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Magnetic second-order topological insulators and semimetals
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We propose magnetic second-order topological insulators (SOTIs). First, we study a three-dimensional model.
It is pointed out that the previously proposed topological hinge insulator has actually surface states along the [001]
direction in addition to hinge states. We gap out these surface states by introducing magnetization, obtaining a
SOTI only with hinge states. The bulk topological number is the Z2 index protected by the combined symmetry
of the fourfold rotation and the inversion symmetry. We next study two-dimensional magnetic SOTIs, where the
corner states are robust also in the presence of the magnetization. Finally, we construct a magnetic second-order
topological semimetal by layering the two-dimensional magnetic SOTIs, where hinge-arc states are robust also
in the presence of the magnetization.
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I. INTRODUCTION

Topological insulators (TIs) have opened a new world in
condensed-matter physics [1,2]. The first example is the quan-
tum Hall insulator, where the topological number is the Chern
number [3]. It is not necessary to require any symmetries for the
quantization of the Chern number. The current movement of the
topological insulator has started with the time-reversal invari-
ant topological insulator [4,5], where the topological number is
the Z2 index protected by the time-reversal symmetry (TRS).
Then, it is generalized to the topological crystalline insulator,
where the mirror Chern number is the topological number
[6]. Here the mirror symmetry protects the topological phase.
Recent interest is renewed in topological insulators protected
by more general crystalline symmetries including the rotational
symmetry [7–12].

Higher-order topological insulators are an extension of the
TIs [13–25], to which the conventional bulk-boundary corre-
spondence is generalized. Here we focus on three-dimensional
(3D) crystals. Then, the second-order TI (SOTI) has 1D topo-
logical boundary states (hinge states) but no 2D topological
boundary states (surface states), while the third-order TI has
0D topological boundary states (corner states) but has neither
surface states nor hinge states. Recently, bismuth was predicted
and shown to be an SOTI theoretically and experimentally [26]
by employing topological quantum chemistry [27–32]. As a
closely related concept to the SOTI, there are topological hinge
insulators [20]. They are TIs possessing topological hinge
states. Note that they may have topological surface states in
addition to hinge states. An example [20] was constructed by
adding a nontrivial mass term to a 3D TI and by gapping out
some topological surface states. Indeed, when we consider a
cube parallel to the x, y, and z axes in this example, there appear
two surface states perpendicular to the z axis in addition to four
hinge states; see Fig. 1(b).

In this paper, introducing magnetization along the z axis,
first we propose a 3D magnetic SOTI by gapping out all
the surface states in the topological hinge insulator [20] just
mentioned above. As we see in Figs. 1(c) and 1(d), there appear
only hinge states without surface states in the presence of the

magnetization. The bulk topological number is shown to be the
Z2 index protected by the rotoinversion symmetry C̄4 = C4I ,
which is the combined symmetry of the fourfold rotation C4

and the inversion I . Second, we construct a 2D magnetic SOTI,
where topological corner states appear. Finally, we construct
a magnetic second-order topological semimetal based on the
stacking of the 2D magnetic SOTI, where hinge-arc states
emerge connecting the gap closing points.

II. 3D MAGNETIC SOTI

The typical model for the 3D TI is given by [33]

H0 =
(

m + t
∑

i

cos ki

)
τzσ0 + λ

∑
i

sin kiτxσi (1)

on the cubic lattice, where i runs over x,y,z. It describes [34]
topological Kondo insulators SmB6. The σi represent the Pauli
matrices corresponding to the spin degrees of freedom, and
σ0 is the two-by-two identity matrix, while τi are the Pauli
matrices corresponding to the orbital degrees of freedom. It
has TRS, and protected by the TRS it has topological surface
states, in agreement with the bulk-boundary correspondence
as in Fig. 1(a).

To gap them out by breaking the TRS, the following extra
term has been proposed [20]:

H� = �(cos kx − cos ky)τyσ0. (2)

Additionally, we introduce the Zeeman term induced by
magnetization,

HZ = Bτ0σz. (3)

We study the effect of the Zeeman term in the 3D topological
hinge insulators in the following order.

A. Topological phase diagram

The band structure is obtained by diagonalizing the Hamil-
tonian H = H0 + H� + HZ . It follows that the phase bound-
aries are given by solving the zero-energy condition (E = 0)
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FIG. 1. 3D SOTI. The real-space plot of the square root of the
local density of states

√
ρi for a cube in the case of (a) the TI,

(b) a topological hinge insulator, and (c) and (d) magnetic SOTIs in
the presence of magnetization with B > 0 and B < 0, respectively.
The amplitude is represented by the radius of spheres. The size of the
cube is L = 8.

at the four high-symmetry points � = (0,0,0), S = (π,π,0),
Z = (0,0,π ), and R = (π,π,π ) with respect to the fourfold
rotation. The energies at these points are analytically given by

