and
electron densities. The entire hexagonal flake (Fig. 2) (with
the side consisting of Ny = 20 Mo nodes) is composed of a
total number of 1141 nodes, which multiplied by 6 states per
node (N, = 3 bands x N, =2 spin-% states) gives a matrix
[Eq. (2)] size Ny = 1141 x 6 = 6846. Diagonalization yields
Ny eigenstates. Additionally, colors are used to mark the QD
occupation 1,, [defined in Eq. (6)], namely, the brighter the
color is, the more localized the electron is in the center of the
flake. Black color marks edge states, that is, states inaccessible
to the electron in the QD forming a forbidden energy range,
namely, a band gap.

We got a similar state structure as for the triangular flake
described in [46]. Let us note that there is present a slight space
between states near the edge of the valence band. We would
get the same space if we merged states for both types of flake

edges (circles and squares) in Fig. 5 in [46]. This agrees with
our results for the hexagonal flake (Fig. 2), where both types of
edges (i.e., positions of sulfur atoms in relation to molybdenum
atoms on the edge) appear alternately, as for the (a) and (b) edge
types from Fig. 3 in [46].

Knowing ,, we construct vectors representing eigen-
states ¥, (r) = (Y% (r))T,whereo = 1,2and o = 1,2,3,i.e.,
VU, =@l w2 ... 98T which belong to the state space
H" @ HgPtA! with spin and three-dimensional Mo orbitals
space.

To identify states, we need an electron density both in the
position space p(x,y) and in the reciprocal space p(ky.ky).
Information about spin in a particular state is also helpful for
full identification. The electron density for a particular spin
and orbital |1p,§"‘(r)|2 allows to calculate a density for the mth
eigenstate as
2

&)

pn(®) =Y |0 (r)

where 0 = 1,2 is a spin index and o = 1,2,3 is a Mo-orbital
index r = (x,y). Now, we can define an occupancy coefficient
for the QD. We assume the QD radius rop = 2.3 nm,

r<2rqp )
Nm Z/ d rpm(l'), (6)
0

where r = /x2 + y2. We select the coefficient 2 to color all
the states which are not edge states, while the latter ones are
marked as black.

Spin component of the m eigenstate is defined as

h
($i)m = §(¢m|0i ® 13|¢,,)

_ / Pr gl (00 @ 1, (1) ™
F

with the Pauli matrices o; and flake surface F.
For selected stationary states, we calculate the Fourier
transform

@)= [ dro, e, ®)

F
where k = (ky,ky), @, (k) = (P7*(k))T, and the k area in
the reciprocal space F : kyy € [—27”,27”]. Now, the density

in the reciprocal space is expressed as f, (k) = |®,,(k)|* =
. |<Dz1°‘(k)|2. Take a note that the integral is taken over
a finite flake (or equivalently over the entire space but with
vanishing electron density beyond the flake).

Now, let us take a look at the first four states from the
conduction band (for m = 2329, 2330, 2331, 2332) marked
in the closeups in the lower and upper small insets in Fig. 3.
Their electron densities [obtained with Eq. (5)] o(r) are shown
in Fig. 4 (top left). If we do the Fourier transform [Eq. (8)] of
the wave function of each state we obtain §(k) in the Brillouin
zone (BZ). Also, we determine their spins [Eq. (7)]. It turns
out that the density of the first state (top right) is localized at
the K’ point (with spin up) in the BZ, while the next state is
located at K (spin down). Next pair of states separated by SOI
splitting are localized at K (spin up) and K’ (spin down). We
use two spin-up states from K and K’ to define a valley qubit.
The width of the SOI splitting between first, second and third,
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FIG. 4. First four electron states in the conduction band, marked
with dots in the upper inset from Fig. 3. The electron density p (top
left) is the same as for the remaining four. The density § in the
reciprocal space for the first state is located at K’ (with spin up)
(top right with marked Brillouin zone with high-symmetry points).
For the second state (bottom left) it is located at K point (spin down);
and vice versa for the second pair: K (spin up) and K’ (spin down).

fourth states equals here 2A ~ 3.7 meV, and is reproduced
correctly [43]. We also mark the BZ in Fig. 4, along with points
of high symmetry: I' in the center of the zone, two types of
K (K) atthe corners of the hexagonal zone, and M on the edges
of the hexagon. The coordinates of the high-symmetry points
are I' = (0,0), one of K = Z(%,0) and one of M = %(1,%),
with the lattice constant a = 0.319 nm.

