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Quantum thermodynamics of nanoscale steady states far from equilibrium
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We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that
couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the
thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum
transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained
for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces
(affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest
that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of
the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state
thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.
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I. INTRODUCTION

Constructing a thermodynamic theory that applies con-
sistently to nonequilibrium steady states has long been a
theoretical challenge in many fields of science, not only
in physics but also in chemistry and biology. Steady states
differ from equilibrium states by being driven by the external
environments (reservoirs) and accommodating finite flows that
induce entropy production. Formulating thermodynamics for
such irreversible systems is notoriously difficult; successes
have been mainly achieved within the linear-response theory,
where various transport coefficients can be related to fluctua-
tions in equilibrium [1,2]. Beyond the linear-response regime,
a possible thermodynamic formulation has been anticipated
for the steady states [3–7]. Yet the theory has been largely
unexplored, partly because basic concepts such as temperature
and entropy get elusive and questioned when treating an open,
irreversible system.

In recent years, it has been recognized that thermodynamic
laws are consistent with quantum properties of open nanoscale
systems typically connected with multiple reservoirs with
different chemical potentials and temperatures (Fig. 1). The
emergence of thermodynamics is somewhat unexpected; the
situation is opposite to the conventional thermodynamic limit,
because it involves only a few particles, even a single one.
The statistical ensemble average is replaced by quantum
averaging, and the applicability of thermodynamics results
from its quantum nature. Nanoscale systems provide a rare and
novel opportunity to study the steady-state thermodynamics,
without relying on any statistical ensemble hypothesis [8].

As a realization of nonequilibrium systems, a steady-state
nanoscale system is notable because of its strong coupling
with the reservoirs. One cannot rely on local equilibrium
hypothesis to characterize a nanosystem. Any temperature
or chemical potential cannot be assigned to it a priori,
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except for a system coupled with a single reservoir. Strongly
coupled reservoirs make effective dynamics non-Markovian
with memory effect, and the Lindblad form of the master
equation invalidated. The nonequilibrium density matrix is
represented not by the standard Gibbs ensemble but by a
generalized one (the MacLennan-Zubarev type) [9–12]. A
consistent thermodynamic framework is nontrivial even for
noninteracting transport. It has been striven for by many
approaches [13–17], but has not been fully disclosed so far.

In this paper, we develop a thermodynamic description
of the steady state at nanoscale, entirely based on quantum
mechanics. A steady-state extension of the Massieu-Planck
function �ss, which is determined by normalization of the
reduced density matrix, is singled out as a nonequilibrium
thermodynamic function. One salient feature of this quantum
construction is that the resulting thermodynamic function �ss

unavoidably becomes stationary in time because the steady-
state density matrix is time independent. It contrasts sharply
with a naive expectation that a steady-state thermodynamic
function might increase in time because it may include an
increasing entropic contribution. Notwithstanding we will
demonstrate that the function �ss is viable to describe the
steady-state properties far from equilibrium. To fully charac-
terize the steady state, we also need to identify a correct set of
parameters that control the steady state. A consistent choice
of them includes local (inverse) temperature and chemical
potential (β̄,βμ), as well as various affinities (AN

a ,AE
a ) that are

thermodynamic forces to drive the system out of equilibrium
[see Eqs. (21) for their definitions]. With these parameters, the
significance of �ss is compactly represented in the differential
form

d�ss = N̄d(βμ) − Ēdβ̄ + h̄

2γ

∑
a

(
Ia dAN

a + Ja dAE
a

)
, (1)

where N̄ or Ē is the average occupancy or energy of the system,
while Ia or Ja is a nonlinear inflow of particle or energy from
the reservoir a. The constant γ is the total relaxation rate of the
system. The relation (1) serves as a nonequilibrium extension
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FIG. 1. An open system (S) connected with multiple reservoirs
with different inverse temperatures βa and chemical potentials μa for
a = 1, . . . ,N .

of the thermodynamic relation of the Massieu-Planck function
(see Appendix A). Being stationary in time, the function �ss

does not refer to the internal entropy. Yet �ss characterizes the
entropy production rate by

dS

dt
= 2γ

h̄

∑
a

(
AE

a

∂�ss

∂AE
a

+ AN
a

∂�ss

∂AN
a

)
. (2)

Formulas (1) and (2) will be proved to be exact for a
noninteracting single bosonic or fermionic level that couples
linearly with multiple reservoirs. Moreover we argue that the
above thermodynamic structure in Eqs. (1) and (2), found in
a noninteracting steady state, persists even in a steady state of
the model with local interaction, namely, the single-impurity
Anderson model.

