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Assembling large-scale quantum networks is a key goal of modern physics research with applications in
quantum information and computation. Quantum wires and waveguides in which massive particles propagate in
tailored confinement is one promising platform for realizing a quantum network. In the literature, such networks
are often treated as quantum graphs, that is, the wave functions are taken to live on graphs of one-dimensional
edges meeting in vertices. Hitherto, it has been unclear what boundary conditions on the vertices produce the
physical states one finds in nature. This paper treats a quantum network from a physical approach, explicitly
finds the physical eigenstates and compares them to the quantum-graph description. The basic building block
of a quantum network is an X-shaped potential well made by crossing two quantum wires, and we consider a
massive particle in such an X well. The system is analyzed using a variational method based on an expansion
into modes with fast convergence and it provides a very clear intuition for the physics of the problem. The
particle is found to have a ground state that is exponentially localized to the center of the X well, and the other
symmetric solutions are formed so to be orthogonal to the ground state. This is in contrast to the predictions of
the conventionally used so-called Kirchoff boundary conditions in quantum graph theory that predict a different
sequence of symmetric solutions that cannot be physically realized. Numerical methods have previously been the
only source of information on the ground-state wave function and our results provide a different perspective with
strong analytical insights. The ground-state wave function has a spatial profile that looks very similar to the shape
of a solitonic solution to a nonlinear Schrodinger equation, enabling an analytical prediction of the wave number.
When combining multiple X wells into a network or grid, each site supports a solitonlike localized state. These
localized solutions only couple to each other and are able to jump from one site to another as if they were trapped

in a discrete lattice.
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I. INTRODUCTION

In the effort towards creating a quantum computer, much
attention has been given to designing and producing electronic
devices on the quantum scale [1-5]. Only to a lesser extend
has one focused on how the devices are connected in circuits
of quantum wires or waveguides. Multiple platforms promise
to realize a quantum network; among them are mesoscopic
semiconductor devices [6,7], carbon nanotubes [8,9], and
carbon nanowires [ 10—13]. In order to understand the behavior
of massive particles in a quantum network, it is necessary to
first obtain a thorough understanding of the basic building
block of such a network, namely, an intersection of quantum
wires. In this paper, we study such a wire crossing and how it
forms part of the network.

In order to set the stage for describing the essential
components of the network, we take two flat quantum wires
and place them perpendicular to one another in the same plane
such that they intersect, as illustrated in Fig. 1(a). Inside the
wires, we place a massive particle and assume that it is free
to move in the wires. We will denote this setup an X well.
We assume the particle is forbidden to move outside the X
well, that is, that the potential barriers surrounding the X well
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are infinitely high. We imagine that an X well could be built
using carbon nanowires, but will not restrict ourselves to a
specific realization. If we are able to describe the physics
of a network of wires, one might infer that we are also able
to understand the essentials of other networks with different
trapping potentials, as for instance those realized for cold
atoms using an optical lattice [14,15]. The setup is also of
interest in classical physics, since solving the Schrédinger
equation on an X well is equivalent to finding the eigenmodes
of a drum whose membrane has the shape of an “X.”

The X well has been studied in some detail previously
[16-22], but mainly as an open system and with focus on
the ground state. In this paper, we impose Dirichlet boundary
conditions (¢ = 0 for a wave function ) at the end walls
and consider both the ground state and the excited states. We
solve the problem using a variational method that is essentially
similar to the one employed in Avishai et al. [17], though our
method is a more general formulation able to describe not only
the ground state but also excited states.

In the literature, “quantum networks” bear many meanings.
An early application of the term can be found in Yurke and
Denker [23], which deals with low-noise electromechanical
networks in the quantum regime and discusses the essentials

©2018 American Physical Society
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FIG. 1. The X well constituting part of a quantum network.
(a) Geometry of the two-dimensional X well. The thick boundary
marks an infinitely high potential barrier beyond which the wave
function must vanish. The legs have lengths aL,, where s = E, N,
W, S, measured from the origin of the coordinate system. All the
legs are of equal width, namely, a. The shading illustrates the area
Ag = {—%a <x <alg, |yl < %a}inwhichtheeasternmodes |m,E)
reside. (b) Surface plot of ground-state wave function ¥ (x,y) for a
symmetric X well with L; = 5. (c) A solitonlike localized state in a
network of X wells. The solitonlike solution has a probability per unit
time J for jumping to a neighboring site.

of quantization of electrical circuits. More recently, it has
become more common to discuss quantum networks in the
context of hybrid platforms that may help create a quantum
internet [24] where quantum entanglement is spread across
many nodes. Important examples of such hybrid structures
are photonic crystals and nanostructures [25,26], cavity-based
light-matter systems with atoms and optical photons [27,28],
cavity optomechanics [29], ion traps integrated with pho-
tonics [30,31], and superconducting circuits integrated with
microwave cavities [32—-34]. These hybrid quantum systems
[35] are expected to become a backbone for future quantum
simulations [36]. In most of these platforms, information is
conveyed between nodes by photons. This is different from
the present context of a quantum network where the carriers
are massive particles. On the other hand, our setup is directly
relevant for recent work on implementing arbitrary optical
wave guides for cold atoms using, for instance, “painted po-
tentials” [37] with the purpose of producing quantum circuits
with atoms, so-called “atomtronics” [15]. The basic building
blocks consisting of cross-beam waveguides have already been
experimentally demonstrated [38,39].

Our study draws close parallels to the mathematical field
of quantum graph theory, which is the theory of differential
operators on graphs of one-dimensional edges connected by
vertices. Quantum graphs were first used by Exner and Seba
[40] to analyze bound states in bent waveguides. Since then
they have been used extensively to describe various phenomena
in physics and chemistry. Apart from the present application
with circuits of quantum wires, quantum graph theory are
among other things used to model solids [41], photonic crystals

[42], microwaves in waveguides, cavities and resonators [20],
superconductors [43—46], atomic and molecular wires [47],
spin-orbit interactions [48], and quantum chaos [49,50] on
networks, and to model aromatic carbohydrate molecules
[51,52]. Quantum graphs have been investigated both using
differential operators and from a scattering-matrix approach
[53,54]. Several reviews are available on the topic; see for
instance, Kuchment [55,56].

It is known that for a “fat” quantum graph—i.e., a graph
whose edges have a nonvanishing thickness—with Dirichlet
boundary conditions that collapses into a quantum graph
without transverse extension, the resulting effective boundary
conditions depend on the geometry of the fat graph [57-62].
This is in contrast to a fat graph with Neumann boundary
conditions, i.e., where the derivative of the wave function
is zero at the boundaries [63—65]. The Dirichlet problem is
in general identified in the mathematical literature as being
difficult, though some progress has been made in recent years.
One can argue that the X well is the simplest nontrivial example
of afat graph with Dirichlet boundary conditions, so the present
study also serves to test the assumptions and claims of quantum
graph theory.

In order to rigorously define the intersection or vertex
region, we call the intersecting area of the two wires in the X
well the central region and the rest legs. As shown on Fig. 1(a),
the width of each wire is a and the length of each leg as
measured from the center of the wellisa L, where s = E (east),
N (north), W (west), or S (south) denotes the leg in question.
The main priority is now to find the energy eigenstates of a
particle with (effective) mass m™* in the wires of the X well.
This amounts to solving the Schrédinger equation

2

V2 + Vi = Ey. )]

2m*

Here, V2 is the two-dimensional Laplace operator. Inside the X
well, the particle is free to move and the Schrodinger equation
is equivalent to the two-dimensional Helmholtz equation

k> + VHy =0, 2

where k is the wave number, defined through E = A%k?/2m*.
Throughout our discussion, we will assume that the system is
at zero temperature in order to ensure that our network is in
the fully quantum regime, i.e., that the temperature scale is
below the energy gap between ground and first excited states
in the system. Experimental access to this regime has been
demonstrated in many of the platforms discussed above.

The outline of this paper is as follows. In Secs. II to 1V,
we solve the Helmholtz equation and discuss the properties of
the solutions. We find that the ground state of the particle—as
plotted in Fig. 1(b)—is exponentially localized to the center
of the X well. Due to this exponential behavior of the wave
function, the lengths of the legs do not have appreciable impact
on the ground-state wave function (if beyond a certain size).
Neither does the boundary conditions on the end walls of the
legs—we show this explicitly for several examples later in the
paper.

Interestingly, we find that the cross section of the ground-
state wave function has the shape of a solitonlike solution to
a nonlinear Schrédinger equation, namely a hyperbolic secant
function. This enables an analytical prediction of the wave
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number k >~ /2/3 7 /a within 1% of the numerically attained
value.

Next, we study the excited states. For a symmetric X well,
the solutions are characterized in terms of symmetries. They
are found to resemble solutions to the well-known problem of a
particle in a box, and the eigenenergies of the former converge
to those of the latter for increasing L. We apply the solutions
in Sec. V to study how an incoming signal propagates through
the X well and find that it is the excited states that determines
the transmission properties when the incoming wave has an
energy above the transverse excitation threshold.

