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Green’s function approach to the Kondo effect in nanosized quantum corrals

Q.L.Li,' R. Wang,l'2 K. X. Xie,! X. X. Li,' C. Zheng,1 R. X. Cao,"? B. F. Miao,"* L. Sun,"*
B. G. Wang,""*" and H. F. Ding"-*

! National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 22 Hankou Road,
Nanjing 210093, People’s Republic of China

2Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

3College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, People’s Republic of China
4Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road,

Nanjing 210093, People’s Republic of China

@ (Received 5 February 2018; revised manuscript received 22 March 2018; published 2 April 2018)

We present a theoretical study of the Kondo effect for a magnetic atom placed inside nanocorrals using Green’s
function calculations. Based on the standard mapping of the Anderson impurity model to a one-dimensional chain

model, we formulate a weak-coupling theory to study the Anderson impurities in a hosting bath with a surface
state. With further taking into account the multiple scattering effect of the surrounding atoms, our calculations
show that the Kondo resonance width of the atom placed at the center of the nanocorral can be significantly
tuned by the corral size, in good agreement with recent experiments [Q. L. Li ez al., Phys. Rev. B 97, 035417
(2018)]. The method can also be applied to the atom placed at an arbitrary position inside the corral where our
calculation shows that the Kondo resonance width also oscillates as the function of its separation from the corral
center. The prediction is further confirmed by the low-temperature scanning tunneling microscopy studies where
a one-to-one correspondence is found. The good agreement with the experiments validates the generality of the

method to the system where multiadatoms are involved.

DOI: 10.1103/PhysRevB.97.155401

I. INTRODUCTION

The Kondo effect is one of the most studied electron
correlation phenomena in condensed matter physics [1]. It
describes the spin of magnetic impurity in a nonmagnetic host
interacting with the spins of surrounding conduction electrons.
The effect was discovered in the 1930s [2] and then later
explained by Kondo [3]. At low temperature, a many-body
nonmagnetic singlet ground state is formed, resulting in a
spectroscopic signature around the Fermi level of the host,
i.e., the Kondo [3] or Abrikosov-Suhl [4,5] resonance. To
date, the resonance has been investigated down to a single
atom or single molecular level with low-temperature scanning
tunneling spectroscopy (STS) [6-15].

Quantum corrals exhibit rich physical phenomena, such as
the enhancement of the switching probability of tautomeriza-
tion [16]; the regulation of adatom diffusion, self-assembly,
and atom trapping [17-21]; the modulation of Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [22,23]; the single-
atom gating of quantum-state superpositions [24]; and the
electronic structure inversion of an adatom [25], etc. When
the Kondo effect encounters elliptical quantum corrals, the
Kondo effect created by the adatom at one focus can even be
projected to the other focus where no adatom is present; that
is, the quantum mirage emerges [7]. Many different theoretical
approaches have successfully reproduced the quantum mirage
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phenomenon [26-29]. The discussion of the variation of the
Kondo temperature as a function of the corral diameters or the
positions in corrals, however, is still rare. A theoretical work
investigated the Kondo effect of a magnetic adatom placed in
a circular quantum corral built in a two-dimensional system
where the bulk state is absent and predicted that the Kondo
effect is spatially dependent [30]. In fact, whether and how the
surface state influences the Kondo temperature have been in
hot debate for a certain time [8,31-36]. Recent experimental
observation showed that the Kondo temperature of Co adatoms
placed at the center of nanocorrals on the surface of Ag(111)
oscillates strongly as a function of the diameter of the corral
built by multiadatoms [37]. The understanding of the effect
demands a theory to describe the Kondo effect in the condition
that multiadatoms are involved.

In order to address the complicated situation where multiple
magnetic impurities are adsorbed on the surface of noble
metals, we construct a theory based on the duality between
strong- and weak-coupling limit in the Anderson impurity
model [1,38-40]. The multiple impurities on the surface are
discussed by considering the renormalization effect due to the
interadatom couplings. Our calculations not only reproduce the
recent experimental finding of the oscillations of the Kondo
resonance width (the half width of the half maximum of
the Kondo resonance peak) versus the quantum corral size
but also predict that it should also oscillate as a function of
the separation from the quantum corral center. We further
performed low-temperature STS measurements and found
one-to-one correspondence with the prediction. The good
agreement between the theory and experiments demonstrates
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the validity of our approach to the Kondo problems with the
involvement of multiadatoms.