II. MODEL AND KNOWN RESULTS

The total Hamiltonian consists of H = HS + HR + HSR ,
whose terms represent a nanoscale system (“quantum dot”),
multiple reservoirs with different inverse temperatures βa and
chemical potentials μa (for a = 1, . . . ,N), and the linear
coupling between the system and the reservoirs (see Fig. 1).
They are

HS = εd d†d, (3)

HR =
∑

a

εak c
†
akcak, (4)

HSR =
∑
a,σ

(Vda d†cak + Vad c
†
akd), (5)

where d† creates a particle with energy εd at the system and c
†
ak,

with energy εak at the reservoir a. Particles can be bosonic or
fermionic. We present the results for both cases simultaneously
with composite signs (with the upper for bosonic; the lower for
fermionic).

The presence of the reservoir makes the nanoscale system
dissipative, inducing a finite resonant width γa = π |Vda|2ρa

due to the reservoir a (with its density of states ρa). Quantum
transport across a noninteracting system can be solved exactly
by several approaches, such as the scattering method, the
equation-of-motion method, or the nonequilibrium Green’s
function method. When we take the wide-band approximation,

the inflow of particle Ia or of energy Ja from the reservoir a is
given by the Landauer-Büttier formula [18–20]

Ia = 2

h̄

∑
b

γaγb

γ

∫
dε ρ(ε) [fa(ε) − fb(ε)], (6)

Ja = 2

h̄

∑
b

γaγb

γ

∫
dε ρ(ε)ε [fa(ε) − fb(ε)]. (7)

Here ρ(ε) refers to the spectral function of the system,

ρ(ε) = γ /π

(ε − εd )2 + γ 2
, γ =

∑
a

γa, (8)

and fa(ε) = [eβa (ε−μa ) ∓ 1]−1 is the distribution function of
the reservoir a. These currents are usually expressed by the
transmission Tab(ε) = 4πγaγbρ(ε)/γ between the reservoirs
a and b, but we prefer writing them in the above form. One can
evaluate them analytically in terms of the digamma function
[see Eqs. (D1) and (D2)]. Heat current flowing from the
reservoir a is defined by JQ

a = Ja − μaIa . The average number
N̄ and energy Ē of the system are given by

N̄ =
∫

dε
∑

a

γa

γ
ρ(ε)fa(ε), (9)

Ē =
∫

dε
∑

a

γa

γ
ρ(ε) ε fa(ε). (10)

We will show below that the steady-state thermodynamic
function �ss, which is constructed quantum mechanically,
correctly produces quantum transport equations (6) and (7)
as well as local quantities (9) and (10) via the differential
relation (1).

III. MASSIEU-PLANCK FUNCTION

Analogous to an equilibrium system, our basic assumption
is that the partition function which normalizes the density
matrix bridges between a microscopic model and its thermo-
dynamics. We suppose its steady-state extension is provided
instead by normalizing the reduced density matrix �̂red of
the relevant system. In treating the steady state, we find it
advantageous to use the Massieu-Planck function [21], which
is defined by the logarithm of the (effective) partition function.

A. Single-reservoir Massieu-Plank function

As for an open system that connects with a single reservoir
with β and μ, the effective thermodynamics has long been
investigated [22–27]. By recasting it, the single-reservoir
Massieu-Planck function is found to be (see Appendix B)

�1(β,βμ) = ∓
∫ ∞

−∞
dε ρ(ε) ln[1 ∓ e−β(ε−μ)]. (11)

The energy integration actually diverges in the wide-band limit,
so some regularization is needed. In Appendix C, we show
the explicit analytical form of �1(β,βμ) with regularization,
and examine its various thermodynamic properties that are
independent of regularization. The physics of�1 is transparent;
the level of the open nanosystem acquires finite broadening due
to coupling with the reservoir. We make a point of regarding
�1 as a function of β and βμ, since they are parameters
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conjugate to particle number and energy. We stress that they
are originally external parameters specified by the reservoir.
The implication of β and μ as thermodynamic parameters is
somewhat blurred because the reduced density matrix �red is
no longer represented by the standard Gibbs ensemble.