If the X well is constructed with very thin legs, the
naive expectation is that excitations transverse to the legs are
inaccessible at low temperatures and that the transverse degree
of freedom can be integrated out to obtain an effective one-
dimensional description. This approach—which we problema-
tize in Sec. VI—results in the X well reducing to a quantum
graph with the so-called Kirchoff boundary conditions at the
center vertex. These boundary conditions have been routinely
employed in theories on quantum networks since the early
1950’s [51,52] and are sometimes in the literature uncritically
assumed to hold [21]." As it turns out, however, the Kirchoff
boundary conditions are unable to account for the symmetric
solutions to the X well (including the ground state), and
they are not the correct boundary conditions for the physical
problem at hand. It has therefore been unclear what boundary
conditions—if any—correctly reproduce the eigenstates of the
X well in the context of quantum graph theory.

We find that for all excited states, the wave function
diminishes at the X-well center as the length of the legs are
increased relative to their width. This translates to a simple
boundary condition for the associated quantum graph problem,
namely that the wave function must vanish at the graph vertex.
The decoupling of the X-well legs thus achieved hinders
the propagation of waves through the network. As the legs
connecting the X’es in a physical network, however, must be of
finite length, the trivial dynamics predicted by quantum graph
theory are not applicable.

Finally, Secs. VII and VIII study different variations on the
X well and considers the X well as an element of a network
of quantum wires. When combining multiple X wells into a
network or grid, each site supports a solitonlike localized state.
We show that the solitonlike localized states only couple to
each other and not to other classes of states in the spectrum. Fur-
thermore, they are able to jump from one site to another, and the
X-well network is, thus, arealization of a lattice—see Fig. 1(c).
This emerging lattice of localized solutions may be interesting
for precision sensing and metrology [69] due to their diminsh-
ing coupling to other states and thus increased robustness.

II. MODES AS SOLUTIONS TO
THE SCHRODINGER EQUATION

The geometry of the problem does not allow one to separate
the spatial coordinates x and y. We can, however, partition the

'Kuhn [66] quickly realized, however, that the Kirchoff boundary
conditions may be generalized while still satisfying conservation
of probability current. See also the discussions in Frost [67] and
Kuhn [68].

X well into four (overlapping) rectangular regions A, in which
separation of variables may be employed, as detailed below.
The rectangles are chosen such that they each encompass the
central region together with one leg. This is exemplified for
s = E as the shaded area in Fig. 1(a).

We solve Eq. (2) in each of the rectangles A; and take
the solution to vanish outside the given rectangle. We shall
call such a solution a mode. Contrary to how the word is
sometimes used in the literature, in our context a single mode
is not an eigenstate of the system. An energy eigenstate is a
superposition of modes.

The following two-step procedure is used to construct the
mode wave functions. Throughout, we shall illustrate the steps
in the procedure with the eastern mode Ag as an example.

Step 1. Take the ansatz for a wave function

V(x,y) = X(@x)Y(y), 3

for some functions (of a single variable) X and Y describing the
mode wave function along the leg and transverse to it. Inserting
the ansatz into the Helmholtz equation gives us

d? d?

T3 X = —kjX(x) and = K Y»)., @)

for constants k| and k| subject to the constraint k> = k% + kﬁ.
To ensure that the mode wave function vanishes at the

boundaries above and below the leg, i.e., at {%a <x <

aLg,|y| = %a}, we take the transverse solution to be

Y(y) = sin (nm(% + y/a)) (®)]

for a positive integer m. We label the mode by its quantum
number m and denote it in Dirac notation |m,E). With the
solution Eq. (5), we have set the transverse component of the
wave vector to k,,; = mm/a. Notice that since we take a as
the basic unit of length, the length parameters for the legs, L,
are dimensionless. As the longitudinal mode we could take a
solution of the form X(x) = sin(ﬁ(% + x/a)), but this is too
restrictive since it fixes the energy completely.

Step 2. The rectangle A; is divided into two disjoint sub-
rectangles A™ and A®*'. One of them constitutes the central
region, A™ = {|x|,]y| < %a}, which is the same for all s. The
other rectangle, A?’“, isaleg, e.g.,

AEXIZ{%ag.xgaLEalylg%a}. (6)

While the transverse part of the mode wave function [Y (y)
in our example] is the same for A™ and AS™, the longitudinal
part [X(x)] is different. We normalize the mode such that
the longitudinal part of its wave function is 1 at the interface
between the central region A™ and the leg A®. (Note that this
implies that (m,s|m,s) # 1.) We require the wave function to
be continuous.

For the eastern mode, the wave function ¥ (x,y) =
(x,y|m,E) is

(x,y|lm,E) = csc(ky,a) sin (ka (%a+x)) sin (kmL(%a+y))
(N
for (x,y) € A™ je., in the central region. Meanwhile,
(x,ylm,E) = csc (kuya(Lg — 1))
X sin (km” (aLE — x)) sin (kml(%a + y)) (8)

155407-3



ANDERSEN AND ZINNER

PHYSICAL REVIEW B 97, 155407 (2018)

for (x,y) € A%, i.e., in the leg. This construction ensures
that (—%a,ylm,E) = (Lg,y|m,E) =0 as required and that
(%a,y|m,E) = sin(kml(%a + y)). However, the derivative of
the mode wave function is, unfortunately, discontinuous at the
boundaries of A and A (including the interface between
them).

Notice at this point that the longitudinal component of the
wave vector, k,,, may be imaginary, in which case k < ki, .
In this case, the trigonometric functions of k,, turn into
hyperbolic functions, and the mode wave function has an
exponential behavior. As we shall see later, this turns out to
be critically important for the description of the ground state
in the X well.

III. EIGENSTATES AS MODE EXPANSIONS

The construction of the previous section gives us a complete
set of modes in each of the legs for the given boundary condi-
tions discussed above. This follows directly from the theory of
box potentials. Likewise, restricted to the central regions, the
modes again constitute a complete set. Combining the modes
in all legs will now provide us with an (overcomplete) basis
set for square integrable functions in the well. We turn towards
finding the energy eigenstates of the full system (the entire
X well). We can write an energy eigenstate |y) as a linear
combination of modes:

W)=Y > awlm.s). )

m=1s=E,N,W,S

This expansion is for a fixed value of the wave vector k
always. To keep the notation simple we leave out k on both
sides of the equation. The coefficients «,,; must be chosen
such that the wave function vy (x,y) = (x,y|¥) is continuously
differentiable within the X well.

Alternatively, this can be stated as a variational principle;
the coefficients «,,,; must be chosen among the stationary points
of the energy functional

(WIHIW)) (10)

o,
Elly)] = —(k -
2m* (Vi)
Here, I is the operator giving the energy contribution due to
the kinks in the mode wave functions at the interfaces between

the legs and the central region. Its expectation value is

1 1
L 74 §a+€ . 821#
W) =tlim [ dy [ dx g ey) s+
€l0 —3a —za—e dx
1

Y 4
‘/_1 v <2’y> A<ax>x=ga+ - b

E(l
where A denotes the change when crossing the interface and
“...” stands for the similar contributions from the N, W, and
S interfaces.
We are primarily interested in the ground state and the
first few excited states. Because we have constructed the
modes such that the m’th mode corresponds to a transverse

. . . 2 . .
excitation with energy Zijzmz, in the limit L > 1 and at low
temperatures only the lower modes of the infinite sum in Eq. (9)

contribute significantly because transverse excitations of the

legs require a lot of energy. Motivated by this consideration,
we may, as a trial state, take a sum of a finite subset of the terms
in Eq. (9) and use this as the basis in a variational calculation.

The energy of a mode expansion in a finite number of modes
{|m,s)} with wave number k and mode coefficients given by
the vector &, may be stated as

2 TH
E(k,a) = i [t | (12)
2m* o' Vo

where IT is the matrix of elements {(m,s|IT|m’,s’), and ¥ is
the matrix of overlaps (m,s|m’,s") between modes |m,s) and
|m’,s").

A. Finding the ground state by variation

We are now ready to formulate a numerical method to find
the eigenstates. We start with the ground state.

To find a mode expansion that is close to the ground state,
we minimise the energy E(k,o),

n? Tk
min E(k,a) = min — ( k* — max M
ko k 2m* o a'W(k)a
Flz
= min — (k% — Amax(K)), (13)
k 2m*

where Am,x = max{i |det(IT — AW¥) = 0} is the greatest gen-
eralized eigenvalue of IT with respect to W for a given wave
number k. Numerically, we may compute Eq. (13) by a one-
dimensional downhill simplex routine by which the optimum
wave number is located. Once the ground-state wave number
kgs has been found, the mode coefficients a are found as
the generalized eigenvector corresponding to the eigenvalue
)\max(kgs)~

As an alternative to computing the matrix elements of IT (in
order to find its eigenvalues), we may perform an integration
by parts of the Laplacian in Eq. (2):

2

Hiw) = h
(WIHIY) = —5—

. /dxdy VIV

hZ
- F/dx dy (Vy*) - (V). (14)
m

Whereas kinks in the wave function ¥ give rise to energy
contributions through Dirac-delta terms in V2, the gradient
V1 is discontinuous, but integrable. So when using Eq. (14)
to compute the matrix elements of the Hamiltonian, one does
not have to worry about extra terms arising from the kinks in
Y. With this alternate approach, we would compute the matrix
elements of H from Eq. (14) and find the minimal generalized
eigenvalue of H with respect to W under variation of k.