Let us focus on the remaining eigenstates for a bit. In Fig. 5
we see densities in the position space p(r) and in Fig. 6 their
corresponding densities in the reciprocal space p(k) for various
eigenstates. In the top row, hole states 1 and 2 are located
deep in the valence band with densities localized around the
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FIG. 5. The densities p(x,y) of selected eigenstates from Fig. 3,
for the valence band (first row with numbers: m = 2,33,2165), edge
states (second row: 2237, 2277, 2318), and conduction band (third
and fourth rows: 2330, 2340, 2450, 2570, 2600, 3200).

point M and on the line K — I (Fig. 6), while 3 is a state
strongly repulsed toward the edges by the (repulsive for holes)
confinement potential (Fig. 5) located near the top of the
valence band in the valley K. In the second row we see the
edge states localized at the edge of the flake, characterized by
quite complex densities p with various symmetries. These are
trivial edge states which are briefly explained in the Appendix
to this paper. This means that MoS; is a trivial (nontopological)
insulator. In the third and fourth rows we have electron states
of energies gradually moving away from the edge of the
conduction band. In the third row g drifts away from the K (K")
point, while in the fourth, for higher energies, the densities
nearly reach the point M in the BZ.

Two inequivalent points K and K’ at the corners of the
BZ are related to two inequivalent triangular Bravais lattices.
However, the M points are equivalent, as any of them can be
obtained from any other using vectors of the reciprocal space.
It is a rule that for states around the K (K’) points we have four
states of different valleys and spins but of the same densities
p. On the other hand, near the M point, we have a pair of states
for each same p (only spin degeneracy).

An addition of the valley degree of freedom opens a multi-
tude of possibilities to define a qubit in similar nanostructures.
First and foremost, we have spin and the spin qubit [54], then
we also have a qubit defined using the valley degree of freedom
[55]. It turns out that we can make a hybrid spin-valley qubit
[26], for which one basis state is a state in the valley K’ and with
spin up, while the second state is one in the valley K and with
spin down. These are degenerate states, however, they can be
separated in a controllable manner by applying an appropriate
magnetic field.

However, it is of utmost importance to be able to create
multiqubit registers and also perform two-qubit operations on
them. Any multiqubit operation can be approximated with
single- and two-qubit operations [56]. In a system consisting of
multiple hybrid qubits we can realize two-qubit swap gate by
exchanging spins between adjacent electrons. Nevertheless, it
appears that the most interesting and generic two-qubit system
is one which exploits both spin and valley degrees of freedom
of a charge carrier, either an electron or a hole, spanning a
two-qubit system of such four basis states [57,58].

IV. SINGLE-QUBIT GATE

In previous sections we defined a valley qubit, carried by
an electron trapped in an electrostatic quantum dot, initially
localized in the K valley within the Brillouin zone (see Fig. 4).
We now investigate the time evolution of such a system and
show that such a nanostructure can be used to perform logic
operations in a controllable manner. We will perform the NOT
operation on our qubit, and halfway through the NOT gate
we will also get the Hadamard operation. It is achieved all
electrically solely using oscillatory voltages applied to the local
gates, and this provides a reliable means to control the state of
the qubit.