The paper is organized as follows. In Sec. II, we describe
the microscopic theory with three subsections. In Sec. ITA, we
first take a single magnetic impurity as a starting point and
briefly review the strong- and weak-coupling duality in the
Anderson impurity model [1,39,40]. After that, we generalize
it to the case where both surface and bulk degrees of freedom
exist. Within this formalism, we are able to extract the Kondo
resonance width in a more realistic situation where both the
surface and the bulk states are present. In Sec. I B, we discuss
the multiple-impurity case. It is known that even though more
precise methods, such as the numerical renormalization group
(NRG), have been developed to understand single (or a few) im-
purity cases, the general way to deal with any multiple-impurity
models requiring much less computational effort is still needed.
Due to the merit of the duality of the weak-coupling model, we
canreadily generalize the above framework to include multiple
impurities. This allows general applications to any models with
generic distribution of impurities. As will be shown in Sec. V,
this method explains our experimental findings satisfactorily
(see Sec. V). Section I1 C briefly summarizes the calculation of
the local density of states (LDOS) in the presence of multiple
impurities, which we adopted from Refs. [41-43]. In Sec. 111,
we apply our method to calculate the case for a Co adatom
placed at the vicinity of another Co adatom and compare it
with the experimental result. Section IV is dedicated to the
calculation of the Kondo resonance width of a Co adatom
placed at arbitrary positions of nanocorrals with different
diameters. Section V shows the one-to-one comparison of the
calculated and experimental values of Kondo resonance width
for the Co adatom placed at the center of the nanocorral as
a function of the corral diameter and placed at an arbitrary
position inside corrals of given sizes. Finally, a brief summary
of our main findings is given in Sec. VI.

II. MICROSCOPIC THEORY

A. Duality between strong and weak coupling
in surface-mediated Kondo effect

We start with the simplest case where a single quantum
impurity is immersed in the bulk-conduction electron bath.
The relevant physics including both the magnetic moment and
the charge fluctuation can all be contained in the standard
Anderson model [38],

H = (eq0 — r)ClyCqo + Y _ (Vocl,do + Vydlcyo)

qo

qo
+ Y eqdldy + U nons. 1)

where the first term describes the free bulk-conduction electron
bath, the second term is the hybridization between bulk state
and localized impurity state, the third term is the impurity-state
electron, and the fourth term is the contribution of double-
occupied energy. We focus our discussion on the Kondo
limit, where the impurity can manifest itself by a finite local
magnetic moment. This means that we focus on the parameter
region, &4 < €r < &4 + U, where the empty and the double-
occupancy states of the local impurity are forbidden, and also

U>T, withT = nzq |V, |28(ep — €q0), Where the charge
fluctuation is suppressed. In this Kondo limit, it is well known
that Eq. (1) is equivalent to the Kondo exchange model [3]
with interaction J, through the Schrieffer-Wolff transformation
[44]. Following a renormalization group analysis [40], two
fixed points can be found for the antiferromagnetic Kondo
model, i.e., J =0 and J = 00. As we are interested in the
Kondo effect, we only consider the stable strong-coupling
fixed point J = co. At J = oo, within the NRG formalism,
the Kondo Hamiltonian is mapped to a one-dimensional (1D)
chain with infinite exchange coupling at one boundary. Since
the impurity site is strongly coupled to the first conduction
electron site in the 1D chain, the physical excitations including
the impurity site are all effectively frozen at the strong-coupling
fixed point. Therefore, the most relevant operators will be the
Hubbard-type interaction at the first site and the hybridization
term between the first several sites. Due to this reason, the large
U (U > T") Anderson model in Eq. (1) can be mapped into a
weak-coupling effective Anderson model, which reads as

Hefp = Z (8qa - SF)ngcqo + Z (Vbc(];gda + Vb*dgcqa)
qo qo

+ > Eqdide + T ngns. 2)

d, is the operator representing the first site of the conduction
electron in the NRG chain. It describes the high-energy effec-
tive fermionic degrees of freedom that couple most strongly to
the impurity. As discussed before, the parameters V,, 84, and
U are all renormalized in the strong-coupling limit. &, is the
Fermi energy of the conduction electron at the first site of the
1D chain,i.e.,&; = eF. U is renormalized to a weak interaction
compared to &q, and can be treated perturbatively.

Let us now shift our attention to the surface degrees of
freedom in noble metals. In a more realistic situation where
a single impurity is deposited onto a noble metal surface, both
the surface and bulk states could have nonzero hybridization
with the adatom. To this end, Eq. (1) should be generalized to
the following form,

H =Y (s — er)lylrs + Y (Vscl,do + Vi'd} ko)
ko ko

+ Z (8(10' - EF)CJ-lnga

qo

+ Y (Vochods + Vidicgs) + Y eqdld,
qo o

+UY nons, 3)

where k and q represent the wave vectors of the surface and
bulk bands, respectively. ¢k, (cqq) is the annihilation operator
of the surface (bulk) electrons. V (V},) is the hybridization
constant between the surface (bulk) state and the impurity,
and we assume the orthogonality between the surface and
bulk states, namely, (0|ckgcjla/|0) = 0. Following the same
procedure above, the duality between the strong- and weak-
coupling limit allows us to map Eq. (3) to the effective model
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in the low-energy window as

Her =Y ek — £F)Chy ko + Y (Vechydy + Vi'd} ko)
ko ko
+ Y (g0 — £r)ChoCao + Y (Vochydo + Vidlcqs)
qo

qo
+ Y Eadld, + T Y ngns. 4)

Similar to the standard case, &; = &, and U is no longer the
strong coupling in the above Eq. (3), but is a weak interaction
that can be treated by the perturbation theory.