B. Excited states

In the preceding section, we described how to find the
ground state. We now proceed to the excited states. The ex-
cited states are found through an orthogonalization procedure:
Assume we have already found the lowest N eigenstates and
denote their wave numbers ki, ... ,ky and their coefficient
vectors &, ... ,o.y. Then by orthogonality of eigenstates, we
must seek the coefficient vector oy 1| of the (N + 1)’th eigen-

state among the vectors satisfying oc;[\If(k,-,kNH)aNH =0
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FIG. 2. The symmetric X well marked with its four reflection axes
(dashed lines) and the discrete, rotational symmetry.

foralli =1,...,N. [Here, W(k;,kny11) denotes the matrix
of overlaps between modes of different energy.] Thus

o W(ky 1)

ay4+1 € Null : . (15)
“}L\/"I"(kN,kN+l)

If B is a matrix whose columns span the null space above,

we find the desired eigenstate by solving the generalized
eigenvalue problem

(B'IB)B = A(B"W(ky+1)B)B, (16)

where oy, = Bf and % is the eigenvalue. Let A (k) be the
greatest among the generalized eigenvalues at a given wave
number k. We use the same minimization procedure as for
the ground state, that is, finding the wave number ky; that
minimizes

2 tpt
E(k) = L k*> — max B BB
2m* 8 BBIW(k)BB
2
= (k> — Jmax (k). (17)
2m*

Notice that since, in practice, the lower eigenstates are only
approximately known, variational bounds cannot be guaran-
teed for excited states [70].

IV. THE SYMMETRIC X WELL

In the following, we restrict our attention to the symmetric
X well, whose legs are all of equal length, L; = L. In this case,
the geometry possesses rotation and reflection symmetries as
drawn in Fig. 2. The symmetries simplify the calculation and
classification of the eigenstates. In this section, we find and
plot the eigenstates of the symmetric X well.

The symmetric X well has the same symmetries as a square;
its symmetry group is the dihedral group of order 8, which
is conventionally denoted D4. The eight operations under
which the geometry of the symmetric X well is invariant
are outlined in Table I. The group Dy is non-Abelian, so we
cannot diagonalize the representations of all group elements

TABLE 1. The elements of the dihedral group D, and their
respective actions as representations on wave functions.

E (x,y) —>(x,y) The identity element

Cy (x,y) =>(—=y,x) Rotation by 7 /2

c? (x,y) = (=x, —y) Rotation by 7 (parity)

C3 (x,y) = (y, —x) Rotation by —m/2

o, (x,y) =>(y,x) Reflection in the line y = x
o_ (x,y) =>(=y, —x) Reflection in the line y = —x
[ x,y) >, —y) Reflection in the x axis

oy (x,y) =>(=x,y) Reflection in the y axis

simultaneously. We choose to diagonalize the reflection oper-
ators o4 and o_ and classify the energy eigenstates according
to their eigenvalues r; and r_ with respect to oy and o_,
respectively. If (o) = {E,o0 } denotes the subgroup generated
by o, and similarly (o_) = {E,o_}, then our classification
gives eigenstates that are irreducible representations of the
product subgroup

(04) x (0_) = {E,04,0_,C}}, (18)

which is isomorphic to the Klein four-group Z, x Z,. The
simple characters of the subgroup (o) X (o_) correspond to
compound characters of Dy4. Table II lists the simple characters
of D4 [71]. As the table indicates, the dihedral group D4 has
four one-dimensional irreducible representations (A, A,, By,
and B; in Mulliken symbols) and a single two-dimensional
irreducible representation (E).

Any state with (r,r_) = (4+,—) has a degenerate partner
state with (r,,r_) = (—,4+) that is identical to the (4,—) state
up to a rotation of the coordinate system by m/2. These
states belong to the two-dimensional representation E. The
character table reveals that the classification with the quantum
numbers (r,7_) is insufficient to tell the one-dimensional
representations A, and B, apart; neither can it distinguish A,
from Bj;.

As Cf = 0;0_, the members of the irreducible representa-
tions of (o) X (o_) are also eigenstates of the parity operator
C } witheigenvalue p = rr_. States with even parity, p = +1,
are also eigenstates of reflection in the x and y axes, with
eigenvalues r, = r,. If r, = +1, only modes with odd m are
present in the mode expansion, while only even m modes are
present if r, = —1. For this reason, we do not expect states
belonging to the A, and B, representations at low energies,
since their lowest-energy mode has m = 2, and thus, k,,; =
2m/a, while the lowest energy eigenstates in the spectrum

TABLE II. Character table for the dihedral group Ds. When the
header entry for a column contains multiple group elements, they
belong to the same conjugacy class.

2 3
Dy E Cy Cy, Cy 04,0_ 04,0y

Ay
Ay
B,
B,
E

1

[\ PSRN
[

|

|
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have wave numbers k 2~ 7 /a. So even though our classification
in (r4,r_) quantum numbers is unable to distinguish A and
B; from A, and B,, this is inessential as long as we only
consider states with sufficiently low energy that the latter
representations do not occur.

A. Mode wave functions
In this short section, we find the mode wave functions for the
symmetric X well. The eastern, northern, western and southern
modes are related as
|m.N) = o |m.E), |m,W)=Cj|mE),
|m,S) = o_ |m,E). (19)

Starting with the central wave function of the eastern mode (as
found using the procedure given in Sec. II)

(x,ylm,E) = csc(kyya) sin (kny (3a+x)) sin (ky1

(za+y)).

(20)

we can then use Table I to find the other central wave functions:

(x,ylm,N) = ry csclkya) sin (knuy(3a + )
x sin (kL (5a + x)), @21

(x,ylm,W) = ryr_ csclkyya) sin (kn (3a — x))
X sin (kml(%a — y)), (22)

(x,ylm,S) = r_ csc(kyya) sin (kny (2a — y))
x sin (ky1 (3a —x)). (23)

The leg wave functions of the modes can be found similarly
from

(x,ylm,E) = csc (kya(L — 1)) sin(ky(La — x))
x sin (ku1(3a + y)). (24)

The matrix elements of W and IT are computed in the Appendix.

B. Continuous-derivative approach

In the following sections, we present two different methods
to find the energy eigenstates. The first method computes the
eigenstates by explicitly enforcing a continuous derivative of
the wave function at every interface. The second method—
to which we shall return in Sec. IVC—is a variant of the
previously described variational method.

The wave function of a single mode is not continuously
differentiable across an interface, neither is the sum of all
modes with a given m quantum number. The total wave
function ¢ = Z Oy {x,y|m,s), however, has to be in order
to be an elgenstate By symmetry, it suffices to consider only
a single interface; we take the interface between the central

region and the eastern leg, where x = %a. Thus the change in
derivative across the interface must be
d
A(-"”) —0. (25)
dx x:%a

L -

(S

0

S _o2f \\ \
Q

e}

. 0.03]
= ﬁf
5 0.02]
[=]
S 0.01}
)
i — \
051 4

ka

FIG. 3. The upper panel shows det(IT) for the matrix IT for
(ry,r-) = (+,+), length L =5 and cutoff M = 30. I1 is given by
Eq. (A9). For large m, |t,,| ~ mm, and the diagonal elements of I1
scales as 4mwm, cf. Eq. (A16). A determinant scales as det(cIl) =
cM det(IT), so when increasing M, the determinant scales rapidly.
To circumvent this, we downscale the determinant by [, 47wm =
(4m)M M before plotting it. The lower panel shows the MATLAB
function rcond that is an estimate of the reciprocal condition number
of IT in 1-norm. The reciprocal condition number is small at the
positions of the eigenstate wave numbers—notice how the dips in
rcond correspond to zeros in det(IT).

Multiply by sin(k, L(%a + y)) for some positive integer n
and integrate the y-coordinate out to obtain

1
29 . 1
0= Za,,,fl dy sin (knl<§a+y>>
m —hd

: A<i (x,ylm,E)> ; (26)
ox o
2
or equivalently, (n,E|IT|y) = 0.

Numerically, we truncate I to have a finite size by choosing
a maximum mode number M such that only modes n,m < M
are included. We then have the M-by-M matrix equation
[T = 0 and we see that the desired mode coefficients «
must belong to the null space of I1, and as such, IT must be
singular. The task is, thus, to find a wave number k for which
det(IT(k)) = 0.

It is straightforward to plot det(IT) as a function of k and
get a rough idea about the location of the roots; see Fig. 3. It
turns out, however, that for the excited states, the determinant
crosses zero very rapidly, going from a very high value to a
very low, negative value (or vice versa). A double-precision
number can, therefore, be insufficient to resolve the precise
location of the root. Still, the wave number k found with this
method may be used as starting point for a finer search with a
different method.

Another measure of the “closeness” of a matrix to being sin-
gular is the so-called condition number. The p-norm condition
number of a matrix A is typically defined as ||A]|, - A~ lp-
A large condition number indicates that the matrix is close
to being singular. The condition number may be used in a
minimization routine to find the wave number k of an eigenstate
as is indicated in the lower panel of Fig. 3.
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Due to the finite size of IT and numerical limitations, IT(k)
might not be exactly singular [that is, det(IT) is small but
nonzero] at the wave number of an eigenstate k. If this is the
case, the null space of I1(k) is trivial, Null [1(k) = {0}, and
we are, a priori, unable to find the mode coefficients . To
circumvent this problem, we can compute the null space of a
singular matrix that is close to I1(k).