E(0,0,0) = 3t + m ± B, −3t − m ± B, (4)

E(π,π,0) = t − m ± B, −t + m ± B, (5)

E(0,0,π ) = t + m ± B, −t − m ± B, (6)

E(π,π,π ) = 3t − m ± B, −3t + m ± B. (7)

We show the phase diagram in Fig. 2. In the absence of the
Zeeman term [20], the system is topological for 1 < |m/t | < 3
and trivial for |m/t | < 1 or |m/t | > 3; see Fig. 2. Insulators
emerge in the region including the phases with B = 0. Later we
identify the bulk topological number ν and find that it changes
its value at these phase boundaries; see (11). The phase diagram
consists of topological and trivial insulator phases and Weyl
semimetal phases.

B. Symmetries

To identify the bulk topological invariant, it is necessary
to study the symmetry of the Hamiltonian H0. We note that
T H0(k)T −1 = H0(−k) and IH0(k)I−1 = H0(−k), where T =
τ0σyK generates the TRS with the complex conjugation K ,
while I = τzσ0 is the inversion symmetry. In addition, there is
a fourfold rotational symmetry C4,

C4H0(kx,ky,kz)C
−1
4 = H0(−ky,kx,kz), (8)
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FIG. 2. 3D SOTI. Topological phase diagram in the (m/t,B/t)
plane. Numbers in red represent the Z index κ4, which gives the
topological number ν by the formula ν = mod2κ4. The symbol W

stands for Weyl semimetal phases. The SOTI phases are marked in
yellow.

where

C4 = τ0 exp

[
− iπ

4
σz

]
(9)

is the generator of the π/4 rotation. The H� breaks both
the TRS and the inversion symmetry but preserves [20] the
combined symmetry C4T and the rotoinversion symmetry
C̄4 = C4I . Our concern is the effect of the Zeeman term. The
Zeeman term HZ breaks C4T but preserves C̄4.

C. Z2 index protected by C̄4

We can define [12,20] the Z index κ4 protected by the
rotoinversion symmetry C̄4,

κ4 = 1

2
√

2

∑
K

∑
α

e
iαπ

4 nα
K, (10)

where K runs over the high-symmetry points �,S,Z,R; nα
K

is the number of the occupied bands with the eigenvalue e
iαπ

4

of the symmetry operator C̄4, C̄4|ψ〉 = e
iαπ

4 |ψ〉. Because of
the relation (C̄4)4 = −1, α is quantized to be α = 1,3,5,7.
We explicitly evaluate κ4 using the formula (10), which is
shown in Fig. 2. It follows that the topological phases at
B = 0 are extended to the regions with B �= 0, as shown in
Fig. 2. When there is the TRS, there is a relation [12] that
mod2κ4 = ν0, where ν0 is the Z2 index for the time-reversal
invariant topological insulators. Furthermore, by calculating
the band structure of a square prism, we can check that no hinge
states emerge for B �= 0 in the phase indexed by κ4 = 0,±2 in
the phase diagram (Fig. 2). It implies that the bulk topological
index is given by

ν = mod2κ4, (11)

which is a generalization of ν0 in the absence of the TRS.
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FIG. 3. 3D SOTI. Surface band structure of a thin film. Surface
states of the topological hinge insulator. (a) Along the [100] and [010]
direction; (b) those along the [001] direction, where the gap closes
at the M point in the surface Brillouin zone; (c) surface states of the
magnetic SOTI along the [001] direction with B = t/2. The surface
states are gapped in the presence of magnetization.

D. Surface states

We study the surface states in the topological phase. It
is shown that the surface states along the [100] and [010]
directions are gapped due to the term H� as in Fig. 3(a).
However, we find the gapless surface states along the [001]
direction as in Fig. 3(b). This is because the C4T and C̄4

symmetries are preserved along the [001] direction but broken
along the [100] and [010] directions. Because of the emergence
of the topological surface states, the topological hinge insulator
is not a SOTI. Nevertheless, these gapless surface states can
be gapped out by introducing the Zeeman term as in Fig. 3(c).
On the other hand, the [100] and [010] surface states remain
gapped in the presence of the Zeeman term.

E. Hinge states

We calculate the band structure of a square prism in the topo-
logical insulator phase to examine the hinge states. The hinge
states remain as they are even in the presence of the magneti-
zation, as shown in Fig. 4. These hinge states are protected by
the Z2 index associated with the C̄4 symmetry.

III. 2D MAGNETIC SOTI

Next, we study a magnetic SOTI model in two dimensions.
The Hamiltonian is given by setting i = x,y in the Hamiltonian
of the SOTI in three dimensions. The symmetry analysis is
almost the same as in the 3D case just by neglecting the z

coordinate. We discuss the properties of a 2D magnetic SOTI
in the following order.