To study Eq. (4), one can calculate the equation of motion
of the Green’s function (GF). Using the Hartree-Fock approx-
imation, the retarded GF of the d, field reads as

~ 2
| Vsl

w— & + & +10T

..
_Z [ Vsl
. w— €0 +&F +i0T

&)

The real part of the fourth and fifth terms in the
above equation is usually negligibly small or can be ab-
sorbed into &;. The imaginary part gives us the hy-
bridization function due to the surface and bulk states,
respectively, with A; = 7|V;|> Y, 8(w — ex,) and A, =
77|V |? Zq 8(w — £¢5)- Then, the retarded GF becomes

Goa, =© =8 — Zq(@) +il, ©®)

where I' = A; 4+ A, and E, (o) satisfies o (0) = U(ns) +
Sk P(m) +2 P(m) ~ U (ns). This is the to-
tal self-energy received from the hybridization and the Hub-
bard interaction. Further expanding the self-energy with re-
spect to the Fermi energy, one can readily arrive at

1

=2
w—¢ecp—&4+il"

Gdudo' () = @)
where ¢/, = z[8; — er + Z4(eF)], and z is the wave-function
weight factor. The above renormalized GF means that in the
strong-coupling limit, the Anderson model still enjoys well-
defined quasiparticles with a finite lifetime defined by IT". This
is a result of the weak-coupling effective model after duality
mapping, which is well within the description of the Landau
Fermi liquid. The density of states at the impurity site then can
be obtained as

1 I

;(C()—SF—S/d)Z‘f'f‘z.

plw) = 3

Two conclusions are obvious from the above equation.
First, since we have &; = ep, €, = zX4(¢F). Moreover, as
discussed above, in the effective model U « U and U <« gg4;
therefore 8:1 is much less than the d-resonance energies, ¢4 and
&4 + U in the original model, Eq. (3). Hence, the center of the
Lorentzian peak in Eq. (8), wy = &r + €, is far away from the
d-resonance energies and is very near to the Fermi energy. This
peak is identified to be the Kondo resonance peak, and Eq. (8)
means that in the low-energy window, though both surface
and bulk states are active, the Kondo resonance would still

occur and can be observed near the Fermi energy. Secondly,
the Kondo resonance width is determined by I' = A, + A,
i.e., by contributions from both the surface and the bulk-state
electrons. Their contributions can be directly summed up due to
the orthogonality between the surface and bulk wave functions.

It is still worthwhile mentioning that the above analysis
is based on the strong-weak duality from Eq. (3) to Eq. (4),
which is applicable only in the low-temperature regime where
both the bulk and surface sectors reach their strong-coupling
fixed point. As will be clear below, this is indeed the case in
our experiments. In this case, both the surface and the bulk
degrees of freedom contribute to the Kondo resonance and the
resonance width is proved to be a direct sum of the two terms.
For a higher-temperature regime, more care should be taken
before using Eq. (4), and two different Kondo temperatures,
for the bulk and surface, respectively, may be expected. This
is beyond the scope of this work and could be an interesting
topic for future study.

B. Surface-mediated Kondo effect
in the case of multiple impurities

Having established the framework based on the strong-weak
duality, we are ready to consider a complicated case where
multiple quantum impurities are randomly distributed on the
surface of a noble metal, e.g., Ag(111). Firstly, we consider
a system with (N + 1) impurities, namely, one test impurity
accompanied by N impurities. First, the distance R between
any two Co atoms is important, and has been discussed
in Refs. [45,46]. It was found that when R is larger than
~0.8 nm, the direct exchange interaction between the local
moments of the two Co atoms can be neglected. When the two
adatoms are close enough, exchange interaction occurs and
suppresses the Kondo effect. In our theory and experiments, the
exchange coupling can be neglected since the atoms are well
separated. Secondly, since the impurities will hybridize with
both the bulk and the surface bands, 2(N + 1) hybridization
terms need to be taken into account in the corresponding
Anderson model. Following the same procedure as in the above
section, an effective weak-coupling Hamiltonian including
N + 1 impurities can be written as H = Hy + H;, with

