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We study both analytically and numerically the role of orbital effects caused by a magnetic field applied
along the axis of a semiconducting Rashba nanowire in the topological regime hosting Majorana fermions. We
demonstrate that the orbital effects can be effectively taken into account in a one-dimensional model by shifting
the chemical potential and thus modifying the topological criterion. We focus on the energy splitting between
two Majorana fermions in a finite nanowire and find a striking interplay between orbital and Zeeman effects on
this splitting. In the limit of strong spin-orbit interaction, we find regimes where the amplitude of the oscillating
splitting stays constant or even decays with increasing the magnetic field, in stark contrast to the commonly
studied case where orbital effects of the magnetic field are neglected. The period of these oscillations is found to
be almost constant in many parameter regimes.
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I. INTRODUCTION

Majorana fermions (MFs) in condensed matter systems
have been at the center of attention for many years. They
have been predicted to emerge in such systems as semicon-
ducting nanowires [1–19], p-wave superconductors [20–23],
graphenelike systems [24–33], and chains of magnetic atoms
[34–39], with some of these proposals being implemented
experimentally [40–49]. In this work, we focus on Rashba
nanowire setups [2,3], which have been widely implemented
experimentally [40–44]. The experimental evidence of MFs
in semiconducting nanowires is based on the observation of
emerging zero-bias peaks in the differential conductance as a
function of the magnetic field applied along the nanowire axis
[40–43].

However, at large magnetic fields MFs initially localized
at two opposite nanowire ends overlap, resulting in finite-
energy fermionic states [7–10]. So far, theoretical works have
predicted that the energy of these fermionic states should
grow exponentially with increasing the magnetic field, up to
the point where these bound states cross the gap and merge
with the bulk states [7–10]. In contrast to that, transport
measurements performed on such nanowires have revealed
constant or decreasing energy splitting of the MFs as a function
of the magnetic field [43,44], which has often been used as an
argument against MF interpretation of such data [50].

In this work, we resolve this paradox between theory and
experiment by taking into account orbital magnetic effects
neglected so far in the context of the MF energy splitting.
In reality, nanowires have a finite diameter, indicating that
orbital effects of the magnetic field may be important. We show
that properly accounting for such orbital effects may explain
the constant or decreasing amplitude of the MF splitting
oscillations in the topological phase. Numerical studies of the
topological phase diagram taking into account orbital effects
are reported for cylindrical and hexagonal nanowires [51,52].
However, so far, not much attention has been paid to the

importance of orbital effects for characterization of the energy
splitting between MFs.

In this paper, we propose a one-dimensional (1D) model that
takes into account the orbital effects caused by the magnetic
field and study how they modify the topological phase. Our
system consists of a semiconducting nanowire with Rashba
spin-orbit interaction (SOI) in proximity to an s-wave bulk
superconductor (see Fig. 1). By applying a magnetic field,
such a system can be brought into the topological phase
with MFs emerging at the ends of the nanowire. Typically in
experiments, the magnetic field is applied along the nanowire
axis (x̂) in order not to destroy the bulk superconductivity,
while the Rashba SOI is orthogonal to the magnetic field B

(chosen here along ẑ). In most theoretical works, the magnetic
field is assumed to enter only as a Zeeman term, while the
orbital contribution is dismissed due to the small nanowire
diameter. As a result, MF oscillations have been found only in
the weak SOI regime, where the Fermi wave vector depends
on B, and thus the amplitude of the splitting always grows
as the localization length grows with increasing the B field
[7–10]. In the strong SOI regime [53–56], the Fermi wave
vector is independent of B unless orbital effects, shifting the
chemical potential, are taken into account. The dominant MF

nanowire

s-wave superconductor

FIG. 1. The setup consists of the semiconductor Rashba nanowire
of radius R brought into proximity to an s-wave bulk superconductor.
The nanowire is aligned along the x̂ axis and the SOI vector α is along
the ẑ axis. An external magnetic field B applied along the nanowire,
i.e., along the x̂ axis, drives the setup into the topological phase hosting
MFs localized at the nanowire ends.
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localization length, determined by the proximity gap at the
exterior branches of the wire spectrum, stays constant in this
regime, so one expects a constant amplitude of the MF overlap.
We demonstrate that, quite remarkably, these orbital effects
can qualitatively change the MF energy splitting and thus
can account for a better agreement between theory and recent
experiments [44].

The paper is organized as follows. In Sec. II we study the
spectrum of the cross section of the nanowire in the presence
of orbital effects caused by the magnetic field. In Sec. III
we discuss an effective model for a one-dimensional Rashba
nanowire, in which we take into account orbital effects via
a shift of chemical potential. Using this model, we derive
the modified topological criterion in Sec. IV. In Sec. V,
we calculate the zero-energy MF wave functions in semi-
infinite nanowires. To calculate the splitting between two MFs
we focus on the finite-size nanowires and introduce the tight-
binding model in Sec. VI. Using the results from the previous
two sections we calculate the splitting between two MFs in
Sec. VII. Finally, we summarize our results in Sec. VIII.