Assume the singular-value decomposition of II
is MN=UXVT, where U=]I[uyu,, ... uyl and
V =[v,vy,...,vy] are orthogonal matrices and

¥ = diag(oy,07, ... ,0y) is a diagonal matrix containing
the singular values of IT in descending order. Then by the
Eckart-Young-Mirsky theorem [72,73], the M-by-M matrix

o1 0 0
, 0 (o)) 0
IT = [ulv-" ,qul] : : .
0 0 OpM—1
x[v1, .. op-]” 27

is the closest matrix to IT in Frobenius norm?with rank less
than M.

We confirm that IT' is clearly singular as IT'vy, = 0 by the
orthogonality of V. Hence also, vy, € Null(IT"), and we may
use vy as a basis vector for the approximate null space of I1
and set @ = v,;. We do not have to consider multidimensional
null spaces since there is no degeneracy when simultaneously
diagonalizing H, o, and o_. This is one of the important
places at which one sees the power of using the group symmetry
classification of states discussed above.

C. Variational approach: Ground state

The second method to find the energy eigenstates of the
symmetric X well is essentially the variational method de-
scribed in Sec. III. The difference with respect to the before-
described general case is that the symmetry puts constraints on
the modes such that the N, W, and S modes are given by the E
modes, cf. Eq. (19). Therefore the size of the matrices IT and ¥
isreduced from (4 M) x (4M)to M x M, and the computation
time required by each diagonalization is reduced by about a
factor of 4° = 64. More importantly, enforcing a particular
symmetry (r4,r_) decouples the irreducible representations of
(04) x (o_). Each family (r,,r_) has its own “ground state,”
and there is no degeneracy in the spectrum that could otherwise
be difficult to handle numerically.

Only the (r4,r—) = (+,+) states are not required to have
a node in their wave function at (x,y) = (0,0), and as such,
the ground state is expected to belong to the symmetric rep-
resentation A. Using the matrix elements from the Appendix
in a numeric implementation of Eq. (13) in MATLAB, we find
for L = 5 a ground state with wave number k = 0.81227 /a.In
Fig. 4, we present a plot of the wave number as a function of the
number of modes M which demonstrates the convergence of
the method. The wave number is seen to converge as a power
law, and we see that M = 30 is enough to have accuracy of
the energies to three significant digits. The wave function is

2The Frobenius norm of a matrix A is defined as ||A|| = /Tr(ATA).

2.554

= 2.553

2.552

| | | | |
20 40 60 80 100

FIG. 4. Convergence of the numerically attained ground-state
wave number k (blue marks) as the number of modes M is increased.
The solid (red) curve is a fit to a function of the form k(M) =
bM~° + d, resulting in ¢ = 1.277(19).

plotted in Fig. 1(b). The ground state is localized about the
center of the well; its wave function peaks at the center of
the well and decays exponentially along the legs [16]. Due to
this exponential decay, the positions of the end walls are not
very important, and the wave function is almost independent
of L. The difference in magnitude between the ground-state
wave function for L = 3 and L = 30 is everywhere less than
0.01/a?. The wave-function overlap between them is 1 up to
a tiny deviation of ~1073.

The ground-state energy is so small thatk < 7 /a < k,, for
every m, and thus, k,,,| is purely imaginary for all modes. Define
¢m > 0 such that k,,; =i¢,/a. The longitudinal part of the
mode wave functions can be rewritten in terms of hyperbolic
functions in &,,, and this is the cause of the exponential decay
along the legs. Along the eastern leg, for instance,

(xoy|m.E) = sinh(&,, (L — x/a)) ;
PV ok (g (L — 1))

b (s (ba+)). 29)

The ground state is almost described completely by the first
mode. However, the other modes are required to make the wave
function continuously differentiable. Notice also that since the
ground state is almost independent of the lengths of the legs,
it is practically the same for the asymmetric X well, as long as
the legs are long enough to “saturate” the exponential decay.

D. Comparison to solitonic solutions

Perhaps the simplest single-parameter function one can
come up with that has a smooth maximum atx = 0 and falls off
exponentially for |x| > a is a hyperbolic secant. Thus, if we
wish to describe the L — oo limit of the ground state, we may
attempt to fit the wave function ¥ (x,0) = qus oy (x,0lm,s)
to a function of the form f(x) = A sech(bx), where A and b are
positive constants. We call f “solitonlike” because nonlinear
wave equations like the Gross-Pitaevskii equation support
solitonic solutions of this form [74-76]. Note that while the
Gross-Pitaevskii equation is an effective many-boson wave
equation, the solitonlike solution that we discuss here is a
purely single-particle phenomenon that, nevertheless, has a
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0.5

Wayve function

FIG. 5. The normalized ground-state wave function vy(x,0) for
L = 5 evaluated along the x axis compared to the solitonlike approx-
imation f(x) = A sech(bx) withb = k/ /2. The constant A has been
set such that A = f(0) = ¥((0,0).

spatial profile extremely similar to the solution of a many-body
wave equation.
For L — o0, Eq. (28) turns into

(x,y|m,E) — e‘fm("/“‘%) sin (kn1(3a +)). (29

Since ¢} < ¢ < -+, the m = 1 modes dominate for x > a,
and (with k1, = /a)

Vo(x,0) ~ e (14-3) (30)

Comparing this with the asymptotic behavior of our solitonlike
ansatz, f(x) ~ 2Ae ", we find that b = ¢, /a.

In the opposite limit, near the center of the X well,
|x| < a, we are to consider the modes in the central re-
gion. A series expansion around x =0 gives that vy ~
201 — k%2 /HY, oy (—1)"7 sech(%{m). By comparison to
f(x) ~ A(1 — (bx)?/2), this means that k2 /2 = b*> = (¢, /a)*.
Since we also have k* = ki, — ¢} /a* = n*/a* — ¢} /a*, we

arrive at
2
kz\/i—. 31
3 (3D

This simple estimate of k is, in fact, within 1% of the
numerically attained value (at L = 3 — 30)!

Figure 5 compares the ground state to f(x) and we see that
an extremely good agreement is obtained. If we try to gener-
alize our solitonlike ansatz and fit the function A sech?”(bx)
(with fitting parameters p and b, and fixed A = ¥((0,0)) to
the numerical wave function of our ground state along the x
axis, we arrive at the stable (against starting point guesses) fit
p ~1,ba = 1.8 — 1.9. This is in agreement with our original
ansatz with p = 1 and b = k/~+/2 = 1.8050/a. From this point
forward, we shall often refer to a localized state as solitonlike.

E. Variational approach: Excited states

The symmetries ensure orthogonality between states of
different family, and it follows that variational bounds are in
fact obeyed for the lowest states in each family (despite our
previous remark that this cannot be guaranteed in general)

(F ) = (Tt

(~a++a)

)

¢

(

(+54) = (at+)

3.2 3.4 3.6 3.8
ka

FIG. 6. Energy of the optimum mode expansion as a function of
wave number. Each panel corresponds to a different symmetry family
(r+,r_). The cyan curve shows the energy of an unconstrained mode
expansion. The red curve shows the energy of a mode expansion that
is orthogonalized to the lowest state in the given symmetry family.
The grey curve shows the function E = /i*k?/2m* for comparison.
The pairs (k,E) that correspond to actual energy eigenstates are
encircled.

provided we enforce the particular symmetry in the mode
expansion. Requiring a given state to be orthogonal to all
lower-lying states as prescribed by Sec. IIIB often gives rise
to very sharp minima in E(k) that can be difficult for a
minimization algorithm to locate. Because of the high level
of symmetry, however, it is, in practice, sufficient to find local
extrema in the energy of an unconstrained mode expansion
with the desired symmetry. The (+,F) states and the (—,—)
states appear as local minima in the (k, E) curve, whereas the
(+4,4) states in this energy range appear as local maxima (with
the ground state being an exception to this), see Fig. 6. We
verify the result of this by comparing to a local minimization
with forced orthogonality to the lowest state in the given
symmetry family (using the result of the previous calculation
as starting point). With an absolute tolerance of 107%/a in
the downhill simplex routine, the two methods are found
not to differ by more than 2 x 107%/a in the resulting wave
number k.

Notice on Fig. 6 that the energy minima in the orthogonal-
ized mode expansion can be rather sharply located about an
eigenstate wave number. This tendency worsens if the mode
expansion is orthogonalized to multiple states.
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n= n=172
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ka = 0.81227 ka = 1.01867m
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u=2; (F,£)
ka = 1.073027

ka = 1.084747

n= n=4
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ka = 1.021857 ka = 1.026827

n==~§ n=29,10
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ka = 1.100657 ka = 1.15863m

FIG. 7. Plots of eigenstate wave functions (vs x and y) of the symmetric X well with all legs having length L; = 5. The plots are labeled with
their excitation number 7, (for the excited states) the # multiplet they belong to [cf. the discussion preceding Eq. (32)], their symmetry family
(r4,r_), and their wave number k. A basis size of M = 110 modes has been used to compute the wave numbers. States with symmetry (—,+)
and (4,—) are degenerate and their wave functions are identical, save for a rotation of /2 in the xy plane. The shown plots are consecutive

eigenstates from the ground state to the tenth excited state.