N
Hy = Z Z (8ddjadia + Un’an;)

i=0 o
+ Z Skaclgcka + Z %_qac:rlgcqa’ &)
ko qo

and

N
H =) ) (Vidfewe™ +He)
i=0 ko

N
+ 33" (Ved],cqpe' ™ + Hee), (10)
i=0 qo
where R; denotes the real space position of the ith adatom.
éko = ko — 6 and &g, = g4, — £F are the energy spectrum
for the bulk and surface excitations, respectively. U is the
effective weak interaction between local electrons, where we
have neglected the tilde symbol for the purpose of brevity (also
for ¢, and the hybridizations V;, V;, below).
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Since we are interested in the propagation of the Kondo
resonance via the surface state, we consider the situation that
there is a particular impurity i = 0 which is relatively far away
from the N other impurities [Fig. 1]. Let us first study the
self-energy correction of a generic atom i (i # 0). By using
the Dyson equation, the dressed Green’s function of an adatom
i can be obtained from all the other adatoms,

N
Z Zij(a), Rij)s with
J#i.0

G'=G;"-

ik"-R;;

ﬂkR,l
~< ZZ - )G(@(sz +_$k,). (11)

Gi(w) = Gy, 4,(w) is the retarded GF of the isolated sin-
gle adatom. Further, we can simplify X;; as the func-
tion form Eij(a),R,-j) = ReE,-j(a),Rij) — iImE,-j(a),Rij) with

[0 — &4 — ReZ(0)|[ I} (@, Rij) —

FIG. 1. Sketch of multiple Co adatoms on Ag(111). For an
isolated adatom, the Green’s function is G, , (lower right corner)
in the text. For an adatom within a corral (i = 0) and the adatoms
forming the corral (i # 0), the Green’s functions are G}, ;, and G in
the text, respectively.

3(@,R;))] - 210, Rij) (@, R,J)ImE(w)

ReX;i(w,R;;) = 12
i@ Kij) [w — &4 — ReZ(0)]* + ImZ(w)? (12)
and
ImX ()| I3(w,R;;) — I*(w,R; )| + 211 (w, R ) o(w, R )[w — €4 — ReZ(w
1M, Ry) = (@)[I}(@.Rij) — I}(w.R;))] 1( : )1 ( 2,)[ d ( )]’ (13)
' [w — &4 — ReZ(w)]” + ImZ(w)
[

with  V2Y, w;’“;‘ =L(R,w)—ilL(R,w) and R;= and
IR; — R}, which is the distance between any two adatoms. N
Similar separation can be done for the bulk-state sector, Im%¥;(w) = Im¥(w) +ImZEij(a)aRij)- (16)

2 . ..
2 inb_é e 4R We have checked numerically that the J#

n q

above integral and the final contribution to the self-energy
correction from the bulk states is much smaller than that from
the surface contributions, and therefore can be neglected.
Then, decomposing the self-energy correction into its real and
imaginary part, one can arrive at

Now we are ready to consider the intermediate coupling be-
tween i = 0 and the i # 0 atoms. Each of the i # 0 impurities
hybridizes with the i = 0 impurity via the surface state. One
can decompose the problem into a series of two-body models.
Then the ith adatom contributes a self-energy correction to the
i = 0 impurity as

G =w—es— ReZi(w) + ilm;(w), (14)
where Y/(w,Rio) = ReX[(w, Rip) — ilmXE[(w,Rip),  (17)
N
ReZ;(w) = ReZ(w) + Re Y Tjj(w.R;j) (15  where
J#i |
—¢&; —ReY; I*(w,R;0) — I*(w,R; 21(w, Rig) r(w, Rip)ImE;
ReX/(, Rio) = [w— &4 eSi( [ 13w, Rio) — I}(w,Rip)] — 211 (o, ! 0)>(w, Rip)Im (a)) (18)
[w — e4 — ReZi(@)]? + ImZ;(w)
and
Im ¥ (@, Rig) = ImZ;(w)[ I (@, Rio) — I3 (@, Rio)] + 211 (@, Rig) Lr(w, Rio)[w — €4 — Re Z; (a))] (19)

[w — &4 — ReZi(@)]? + ImZ; (w)?
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After considering all the i # 0 adatoms, we obtain the total self-energy correction and the final dressed Green’s function of
the i = O impurity:

N
Gurao — 2 i@, Rig). (20)

i=1

Gliouto (@) =

Further, Eq. (20) can be written as G:,;?da =w—¢&5 —ReX'(w) + iImT"(w), with

N
ReY” = ReX(w) + ZReE/i(w,Rio) Q1
i=1
and
N
Imy" =ImX(w) + Y Im¥i(w, Ri). (22)

i=1

By substituting Eq. (19) into Eq. (22), we arrive at the dressed imaginary part of the self-energy of the i = 0 adatom, which reads
as