A. Calculation of time evolution

A time-dependent wave function, for a particular spin o and
orbital o, can be expressed as a linear combination of basis
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FIG. 6. Corresponding densities of the Fourier transforms 5(k,,k,) of the selected eigenstates (like in Fig. 5) in the reciprocal space. The

order of subsequent densities is the same as in Fig. 5.

states with time-dependent amplitudes c¢,(¢) and phase factors

W) =) ) Y e 1B ©)
n
where n = 1,...,Npse. We assume a basis consisting of
Npase = 200 first eigenstates in the conduction band. Increas-
ing this number does not change the results, but keeping it
small allows for faster calculations. Using the wave function
[Eq. (9)], we calculate a time-dependent electron density

p(r,) =Y 1wl (10)

oo

The full spinor vector has the form W(r,t) = (V°%*(r,?))T.
Time evolution is governed by the time-dependent Schrédinger
equation

zh%‘l’(r,t) = H'(r,t)¥(r,1), (11)

with time-dependent Hamiltonian being a sum of a stationary
Hamiltonian [Eq. (1)], with the previously found eigenstates
¥, Hoy, () = E,¥,,(r), and a time-dependent potential
energy contribution §¢:

H'(r,t) = H(r) + 8¢(r,1). (12)
That is, the full time-dependent potential energy
¢'(r,t) = o(r) + So(r,1) 13)

contains an oscillating part dg(r,?), which is generated by
modulation of the gate voltages. Let us remind that the
potential energy is calculated as ¢'(r,t) = —|e|¢(r,?). During
the evolution of ¥ (r,?), according to the presented Schrodinger
equation (11), the potential ¢(r,?) is obtained within the mean
field approximation [59]. It is done by solving the generalized
Poisson’s equations (3) and (4) for p(r,?) at every time step.
The potential includes the induced charge and thus takes into
account the self-focusing effect. On the other hand, p(r,?)
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depends on the actual shape of the wave function at a particular
moment, hence, the Poisson’s and Schrodinger’s equations
must be solved in a self-consistent way. To obtain the stationary
eigenstates we take into account only the confinement potential
¢(r) originating from applied voltages. We neglect the electron
(hole) charge. That is why eigenstates ¥, (r) do not account
for electron self-focusing (through metallic gates).

Now, knowing ¢’'(r,t) and ¢(r), we can employ Eq. (13) to
calculate §¢(r,1). Putting Eq. (9) into Eq. (11), we geta formula
allowing to calculate expansion coefficients at subsequent
moments of time:

Crthrl t _Z_ZC <w |8e(r, t)|¢ e —L(E,— Em)f

(14)

We used here a central time derivative

ot _et=1

approximation 5 cm(t) o S,

The Ham11ton1an for each time step includes the
time-dependent difference of the confinement potential
S¢(r,t). The matrix elements for this difference 8¢,,, () =
(¥,,180(r,1)|¥,) are calculated at every time step, to solve
the next time step by using Eq. (14). This approach, however,
is time consuming and in practice we can proceed in a different
way. At first, we calculate the matrix elements at every time
step of the evolution. These calculations are done only for a
single cycle T of voltage changes, i.e., t < T [60]. What is
important, we also have to remember all the matrix elements
8Pun(t;) = 5(pmn at equidistant time periods #; =i ]5 , 1=
0...N,. Now, for the rest of the evolution (i.e., for subsequent
cycles) we calculate ¢, smoothly interpolating the values
between subsequent time moments #; and #;4;:

where ¢, (1) = c’

28@un(t) = 8¢l + Sgit!

+ (8¢, — Sl cos (t Tt’ N¢n> (15)
fort € [#;,t4+1]. Thanks to smooth transition, N, does not have
to be large (we assumed N, = 16). This approximation is valid
as long as the voltage pumping process is adiabatic and the
electron does not gain energy during the evolution.

The time-dependent Schrodinger equation is solved with
a predictor-corrector method, where the predictor is calcu-
lated using the Richardson (leapfrog) scheme, i.e., the Askar-
Cakmak method [61]; the corrector is given by the implicit
Crank-Nicolson method.

The Fourier transform is also calculated for the time-
dependent wave function, in a similar way as in Eq. (8):

d>““(k,t)=/d2r W% (p,1) kT, (16)
F

where k = (k,ky), and k area F : k,,, € [—-Z,Z]. Now, the
charge density in the reciprocal space has the form p(k,t) =
D e |d°%(K,t)|*. We are ready to calculate a time-dependent
valley index. Let us define an angle ¥ = atan2(k,,k,). To
calculate the index, we need only take into account % of
the reciprocal space area F (two opposite /3 sectors, en-
compassing exactly one K point and one K’ point), i.e., for
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FIG. 7. Theinitial confinement potential (top left), and modulated
(top right) at r = T /2, which causes squeezing of the electron
density (bottom). The modulation is obtained by applying additional
oscillating voltages to two opposite gates G; and Gs;.