II. ORBITAL EFFECTS IN THE LOWEST SUBBANDS

A three-dimensional nanowire is described by the Hamil-
tonian H3D(x,y,z) in which the dynamics along the nanowire
(x̂ axis) and in the cross section of the nanowire (ŷẑ plane) are
independent, H3D(x,y,z) = H̄ (x) + H2D(y,z). As a result, the
wave function takes the form �(x,y,z) = �̄(x)�2D(y,z) and
the problem can be solved in two steps. Thus, we first focus on
finding the eigenvalues of H2D(y,z) in the presence of orbital
effects. Afterwards, we deal with the effective one-dimensional
model, in which the chemical potential μ shifts as a function of
the magnetic field. Below, we show that at small magnetic fields
the dependence is quadratic, so μ = μ0 − β(�/�0)2, where
�0 = hc/e, μ0 is the initial chemical potential, and � = BS

is the magnetic flux through the nanowire cross section of
area S.

The simplest model to consider analytically is a cylindrical
hollow nanowire of radius R [51,57,58]. The kinetic term in
the transverse direction is written in polar coordinates (in the
ŷẑ plane, see Fig. 1) as

H
cyl

kin =
∫

dφ ψ†(φ)
h̄2

2m∗

(−i∂φ

R
− eBR

2ch̄

)2

ψ(φ), (1)

where m∗ is the effective mass and the vector potential A =
BR/2 is chosen in the Coulomb gauge. The energy spectrum
is given by E

cyl

l = h̄2(l − �/�0)2/2m∗R2, where � = πR2B

is the magnetic flux through the cylinder cross section and the
quantum number l corresponding to the angular momentum
is an integer. In what follows, we work with the lowest
nondegenerate subband (l = 0), so the orbital effects indeed
could be taken into account by shifting the chemical potential
up proportionally to B2, where the corresponding coefficient
is defined as β̄cyl = h̄2/2m∗R2 (see above).

Next, we study numerically a more realistic situation in
which a nanowire has a rectangular cross section Nya × Nza,
where a is the effective lattice constant. In the Landau gauge
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FIG. 2. The energy spectrum of the nanowire with the cross
section Nya × Nza as a function of the magnetic flux �/�0. (a) In
a nanowire with a square cross section (Ny × Nz = 12 × 12), the
lowest energy level is nondegenerate, while the majority of higher
subbands are twofold degenerate at B = 0 due to the additional mirror
symmetry. (b) In contrast to that, in a nanowire with a rectangular
cross section (Ny × Nz = 14 × 12), the symmetry is broken and, as
a result, the lowest subbands are nondegenerate. In both cases, the
bottom of the lowest subband moves up as a quadratic function of B.
One flux quantum through the cross section corresponds to magnetic
fields of strength (a) B = 0.41 T or (b) B = 0.35 T for a = 8.33 nm.
The splitting between subbands is determined by t⊥ = h̄2/2m∗a2 =
37 meV, where m∗ = 0.015me.

�A = Byẑ, the tight-binding Hamiltonian reads as

H2D = − t⊥
Ny∑
j=1

Nz+1∑
k=1

c
†
j+1,kcj,k

− t⊥
Ny+1∑
j=1

Nz∑
k=1

e−iϕj c
†
j,k+1cj,k + H.c., (2)

where the phase ϕj = 2π�j/(NyNz�0) accounts for or-
bital effects, � = BNyNza

2 is the magnetic flux though the
nanowire cross section, and t⊥ > 0 is the hopping amplitude.
Here, c†j,k(cj,k) is the fermionic creation (annihilation) operator
at site (j,k) of the square lattice.

In nanowires with a square cross section Ny = Nz, the
lowest subband is nondegenerate, while the majority of higher
subbands are multiply degenerate at B = 0 due to the presence
of an additional mirror plane going through the square diagonal
and the nanowire axis [see Fig. 2(a)]. This degeneracy should
be expected to occur in all nanowires with high-symmetry cross
sections. However, in the presence of disorder or working with
nanowires covered only partially by the superconductor, we
assume such symmetries are broken and the degeneracy is
lifted. For example, if Ny and Nz are noncommensurable, the
lowest energy subbands are nondegenerate [see Fig. 2(b)]. Due
to mirror symmetry with respect to B → −B [see Eq. (2)],
for B small, the bottom of nondegenerate subbands moves
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up as ∝ B2. In contrast to that, subbands that are twofold
degenerate split away as ∝ B. We emphasize that these
characteristic dependencies are general and do not even rely
on the confinement or a particular shape of the nanowire
cross section. For example, also the lowest energy levels of
the Fock-Darwin spectrum for an electron in a parabolic 2D
confinement subjected to small magnetic fields follows the
same dependence on the flux [59–62]. In what follows, we
focus on this case of a single nondegenerate band and take into
account orbital effects via an effective shift of the chemical
potential.