ImY¥" =

ImZ; ()| [ (@, Rio) — I5(@, Rio)] + 211 (w, Rip) Lr(w, Rig)[w — &4 — ReZ(w)]

ImZ(@) + Z [0 — &7 — ReZ; (@) + Im; ()2

i=1

(23)

Here ImX (w) = wy is the single-adatom Kondo resonance width on a wide terrace without perturbation. Im¥; (w) can be derived
from Eq. (16). However, in order to calculate Im%; (@), we have to obtain X;;(w, R;;) first. It is worthwhile noting that the Kondo
resonance of a single Co atom is very close to the Fermi energy, i.e., &, + ReX(w) ~ er; hence X;; = Z;;(w, R;;) is simplified,

with
(0 — EF)[Ilz(w,Rij) -

Bw,Rij)] -

211(0) RZJ)IZ(w Rz])wO

RCE,‘j ~

and

w 12 C(),R,"
Im%;; ~ 0[1( )=

(w—¢er) + wo

Iz(w Rl])] +211((L) Rz})IZ(w Rl])(w _SF)

(24)

For ® near ep, we have ReX;;~-2I[i(w,R;)
L(w,Rij)/wo, s0 ReXi(w) = e —£4 —2) 1 hiw,Rij)»
(w,R;j). Further, using Im%;; ~ [If(w,Rij) — Izz(a),Rij)]/wo,
we finally arrive at

Imy = i I (CL) R,‘()) — Iz(a) RiO)]
m —
i=1 Wo T wo Z/#lo [1 (o, Rl]) 12(0) Rl])]
(26)

The above equation includes all the information of the Kondo
resonance, as a function of N and the distance between each
pair of atoms.

In order to make an actual comparison with experiments, the
effect of an STM tip also needs to be taken into consideration,
besides the impurities. The STM tip site brings in new terms
including the on-site energy of the tip atom, the hybridization
between the tip atom and the impurity atom, the surface
electrons, and the bulk electrons. All the possible terms can
be written as [47,48]

Hyp, = Z V,d(d te +He)+ Z Vrs(cchta +H.c.)
ko

+ ) ViplchpCio + Hee) + et 7)
qo

(w— 81:)2 + u)O

(25)

(

where tf,, t, are the creation and annihilation operators of the
tip electrons with spin o. It is then straightforward to calculate
the STM tunneling current I(eV) = —e ) ( t t;), with
the resulting conductance being similar to the Fano resonance
[49]. The calculated derivative conductance dI/dV is found
to satisfy

dl (¢ +q)*
— X s
av 1+ g2

(28)

where g is a parameter that is associated with the ratio between

the hybridization with the Co atom and the hybridization with

the bulk and surface electrons. The expression ¢ is derived to be
w— g4 —ReX(w)

6= ) (29)

From Eqs. (28) and (29), itis known that the width of the pre-
dicted Fano resonance should be determined by Im X", which s
further given by Eq. (26),1i.e., w = ImX"(w). The above calcu-
lation starts from a microscopic model that deals with nearly all
possible interactions that may dominate in the multiple-atom
experiment. Therefore, Eq. (29) should be general and can be
applicable to any generic distribution of impurities. Compared
to sophisticated numerical methods such as NRG, the frame-
work here is much less effort consuming and describes the
Kondo effect of multi-impurity models more effectively.
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C. Surface-state LDOS

As has been shown in Ref. [37], the oscillation of the Kondo
temperature is strongly related to the oscillation of the surface-
state LDOS. In order to cross-check this, we also calculate the
LDOS from the theoretical aspect as below. In Sec. IT A, we
have studied the GF of the local electrons of the impurity. Now
let us shift our focus to the surface conduction electrons, which
gives rise to the LDOS in the standard way, as

1
ps(X,w) = ——ImG" (x,X,0), (30)
T

where G (X,X,w) is the retarded GF of the surface electrons.
For impurities adsorbed on the surface, the multiple scattering
method has been proved successful [41-43]. According to the
multiple scattering method, the GF is determined by the Dyson
equation:

G (x,x,0) = Gy(X,X,w)

N
+ Y Goxx,0)(W — i A)Gi(xi.x,0). (31)
i=0

G’ (x;,X,w) can be self-consistent, calculated as follows:

G;(Xisxsw) = G()(Xl ,X,(L))

N
+ ) Ghxi.x; o)W — i A)G'(x;.X,0). (32)
j#

Gy(x,x,0) = —irrpngél)(klx —x/|) is the retarded GF of

free surface electrons [26,41], with py, = ’:‘m’\; and k =

[2m*|w — wp|]"/*/h. And H{"(x) is the zeroth-order Hankel
function of the first kind. In them, A2 is the area of the unit cell,
wp is the bottom of the surface band, and m* is the effective
electron mass of the surface state. In addition, W and A reflect
the attractive potential and hybridization, respectively [41].