Fip:l9|<Zv

e VIl > %n.Thus, we get

K@) = 3—"f d’k p(k,1) ky. (17)
41 J i,

Because the first K point has coordinates [‘;—Z ,0] in the BZ, the
valley index KC € [—1,1]. £ = 1 represents the K valley, and
IC = —1 represents the K’ valley. The valley index allows to
track which valley state the electron occupies at a particular
instant, namely, follow the qubit state.

B. NOT gate

The qubit has been defined on a pair of single-electron con-
duction band states located in the K" and K valleys with spin up
(first and third states). We turn on the time simulations solving
Eq. (14) self-consistently. The confinement potential is now
modulated by applying oscillating voltages to two opposite
gates G; and G3 (see Fig. 1): V| 3(t) = Ve + Vic[cos(wt) — 1],
Vae = 250 mV, aside from the constant negative bias Vg, =
—1500 mV, which creates confinement. Voltages on the gates
G, and G4 remain constant: V,4 = Vy.. This modulation
narrows the confining potential along one direction (y), which
makes the electron state squeezed. The modulation angular
frequency w is tuned to the difference of energies Exg =
2A ~ 3.5 meV between two valley states, namely, basis states
of the qubit: w = wy = Exg' /.

In the top left corner in Fig. 7 we see a potential calculated
for the initial instant # = 0, when V| 3 = —1500 mV. The top
left corner shows the potential at half a cycle for t = 7'/2,
T = 27 /w, namely, at a time when the electron is squeezed
the most. The initial electron density p(r,?) is shown in the
bottom left corner and at + = 7/2 in the bottom right. It is
clearly visible how narrowing of the potential squeezes the
electron density.

Initially, the electron occupies the K valley state with valley
index K(t = 0) = 1. Oscillatory change of the electron density
generates gradual transition of the electron from the K valley
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FIG. 8. The electron density in the reciprocal space p(k,,k,)
calculated via Fourier transform of the electron state at t = 0, 12,
26, and 52 ps. During the evolution we observe gradual flow of the
electron density from the valley K to K'.

to the K’ valley. In Fig. 8, we see such an intervalley transition.
At time t = 26 ps the electron is in an equally weighted linear
combination of both valley states, while at twice that time (t =
52) the transition is complete and the electron occupies the K’
valley state for which KC(r = 52 ps) = —1.

If we now calculate the Fourier transform ®°“(Kk,t)
[Eq. (16)] during the oscillations of the confinement potential,
we see how this modulation induces gradual transition between
valleys. Subsequent maps in Fig. 8 show that the electron
density inside the BZ gradually flows between the valleys.

The time course of the valley index is shown in Fig. 9.
Full transition between valleys is equivalent to performing the
simplest NOT operation on a valley qubit: NOT [ = 1) = | =
—1) at time t = 52 (in general, NOT | ) = |—K)). Precisely
speaking, we obtain an iNOT operation, as this represents a
rotation on the Bloch sphere spanned by states | = 1) and
|KC = —1), which belongs to the special unitary group SU(2)
of unitary matrices of size 2 x 2 and a determinant equal
to 1 (NOT gate represented by o, matrix has determinant

0.5 - K b

valley index K
o
T
|

0.5 KI V]

\

1 I I I I I
0 10 20 30 40 50 60 70

time (ps)

FIG. 9. The transition between K and K’ valleys induced by the
confinement potential modulation. The transition is equivalent to the
valley-qubit NOT gate.
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FIG. 10. Transitions between valleys exhibit oscillations of Rabi
type. For the resonant frequency w = wy (red curve) we obtain a
full transition. Beyond the resonance frequency, as for the orange
(1.01 wp) and yellow (1.02 w) curves, we can observe incomplete
transitions with amplitudes getting smaller as the distance from
the resonance increases. For comparison, transitions according to the
continuum model for the same differences in frequencies are also
shown as (the value of w, is slightly different than for TB): green curve
(resonance w,), blue curve (1.01 w.), and magenta curve (1.02 w,).