III. EFFECTIVE 1D HAMILTONIAN

Next, we introduce an effective continuum model for a one-
dimensional Rashba nanowire described by the Hamiltonian
H = Hkin + Hso + HZ + HSC , where

Hkin =
∑

σ

∫
dxψ†

σ (x)
[−h̄2∂2

x /2m∗ − μ
]
ψσ (x), (3)

Hso = −iα
∑
σ,σ ′

∫
dxψ†

σ (x)(σz)σσ ′∂xψσ ′(x), (4)

HZ = VZ

∑
σ,σ ′

∫
dxψ†

σ (x)(σx)σσ ′ψσ ′(x), (5)

HSC = �

2

∑
σ,σ ′

∫
dxψσ (x)(iσy)σσ ′ψσ ′(x) + H.c., (6)

with α being the SOI strength, � the proximity-induced pairing
gap, and VZ = gμBB/2 the Zeeman energy, where g is the g

factor of the nanowire and μB is the Bohr magneton. Here,
ψ†

σ (x)[ψσ (x)] is the creation (annihilation) operator of an
electron at position x with spin σ/2 = ±1/2, and σx,y,z are the
Pauli matrices acting on the spin of the electron. We assume
VZ and � to be positive without loss of generality.

IV. TOPOLOGICAL CRITERION MODIFIED
BY ORBITAL EFFECTS

The topological phase transition is associated with a closing
and reopening of the bulk gap. The Rashba nanowire is in
the topological phase with MFs appearing at both ends of
the nanowire if VZ >

√
μ2

0 + �2 ≡ V 0
Z , where the chemical

potential μ0 is calculated from the SOI energy [2,3]. Orbital
magnetic effects taken into account in the effective model as
μ = μ0 − βV 2

Z [β = β̄(2S/gμB�0)2] modify the topological
criterion. We note that one can also efficiently control β

by changing the direction of the magnetic field, as only the
component along the nanowire axis leads to orbital effects.
In particular, as the magnetic field is increased, the Zeeman
energy grows; however, at the same time the bottom of the
subband moves up and the chemical potential is decreasing,
which makes it more difficult to achieve the topological phase.
In particular, if the initial potential is too low, μ0 < −1/2β

or μ0 < (4β2�2 − 1)/4β, the system is always in the trivial
phase. Generally, there are two critical values of magnetic fields
VZ,± at which the gap at k = 0 closes,

V 2
Z,± = (1 + 2βμ0 ±

√
1 + 4βμ0 − 4β2�2)/2β2, (7)

FIG. 3. Topological phase diagram as a function of the applied
magnetic field in units of VZ/� and of the initial chemical potential
μ0/� for β� = 0.1. The topological (green area) and trivial (blue
area) phases are separated by the phase boundary (black line)
corresponding to the closing of the bulk gap. The red line indicates
the phase boundary in the absence of orbital effects. Clearly, orbital
effects are responsible for shifting the topological phase to higher
values of chemical potentials.

and, thus, the topological phase transition takes place twice.
The topological phase hosting MFs at each end of the nanowire
is described by the modified topological criterion VZ,− <

VZ < VZ,+. In the limit β → 0, we reproduce the standard
topological criterion VZ− = V 0

Z and VZ+ diverges. If after the
first topological phase transition, the magnetic field is increased
further, the system could be driven out of the topological
phase again (see Fig. 3). In particular, in sufficiently long
nanowires, one will observe that the zero-bias MF peak in
the conductance disappears without showing any oscillations
[40]. Moreover, as it is difficult to detect the closing of the
bulk gap in the nanowires with a soft superconducting gap
via transport measurements, the sudden disappearance of MFs
could look puzzling, if orbital effects are not taken into account.
For (1 −

√
1 − β2�2)/β < μ0 < (1 +

√
1 − β2�2)/β, Vz−

is smaller than V 0
Z and the topological phase is achieved at

smaller magnetic fields. In addition, due to orbital effects,
the topological phase shifts towards higher values of chemical
potential, which reduces the challenging requirement of tuning
the electron density to very low values. For the nanowire of
diameter 80 nm and magnetic fields B ≈ 1–1.5 T a shift of the
chemical potential is β̄cyl(�/�0)2 ≈ 2–5 meV. These values
are much larger than the induced proximity gap � as well as
reported estimates for the spin-orbit energy and for fluctuations
of chemical potential and, thus, should be taken into account.