For the surface state on Ag(111), the experiments re-
ported that wp = —67 meV and m* = 0.42m, [50]. With
the lattice constant of Ag, it can be readily derived that
pso = 0.125 (1/eV). In the detailed calculation of the surface-
state LDOS for Co adatom on Ag(111), W = —0.402 eV
and A = 0.0194 eV are incorporated. With these values, the
LDOS at ef is calculated according to the detailed positions
of the assembled adatoms. In order to compare with the
experimental data, we also follow Ref. [37] to calculate the
Kondo temperature according to

kyTyx = De v 33)

with effective band cutoff D = 4.48 eV, adatom-bulk-state
exchange coupling J, = 0.51 eV, adatom—surface-state ex-
change coupling J; = 0.225 eV, which are experimental values
obtained in Ref. [37], and with bulk-state LDOS p, = 0.27
(1/eV) as a constant.

III. KONDO EFFECT IN THE VICINITY OF ANOTHER
ADATOM (N =1 CASE)

Having introduced our method, let us apply the above
formalism to the simplest case, i.e., N = 1. Then, the sum term
in the denominator of Eq. (26) as discussed above in Sec. IIB

will disappear. It can be simplified as

A2

w A wo + w—O[Yg(de +8) = Jytked +389]. (34
Here Yy(x) and Jy(x) are the zeroth-order Bessel functions of
the second and first kind, respectively. A reflects the oscillation
amplitude, and §; is the scattering phase shift. d is the
distance between the two adatoms, i.e., R;o = d. It is worth-
while mentioning that the hybridization V; is proportional to
the overlap integral of the surface-state wave function with the
localized impurity state. The surface-state wave function can
be perturbed by adatoms on the surface, thus leading to some
variation of the hybridization V. In order to reproduce realistic
experimental environment, we take into account the variation
of the hybridization as V; = V. Vo is the unperturbed
hybridization, i.e., the overlap integral of the unperturbed
surface-state wave function with the localized impurity state. In
general § is a complex number with § = §; 4 i§,. Here, §; and
8, are reals. Then, we can obtain I,(d,w) = AJy(kd + &) and
L(d,w) = AYy(kd + §;), with A = Vfo/e‘sa. Figure 2 shows
the calculated variation of Kondo resonance width (solid red
line) of two Co adatoms on Ag(111) versus the distance d
between them. As a comparison, we also plot the experimental
Kondo resonance width of the left adatom (black triangles) and
right adatom (blue open circles) reported in Ref. [37]. In the
calculation, we used the Kondo resonance width obtained for
a Co adatom placed on a flat Ag(111) terrace, wy = 9.8 meV,
and the surface-state Fermi wave vector of Ag(111),kr = 0.83
(1/nm). In addition, we also used A and §; as two parameters
to fit the experimental data. With A =9 meV and §; = 2.2
rad, the calculated result reproduces the experimental data
reasonably well.

IV. CALCULATIONS OF THE LDOS AND THE KONDO
EFFECT IN NANOCORRALS

After discussing the two-adatom case, we now move to
the Kondo effect in a specific geometric configuration of

20 —~—r——r—v+——————a———
¥ on left atom
O d © O onright atom |
15k l—p] = Calc. 4
;‘ 4
(1 Lo}
Ewl Rogo s Ve Bv .
2 (o] 5 .
5} !
o 1 1 1 1 i 1

0 1 2 3 4 5 6
d (nm)
FIG. 2. Comparison between the calculated (red line) and the
experimentally obtained Kondo resonance widths (black and blue

symbols are from Ref. [36]) for the two-adatom case. d is the distance
between the two adatoms.
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FIG. 3. The LDOS and Kondo resonance width mapping of
different-sized corrals. (a) The LDOS at Fermi level for nanocorrals
with different diameters. (b) The Kondo resonance width of a test
Co adatom placed at an arbitrary position inside the nanocorrals with
different diameters. From left to right, the corral radii are 4, 6, 8, and
10 nm, respectively. The red balls in (a) denote the positions of the
Co adatoms used for building the nanocorrals.