The first few excited states are plotted in Fig. 7 for
L = 5.3 With double-precision numbers, we are able to com-
pute expansions up to M = 110 modes. This is sufficient for
the wave number of the excited states to converge to 5 decimals.
The ground-state wave number is converged to four decimals—
the ground state appears to converge more slowly due to it being
localized about the central region. In the following, if not stated
otherwise, we shall use mode expansions of M = 30 modes,
which is typically enough for the energies and wave functions
to have reasonably converged.

We notice from the transverse part of the wave functions
that the first mode (mm = 1) appears to be dominating. This is
so because the available energy is insufficient to appreciably
excite m > 1 modes. Due to the required orthogonality to the
ground state, the (4,+) states inherit a “bump” in their wave
function at the center of the X well, as seen in Fig. 7. This
bump, however, diminishes with increasing L.

The wave functions resemble the stationary solutions to
the two-dimensional particle-in-a-box problem with a box
of dimensions a x aL. We can group the excited states into
multiplets of near-degenerate states characterized by the lon-
gitudinal excitation number u of the particle-in-a-box state
they look like. The approximate energy of states within a

3To avoid cluttering the plots, we have decided at times to omit
the axes from surface plots of wave functions. Acknowledging that
this may be a cause of confusion, the plots have been carefully
standardized, as described in Ref. [77]. The surface plots are solely
intended for visualising the wave functions; they are not suitable for
making accurate readings of ¥ (x,y). Therefore surface plots without
axes are supplemented with contour plots in Ref. [77].

multiplet u is

h2 7.[2 uz
Epox(1) = I ;(1 + ﬁ) (32)

Figure 8 confirms that, indeed, E >~ Epox(#) for the lowest
eight excited states. The approximation improves with increas-
ing L as the central region of the X well becomes relatively
less important.

0.6
0.4

8§ 0.2
=)

|
E 0.6
0.4
0.2
0

E — Eyox (u)

FIG. 8. The plots show that as L increases, the eigenenergies of
the X-well excited states, E, approach the energies of ana x aL box,
Eyvox (1), faster than the convergence of the latter towards their limit
EX = h2m?/2m*a®. The upper panel shows the states converging
to Epox(1), while the lower panel shows those converging to Epox(2).
The legend identifies the eigenstates by the pair (r,,r_) and applies

to both panels.
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FIG. 9. For states with (r;,r_) = (—,—), the four legs of the X
well decouple. To find such states, it is sufficient to consider solutions
to the Helmholtz equation that vanish outside the shaded pentagon.

The energy of states with 7, =7, = +1 is necessarily
somewhat larger than Epo(u) because the wave function
approaches its central value from the same side in two opposing
legs. This increases the curvature of the wave function around
the X-well center and, thus, the kinetic energy.

For the E representation of the D4 symmetry (see Table II),
a mode expansion with only a single mode has a minimum
energy of exactly Eyx (1), since we can prepare a solution with
that exact energy in the box {|y| < %a} and nothing outside.
This mode expansion has no contribution to the energy by the
kinks. As we increase the number of modes from one to many,
we must therefore obtain an energy that is smaller than Eypo (1),
since an expansion with more modes has a smaller energy and
because the total available area in the X well is larger than
a x2alL.

F. Other localized states

In this section, we investigate whether the X well supports
other localized states than the ground state. Such localized
states would be embedded in the spectrum of excited states.
We note that for systems with open boundary conditions at
the end of the legs, such localized states at higher energies
may accordingly be classified as bound states in the continuum
[78]. Our approach may be used also for open boundaries with
minute modiciations and could thus study such states as well.

States with symmetry (r4,r_) = (—,—), that is, the repre-
sentations A, and B, have y = +x as nodal lines. Finding
solutions with this symmetry reduces to solving the Helmholtz
equation in the geometry shown in Fig. 9 with Dirichlet bound-
ary conditions. This system does not support any localized
states, by the following argument.

The energy of the ground state in Fig. 9 cannot be smaller
than the ground-state energy of a system with a larger bound-
ing box. The geometry is invariant under reflections in the
longitudinal axis, so all its eigenstates have either exclusively
even or exclusively odd modes m. For odd m, the wave
function is symmetric under reflection and the threshold for
localization is Ey, = h%m?/2m*a®. The smallest rectangle
that encloses the pentagon in Fig. 9 has ground-state energy
Epox(1). As Evox (1) > Ey,, the solutions to the pentagon cannot

FIG. 10. A surface plot of the wave function ¢ of an initially
prepared state in the northern leg. In the shown example, L = 5.

be localized unless the lowest mode is completely depleted, i.e.,
a1 = 0, by accident. A similar argument applies to the modes
with even m, considering only half the pentagon instead.

The representation B, has v, = —1 and r, = —1, so in this
case the problem reduces to finding the eigenstates of an L-
shaped well with legs of length a L and width a /2. This system
does, in fact, have a localized state whose wave number is
k =1.937/a [16,79]. Numerical analysis reveals that the E
representation does not have any localized states in the energy
range of interest [20]. In summary, the X well has one localized
excited state, but its energy is so high that it is irrelevant to our
purposes of studying low-energy dynamics in the next section.

V. WAVE PROPAGATION

In this section, we investigate how the individual legs of the
X well couple and how a wave incident on one leg propagates
to the other legs. This is especially interesting in an application
where the X well forms part of a larger network of wires and
one wants to send signals of information through the network.
We assume a symmetric X well for simplicity.

Imagine that the crossing of the legs is blocked by some
potential that completely decouples the four legs. We place a
particle in one of the legs—say, the northern leg. The particle
is prepared in its ground state |¢;0), whose wave function
will look approximately like that in Fig. 10 with the details
depending on the specific blocking potential. Other starting
points of interest for propagation of lattices could be point
localized or gaussian initial states [80] which may be treated
in similar fashion by expansion in basis states. The prepared
state in Fig. 10 is simply the ground state of an a x aL box:

¢o(x,y) = (x,y]¢;0) = % sin (%y) sin (n(%—i—x/a))

(33)

for |x| < %a and y > 0, and ¢(x,y) = 0 elsewhere. The three
other legs are initially empty.

Now, ata time ¢t = 0, the potential barrier in the center is re-
moved instantaneously (relative to the characteristic timescale
of the system) and the particle in the northern leg is free to
propagate around the X well. Technically, this is achieved
by expanding the initial state in X-well eigenstates and time
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FIG. 11. The squared norm of the correlation amplitude C(t)
plotted against time ¢ for a wave initially confined to a single leg.
Here, L = 5 and the initial state has been expanded in the first nine
eigenstates, which are in turn found as mode expansions in M = 30
modes. The probability undescribed by the eigenstate expansion, that
is, the tail of the sum ), (v, |¢;0) |2, is 0.0013, so the initial state is
rather well accounted for.

evolving the eigenstate expansion. Thus

ps1) =D e E M (| : 0) ) (34

n

denoting the energy eigenstates |v,,) and their energy E,. The
similarity of the time-evolved state to the initial state may be
described by the correlation amplitude

C(t) = (p:0lpst) = > e B/ [(y,9: 0)*.  (35)

If the norm of C(¢) is close to one, |¢; ) and |¢;0) are alike.
If the norm of C () is close to zero, on the other hand, |¢; ) is
almost orthogonal to the initial state.

The correlation amplitude is plotted in Fig. 11 as a function
of t. We see from the figure that |C(¢)|> oscillates. The
oscillations contain both high and low frequencies. The high-
frequency oscillations have a period Tign =~ 3.4 m*a?/li and
are primarily due to the overlap with the ground state. Indeed,
|¢; t) has mean energy

hZ
N . 2 __ -
<E7 = % En|<¢ﬁ|¢’0>| _'5'1098,n*a2’ (36)

from which the ground-state oscillation period is found to be
27l /({E) — Egs) = 3.39m*a*/h. The low-frequency oscil-
lations with period Tiow =~ 77 m*a®/h are mostly due to the
overlap with the first four excited states.

At some points in time (1 = 100,275,496 m*a®/h in the
region plotted), the correlation amplitude is close to zero. This
is because the wave |¢;¢) has propagated onto the southern
leg and has almost no overlap with the initial state. At the
two small tops about t = 75m*a’/h and t = 307 m*a®/h,
|C(t)|*> ~ 25%, meaning that all four legs are more or less
equally populated. Finally, at t = 381 m*a?/h, we have an
almost complete revival of the original state (lacking only
|C(0)]> — |C(t)* = 0.0319).

1 (W] 83 0) |7

4
n=

1-X

FIG. 12. Missing probability in the expansion of the initial wave
|¢; 0) solely in the first four excited states. Notice the scale of the
ordinate axis. The solid curveis a fit to a power law. The fitis consistent
with an exponent of —2.

The initial state |¢;0) is described almost exclusively by
the four lowest excited states. This statement becomes closer
to being true as the size of the X well is increased and with it
the relative importance of the central region decreased. From
Fig. 12, it appears that 3¢ _, [(¥]$;0)|> — 1 as L — co. A
fit to a power function further shows that

4
1
L= 1nlg; 0 ~ —. 37)

n=1

The ground state is independent of L and is primarily
confined to a region {|x|,|y| < aR}, where 1 < R « L.* The
inner product between the initial state and the ground state
scales approximately as the overlap between the initial state
and a constant function on the region {|x|,|y| < aR}:

%a aR
(Yole; 0) ~ /, dx/O dy ¢o(x,y)
—5a

_8L,2Rrr 1 13
Sovtelar) Tpe Y

Since, therefore, | (Vo |¢; 0) 2~ 1 / L3, itis not the ground state,
but the higher excited states that limit the convergence, cf.
Eq. (37).