—1). Moreover, halfway through the iNOT gate operation, at
t = 26 ps, we obtain an operation H = ¢'"/4/NOT equivalent
to the Hadamard operation, which is of high importance
for quantum computing. The H gate generates an equally
weighted linear combination of opposite valley states H |/C =
1) = \/%(iUC =1 +|K=-1).

Transitions induced in the nanodevice are resonant. We
emphasize that the pumping frequency w must be tuned to
the difference between the energies of states K and K': v =
wy (=Egk /h). Any divergence from the resonant frequency
results in incomplete Rabi oscillations. They get smaller as we
move away from the resonant frequency wy. Figure 10 shows
resonant transitions (red) resulting in a full Rabi cycle w = wy.
Additional simulations were performed for frequencies diverg-
ing from the resonance. Incomplete cycles for w = 1.01 wg and
1.02 wy are marked as orange and yellow.

Now, let us assume that the electron is in an initial state IC =
—1. If we now plot the maximal reached value of the valley
index /C(¢) over a period of driving oscillations 7 = 27 /w,
we observe resonant peaks. This is shown in Fig. 11. For the
resonant period 7p = 2w /wy = 1.185 ps, we get the maximal

valley index K
o
T
1

-O.S—J B
; L

0.5 1 1.5 2 2.5 3 3.5 4
oscillation period T (ps)

FIG. 11. The transition between K and K’ valleys for different
voltage oscillation periods T = 27 /w. The resonant peak is clearly
visible at 7, = 1.185 ps. Additional fractional resonances are also
present.
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value indicating a full intervalley transition. If we diverge from
the resonance, the maximal value of the valley index /C(¢) falls
down rapidly and this is the area of incomplete Rabi cycles.
Most interestingly, we also observe fractional resonances [62]
for lower frequencies at w/2 and (barely visible) w/3. They can
be explained within the second-order perturbation theory [63].

In [55] the authors show that the intervalley coupling
strongly depends on the size and symmetry of the confinement
potential in the QD. By changing this potential, we modulate
coupling between valleys. This effect is next exploited to
pump the transitions between valley states through oscillatory
alteration of the width of the confinement potential along one
direction (x). The intervalley coupling can be achieved also in
a different way. In nanotubes and monolayers, the intervalley
transitions can be induced by the lattice disorder [64—66],
e.g., vacancies [63], or by adatoms adsorption [67], that is,
via modification of the confinement with peaks originating
from the lattice defects. However, such sources of coupling
are very difficult to control. We, on the other hand, modify
the confinement in a perfectly controllable manner. One need
only remember not to move the minimum of confinement over
sulfur atoms, as this might lift the coupling [55], increasing
the gate operation time. Recently, tunable valley splitting
induced by van der Waals interaction with substrate (ABN)
was presented in graphene quantum dots [68]. Interestingly, it
can be controlled electrostatically by displacements of the dot
potential minimum.

In the course of transitions in Figs. 9 and 10 we can also
notice a minor oscillation structure of frequency w connected to
a single cycle of pumping and oscillations of voltages applied
to gates G; and Gs. These small oscillations of the valley
index might affect fidelity of operations performed on the
qubit. Fortunately, as we get closer to the basis states (poles
on the Bloch sphere), their amplitude decreases. Moreover, we
can reduce them arbitrarily by decreasing the amplitude V,,
of voltage oscillations. However, to perform a full transition
between valleys, we need more cycles, which effectively
extends the operation time. For example, to obtain an error
of the order of 1% during the NOT gate operation from Fig. 9,
we need ~50 pumping cycles.