nanocorral, where the N (i # 0) adatoms are equidistantly
aligned into a quantum corral with radius R [i.e., R;o = R in
Eq. (26)]. We first consider the LDOS of the empty corrals, i.e.,
no adatom inside the corrals. Figure 3(a) shows the calculated
LDOS mapping inside the nanocorrals with four representative
radii, 4, 6, 8, and 10 nm, respectively. The corresponding
numbers of the adatoms that are used for constructing the
corrals, N, are 8, 12, 16, and 20, respectively. When we
compare the LDOS at the center of different corrals, we find
that it shows an oscillation of bright and dark contrasts with
the maximum of ~0.20 (1/eV) and the minimum of ~0.095
(1/eV). Moreover, the LDOS exhibits different patterns for
different radii. For R = 4nm, it shows a maximum at the
center, while for R = 6 nm, the maximum evolves into a ring
structure. The LDOS pattern further changes as a ring plus a
maximum at the center and two ring structures for R = 8 and
R = 10 nm, respectively. The finding of the LDOS variation
suggests that the Kondo effect might be also position and corral
radius dependent.

In order to calculate the Kondo effect, we placed another Co
adatom as the test atom inside the empty corrals, namely, the
corrals in Fig. 3(a). By varying the position of this test adatom
inside the nanocorrals, we calculated its Kondo resonance
width at arbitrary position of the corrals with different radii.
Four representative results are displayed in Fig. 3(b). We note
that the parameters in the two-adatom case are used here for
the calculations of the Kondo effect in quantum corrals. At
the center of these corrals, the Kondo resonance width has a
maximum at R = 4nm and a minimum at R = 6 nm. When R
isincreased to 8 nm, itbecomes a maximum again. With further
increasing R to 10 nm, it becomes a minimum one more time.
The maximum reaches to ~20 meV and the minimum goes
down to as low as ~2.5 meV. Inside a corral, we find that the
Kondo resonance width is rotational invariant as expected from
the symmetry. The maximum shows a circle for R = 4 nm,

while it evolves into a ring structure for R = 6 nm. A circle
plus a ring are present for R = 8§ nm, while two rings show
up for R = 10nm. When comparing the calculated Kondo
resonance width mapping with the LDOS mapping of the
same radius shown in Fig. 3(a), we find that they show similar
oscillations. This explicitly provides convincing evidence that
the Kondo temperature is in general positively related to the
LDOS at the Fermi level. We also note that there are also
some slight differences between these two: (i) the areas in
blue color (low intensity) in Fig. 3(b) are smaller than those
in Fig. 3(a); (ii) a sharper transition between the blue and
yellow contrast is found in Fig. 3(b) than in Fig. 3(a). These
suggest a nonlinear relation between them, which is different
from the linear relation claimed in Ref. [30]. Further detailed
information and the comparison between the calculated re-
sults with the experimental data will be given in the next
section.

V. COMPARISON WITH EXPERIMENTS

A. LDOS and Kondo effect for adatoms at corral centers

In this section, we show a one-to-one comparison between
our calculations and the experimental results. We first extract
the LDOS at the center of different empty corrals [Fig. 3(a)],
and plot it as a function of the corral radius. The blue curve
in Fig. 4(a) shows the calculated results with the scale shown
at the right side. With enlarging the corral radius from ~3
to ~10.5 nm, the LDOS displays a decayed oscillation with
a period of ~3.8 nm, which is the half Fermi wavelength of
the surface-state electrons. We also plot the calculated Kondo
resonance width for a Co adatom placed at the corral centers
as a function of the corral radius in Fig. 4(b) (red curve).
It shows that the Kondo resonance width also exhibits an
oscillation as the function of the corral radius. The first peak
appears at ~4 nm, and the second peak appears at ~7.8 nm.
The oscillation period exactly matches with the half Fermi
wavelength of the surface-state electrons. To make compar-
isons with experiments, we also plot both the experimentally
obtained d1/dV and w (black symbols) from Ref. [37] in
their corresponding figures. We find that the calculated results
reproduce the oscillating behaviors of the experiments. In
addition, the calculated Kondo resonance decays slower than
that observed in experiments. This may be attributed to the
surface-state lifetime effect [S1-53], which is not considered
in the above calculations.

Apart from the Kondo resonance width calculation with
Eq. (26), we also used the calculated LDOS to further estimate
the Kondo resonance width using Eq. (33), the blue curve in
Fig. 4(b). It also exhibits a decayed oscillating behavior that
agrees well with the experiments. We note that there is a minor
difference in terms of a lateral shift between the calculated
results and experimental ones. This may be due to the LDOS
perturbation caused by the test Co adatoms in the corral center.
The adding of the test adatom can cause a phase shift in
the LDOS while this effect was not considered in the LDOS
calculation since it was derived only for the empty corrals.
Essentially, the oscillations of the Kondo resonance width are
clearly revealed by the variations of the surface-state LDOS.
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FIG. 4. The corral radius-dependent LDOS and Kondo resonance width at the center of the nanocorrals. (a) The calculated LDOS (blue
curve) and experimental dI/dV (black squares) varied with R. (b) The corral radius-dependent Kondo resonance width. The red curve is the
calculation according to Eq. (26). The blue curve is the calculation according to Eq. (33). The experimental data (black squares) are from

Ref. [36].