V. MF WAVE FUNCTIONS: SEMI-INFINITE NANOWIRE

After we have identified the bulk properties, we will
focus on MFs in semi-infinite nanowires. To find the MF
wave functions, we consider the strong SOI regime defined
by the condition that the SOI energy is the largest energy
scale, Eso = h̄2k2

so/2m∗ � VZ,�,μ, where kso = m∗α/h̄2. In
this regime, we linearize the Hamiltonian H near the Fermi
points k

(i)
F = 0 (k(e)

F = ±2kso), corresponding to the interior
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(exterior) branch of the spectrum with the Fermi velocity
υF = α/h̄ by expressing the electron operators ψσ (x) in terms
of slowly varying left Lσ and right Rσ movers [12,63,64],
ψ↑(x) = R↑(x) + e−2iksoxL↑(x) and ψ↓(x) = e2iksoxR↓(x) +
L↓(x). Next, we construct the basis vector that corresponds
to the exterior (interior) branch (φe)T = (L↑, R↓, L

†
↑, R

†
↓)

[(φi)
T = (R↑, L↓, R

†
↑, L

†
↓)]. The linearized Hamiltonian den-

sity, H̃ l = 1
2

∫
dx [φl(x)]

†Hlφl(x), can be written in terms of
Pauli matrices ηx,y,z acting on the electron-hole subspace as

He = ih̄υF σz∂x + �σyηy − μηz,

Hi = −ih̄υF σz∂x + VZσxηz + �σyηy − μηz. (8)

Imposing vanishing boundary conditions at the left end of
the nanowire, we find �L(x) = (f,if ∗,f ∗, − if )T /

√
N , with

f (x) = (−iei(2kso−μ/α)x−x/ξe + ie−x/ξ i

)e−iϕL/2, (9)

where N is the normalization prefactor and sin ϕL = μ/VZ .
The MF localization lengths are given by ξe = α/� and
ξ i = α/(

√
V 2

Z − μ2 − �). By analogy, we also find the MF
wave function localized at the right end of the nanowire and,
thus, exponentially decaying to the left, let say, for x < L with
�R(x = L) = 0. Not surprisingly, the left and right MF wave
functions are related as �R(x) = �∗

L(L − x), reflecting the
mirror symmetry between the two ends.

VI. TIGHT-BINDING MODEL

Next, we focus on the finite-size nanowires and calculate the
splitting between two MFs. To achieve this, we first turn to the
modeling of the system by using the tight-binding Hamiltonian
of a 1D chain composed of N + 1 sites [8,65]:

H =
∑
σ,σ ′

N∑
j=1

c
†
j+1,σ [iασ z

σσ ′ − txδσσ ′]cj,σ ′ −
N+1∑
j=1

�c
†
j,↑c

†
j,↓

−
∑
σ,σ ′

N+1∑
j=1

c
†
j,σ [(μ − 2tx)δσσ ′ − VZσx

σσ ′]cj,σ ′ + H.c.,

(10)

where c
†
j,σ (cj,σ ) is the creation (annihilation) operator act-

ing on electrons with spin σ located at site j . Here, tx =
h̄2/(2m∗a2

x) is the hopping amplitude along x̂, with ax being
the lattice constant, and α is the spin-flip hopping amplitude,
related to the SOI parameter by α = α/2ax .

VII. SPLITTING BETWEEN MFS

Next, we focus on the splitting between MFs. Numerically,
we find that the amplitude of MF splitting either stays constant
or decays (see Fig. 4). The left and right MF wave functions
found independently for a semi-infinite nanowire do not satisfy
the Schrödinger equation if the nanowire length is finite. Using
perturbation theory we find that the degeneracy between the
two MF levels is lifted by δε = |〈0|γRHγ

†
L|0〉|, where γL,R

are MF operators (the details of the derivation are presented in
Appendix A). In the regime of strong SOI, δε can be simplified
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FIG. 4. The MF energy splitting as a function of the applied
magnetic field in units of VZ/tx obtained by numerical diagonal-
ization (red solid line) or by using the analytical expression for δε

(black dotted line). The overlap between MFs decays and exhibits
oscillations with an almost constant period. The used parameters are
N = 300, �/tx = 0.005, μ = −20V 2

Z/tx , and α/tx = 0.3.

as

δε ≈ 2h̄υF

ξe + ξ i
|f (L)||sin (ϕ̃)|, (11)

where ϕ̃ = ϕL/2 − Arg[f (L)]. Away from the topological
phase transition point, the exterior gap is the smallest one,
so ξ e � ξ i . As a result, the amplitude of energy split-
ting δε stays constant and is given by 2�e−L/ξe