(a) (b)
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kz kz

FIG. 4. 3D SOTI. Band structure of the hinge states (a) without
the Zeeman term and (b) with the Zeeman term B = t/2. The hinge
states survive even in the presence of the Zeeman term. The horizontal
axis is the momentum kz. We have set m/t = 2, λ = t , and � = t/4.
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FIG. 5. 2D SOTI. (a) Topological phase diagram in the (m/t,B/t)
plane, which contains three distinctive phases: the trivial phase, the
SOTI phase, and the Chern TI (CI) phase. Band structures of (b) a
nanoribbon in the absence of the H� term and (c) the one in the
presence of the H� term, where we have chosen � = t/4. Red curves
represent edge modes in (b). We have set m = λ = t .

A. Topological phase diagram

The Brillouin zone is a square with four corners, � = (0,0),
X = (π,0), Y = (0,π ), and M = (π,π ). The massive Dirac
cone exists at the M point for |m − 2t | < |m + 2t | and at the
� point for |m − 2t | > |m + 2t |. There are two high-symmetry
points, � and M . At these points the TRS and the C4 symmetry
are respected. The energy spectrum reads E = ±|2t + ηm|
with the twofold degeneracy at the � point with η = 1 and at
the M point with η = −1. In the presence of the Zeeman term,
the energies at these points are analytically given by

E(0,0) = 2t + m ± B, −2t − m ± B, (12)

E(π,π ) = 2t − m ± B, −2t + m ± B. (13)

The topological phase diagram, given in Fig. 5(a), consists
of a SOTI phase, Chern TI (CI) phases, and trivial insula-
tor phases. We can check there are chiral edge states for
nanoribbons in the CI phase. We have also gap closing in the
CI phase at E(π,0) = E(0,π ) = 0 with E(π,0) = E(0,π ) =√

m2 + 4�2 ± B,−√
m2 + 4�2 ± B, which are plotted in

dotted curves in Fig. 5(a).

B. Edge states

We calculate the band structure of nanoribbons without
the Zeeman term in the topological phase (|m/t | < 2). In the
absence of the H� term, there are topological edge states as
shown in Fig. 5(b). They are gapped by the H� term as shown in
Fig. 5(c). Namely, edge states are absent since the rotoinversion
symmetry C̄4 is broken in the nanoribbon geometry.

C. Corner states

We calculate the eigenvalues of the Hamiltonian for a square
nanodisk, which preserves the fourfold rotational symmetry.
We show the eigenvalues in Figs. 6(a1) and 6(a2) in the absence
of the Zeeman term. There are four zero-energy states. These
zero-energy states remains as they are even when the Zeeman
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FIG. 6. 2D SOTI. Eigenvalues of the square (a) without magneti-
zation and (b) with magnetization (B = t/2). (a2) and (b2) Enlarged
figures of the green areas in (a1) and (b1). Four zero-energy states
indicated in red are observed. (a3) and (b3) Corresponding local
charge distributions. Charge distributions are well localized, where
localization is slightly weakened in the presence of magnetization.
We have set m = λ = � = t .

term is introduced as in Figs. 6(b1) and 6(b2). This is a
2D magnetic SOTI. We show the charge distribution in the
absence and presence of the Zeeman term in Figs. 6(a3) and
6(b3), respectively. The wave functions are localized at the four
corners.

The origin of the gap opening in nanoribbon geometry and
the persistence of the corner states in the presence of the
H� term are naturally understood by treating the H� as a
perturbation [20]. The edge states at zero energy are spatially
uniform. The expectation value of the H� term is � along
the x direction while it is −� along the y direction. Thus, the
edge states are gapped for a nanoribbon geometry. On the other
hand, the expectation value of the H� is exactly canceled at the
corner. As a result, the corner states are robust in the presence
of the H� term.

kzkz
π−π π−π
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gy

FIG. 7. 3D second-order topological semimetal. Band structure of
hinge-arc states (a) without the Zeeman term and (b) with the Zeeman
term (B = t/2). The hinge states survive even in the presence of the
Zeeman term. The horizontal axis is the momentum kz. We have set
m/t = 2, λ = t , and � = t/4.

IV. 3D SECOND-ORDER TOPOLOGICAL SEMIMETALS

By setting m = m0 + tz cos kz in the 2D magnetic SOTI
Hamiltonian, we can construct a model for 3D magnetic
second-order topological semimetals in a similar way to
previous works [22,35]. The properties are derived by the
sliced Hamiltonian H (kz) along the kz axis, which gives a
2D magnetic SOTI model with various mass terms m. The
bulk band gap closes at the points kz = arccos[(m − m0)/tz].
The surface state is gapped except for the two bulk gap
closing points. On the other hand, there emerge hinge-arc states
connecting the two gap closing points, which are shown in
Fig. 7(a). These hinge-arc states are robust even in the presence
of the Zeeman term, as shown in Fig. 7(b).
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