B. LDOS and Kondo effect for adatom placed at arbitrary
positions inside nanocorrals

As shown in Figs. 3(a) and 3(b), both the LDOS and the
Kondo resonance width of the test adatom inside a corral
exhibit the spatial variation. To describe this feature more
quantitatively, and to further identify the validity of the cal-
culated results, we first selected the calculated results of two
representative nanocorrals. Then we performed the position-
dependent LDOS and Kondo resonance width measurements
for the Co adatom placed inside the corrals under the same
experimental conditions mentioned in Ref. [37]. The Fano
formula was again utilized to extract the Kondo resonance
width. Figures 5(a) and 5(b) show the topography of the empty
corral and a Co adatom placed with a separation r away
from the corral center, respectively. The measured r-dependent
dl/dV spectra at the Fermi level for R = 9.1 nm and 7.2 nm
are plotted as black squares in Figs. 5(c) and 5(e), respectively.
The curves clearly display oscillations. While a maximum is
found at the center of the corral for R = 7.2 nm, a minimum is
present at the center point for R = 9.1 nm. As a comparison,
the calculated LDOSs of the surface state are plotted as the blue
curve in Figs. 5(c) and 5(e), which show excellent agreement
with the experimentally obtained dI/dV (solid squares). The
experimentally measured Kondo resonance width for a Co
adatom as a function of the distance r away from the corral
center is shown as black squares in Figs. 5(d) and 5(f) for R =
9.1nm and R = 7.2nm, respectively. They exhibit almost
the same oscillating behavior with the LDOS. The calculated
results utilizing Eq. (26) for the Kondo resonance width inside
the corral are shown as red curves in Figs. 5(d) and 5(f),
respectively. They show oscillating behaviors, and match with
the experimental results. The Kondo temperature obtained
from the calculated surface-state LDOS by Eq. (33) is also
shown as blue curves in Figs. 5(d) and 5(f), respectively. We
can see that they can also reproduce the oscillation behavior
of experimental data. The two methods here both provide
their own abilities to describe the Kondo effect. The above

(a) (b)

(c) (d) ,, T
2t = Expt.dl/dVate e
— —e—Calc.p_ate. ' 10.2 —e— Calc. directly]
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FIG. 5. The LDOS and Kondo resonance width of a Co adatom
located at a position with the distance r away from the corral
center. (a,b) are topographic images of a quantum corral without
and with a Co atom in the corral, respectively. (c) is the comparison
between the experimentally obtained dI/dV (black squares) and the
calculated LDOS (blue line), and (d) is the comparison between the
experimentally obtained Kondo resonance width (black squares) and
theoretically calculated ones (red and blue lines) for a corral with
R = 9.1 nm. (e,f) are similar comparisons as (c,d) but for a corral
with R = 7.2 nm.
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one-to-one comparisons show that the calculations repro-
duce the experimental data well for different-radius corrals.
These demonstrate that our method provides an effective
way for dealing with the Kondo effect in multiple-impurity
systems.

It is worth mentioning that the Kondo resonance widths
of the adatoms located at the corral edge show no apparent
difference with that of a single isolated Co adatom on Ag(111).
Both the experiments and calculations confirm this finding.
This can be understood since the standing wave needs to form
a knot at the corral edge, resulting in only minor variation of
the surface-state LDOS at Fermi energy and subsequently the
Kondo resonance width.

VI. SUMMARY

We developed a Green’s function based method to calculate
the Kondo resonance width of a magnetic adatom placed on
a substrate with surface state and surrounded by multiple
adatoms. We applied the method to calculate the Kondo
resonance width of a test Co atom placed at arbitrary positions
inside nanocorrals formed by Co adatoms on a Ag(l11)
surface. Our calculations not only reproduced the recently

reported Kondo resonance width oscillation as a function of
the corral diameter but also predicted that the Kondo resonance
width also oscillates as the function of its separation from
the corral center. The prediction is further confirmed by the
low-temperature scanning tunneling microscopy studies where
a one-to-one correspondence is found. The good agreement
with the experiments validates the generality of the method
to the system where multiadatoms are involved. Our calcu-
lations also reveal a strong correlation between the Kondo
resonance width and the surface LDOS at ¢r. Though the
calculations were made for the Co/Ag(111) system here, it can
be straightforwardly applied to other experimental setups, such
as the Kondo effect in the resonator and rectangle geometry
structures, which have been experimentally studied [41,54].
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