B. Steady-state Massieu-Planck function

One can calculate the steady-state Massieu-Planck function
�ss that couples with multiple reservoirs by normalizing the
reduced density matrix �red. As we work on noninteracting
systems, the calculation can drastically be simplified by uti-
lizing a Gaussian nature of �̂red, in light of Zubarev’s relevant
distributions and nonequilibrium statistical operators [9] (see
also [28–30]). Asking N̄ = 〈d†d〉 to reproduce Eq. (9), we
deduce that �̂red may well be represented in terms of relevant
field operators ψa(ε) and ψ

†
a (ε), satisfying

[ψa(ε),ψ†
a′ (ε′)]∓ = δaa′ δ(ε − ε′), (12)

〈ψ†
a′ (ε′)ψa(ε)〉 = δaa′ δ(ε − ε′) fa(ε), (13)

d =
∑

a

∫
dε

√
γa

γ
ρ(ε) ψa(ε). (14)

Then the function �ss normalizes �̂red as

�̂red = exp

[
−�ss −

∑
a,ε

βa(ε − μa)ψ†
a (ε)ψa(ε)

]
, (15)

where
∑

a,ε(· · · ) = ∑
a

∫
dε(γa/γ )ρ(ε)(· · · ) is the summa-

tion/integral over the energy shell and the reservoirs. Deter-
mining �ss by imposing Tr ρ̂red = 1 is equivalent to evaluating
the functional determinant. A quick, symbolic way to evaluate
it is

exp(�ss) =
∏
a,ε

[1 ∓ e−βa (ε−μa )]∓1, (16)

= exp

(
∓

∑
a,ε

ln[1 ∓ e−βa (ε−μa )]

)
. (17)

It expresses the steady-state Massieu-Planck function

�ss =
∑

a

γa

γ
�1(βa,βaμa) (18)

as a superposition of the single-reservoir contribution
�1(βa,βaμa). Hence �ss can be evaluated analytically. The
manipulation of Eq. (16) is due to observing that (γa/γ )ρ(ε)
acts as (fractional) degeneracies satisfying

∑
a,ε 1 = 1; such

analytical continuation is validated because it correctly repro-
duces the single-reservoir result in Eq. (11).

The relevant field operator ψ
†
a (ε) in Eqs. (12)–(15) has a

clear physical meaning. One can construct the steady-state
density matrix �̂ss of the total system (the system plus the
reservoirs) [10,12,31–34],

�̂ss ∝ exp

[
−

∑
a

∑
k

βa(εak − μa)ψ†
akψak

]
, (19)

where ψ
†
ak = �c

†
ak�

† is a scattering-state field of the reser-
voir a that is defined by the Møller operator �. The field
ψ

†
ak becomes a coherent superposition of fields c

†
ak and d†.

Accordingly, field d is solved to be a superposition of the
scattering fields involving all the reservoir fields, as in Eq. (14).
It accounts for quantum coherence between the system and the
reservoirs. The average density is 〈ψ†

akψak〉 = fa(εak), and
the canonical (anti)commutation relation is preserved. The
relevant field ψa(ε) is nothing but an energy representation
of the scattering-state field ψak.

We cannot emphasize too much the peculiar nature of
Eq. (18). Although such a superposition is a common trait
of quantum mechanics, Eq. (18) tells us that the function �ss

that describes the irreversible steady state (with the increasing
entropy) is unchanged in time and given by a superposition of
the �1’s of the single reservoirs, each of which refers to the
entropy-preserving, reversible system. One may notice such a
trait of superposition in the expression of average number N̄

or energy Ē [Eqs. (9) or (10)], but it is far from obvious that
one can use �ss to describe quantum transport Ia and Ja . To
fully disclose the steady-state thermodynamics, one needs to
find the relevant controlling parameters for it.

C. Affinities

Finding the correct set of appropriate controlling parameters
arbitrary away from equilibrium is quite nontrivial, but it
is imperative to establish the steady-state thermodynamic
relations. The function �ss of Eq. (18) depends on 2N inde-
pendent external parameters {βa,μa}a=1,...,N specified by the
reservoirs. Among them, we expect that two local parameters
(temperature and chemical potential) regulate the average
particle number and energy [Eqs. (9) and (10)], while all other
2N − 2 parameters (the difference of temperatures and/or
chemical potentials) drive the system out of equilibrium and
cause irreversible processes. The latter parameters are called
thermodynamic forces or affinities. Among them, we will
identify the relevant parameters (β̄,βμ,{AN

a ,AE
a }) defined in

Eqs. (21) below, which describe the quantum transport as well
as thermodynamic properties. This constitutes our main result,
with the steady-state thermodynamic function (18).