Neither the ground state nor the higher excited states play
any significant role in the long-term time evolution—recall
from Fig. 11 that the contribution from the ground state is
small (due to the small overlap) and merely results in rapid
oscillations that die out on average. In particular, the ground
state is not responsible for the couplings of the legs.

It is not essential what R is, but we could take it to be, e.g.,

R = max{y/x? + y?| (x,y|¥0) > 0.1(0,0[¥0)}.
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The small energy differences amongthen = 1, ... ,4 states
give rise to a beat phenomenon that propagates the wave to the
other legs. For L = 30, the revival time is T ~ 10*m*a?/h,
giving T ~ 1071 s = 107! ns if @ = 1 nm and m* is the
electron mass. This revival time is large enough that it should
be measurable. The applicability of the X-well model that we
have developed in this chapter is, thus, experimentally testable.

In closing this section, we note that we have only discussed
one-body effects. For two or more particles in the X well,
it would be also very interesting to consider how dynamics
may lead to entangled states between particles in different
legs of the X well (or different parts of a more general
network). Similar ideas have been discussed in the context
of coupled harmonic oscillators in quantum optics [81,82].
However, in the present system we would also need to deal
with interparticle interactions between the massive particles
moving in the networks.

VI. QUANTUM GRAPHS

For an X well whose legs are long and thin, it is typically
assumed that only the m = 1 mode is present due to the
high energy requirements for exciting the transverse motion.
As L — oo with aL held fixed, the system is claimed to
be effectively described as a so-called quantum graph of
one-dimensional edges meeting at a central vertex. The edges
are the legs of the X well and the vertex is its center. If the
quantum-graph description is valid, it is advantageous due
to its simplicity—the transverse degree of freedom has been
integrated out, so the wave function on the graph depends only
on a single parameter.

The dynamics of the quantum graph are governed by the
one-dimensional Schrédinger equation of a free particle. In
natural units (A = m* = aL = 1), this is

1 d*n

__an 39
2dz,? (39

En=
where z; € [0, 1]is the distance along the edge s from the vertex
at z, = 0, and n(z;) is the one-dimensional wave function
ons.

In a seminal paper, Ruedenberg and Scherr [52] have shown
that conservation of probability current imposes so-called
Kirchoff boundary conditions at the vertex [52,56]: n(zy) is
continuous at the vertex and

>

dzs

N

= 0. (40)
z;=0

The sum runs over all four edges that meet at the ver-
tex. The solutions obeying these boundary conditions are
of the form n(zy) = sin(k(1 — z;)) with wave number k =

%n,n,%n,Zn, ... Examples are shown in Fig. 13.

The k = %rr, 37,37, ... states predicted by quantum graph
theory belong to the (4-,+) symmetry family, while the states
with k = m,27,37, ... belong to the other families since their
wave functions have a node at the vertex.

The effective one-dimensional Schrédinger equation to-
gether with the Kirchoff boundary conditions, however, do not
allow for localized bound states such as the ground state of our
X well. In fact, the derivation of Ruedenberg and Scherr did

FIG. 13. Sketches of three quantum-graph solutions with Kir-
choft boundary conditions at the center vertex and Dirichlet conditions
at the end points. The states have k = %n, 7, and %rr, respectively.
The thick lines represent the edges of the graph and the thin curves
show the wave function 7.

not take localized states into account [55].°> The existence of
the localized ground state forbids the (4,+) states predicted
by quantum graph theory (with Kirchoff boundary conditions)
as they are not orthogonal to the ground state. Hence, among
the solutions plotted in Fig. 13, only the middle one is a true
limiting state of the X well.

For the excited states of the X well, we know from our
numerical analysis that £ — Eyo(u) as L — oo. The longi-
tudinal wave number of the lowest mode becomes kyjal =~
m,2m,3m,.... So when going from the two-dimensional de-
scription of the X well to the limiting quantum-graph model,
all excited states—including the (4,4) family—have k =
27,3, . ...

As L becomes very large, the legs of the X well decouple.
Each multiplet of excited states becomes fourfold degenerate
and its members may be linearly combined to form particle-in-
a-box states, each only residing in a single leg. This suggests
that the correct boundary condition for an equivalent quantum
graph model is to enforce a node at the vertex, that is, n(z, =
0) = Ofor all edges s, but make no restrictions on the derivative
of the wave function.® This, of course, still cannot describe
localized states such as the ground state.

The ground state is difficult to treat in a quantum graph
model, because in the one-dimensional limit a — 0, the
ground-state density is everywhere zero save for exactly at
the vertex. The wave function may, thus, somewhat come to
resemble a Dirac delta function. In the mathematics literature,
this problem is typically circumvented by rescaling the system
and considering the analogous limit where a is held constant
while L — oo [57,58].

We conclude that the a — 0 limit of the X well is rather
pathological; the excited states decouple and the ground state
is ill-defined. The dynamics are, thus, trivial. A real physical
system is never truly one-dimensional and will possess dynam-
ics, so quantum graph theory is not necessarily beneficial in
obtaining a description of the dynamics of an X well and in
turn of larger quantum networks.

3 Alternative boundary conditions have been suggested in the liter-
ature [21,83], but these suggestions do not seem to agree with our
results either.

®We remark that these observations are in concurrence with the
conjecture that the graph decouples in the vicinity of the energy
threshold as mentioned in Cacciapuoti and Exner [57].
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A. An effective nonlinear Schriodinger equation

In spite of the fact that localized bound states cannot be
described by the linear, one-dimensional Schrodinger equa-
tion, such states do exist in quantum graphs governed by the
nonlinear Schrodinger equation [84]

2
~5 g3+ Uolnln = pun (1)
with Uy, < 0. These have been proposed for the description
of graph geometries occupied by bosons in the condensed
state [18,84]. We find that these solitonlike solutions are, in
fact, of the form f(z;) = A sech(bzy) that we have shown the
ground state approximately to follow, cf. Sec. IV D, provided
that E = —2u and A? = 2/ Uy. It, thus, appears that a single
particle trapped in an X well can in some respects behave like
a Bose-Einstein condensate. In terms of cold atoms, it is now
possible to realize box potentials for condensates [85] and
thus if one can find a way to cross several such boxes, one
may built a potential similar to the X well or variations of it.
Solitonic excitations are of course known also for other fields
such as optical fibers and photonic crystals [74,76,86—88] and
our developments and formalism could possibly be applied
to such systems with some modifications that account for the
propagation of photons instead of massive particles.

VII. VARIATIONS ON THE X WELL

In the previous sections, we have restricted our attention to
the symmetric X well due to its simplicity of analysis. However,
we stress that the method presented in Sec. Il applies generally
and do not depend on symmetries of the well. Also, numerical
experiments show that the ground state survives in the general
case. Indeed, the exponential decay of its legs hinders it from
“seeing” the end walls of the legs. Neither is any significant
change in the ground state induced if we change the boundary
conditions on some of the end walls, e.g., to periodic or open
boundary conditions. The latter case of open boundaries has
been studied in some detail in the literature [16-18,89].

A. Imposing a potential upon a leg

Let us consider how the variational method for finding
eigenstates generalizes if an external potential offset is imposed
on part of the X well. This is relevant as such a potential offset
may be used to manipulate the particle in the well.

If we impose a constant potential offset V upon the leg s,
along that leg the wave number k; must satisfy Fzzkf /2m* +
V, = E = I*k?/2m*, meaning that the longitudinal compo-
nent of the m’th mode wave vector is

, 2m* ma \2
ko =[R2 = Ve = (5 “2)

along the leg s. In the central region, the expression for the
wave vector is unchanged.

If E is the energy of an eigenstate in the case V; = 0 for all
s, and we perturb the well by imposing a potential V on one
of the legs, we must expect the eigenstate of the perturbed
system to have an energy E’ in the range between E and
E + V. This follows by noting that if we had imposed V on
the entire X well, the eigenstates would remain unchanged,

—V =0

T T

11 A
=
=

B o5}

=

; !

0 —4 -2 0

y/a z/a

FIG. 14. Transition from a localized to a nonlocalized state as the
potential offset V' of the eastern and western legs is increased. The
left panel shows the wave function v vs y at x = 0. The right panel
shows ¢ vs x at y = 0. For V = 0, the X well is symmetrical. All
four legs are of length L = 5. The legend reports the potential offset
in units of A?/m*a* and applies to both panels.

only everywhere replacing k> with k> 4+ 2m*V /A>. For small
V, this bracketing of E’ can help in numerically determining
the correct wave numbers of the eigenstates of the perturbed
system.

Imagine we have an X well with Ly = L for all s =
E,N,W.,S. If we impose an infinite potential offset on two
opposing legs, Vg = Vyy = V = oo, then we effectively have
Lg = Lw =0, and the well is just an a x 2aL rectangle,
whose ground-state wave number is k = /1 + 1/(2L)?/a.