The duration of operations on qubits should be much shorter
than the coherence time. Recently, a long lifetime of an exciton
valley state has been observed in a TMDC heterostructure,
reaching 40 ns [69]. These times are three orders of magnitude
longer than the duration of our NOT operation. The necessary
frequencies of modulation of voltages in the range of several
hundreds GHz might be problematic to obtain experimentally.
One solution to lower these frequencies would be finding
another material of a slightly lower spin-orbit splitting 2A.
Another solution could be redefining the qubit using states
IK,s) =|—1,1) and | 1,]) or, equivalently, the second degen-
erate pair: | 1,1) and |—1,) [26]. The energy splitting of such
two-level system could be tuned using an external magnetic
field. However, to obtain a coupling between the spin and valley
degrees of freedom, a spin-dependent confinement potential
is necessary [58]. In our case, the potential modulation could
be carried out in a spatially variable magnetic field.

We should note, however, that if we need an error not
greater than 1% (and for this we need several dozen pumping
cycles per operation) and a number of operations during the

qubit lifetime of about 103, the pumping frequency must be
of hundreds of GHz order.

C. Qubit readout

Each full qubit implementation, aside from a possibility of
performing operations, has to allow for qubit initialization and
readout. To read out, as well as to initialize a valley qubit, we
can utilize the spin and valley Pauli blockade, so far observed in
carbon nanotubes [64,70,71]. The blockade imposes selection
rules, which block transport of electrons of the same spin and
valley as the electron in an adjacent quantum dot.

Let us assume that adjacent to the dot, in which our qubit
is defined, we put another dot on a right with an electron
initialized in the ground state in the K’ valley and with
spin up, i.e., |[K,s) = |—1,1). Assuming that valley and spin
are conserved during tunneling, the electron representing our
qubit cannot tunnel to the right dot if the electron there
occupies the same valley and spin state. We thus have a
valley blockade |—1,1)(1,1)|—1,1) [57,72]. However, if in the
course of operation, we perform a valley transition, then the
blockade is lifted and the electron can freely enter the right
dot: | 1I,)(1,1)|—1,1) — (0,2)] 1,1)|—1,1). In this way, by
extending the system with an adjacent dot trapping a reference
electron with given valley state, we can perform a valley qubit
readout. Nonetheless, this method still requires experimental
confirmation in TMDC materials.

In real situations during electron tunneling between the
dots an intervalley mixing might take place, which results in a
readout error. There are two sources of such mixing. The first
is the tunneling itself through the barrier between dots, which
magnitude can be assumed as the same order of magnitude as
for the intervalley coupling during the potential squeezing in
our method, namely, ~40 ueV. The second is mixing induced
by point defects and dislocations. It indeed vanishes at the
clean limit, however, in practice, the available samples so far
are quite disordered. Let us assume that for a typical defect
concentration of 0.1 nm~2 [73], the disorder-induced valley
mixing energy scale is 50 peV [74]. This gives an about 0.5%
admixture of the opposite valley state [75] during tunneling,
and the same readout error. Eventually, together with mixing
due to passing through a barrier during tunneling between dots,
this gives the readout error estimate of about 1%.

V. CONTINUUM MODEL

There are numerous models within the k - p approximation
in TMDCs, which successfully describe the electron dynam-
ics near the conduction band minimum [26,55,58,76,77]. In
such continuum models we neglect the details of the micro-
scopic lattice-periodic crystal potential. We now introduce a
continuum model taking into account the ground-state level
in the conduction band at the minimum K(K’), with spin
and valley degeneracy. This level is further split by 2A
by the intrinsic spin-orbit interaction. Within this model,
we include four subbands with states {|/C,s) = |s) ® |K)} =
{11,1),1-L,1),1 1,1),]—1,])}, forming a basis. The model is
introduced according to [26,55].