One can identify affinities and their associated currents by
examining the internal entropy production rate [21]. In the
system we consider, it is balanced with the entropy inflow, so
that we find

dS

dt
= −

∑
a

βa(Ja − μaIa). (20)

Its positivity follows because the distribution function fa(ε)
is a decreasing function regarding βa(ε − μa) [10,15,32,35].
The form of Eq. (20) tells us to introduce two types of
affinities associated with each reservoir: chemical affinities AN

a

to generate particle currents, which is a deviation of βμ, and
thermal affinities AE

a to generate energy currents, which is a
deviation of −β. Those deviations must be defined from some
reference values, β̄ and βμ, which in turn regulate N̄ and Ē. We
choose to introduce affinities for conserved particle and energy
currents rather than heat currents. The conservation laws are
fulfilled by the condition

∑
a γaA

E
a = ∑

a γaA
N
a = 0. Hence
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a pair of AN,E
a are redundant (see Appendix E for an explicit

construction). All things considered, we come to make the
following choice of local quantities β̄ and βμ, and affinities:

AN
a = βaμa − βμ, βμ =

∑
a

γa

γ
βaμa, (21a)

AE
a = −βa + β̄, β̄ =

∑
a

γa

γ
βa. (21b)

Viewing �ss Eq. (18) as a function of the above set of param-
eters (β̄,βμ,{AN

a ,AE
a }) of Eqs. (21), it is now straightforward

to find (see Appendix E for details)

N̄ = ∂�ss

∂(βμ)
, Ē = −∂�ss

∂β̄
, (22)

Ia = 2γ

h̄

∂�ss

∂AN
a

, Ja = 2γ

h̄

∂�ss

∂AE
a

. (23)

The expression in Eq. (2) of the entropy production rate dS/dt

follows from Eqs. (20) and (23).

IV. DISCUSSION

A. Local temperature

Our definitions of local temperature β̄ and chemical poten-
tial μ̄ = βμ/β̄ are motivated by the theoretical consistency
of the thermodynamic formulation. Alternatively, one may
probe local quantities by measurements such as the scanning
thermal technique [36]. Those probed quantities, βp and μp,
are determined by the no-flow condition of charge and energy
when attaching the probe reservoir [37–39]:∫

dε ρ(ε) εk[f̄ (ε) − fp(ε)] = 0 (for k = 0,1), (24)

where f̄ (ε) = ∑
a(γa/γ )fa(ε) is the effective distribution

of the reservoirs. In a general nonlinear setting far from
equilibrium, parameters βp and μp may differ from β̄ and μ̄.
However, as for the linear deviation, the probed quantities βp

and μp agree with β̄ and μ̄, because the effective distribution
f̄ (ε) can be expanded as f̄ (ε) ≈ fp(ε) + f ′

p(ε)[(β̄ − βp)ε −
(βμ − βpμp)]/βp. We also note that the scale μ̄ has played an
important role in characterizing nonlinear electronic transport
in the Kondo regime through an interacting dot [40].

Explicit forms of local quantities and affinities in Eqs. (21)
are outcomes of the wide-band approximation, which is well
justified for quantum coherent transport through a nanostruc-
ture. If γa were to acquire substantial energy dependence, one
could nonetheless construct �ss by generalizing Eq. (18) to
take an energy-dependent superposition for each energy shell.
However, it is quite nontrivial in this situation to identify
appropriate controlling parameters that enable us to construct
the thermodynamic description.

B. Maxwell relations and nonlinear generalization
of the Onsager relations

The existence of the function �ss that satisfies the differ-
ential form of Eq. (1) has important consequences for the
steady-state thermodynamic structure. One can derive various
steady-state extensions of Maxwell relations by using the

symmetry of second derivatives. For instance, we see the βμ

dependence of the current can be obtained by the chemical
affinity dependence of the occupancy, as in

∂2�ss

∂AN
a ∂(βμ)

= ∂N̄

∂AN
a

= h̄

2γ

∂Ia

∂(βμ)
. (25)

Many other relations are derived similarly. One can make a
nonlinear generalization of the Onsager reciprocity relations
by using the symmetry ∂2�ss/∂AE

a ∂AN
a :

2γ

h̄

∂�ss

∂AE
a ∂AN

a

= ∂Ia

∂AE
a

= ∂Ja

∂AN
a

, (26)

which is valid for nonlinear responses. In the linear-response
limit (or the zero-affinity limit), the above gives the usual
Onsager reciprocal relations between the cross coefficients.