If we tune the potential offset V of the eastern and western
legs from zero to infinity, we must have some crossover from
the localized ground state of the symmetric X well to the single-
mode particle-in-a-box ground state. As we see from Fig. 14,
the crossover turns out to be continuous. This suggests that in
the limit L — oo, the localized state is present for any finite
value of V.

B. Alternate geometry: The T well

By imposing an infinite potential offset on one of the legs—
say, Vs = oo—we effectively remove that leg from the X well
and we are left with a T-shaped well. In the following, we
analyze the T well as an example of a generalized X well with
a different geometry. As we shall see, the variational method
is still applicable and the qualitative results do not differ much
from the symmetric X well. We further remark that a T well
has an application as a constituent in the boundary of a grid of
X wells.

If Lg = Lw, the T well has a reflection symmetry in the y
axis. As with the symmetric X well, the symmetry is useful
in classifying the energy eigenstates and in the numerical
procedures used to compute them.

With a variational method similar to the one employed for
the X well, we arrive at the eigenstates plotted in Fig. 15. We
remark, in particular, that the T well also supports a localized
ground state. We also see that though we have broken almost
all of the symmetry of the X well in removing the southern leg,
the eigenstate wave functions show many of the same features
as in the symmetric X well.

The eigenstates arrange themselves into multiplets of three
states whose energies lie close to one another. The states
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n=20 n=1

ka = 0.89697 ka = 1.019297
n=4 n=>5

ka = 1.075167 ka = 1.08277~

n=3

ka = 1.0213567 ka = 1.028297

n==~6
ka = 1.103557

ka = 1.162547

FIG. 15. Surface plots of the ground state and first few excited states in a T well with Lg = Ly = Ly = 5. The states are labeled by

excitation number n and wave number k.

n =1, 2, 3 constitute one multiplet, n = 4, 5, 6 are another
multiplet, etc. The three states in a multiplet belong to three
different families of states analogous to the (r,r_) families
used in the classification of the eigenstates of the symmetric X
well. The analogy appears because, for all of the plotted excited
states, the wave function ¥ (x,y) in the region {|y| < %a} is
almost symmetric under reflection in the x axis. Thus, if we
reattached the southern leg and let ¥ (x,y) = ¥ (x, — y) for
y < %a, we would approximately obtain the X-well eigen-
states.

The T well has no rotational symmetry, so the two degen-
erate X-well states (—,+) and (4,—) are reduced to one state
in the T well. In other words, the symmetry group of the T
well is Abelian and its irreducible representations are, thus, all
one-dimensional.

C. Alternate boundary conditions: The looped X well

As an example of a generalized X well with different
boundary conditions, take two opposing legs of the X well—
say the northern and southern legs—and weld them together.
We arrive at the configuration shown in Fig. 16. The ring
has circumference Lns = Ln + Ls. Looking at the figure,
one realizes that this geometry could be sensitive to magnetic
fluxes threading the loop, and potentially be used in sensing of
magnetic fields.

FIG. 16. Three-dimensional sketch of a looped X well with Lg =
LW =5 and LNS = 10.5.

Technically, the join of the two legs is achieved by changing
the boundary conditions on the end walls of the legs from
closed (i.e., Dirichlet conditions) to periodic. An outline of the
well is shown in Fig. 17.

The |m,N) and |m,S) modes are now placed on top of one
another, meaning that they may have a nonzero wave-function
overlap from the leg-part of the ring. The matrix elements of
W and IT between |m,N) and |m,S) modes are different from
those of the flat (i.e., nonlooped) X well. We generally expect
the eigenstates of the looped X well to have lower energy than
for the flat X well since the end constraints on the northern and
southern legs are lifted.

For relatively large Ly and Lg, the ground state of the flat
X well does not “see” the ends of the legs, so it does not matter
whether we join them together. Therefore, the ground states of
the flat and the looped X well are the same. Contrary to this,
one might expect that the ground-state wave function of the
looped X well should be constant along the ring. Such a state

VM
|
A alns
ag | |
alLw WA alg
f——t—

FIG. 17. Schematic of a looped X well. The zigzag lines indicate
that the pattern repeats itself.
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n=20 n=1

ka = 0.81227 ka = 1.01867~
n=4 n=>5

ka = 1.058057m ka = 1.073027

ka = 1.020907

ka = 117447

n=3
ka = 1.027887

n = n=7

ka =1.21917

FIG. 18. Surface plots of eigenstates in the looped X well plotted for |y| < aLns/2. The well has Lys = 5.5 and Lg = Lw = 5. The states

are labeled by excitation number n and wave number k.

has no kinetic energy in the longitudinal direction along the
ring, so its energy is exactly the energy contribution due to the
lowest transverse mode, E = h’w?/2m*a®. However, as we
know, this energy is larger than that of the localized X-well
ground state. Localization is a two-dimensional phenomenon
with no obvious analog in one dimension.

Numerical experiments show that if the length of one of
the legs Lns, Lg or Ly is less than ~5, the ground state
begins to feel the ends of the legs and the energy becomes
length-dependent. The energy increases when Lg is reduced,
but remarkably, it falls when the circumference Lyg is lowered.

Figure 18 plots the eigenstates of a looped X well. The wave
functions are normalized in the plotted area.

Due to the symmetry, for an eigenstate wave function v

either
L 0
w<x, + aTNS> =0 or _¢

5 =0 (43)

— 4, NS
y=£a=5®

must hold (and we remember that the wave function must at
any case have the same value and derivative at y = faLys/2).
Furthermore, the states possess reflection symmetry in both the
x and the y axis.

As for the T well, the first three excited states resemble the
eigenstates we know from the flat X well. From there on, it
gets a little more complicated as states with the two boundary
relations Eq. (43) mix in among each other. States for which
the first equality in Eq. (43) holds are a subset of the solutions
to an X well whose northern and southern legs have length
Lns/2.

In order to further check the looped setup, we consider
how the system can transition to a ring-confined geometry
and how its ground state changes accordingly. Imagine we
impose a tunable potential offset on the eastern and western
legs, V = Vg = V. In Fig. 19, we show that by adiabatically

increasing this offset, the ground state transforms continuously
into a state that is constant along the ring in the longitudinal
direction, has the shape of a sine in the transverse direction and
is zero outside the ring. This is the ground state of a naked ring
without any legs extruding from it.

VIII. A NETWORK OF X WELLS

By joining several X wells together, we can create a grid of
wires. The boundaries can be filled with T wells and the corners
with L wells. We are hereby in a position to describe an entire
grid. We have already considered how a wave might propagte
through the network, but what are the dynamics of a solitonlike
localized solution in the grid? To answer this question, we

y/a z/a

FIG. 19. Transition in a looped X well (Lxs =5.5, Lg = Lw =5)
from the localized X-well ground state to a state that is confined to
the ring and constant along it. The panels show a cross section of the
wave function ¢ atx = O and y = 0, respectively, for different values
of the potential offset V of the eastern and western legs. The legend
reports V in units of #2/m*a? and applies to both panels. See also
Fig. 14 for the analogous experiment in a flat X well.
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FIG. 20. Schematic of a double X well with mirror axis (dashed).
The origin of the (x,y) coordinate system is taken to be at the center
of the left X well as indicated by the crosshair on the figure.

consider the simplest possible network of X wells, namely, a
double X well.

Place two X wells next to each other such that one leg of
either well are joined together at the ends, cf. Fig. 20. Assume
that the two-well setup is symmetric under reflection in the line
x = aLg halfway through their common leg. (The important
case of joining two symmetric X wells is covered by this
assumption.)

The reflection symmetry in x = aLg implies that

Y(aLg,y) =0 (Dirichlet)

or —

=0 (Neumann) 44)
ax

x=alg

for odd and even states, respectively. By symmetry, we only
have to consider the left half of the well if we make sure to
impose Eq. (44) as a boundary condition on the eastern end
wall. The odd states correspond exactly to the eigenstates of a
single, isolated X well. This leaves only the even states to be
determined. The Neumann boundary condition on the eastern
leg is satisfied with the mode wave function

(x,ylm,E) = sec (knya(Lg — 1)) cos(ky(aLg — x))
X sin (kmL(%a +)) 45

along the eastern leg.

The ground state of the double X well is expected to be
even under reflection, as otherwise a zero of the wave function
would be required which costs kinetic energy. As we know
that the single-well ground state gives rise to an odd, localized
state, the double-well ground state must also be localized if it
is to have a lower energy than the former.

Figure 21 shows the lowest eigenstates of the double X well
found by variation. The two lowest eigenstates are very much
alike and their energies are close, but while the wave function
of the even state is exponentially suppressed at x = aLg, the
odd state vanishes exactly. The energy difference is determined
by the wave-function overlap between two solitonlike solutions
(i.e., single-well ground states) prepared in their respective ver-
tex. The overlap falls exponentially with the distance between
the vertices. If the distance is long enough, the eigenstates are
degenerate and decouple into two single-well ground states.

Extending this observation from the two connected X wells
to a large network of X wells, we see that if the distance
between neighboring sites is large and the system has been
cooled below the excitation threshold (Eg = h2m2/2m*a?),
we have realized a lattice. The simulations of the following
section show that a solitonlike localized solution prepared in
a site does not couple to the excited states above threshold but
only to solitonlike localized states in neighboring sites. This
means that we can describe the system as a discrete lattice with
some amplitude for a solitonlike localized solution to hop from
one site to another, as depicted in Fig. 1(c).