. The
period of oscillations is given by δVZ = πα/2βLVZ (see
Fig. 5). Close to the topological phase transition point,
ξ i � ξ e and δε ≈ 2(

√
V 2

Z − μ2 − �)e−L/ξ i | cos (ϕL + θ ′)|,
where θ ′ ≈ eL/ξ i

e−L/ξe

sin [(2kso − μ/α)L]. In principle, in
this regime we should also get oscillations in δε, but this
regime is so narrow in the values of the magnetic field due
to the exponential decay that the oscillations are irregular (see
Fig. 5).
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FIG. 5. The MF energy splitting as a function of applied magnetic
field in units of VZ/� in finite-size nanowire ksoL = 151. The
amplitude of oscillations stays constant away from the topological
phase transition points, close to which it shrinks. The parameters are
chosen as Eso/� = 50 and μ = −0.075V 2

Z/�.
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For degenerate bands and also for high values of Zeeman
energy, the chemical potential moves linearly as a function
of the magnetic field (see Fig. 2). In this case, we observe
similar periodic oscillations of the energy splitting between two
MFs, but the region with shrinking amplitude gets larger due
to slower dependence of μ on VZ (see Appendix B). We note
that our calculations assumed that the proximity-induced gap is
independent of magnetic fields, which corresponds to the weak
coupling regime [66–72]. In the strong coupling regime [73],
we also took into account effects of the external magnetic field
on the bulk s-wave superconductor in which the proximity-
induced gap � = �0

√
1 − (VZ/V c

Z)2 was suppressed at the
critical field V c

Z . Apart from modifications in the topological
criterion, our finding of nongrowing oscillations of the MF
splitting stays valid also in this case (see Appendix C).

VIII. CONCLUSIONS

In this work, we take into account the orbital effects due
to the finite-size cross section of the nanowire by shifting the
chemical potential in an effective 1D model. Adding orbital
effects leads to modification of the topological phase transition
criterion. Moreover, in the strong SOI regime, the amplitude
of the MF energy splitting can stay constant or even decrease
as the magnetic field is increased. This result could be relevant
for current experimental data [43,44].
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APPENDIX A: ENERGY SPLITTING BETWEEN TWO
MFS IN FINITE-SIZE NANOWIRE

In this appendix, we provide details of the calculation of
the splitting between two MFs in a finite-size nanowire. We
assume that we already found the left (�L) and the right
(�R) MF wave functions [12,64]. The left MF wave function
�L satisfies the Schrödinger equation for the semi-infinite
nanowire, HL

0 �L = 0, with corresponding boundary condi-
tions. The corresponding expressions can be found analytically
or numerically by considering the length of the chain N ′a to
be much larger than the MF localization lengths (see Fig. 6).
We rewrite H in Nambu representation as matrix Hij of size
4(N + 1) × 4(N + 1) in the basis composed of (cj,σ ,c

†
j,σ ). By

finding eigenvalues and eigenvectors of Hij , one determines
energy levels and corresponding wave functions. In the regime
of strong SOI, the coefficients χ

L,R
jησ can be determined from the

continuum model. Generally, we find good agreement between
the two models. The left MF wave function for the semi-infinite
nanowire [�L(n = 0) is equal to zero in the continuum model]
can be written in this basis as

γL =
∞∑

n=1

[(
χL

n11

)∗
cn,1 + (

χL
n11̄

)∗
cn,1̄

+ (
χL

n1̄1

)∗
c
†
n,1 + (

χL
n1̄1̄

)∗
c
†
n,1̄

]
, (A1)
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FIG. 6. The MF probability density |�L|2 on the site j obtained
numerically (red) and analytically (black). Both approaches agree
excellently. The tight-binding parameters are chosen to be N = 1000,
α/tx = 0.3, �/tx = 0.005, μ/tx = −0.002, and VZ/tx = 0.01. We
note that such a MF probability density can be measured in scanning
tunnelling microscopy (STM) experiments [45,47,74].

while the corresponding right MF wave function [�R(n =
N + 2) is equal to zero in the continuum model] reads

γR =
N+1∑

n=−∞

[(
χR

n11

)∗
cn,1 + (

χR
n11̄

)∗
cn,1̄

+ (
χR

n1̄1

)∗
c
†
n,1 + (

χR
n1̄1̄

)∗
c
†
n,1̄

]
. (A2)

In a finite-size nanowire of the length Na (N � N ′), the
two MFs split away from zero energy. This energy splitting can
be found perturbatively in the framework of the tight-binding
model. Here, we represent the Hamiltonian H of the finite
chain as H = HL