C. Implication in the interacting system

We have demonstrated that the function �ss character-
izes the steady state, based on a noninteracting transport
model through a single level. Notwithstanding, the validity
of the thermodynamic structure in Eqs. (1) and (2) seems to
go beyond noninteracting systems to include a stead -state
with local interaction. Let us consider the spin-degenerate
fermionic single level with local interaction connecting with
the multiple reservoirs, namely, the nonequilibrium single-
impurity Anderson model. For that system, we can still derive
the Landauer-Büttiker type formulas (6) and (7) by help
of nonequilibrium Green’s functions [20,40–43], where the
many-body effect is encapsulated only in the spectral function
ρ(ε) = − Im GR(ε)/π . Moreover, in the wide-band limit, the
current conservation of charge and energy enforces Eqs. (9)
and (10) even with interaction [40]. Note, the expression of N̄

may be understood as a generalization of the Friedel sum rule
[44–46] which holds at the zero temperature.

Therefore the structure of Eqs. (6) and (10) is intact even
for the single-impurity Anderson model in the wide-band limit.
From these, we can deduce that a small deviation of �ss should
take a form of Eq. (1). Equivalently, it can be written as

d�ss = ∓
∫

dε ρ(ε)
∑

a

γa

γ
d ln[1 ∓ e−βa (ε−μa )], (27)

=
∫

dε ρ(ε)
∑

a

γa

γ
fa(ε) d[βaμa − βaε]. (28)

The deviation d[βaμa − βaε] is taken by regarding
(β̄,βμ,AN

a ,AE
a ) as independent parameters, which gives

Eq. (1). The form (28) is surprising when one recalls that
the local interaction makes the reduced density matrix �̂red

non-Gaussian and the spectral function ρ(ε) dependent on
the parameters. We suspect that there is some cancellation
between the quadratic and quartic contributions, similar to the
nonequilibrium Ward identities [47], because �̂ss still takes
the Gaussian form of Eq. (19) in terms of scattering-state
fields, even for an interacting dot [10,12,31–34]. An actual
mechanism is missing though.
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D. Characterizing low-temperature heat current fluctuations

In the context of the large deviation approach to equilibrium
statistical mechanics [48], the free energy characterizes not
only average quantities but also their fluctuations, being the
cumulant generating function (CGF). Since the CGF of steady-
state currents has been known [49–51], it would be desirable
to see a connection with �ss, but a generic link between the
CGF and �ss is missing. Nevertheless we can show that the
heat transport at low temperature gives a concrete example of
how �ss is capable of characterizing the fluctuations.

The average heat current between two reservoirs (with
different temperatures β1,2 and the same chemical potential
μ = 0) exhibits the universal behavior [52,53]

JQ ≈ cπ

12h̄

(
1

β2
1

− 1

β2
2

)
, (29)

with the transmission coefficient c = T12(μ). It is known that
the low-temperature current fluctuations are dominated by
the thermal (Johnson-Nyquist) noise, even for the extreme
nonequilibrium situation β1/β2 	 1 [54]. Since one can con-
nect the thermal noise with the thermal conductance, one may
well say that �ss characterizes those noises.

For perfect (or “critical”) transmission c ≈ 1 which is
realized for γ1 = γ2, one can develop conformal field theory to
construct the CGF F (λ) to characterize low-temperature heat
current fluctuations [55–57], which is found to be

F (λ) ≈ cπ

12h̄

[
iλ

β1(β1 − iλ)
− iλ

β2(β2 + iλ)

]
. (30)

It corresponds to the the low-temperature limit of Ref. [51].
What is interesting in the present context is that Bernard and
Doyon [56] have noticed that the function dF (λ)/dλ is related
to the nonlinear heat current J by what they call the extended
fluctuation relations. Then by comparing with Eq. (1), we come
to see that the CGF F (λ) is directly given in terms of �ss:

F (λ) = γ

h̄
[�ss(β̄,AE + 2iλ) − �ss(β̄,AE)]. (31)

with β̄ = (β1 + β2)/2 and AE = −β1 + β2. Indeed, the low-
temperature behavior of �ss is readily evaluated from
Eqs. (C11) and (18) as

�ss ≈ cπ

12γ

(
1

β1
+ 1

β2

)
, (32)

and putting it into Eq. (31) exactly reproduces Eq. (30). It
is noted that the fluctuation theorem F (λ) = F (iAE − λ) is
equivalent to the inversion symmetry �ss(β̄,AE) = �ss(β̄, −
AE) in this case.