The model Hamiltonian includes the effective masses m
for a set of four states |KC,s), with m™% = m/=5. The

K,s
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assumed band masses are m!" = m~ =049 m,, m~!t =
m" = 0.44 m, [26]. The resulting 4 x 4 Hamiltonian matrix
assumes the following form:

P+ A A Mok 0
A LA 0 Npk_ )
horky 0 P _A ’
0 hrky A LH+ A

with the momentum operator 7i%k> = h*(k> +k2), ki =
k. £ik,, and k; = —id;. The full wave function (en-
velope) in this representation takes the form W(r) =
[Yri4(0), ¥_14(r), Y1, (r), 1, (r)]T. This model allows to in-
clude the Rashba-type spin-orbit interaction, induced by an
external perpendicular electric field E, and with (complex
in general) spin-orbit coupling |Ag| = yrle|E,, where yr =
3.3 x 10~* nm? and the field is expressed in (E,) = Vnm™!
[26]. We assume a real value for the Agx = ygle|E, and the
electric field of the order of E. ~ 50 mV nm~'. However, the
form of the Hamiltonian (18) implies that the Rashba coupling
has no influence on intervalley transitions (it only couples the
spin degrees of freedom), which has been confirmed by our
numerical simulations.

Having the effective model introduced, we now want to
calculate the evolution of the valley qubit, as we did for the
tight-binding model, and compare the results. This way, we
can confront the TB simulations with another model and,
and the same time, verify the continuum model. Aside from
the 2A spin splitting in the conduction band (CB), to define
the model we need to specify the strength of the intervalley
coupling A. The 2A has been obtained from the TB model,
by calculating splitting for the initial (ft = 0) form of the
confinement potential and in the state of maximal squeeze t =
T /2. We concluded that 2A changes from 3.72 to 3.66 meV,
during the potential pulsing. Thus, in the continuum model we
assume temporal variability A(r) = A[cos(wt) + 1]/2 + Ag
and parameters Ap = 1.83 meV, A; = 0.03 meV, while the
intervalley coupling 2V can be calculated from the difference
between the ground state and the first excited state in CB
under an assumption of no SOI interaction [55,58]. We again
calculate them from the TB approximation, and conclude that
2 A changes from 0.088 to 0.008. For the purpose of the con-
tinuum model we assume A(r) = Aj[cos(wt) + 1]/2 + Ay,
Ap = 0.004 meV, A; = 0.04 meV.

For the Hamiltonian (18) we solve the time-dependent
Schrodinger equation with varying A(¢) and A(t). The results
are shown in Fig. 10. The green curve presents results for a
resonant driving w = ., and for deviations from the reso-
nance: w = 1.01 w, (blue) and w = 1.02 w. (magenta). The
resonant frequency o, is slightly different, corresponding to
T, =2 /w. = 1.099 ps. The evolution within the continuum
model is quite consistent with the tight-binding calculations.
This speaks in favor of the continuum model for describing
electron dynamics at the edge of the conduction band. It
requires a significantly lower number of parameters than TB,
yet still the values and ranges of parameters (i.e., Ay, Ay, Ay,
A»)have to be specified for a particular form of the confinement
potential. These values can be obtained from the TB model.

Despite somewhat different resonant frequencies between
the TB and continuum models, the frequency and the amplitude
of Rabi oscillations are very close to each other in both
cases. This is because near the resonance, the Rabi frequency
Qo = \/(a) — wo.c)* + (A1 /h)? weakly depends on the driv-
ing oscillation frequency w, while it depends linearly on the
amplitude A; of the intervalley coupling oscillations.

A natural requirement for a boundary is a condition that
the normal probability current j(r) at the edge vanishes [77]:
Jj1 = 0. In the nanodevice we use strongly bound states in the
center of the flake, hence, the boundary effects are unimportant
for us and we can enlarge the flake and move its edges
arbitrarily far away from the confinement center. That is why in
the continuum model we assumed a flake of a much larger size
than the confinement region and assumed a simplified square
shape of the flake. At the boundary of the computational square
we set VW =0, which automatically meets the boundary
condition j; = 0.