0 − H1, where HL
0 is the Hamiltonian of the

semi-infinite chain and H1 is the small perturbation that comes
from eliminating the hopping between sites n = N + 1 and
n = N + 2 and is given by

H1 =
∑
σ,σ ′

c
†
N+2,σ [iα(σ z)σσ ′ − txδσσ ′]cN+1,σ ′ + H.c. (A3)

As a result, the energy splitting is given by

δε = |〈0|γRH1γ
†
L|0〉|, (A4)

where we use the fact that HL
0 �L = 0. In the Bogoliubov-de-

Gennes representation, we arrive at

〈0|γRH1γ
†
L|0〉 = − tx

∑
σ

[(
χR

N+1,1,σ

)∗
χL

N+2,1,σ

]

− iα
∑

σ

[
σ
(
χR

N+1,1,σ

)∗
χL

N+2,1,σ

]
. (A5)

This expression can be significantly simplified further
by using the properties of the MF wave functions: χ

L/R

n11 =
(χL/R

n1̄1 )
∗

and χ
L/R

n11̄ = (χL/R

n1̄1̄ )
∗
. In addition, in our particular

setup, χL
n11̄ = i(χL

n11)
∗

and χR
n11̄ = −i(χR

n11)
∗
. Thus,

δε = 2
∣∣txIm

[
χR

N+1,1,1

(
χL

N+2,1,1

)∗]
− αRe

[
χR

N+1,1,1

(
χL

N+2,1,1

)∗]∣∣. (A6)
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To proceed further, we determine χL
N+2,1,1 and χR

N+1,1,1
from the continuum model. Using Eqs. (10) and (11),
χL

N+2,1,1 = √
af (x = (N + 2)a)/

√
N and χR

N+1,1,1 =√
af ∗(x = a)/

√
N . The normalization prefactor N is defined

from the condition
∫ +∞

0 dx|�L(x)|2 = 2, leading us to

N = ξe + ξ i − 4(1/ξe + 1/ξ i)

(1/ξe + 1/ξ i)2 + (2kso − μ/α)2
. (A7)

To simplify the final expression, we introduce the new nota-
tion g = |g|eiϕ ≡ χR

N+1,1,1(χL
N+2,1,1)

∗ = af ∗(x = a)f ∗(x =
L)/N . In this case, Eq. (A6) can be rewritten as

δε = 2
√

t2
x + α2|g|| cos(ϕ + ϕ0)|, (A8)

where cos ϕ0 = α/
√

t2
x + α2. Next, we determine |g| and ϕ by

performing a Taylor expansion:

g = − aeiϕL

N (e−i(2kso−μ/α)a−a/ξe − e−a/ξ i

)(e−i(2kso−μ/α)L−L/ξe − e−L/ξ i

), (A9)

g ≈ a2eiϕL

N [i(2kso − μ/α) + 1/ξe − 1/ξ i](e−i(2kso−μ/α)L−L/ξe − e−L/ξ i

), (A10)

g ≈ a2ei(ϕL+θ+θ ′)

N
√

(1/ξe − 1/ξ i)2 + (2kso − μ/α)2

√
e−2L/ξe + e−2L/ξ i − 2e−L/ξe

e−L/ξ i cos [(2kso − μ/α)L]. (A11)

The phase of g is given by ϕ = ϕL + θ + θ ′, where

θ = arctan

(
2kso − μ/α

1/ξe − 1/ξ i

)
,

θ ′ = arctan

(
e−L/ξe

sin [(2kso − μ/α)L]

e−L/ξ i − e−L/ξe cos [(2kso − μ/α)L]

)
. (A12)

In the strong SOI regime (N ≈ ξe + ξ i , ϕ0 ≈ π/2, θ ≈ π/2), we arrive at the following expression for the energy splitting
between the two MFs,

δε ≈ 2
h̄υF

ξe + ξ i
| cos(ϕL + θ ′)|

√
e−2L/ξe + e−2L/ξ i − 2e−L/ξe

e−L/ξ i cos [(2kso − μ/α)L] , (A13)

where ξ i depends nonmonotonically on the applied magnetic
field. If orbital effects of the magnetic field are taken into
account, ξ i first shrinks as a function of the magnetic field.
However, close to the second topological phase transition, it
starts to grow. Next, we analyze Eq. (A13) in two regimes: close
and far away from the topological phase transition points.