V. CONCLUSION

In summary, we have developed a thermodynamic descrip-
tion of the nonequilibrium steady state that connects with
multiple reservoirs, and demonstrated that the steady-state
Massieu-Planck function �ss can characterize consistently
its quantum transport properties of charge, energy, or heat.
The positive entropy production rate caused by irreversible
processes is also characterized by �ss. We have evaluated
explicitly for a single bosonic or fermionic level that connects

with multiple reservoirs, and argued that the same thermo-
dynamic structure persists even for a steady state with local
interaction and that the heat current fluctuations are related to
the function �ss at low temperature.
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APPENDIX A: THERMODYNAMIC RELATIONS
OF THE EQUILIBRIUM MASSIEU-PLANCK FUNCTION

We recall some basic thermodynamic relations of the
equilibrium Massieu-Planck function �eq, which is defined
as the logarithm of the (grand) partition function [21]. With
a given thermodynamic potential �(T ,μ) as a function of the
temperature T and the chemical potential μ, the function �eq

can be written as �eq = −�(T ,μ)/T . Below we show how it is
beneficial to regard �eq as a function of the inverse temperature
β = 1/T and βμ. The volume of the system is irrelevant and
ignored because we treat a nanoscale system.

Starting with the thermodynamic relation d� = −Ndμ −
SdT , the thermodynamic relation of �eq becomes

d�eq = −�dβ + Nβdμ − S
dβ

β
= Nd(βμ) − Edβ, (A1)

where we identify the entropy S = −β� + β(E − Nμ). One
can check the above directly by making a quantum statistical
construction of the partition function e�eq . For noninteracting
bosonic and fermionic particles with levels {εα}, one finds

�eq(β,βμ) = ∓
∑

α

ln[1 ∓ e−β(εα−μ)]. (A2)

Then it is easy to see

∂�eq(β,βμ)

∂(βμ)

∣∣∣∣
β

=
∑

α

f (εα) = N, (A3)

∂�eq(β,βμ)

∂β

∣∣∣∣
βμ

= −
∑

α

εαf (εα) = −E, (A4)

∂�eq(β,βμ)

∂β

∣∣∣∣
μ

= −(E − μN), (A5)

where f (ε) = [eβ(ε−μ) ∓ 1]−1 is the distribution function. The
entropy S = −∂�/∂T |μ is given by

S = �eq − β
∂�eq

∂β

∣∣∣∣
μ

= �eq + β(E − μN ). (A6)

The first equality means that �eq is a Legendre transform of S

regarding β with a fixed μ. One finds the entropy S taking a
familiar Shannon-like form:

S = −
∑

α

{f (εα) ln f (εα) ∓ [1 ± f (εα)] ln [1 ± f (εα)]}.
(A7)
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APPENDIX B: EFFECTIVE SINGLE-LEVEL
THERMODYNAMICS COUPLED

WITH A SINGLE RESERVOIR

The calculation of the effective free energy of a single
level εd that couples with a single reservoir (with the inverse
temperature β and the chemical potential μ) has been long
known for fermionic systems [23] as well as bosonic sys-
tems [25–27]. As in equilibrium, we then recast it to find
the single-reservoir Massieu-Planck function �1 in Eq. (11)
of the main text. Though the system coupled with a single
reservoir no longer obeys the Gibbs ensemble, we may regard
the reservoir’s parameters β and μ as local thermal parameters
of this open system, because of the thermodynamic relation

N = ∂�1(β,βμ)

∂(βμ)
=

∫ ∞

−∞
dε ρ(ε)f (ε), (B1)

E = −∂�1(β,βμ)

∂β
=

∫ ∞

−∞
dε ρ(ε)εf (ε). (B2)

Comparing Eq. (A2) and Eq. (11), we see the spectral function
ρ(ε) play a role of degeneracy at each energy shell. Physical
quantities are expressed simply by replacing the summation∑

α(· · · ) by the energy integral
∫

dερ(ε)(· · · ). Particularly, the
local entropy S = �1 + β(E − Nμ) becomes

S = −
∫

dε ρ(ε){f (ε) ln f (ε) ∓ [1 ± f (ε)] ln [1 ± f (ε)]}.
(B3)

This form of the entropy indicates that some entities having
distribution f (ε) are present at each energy shell, when put
in the context of information theory. This is why we have
introduced field operators at each energy shell in the main text.

APPENDIX C: ANALYTICAL FORM OF �1(β,βμ)
AND REGULARIZATION

For the Lorentzian spectrum of Eq. (8), it is possible to
obtain the analytical form of the single-reservoir Massieu-
Planck function �1, hence the steady-state �ss via Eq. (18).
The function �1 turns out to be divergent due to the zero-
temperature contribution in the wide-band limit [58]. To
suppress such divergence, we need to introduce a finite band
width of the reservoir. The explicit form of �1 is useful to
connect several different expressions found in the literature; it
also clarifies the nature of the divergence and shows directly
that physical quantities are independent of the regularization
of such divergence.