VI. CONCLUSIONS

We investigated a prospect of a valley-qubit realization
presenting results of computer simulations in which we per-
form operations on a valley qubit defined in a nanodevice
based on a MoS; monolayer. Such monolayers have a number
of interesting properties. Unlike graphene, they have a band
gap and a relatively high value of the spin-orbit coupling.
Moreover, they possess an ability of using the valley pseu-
dospin, in addition to spin, as a quantum bit. Thus, they are
important materials for spintronics and recently introduced
valleytronics. We described the monolayer within the tight-
binding approximation using a basis of three molybdenum
orbitals (three-band tight binding). This model includes an
external confinement potential, which traps an electron, created
by voltages applied to local gates. The exact form of the
dot potential is obtained by solving the Poisson equation for
the presented gates layout, the MoS, flake, and separating
dielectric layers.

In the quantum dot, we trap a single electron. We modulate
the confinement potential by applying oscillatory voltages to
two opposite gates, effectively squeezing the electron wave
function. The oscillating voltages induce gradual transitions
of the electron state from the K to K’ valley (the spin remains
constant). The transitions between valleys are identical to the
operation of the elementary quantum NOT gate on the valley
qubit. These transitions have the Rabi oscillations form.

Simulation of this kind is carried out by solving the time-
dependent Schrodinger’s equation in a basis of tight-binding
Hamiltonian eigenstates for a time-dependent confinement
potential, calculated along with the Poisson’s equation at every
time step. The tight-binding calculations are further confirmed
by simulations within the four-band continuum model, with
good consistency. At the same time, we validate the continuum
models and show their usefulness in describing time evolutions
of conduction band electron states in TMDC monolayers.

As a result of the performed simulations, we showed
feasibility of operations on a valley qubit implemented in
modern monolayer materials. We have developed, previously
used [59,78], precise, and realistic simulations of the time
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evolution of semiconductor nanodevices, now introduced for
new and attractive materials with interesting properties.
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APPENDIX: DISPERSION RELATION
FOR A FINITE FLAKE

Let us get back to Fig. 6 showing electron densities in
the reciprocal space f,,(k) = |®,,(k)|*> obtained from Fourier
transforms of the eigenstates ¥,,(r). Now, we plot in color
subsequent densities p,,(k) along lines connecting points of
high symmetry I' — K — M — T" in the BZ (obtaining, this
way, 1D densities along these directions) at an energy level
E,, corresponding to subsequent states. Thus, forming 2D
color maps in the wave-vector space (k,E(k)). This way,
we get colored dispersion relations E(k) shown in Fig. 12.
Additionally, three black curves show the relations E™ (k)
obtained using our three-band model [Eq. (1)] for a case of
an infinite monolayer. We see that the valence and conduction
bands are formed with a direct band gap at the point K.
The obtained subbands E (k) faithfully recreate the dispersion
relations of an infinite flake E™ (k). The visible widening
(blurring of the dispersion relations) clearly results from a finite
size of the modeled flake. This way, we verified correctness of
the obtained eigenstates in the flake. A characteristic feature
is that the bound states in the dot (especially those from the
bottom of the continuum band near the point K) are slightly

100

E (eV)

Fourier transform (squared magnitude)

FIG. 12. Dispersion relation E(k) for a finite flake MoS, obtained
through plotting the density g, (k) along a symmetry axis in the
BZ for subsequent energies E,,. Obtained this way bands recreate
successfully the dispersion relations for an infinite flake (marked
as black lines) within the three-band model. Moreover, subbands of
trivial edge states are visible, which do not close the band gap.

shifted towards lower energies, which is typical for bound
systems. The dashed line Q in Fig. 12 marks the states from
the bottom of the conduction band which are used to define
our qubit. Notice that subsequent (quantized!) states lie here
increasingly closer to each other on the energy scale, which is
typical for bound states in a finite well.

Nevertheless, the most interesting result of our method of
computing the E(k) relation for a finite flake is obtaining
branches of edge states. In Fig. 12 we see additional subbands
in the energy gap, created by the edge states. Lines A, B, and
C are used to mark densities for edge states from the second
row of Fig. 6 with their corresponding eigenenergies. A notable
feature is the fact that these states do not close the energy gap (it
is still visible in the vicinity of the valence band), which means
that the edge states are topologically trivial [79,80]. They start
in the conduction band but do not reach the valence band and
are still gapped.
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