Away from the topological phase transition points, the
exterior gap is the smallest in the system, so ξe � ξ i . As a
result, we arrive at the simplified expression

δε ≈ 2�e−L/ξe |cos [ϕL − (2kso − μ/α)L]|. (A14)

The amplitude of oscillations, 2�e−L/ξe

, stays constant as
a function of the magnetic field. For μ = μ0 − βV 2

Z , the
period of oscillations in Zeeman energy is given by δVZ =
πα/2βLVZ and stays almost constant if δVZ � VZ . However,
there is a tendency for shrinking of the period. It should be
contrasted with the regime of weak SOI [8], where the period
of oscillations grows as δVZ = πh̄

√
2VZ/m∗/L. We note that

oscillations in the strong SOI regime arise only due to orbital
effects. If we would neglect the shift of the chemical potential
caused by the magnetic field via orbital effects, μ would stay
constant as well as the energy splitting δε as a function of the
magnetic field.

Close to the phase transition points, ξ i �
ξe and the energy splitting is given by δε ≈
2(

√
V 2

Z − μ2 − �)e−L/ξ i | cos (ϕL + θ ′)|. On one hand,
the amplitude of oscillations is enhanced by the exponential
prefactor e−L/ξ i

. On the other hand, the prefactor 1/ξ i

overtakes the behavior, resulting in the suppression of the split-
ting as ξ i diverges. Generally, the region of values of the mag-
netic field, in which ξ i � ξ e, is very narrow and it is difficult
to determine the period of oscillations analytically. However,
we observe numerically that the splitting between MFs both
decays and oscillates as a function of the magnetic field close
to the second topological phase transition point (see Fig. 7).

- 0.4

- 0.2

0.0

0.2

0.4

2 4 6 8 10 12

FIG. 7. The energy splitting between two MFs as a function of the
applied magnetic field in units of VZ/� in the finite-size nanowire
L/a = 302. The results were obtained numerically (red solid line)
by exact diagonalization of Eq. (10) and analytically (black dashed
line) using Eq. (A13) (see Fig. 5). Generally, there is a reasonable
agreement between the two approaches. The parameters are fixed as
Eso/� = 50 and μ = −0.075V 2

Z/�.
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FIG. 8. Topological phase diagram as a function of the applied
magnetic field in units of VZ/� and the initial chemical potential
μ0/� in the case of linear shift of chemical potential (β2 = 2.2). The
topological (green area) and trivial (blue area) phases are separated
by the phase boundary (black line) corresponding to the closing of the
bulk gap. The red line indicates the phase boundary in the absence
of orbital magnetic effects. Again, the topological phase is shifted
towards higher values of the initial chemical potential.

APPENDIX B: LINEAR DEPENDENCE OF
THE CHEMICAL POTENTIAL ON THE

MAGNETIC FIELD: μ = μ0 − β2VZ

In this appendix, we briefly comment on the case where
the chemical potential moves linearly as a function of the
magnetic field. This is the case for degenerate bands and also
holds for high values of magnetic fields for all subbands. Thus,
we assume that the chemical potential linearly depends on the
magnetic field,

μ = μ0 − β2VZ, (B1)

where μ0 is the initial value of the chemical potential and β2

is the dimensionless parameter, which is chosen to be positive
so that β2VZ > 0. For 1 < β2

2 < 1 + (μ0/�)2, the system is
in the topological phase if μ0 > 0 and VZ,− < VZ < VZ,+
(see Fig. 8), where the two critical values of the magnetic field
are defined as

VZ,± =
β2μ0 ±

√
μ2

0 + (
1 − β2

2

)
�2

β2
2 − 1

. (B2)

In this case, we observe similar oscillations of the energy
splitting between two MFs (see Fig. 9). Again, the amplitude
stays constant for a large range of magnetic fields, ξe � ξ i .
Close to the second topological phase transition point VZ,+,
the amplitude of oscillations shrinks. Generally, this region of
shrinking amplitude gets larger due to the slower dependence
of μ on VZ . The period of oscillations is constant and is given
by δVZ = πα/β2L.

If β2
2 < 1 the system is in the topological phase for VZ >

VZ,− and there is no second topological phase transition. In
the special case when β2 = 1, the system is in the topological
phase for VZ > (�2 + μ2

0)/2μ0 and μ0 > 0.

- 0.4

- 0.2

0.0

0.2

0.4

6 8 10 12

FIG. 9. The MF energy splitting as a function of the applied
magnetic field in units of VZ/� in a finite-size nanowire ksoL = 151.
The results were obtained numerically (red solid line) by exact
diagonalization of Eq. (10) and analytically (black dashed line)
using Eq. (A13). The parameters are chosen as Eso/� = 50 and the
chemical potential μ/� = 16 − 2.2VZ/� is assumed to be linearly
shifted due to orbital magnetic effects.