A central role is played by the following integral formula:∫ ∞

−∞

dε

(ε − εd + iγ )(eβ(ε−μ) ∓ 1)

=
∫ ∞

−∞

∓θ (μ − ε) dε

ε − εd + iγ
− d

dz
loge F(z), (C1)

where the first term corresponds to the zero-temperature
contribution while the second term, to the finite temperature.
The latter can be evaluated explicitly (see [59], Sec. 3.415).
We find it useful to express it by the complex function F(z)

that is normalized by F(z) → 1 for large |z|:

F(z) =

⎧⎪⎨
⎪⎩

�(z) z
1
2 −z

ez√
2π

, (B),
√

2πzze−z

�

(
1
2 +z

) , (F),
(C2)

as a function of the dimensionless complex parameter

z = x + iy = β

2π
(γ + iξ ), ξ = εd − μ. (C3)

The first term on the right-hand side of Eq. (C1) is divergent,
which we need to suppress by introducing finite band width of
the reservoir,∫ ∞

−D

∓θ (μ − ε) dε

ε − εd + iγ
= ∓ loge(z/zD), (C4)

with the dimensionless cutoff zD = β[γ + i(D + εd )]/2π .
Formula (C1) allows us to evaluate the average occupation
number N and energy E in Eqs. (B1) and (B2) straightfor-
wardly:

N (z) = 1

π
Im

[
± loge(z/zD) + d

dz
loge F(z)

]
, (C5)

=
{

− 1
2 + 1

π
Im

[
ψ(z) + 1

2z

]
, (B),

1
2 − 1

π
Im

[
ψ

(
1
2 + z

)]
, (F),

(C6)

E(z) = 1

π
Im

[
(εd − iγ )

(
± loge(z/zD) + d

dz
loge F(z)

)]
,

(C7)

=
{

1
π

Im
{
(εd − iγ )

[
ψ(z) + 1

2z
− loge zD

]}
, (B),

− 1
π

Im
{
(εd − iγ )

[
ψ

(
1
2 + z

) − loge zD

]}
, (F).

(C8)

It is noted that while the average energy E reduces to εdf (εd ) in
the isolated limit γ → +0, it diverges for any finite γ because
of the zero-temperature contribution. Yet its finite-temperature
contribution is well defined.

One can construct the function �1 by integrating the above
expression of N or E. Those forms suggest that we may write
it as

e�1 = A |F(z)|2, (C9)

where A is a factor coming from the zero-temperature contri-
bution. Seeing �1 vanish at large y, one determines A as

loge A = ±2 Re
∫ zD

z

dz′ loge(z′/zD) = |(zD/z)z|∓2. (C10)

This leads to the single-reservoir Massieu-Planck function,

�1(β,βμ) =

⎧⎪⎨
⎪⎩

ln
∣∣ z

1
2 �(z)√

2πzz
D e−z

∣∣2
, (B),

ln
∣∣√

2πzz
D e−z

�

(
1
2 +z

) ∣∣2
, (F).

(C11)
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It is always good to check the isolated limit γ → +0. In
this limit, we find

|F(x + iy)|2 → e±π(|y|−y)(1 ∓ e−2πy)∓1, (C12)

A → e±π(y−|y|). (C13)

Hence e�1 → [1 ∓ e−2πy]∓1. This is nothing but the partition
function of the isolated system in Eq. (A2).

In addition to N and E, we can obtain various thermo-
dynamic quantities by differentiating �1(β,βμ). They take a
simple form in terms of the function F(z). For instance, the
entropy S becomes

S = �1 − β
∂�1

∂β

∣∣∣∣
μ

= 2 Re

[(
1 − z

d

dz

)
loge F(z)

]
, (C14)

=
⎧⎨
⎩

2Re
[

loge

(
�(z)z

1
2√

2π

) + z − 1
2 − zψ(z)

]
, (B)

2Re
[

loge

( √
2π

�( 1
2 +z)

) − z + zψ( 1
2 + z)

]
. (F)

(C15)

The vanishing of S at zero temperature follows from the fact
F(z) → 1 for large z. The specific heat C becomes

C = β2 ∂2�1

∂β2

∣∣∣
μ

= 2 Re

[
z2 d2

dz2
loge F(z)

]
, (C16)

=
{

2Re
[− 1

2 − z + z2ψ ′(z)
]
, (B)

2 Re
[
z − z2ψ ′( 1

2 + z
)]

. (F)
(C17)

The result of specific heat for fermionic systems agrees with
that of [23] (with ξ = 0), while for the bosonic systems, it
agrees with that of the damped harmonic oscillator [26,27].