A. Interwell propagation of a solitonlike localized solution

Prepare a solitonlike localized solution in the left X of a dou-
ble X well at a time ¢ = 0 and allow it to propagate under time
evolution. The solitonlike solution has a large overlap with the
two lowest eigenstates in the spectrum of the double X well, but
practically no overlap (<10~%) with the nonlocalized excited
states. This means that as time evolves, probability density
gradually disappears from the left vertex and simultaneously
reappears at the right vertex until the solitonlike solution has
been completely transferred to the right X well.

A cross section of the probability density is plotted in
Fig. 22 at three different times during the transfer process;
at the beginning, at an intermediate point and at the end of
the transfer. The energy difference between the two localized
states of the double X well is very small (cf. Fig. 21), so the
transfer process takes a long time on the natural timescale of
the system. The fact that the solitonlike solution never couples
to the nonlocalized states means that barely any probability
density is ever found in the (outer parts of the) legs. Once the
transfer process has completed, if the system is left to itself,
it will begin the reverse process, ending with a revival of the
initial state, after which the whole process repeats itself.

The tunneling of these localized waves from site to site
is reminiscent of electrons that are tightly bound to ions in
a solid where tunneling happens through the barriers of the
potential landscape created by the ions. In the realm of cold
atoms, it reminds us of the insulator states with exponentially
suppressed hopping of atoms between different sites in an
optical lattice.

IX. CONCLUSION AND OUTLOOK

We have developed a method of mode expansions to
effectively compute eigenstates of the X well with its numerous
variations (the T well, looped X well, double X well, etc.).
The method has proven very general and is applicable to
other two-dimensional geometries constituted by unions of
rectangular regions. We have mainly used a variational method,
but have also shown that an approach that explicitly forces a
continuous derivative of the wave function may be employed.

We have found that the ground state is localized about
the center of the X for all the systems we have considered.
While the existence of a localized ground state is known in the
case of open boundary conditions, it has not previously been
demonstrated that its wave function is practically independent
of the boundary conditions of the end walls.
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FIG. 21. Surface plots of double-X-well eigenstates (Ly = Lw = Ls = 5,Lg = 3). The states are labeled by their excitation number n and

their wave number k.

We have further shown that a cross section of the ground-
state wave function along two opposing legs has the same form
as a solitonic solution to the nonlinear Schrodinger equation.
This enables us to predict the wave number of the ground state
to be k ~ /2/3 w/a. When combining several X wells, each
vertex supports a localized solitonlike state and these states
couple such that a solitonlike solution may jump from one
site to a neighboring site without coupling to the nonlocalized
excited states.

As the solitonlike solution does not couple to the legs, the
legs do not couple to the solitonlike solution. Thus we have
shown that when a particle that is initially confined to one
leg is allowed to propagate onto the other legs, its dynamics
are almost solely described by the four lowest excited states
that belong to the same approximately degenerate particle-in-
a-box multiplet. By imposing an external field upon the well
or capturing a second particle in the well, we might be able
to control the behavior of the primary particle and guide its

——t=0 ---¢t=10 x 10° t =26 x 10°
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FIG. 22. Snapshots of the probability density |1/ |* of a solitonlike
localized solution at y = 0 as it propagates from one well to another.
The legend reports the time ¢ in units of m*a®/hi. The solitonlike
solution is initially prepared in the left well at # = 0. The double X
well has parameters Ly = Lw = Ls =5, Lg = 3.

propagation through the well. This could open opportunities to
design X-well-based transistors for general quantum networks.

Finally, we have considered the possibility of an effective
one-dimensional quantum-graph description of the X well. Our
results suggest that, in the extreme limit of infinitesimally
thin legs, the legs decouple for all wave numbers above
threshold. Based on our work, it is highly doubtful whether a
quantum graph model is useful in describing the dynamics of
a physical X well. This conclusion is consistent with the work
presented in Pankrashkin [90] who proved that the quantum
graph Laplacian decouples in this case.

Throughout our analysis, we have assumed that the X well
is build from flat wires whose boundaries are infinite potential
barriers. Though we do not find these assumptions to be
unreasonable on physical grounds, it could be an interesting
extension to study the applicability of our results upon lifting
these assumptions. We anticipate that the qualitative features
of our results will not change much if we change the geometry
of the wires to have, e.g., a square or circular cross section; see
also Delitsyn et al. [20]. Likewise, an X-well whose legs are not
at right angles to each other have been considered in Bulgakov
et al. [22]; see also the review in the introduction of Exner
and Lotoreichik [91]. Our formalism could be adapted to such
cases as well, but it would require a careful reconsideration
of how one defines the modes in order to retain the physical
picture and corresponding intuitions that is obtained for the
perpendicular crossings studied here. Networks for which the
boundaries are finite potential barrier that allow for evanescent
waves outside the wires are studied in the theory of “leaky”
quantum graphs reviewed by Exner [92]. This is analogous
to interesting recent experimental development in photonic
nanostructures and nanofibers where the evanescent waves of
the light field is made to interact with near-by atoms [93].

The intriguing question of multiparticle states in the net-
works, and the presence of interactions in such systems has
been touched upon in previous quantum graph approaches
[94,95]. There is also the mentioned work on cold atomic
condensates in wave guides [18] using mean-field theory and
the resulting nonlinear Schrodinger equation. However, it does
not appear that this problem has been considered in great detail
starting from just a few interacting particles in the geometry. In
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our physical approach, we can address multiparticle systems
of noninteracting particles rather easily since we have access
to eigenstates. Including interactions through a perturbative
approach would therefore be straightforward and an interesting
topic of future investigation.
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APPENDIX: MATRIX ELEMENTS OF THE SYMMETRIC
X WELL

In this appendix, we compute the matrix elements of ¥ and
IT for the symmetric X well.

1. Matrix elements of ¥
Letting
nm )
- n* +m? — (ka/n)z)za
we compute the overlaps between perpendicular legs
(n,N|m,BE) = ry(=1)"""R,,, and (n,Elm,S)=r_R,,.
(A2)

, (AD)

nm

With Eq. (19), we then notice that the remaining overlaps are

(n,W|m,N) = (n,E|U_C§|m,E) = (n,Eloy|m,E) = (n,N|m,E), (A3)

(n,S|m, W) = (n,E|CZa+|m,E) = (n,Elo_|m,E) = (n,E\m,S) . (A4)

Let t,, = kyya. The overlap between an eastern-leg mode and itself is

a’ 5 1, 1 1 5 1
(m,Elm,E) = 4T|:csc (tm)<tm -3 s1n(2tm)) — cot (tm <L — 5)) + t, (L — 5) csc (tm <L — 5))] (AS)

2 2

This is the same for the other legs as 0} = o~ = E. We remark that if 7, is purely imaginary,

— cot (tm (L —

%)) + tm(L — %) csc? (tm(L — %)) =i coth (Im(tm)(L — %)) — tm(L — %) csch? (Im(tm)(L —

1) =i (A6)

for L >> 1; so the matrix element is independent of L in that limit. The central-region overlap between modes from opposite legs

with equal mode number m is

m

2
(m,W|m,E) = (m,S|m,N) = ryr_(—1y""! “Z csc(r,,,)(ti - cot(tm)>. (A7)

In conclusion, the matrix elements of W are

\I’[nm = (r+(_])n+m + r,)an + 48nm(<msE|msE) + (m,W|m,E))

(A8)

2. Matrix elements of IT

In the following, we find an expression for the energy contribution due to kinks at the interface between the central region and
the eastern leg. By symmetry, the other three interfaces each give the same contribution.

The matrix elements of IT are given by

1
24 1 d
I, = 42/21 dy sin (k,,J_<§a + y)) A(a (x,ylm,s)) L (A9)
s Y7724 x=5

—264

The factor of 4 accounts for the four interfaces. From the central-region side of the interface, the mode wave functions have

derivatives

d 1
— (x,yIm.E) | .a = Ky cot(kya)sin (k.| =a+y ] ),
dx 3

A10
3 (A10)
B] " . 1
— (x,y|m,N) | a =kyr(=1)" csclkya)sin | k| za+y) ), (A11)
ox ) 2
] . 1
— (x,yImW) | _a = —kyyryr_ esc(kpya)sin (kn i | za —y ] ), (A12)
ox 13 2
9 . 1
—— (0 yIm,S) | 0 = —knir— cse(kya) sin <km <§a - y)) (A13)
2

0x
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Meanwhile, the derivative approaching from the leg side is

0 1 . 1
™ (x,y|m,E) |x¢% = —ky, cot (km”a(L — z)) sin (ka_ <5a + y>>

(A14)

Using that sin(k,, L(%a — ) = (=1)"*sin(k, L(%a + ¥)), the change in derivative over the interface is

A(Z % (x,ylm,S>> = k| [Cot (km||a<L - %)) + cot(kpya) + ror—(=1)" CSC(kmna)]

— k1 Csc(km||a)|:r+(—l)m sin <km|| (%a + y>> — r_sin <km|| (%a — y>>:| (A15)

Hence the entries of IT are

nm

M = 40 (= 1™+ 4 7
e (=1)""" +r )n2+m2—

(ka/m)? 2ty |:cot (tm (L — %)) + cot(ty,) + ryr_(=1)" csc(tm):| Sum-  (A16)
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