APPENDIX C: DEPENDENCE OF PROXIMITY-INDUCED
SUPERCONDUCTING GAP ON MAGNETIC FIELD

Next, we also include effects of the external magnetic field
on the bulk s-wave superconductor in the regime of strong
coupling between the nanowire and the bulk superconductor
[73]. The proximity-induced gap � = �0

√
1 − (VZ/V c

Z)2 is
suppressed at the critical field V c

Z , where �0 is the value of the
superconducting gap in the absence of magnetic fields. We note
that in the weak coupling regime, the proximity-induced gap
is determined by the tunneling rate between the nanowire and
the bulk superconductor and, thus, the proximity-induced gap
in the nanowire can be considered independent of the external
magnetic field acting on the bulk superconductor [66–72].

1. Constant chemical potential μ = μ0

If the bottom of the band is not shifted by orbital effects
due to the magnetic field, the chemical potential stays constant,
μ = μ0. The topological criterion is only slightly modified to√√√√ μ2

0 + �2
0

1 + (
�0/V c

Z

)2 < VZ < V c
Z . (C1)

In this case, there are no oscillations in the energy splitting
(see Fig. 10(a)) since the oscillations could only appear due
to the shift of the chemical potential with the magnetic field.
As a result, the amplitude of the energy splitting first rapidly
increases and subsequently stays almost constant up to the
point where the proximity-induced gap closes at VZ = V c

Z .

2. Quadratic dependence of the chemical
potential μ = μ0 − βV 2

Z

Now we consider the chemical potential that is shifted
as a quadratic function of the magnetic field via orbital
effects, μ = μ0 − βV 2

Z . If μ0 > −[1 + (�0/V c
Z)2]/2β and

μ0 > [4β2�2
0 − [1 + (�0/V c

Z)2]
2
]/[4β(1 + (�0/V c

Z)2)], the
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(a) (b) (c)

FIG. 10. The energy splitting between two MFs as a function of the applied magnetic field in units of VZ/�0 in a finite-size nanowire
ksoL = 151 with Eso/�0 = 50. The parameters of the superconducting gap are chosen as follows: � = �0

√
1 − (VZ/V c

Z)2, with V c
Z = 12�0,

where V c
Z corresponds to the critical magnetic field Bc = 2 T for �0 = 0.25 meV. (a) The chemical potential is fixed to μ0/�0 = 2. As expected,

if the chemical potential is kept constant, there are no oscillations in the energy splitting. (b) The chemical potential is shifted quadratically due
to orbital effects as μ/�0 = −0.075V 2

Z/�2
0. (c) The chemical potential is shifted linearly due to orbital effects as μ/�0 = 16 − 2.2VZ/�0. We

note that in both panels (b) and (c), there are oscillations in the energy splitting between MFs and there is a range of magnetic fields for which
the MF energy splitting amplitude stays almost constant.

system is in the topological phase for VZ,− < VZ < min{VZ,+,V c
Z}, where

VZ,± =

√√√√[
1 + 2βμ0 + (

�0/V c
Z

)2] ±
√[

1 + 2βμ0 + (
�0/V c

Z

)2]2 − 4β2
(
�2

0 + μ2
0

)
2β2

. (C2)

Again, in the strong coupling regime, the proximity-induced
gap � = �0

√
1 − (VZ/V c

Z)2 decreases as the magnetic field is
increased. Thus, the localization length ξe, which now depends
on VZ , increases with increasing the magnetic field. Away from
the topological phase transition point VZ,−, the localization
length ξ e � ξ i and the energy splitting first increases with
increasing VZ and then starts to decrease (there is an interplay
between the growing prefactor e−L/ξe

and the decreasing one
�) [see Fig. 10(b)]. Close to the topological phase transition
point VZ,−, the localization length ξ i � ξ e, so the energy
splitting is increasing in this very narrow region.

3. Linear dependence of the chemical potential μ = μ0 − β2VZ

Finally, we consider the chemical potential that linearly
depends on the magnetic field, μ = μ0 − β2VZ . For 1 +

(�0/V c
Z)2 < β2

2 < [1 + (μ0/�0)2][1 + (�0/V c
Z)2], the sys-

tem is in the topological phase if μ0 > 0 and VZ,− < VZ <

min{VZ,+,V c
Z}, where

VZ,± =
β2μ0±

√
β2

2μ2
0 + (

�2
0+μ2

0

)[−β2
2 + 1 + (

�0/V c
Z

)2]
[
β2

2 − 1 − (
�0/V c

Z

)2] .

(C3)

In this case, we observe oscillations of the energy split-
ting that have features similar to the ones obtained for
the quadratic dependence of the chemical potential [see
Fig. 10(c)]. For β2

2 < 1 + (�0/V c
Z)2, the system is in the

topological phase if VZ,− < VZ < V c
Z . In the special case

β2
2 = 1 + (�0/V c

Z)2, the system is in the topological phase
if μ0 > 0 and (�2

0 + μ2
0)/2μ0

√
1 + (�0/V c

Z)2 < VZ < V c
Z .
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