APPENDIX D: NONLINEAR CURRENT OF CHARGE,
ENERGY, AND HEAT

One can also find analytical expressions of nonlinear cur-
rents of particle, energy, or heat; they are well-defined and
independent of the cutoff. From the thermodynamic relation (1)
[or equivalently from Eqs. (6) and (7)], we can write currents
of particle and energy as

Ia = 2

h̄

∑
b

γaγb

γ
[N (za) − N (zb)], (D1)

Ja = 2

h̄

∑
b

γaγb

γ
[E(za) − E(zb)]. (D2)

Here N (za) and E(za) are defined by Eqs. (C5) and (C8) for
each reservoir by choosing za = (βa/2π )(γ + iεd − iμa) with
βa and μa of the reservoir [see Eq. (C3)]. The difference of N

or E is independent of cutoff. Indeed, we see

N (za) − N (zb) = 1

π
Im

[
± loge

(za

zb

)
+ F ′(z)

F(z)

∣∣∣∣
za

zb

]
, (D3)

E(za) − E(zb)

= 1

π
Im

{
(εd − iγ )

[
± loge

(βbza

βazb

)
+ F ′(z)

F(z)

∣∣∣∣
za

zb

]}
.

(D4)

Therefore the finite-temperature contributions are written
in terms of the digamma function ψ(z) = �′(z)/�(z) via
Eq. (C2). Likewise, heat current JQ

a = Ja − μaIa from the
reservoir a can be expressed analytically by using the above
expressions.

APPENDIX E: DERIVATION OF EQ. (22) OR (23)

Assigning an affinity that is associated with each current
turns out to be delicate, particularly in multiterminal settings.
Because of current conservation, the inflow at the reservoir
a must involve outflows to other reservoirs. In order to
establish Eqs. (22) and (23), it is crucial to specify how one
varies a relevant parameter by fixing others, as in equilibrium
thermodynamics.

In the following, we choose to use xa for βaμa or −βa , to
describe particle or energy transport, while we will introduceya

for affinities later. Adopting this notation, we write the steady-
state Massieu-Planck function as �ss = ∑

a(γa/γ )�1(xa),
where �1 is defined by Eq. (11) in the text. Now we define
the local parameter x̄ and its affinity ya by

x̄ =
N∑

a=1

γa

γ
xa, ya = xa − x̄. (E1)

Affinities ya satisfy the sum rule
∑

a(γa/γ )ya = 0. This comes
from the condition that any variation of affinities does not
affect x̄. In this way, we map the N parameters {xa} into x̄

and {ya}, where we can eliminate one of {ya}. Alternatively,
we can express xa as a function of x̄ and the differences of {ya}
by

xa = x̄ +
N∑

b=1

(
δab − γb

γ

)
yb = x̄ +

N∑
b=1

γb

γ
(ya − yb). (E2)

This parametrization is singled out by requiring to fix x̄ by
any variation of the N -independent parameters {y1, . . . yN }.
Though we can safely cross out one of {ya} at any moment,
we prefer retaining all of them for a symmetrical reason. In
either way, we can obtain the currents fulfilling the current
conservation by varying ya in the above.

Equation (22) or (23) can be derived by taking derivatives
regarding x̄ or ya by assuming x̄ and ya are independent
variables:

N̄ = ∂�ss

∂x̄
=

N∑
a=1

γa

γ

∂xa

∂x̄

∂�1(xa)

∂xa

=
N∑

a=1

γa

γ
Na, (E3)

Ia = 2

h̄

∂�ss

∂ya

= 2γ

h̄

N∑
b=1

γb

γ

∂xb

∂ya

∂�1(xb)

∂xb

, (E4)

= 2γ

h̄

N∑
b=1

γb

γ

(
δab − γa

γ

)
Nb = 2

h̄

N∑
b=1

γaγb

γ
(Na − Nb),

(E5)

Here we assign, for particle transport, N̄ = N̄ , Ia = Ia , and
Na = N (za); for energy transport, N̄ = Ē,Ia = Ja , andNa =
E(za). The current conservation

∑
a Ia = 0 immediately fol-

lows from the above expression of Ia .
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Linear current Ia at terminal a is proportional to
γa(xa − x̄) = γaya . Choosing the parametrization (E2), it
shows that positive affinity ya plays a role in in-

ducing the inflow at the terminal a but the out-
flows at all the other terminals, in the linear-response
regime.
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