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Chiral zero energy modes in two-dimensional disordered Dirac semimetals
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The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-
class (CII) two-dimensional (2D) disordered Dirac semimetals realized on a square bipartite lattice are investigated
numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for
both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant
(i.e., σCZEM ≈ 1.05e2/h), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers
of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM
conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4e2/πh), which belongs
to the chiral orthogonal class (BDI) semimetal on a 2D hexagonal bipartite lattice. In addition, for the case that
the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both
systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy.
The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference.
The width of the mobility gap is greater than that of the band gap, and a δ-function-like peak of density of states
emerges at the Dirac point within the band gap, implying the existence of numerous localized states.
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I. INTRODUCTION

Since Anderson localization phenomenon was revealed in
1958 [1], the effects of disorder on electronic states have
been an enduring and important theme, which relates to the
fundamental principle and application of quantum mechanics.
On the other hand, Dirac and topological matters have recently
attracted great attention due to their novel properties. In
particular, their electronic states can strongly resist localization
in the presence of disorder [2–5].

The disorder-induced Anderson localization transition
has several universality classes analogous to the same
concept in phase transition theory. Based on the two basic
symmetries, i.e., time reversal and spin rotation, the early
threefold Wigner-Dyson classification scheme [6,7] includes
orthogonal class (with preserved time-reversal symmetry
and preserved spin-rotation symmetry), unitary class (with
broken time-reversal symmetry), and symplectic class (with
preserved time-reversal symmetry and broken spin-rotation
symmetry). Further, when one of the additional symmetries,
i.e., the chiral or the particle-hole symmetry, is considered,
a complete set of universality classes includes, in addition
to the three Wigner-Dyson classes, three chiral classes and
four Bogoliubov-de Gennes classes. This is known as tenfold
Altland-Zirnbauer classification [8–10].
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In condensed matter physics, the tight-binding models
on a bipartite lattice with nearest-neighbor hoppings (e.g.,
graphene), even with randomness in these hoppings (e.g.,
vacancy defects), possess chiral symmetry [6,11,12] because
the corresponding Hamiltonian matrices can be written in the
form of the block off-diagonal structure,

H =
( 0 h

h† 0

)
, (1)

in the sublattice space, i.e., they satisfy the relation

τ zHτz = −H, (2)

where τ z is the third Pauli matrix in the sublattice space.
Graphene with randomly distributed vacancies possesses chi-
ral, time-reversal, and spin-rotation symmetries, and therefore
it belongs to the chiral orthogonal class (BDI). As infinitely
strong scatterers, vacancies remarkably affect the density of
states (DOS) near the Dirac point, leading to the appearance of
chiral zero energy modes (CZEMs) [13–19]. CZEMs exhibit
critical delocalization, which is related to the universal minimal
conductivity of graphene in the clean limit [20–29]. By means
of accurate large-scale numerical calculations, Ferreira et al.
[13] found that the Kubo conductivity of CZEMs induced by
vacancies remain the same as the minimal conductivity of
graphene. However, as far as we know, few theoretical studies
have been carried out for CZEMs of chiral unitary class (AIII)
or chiral symplectic class (CII).
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After the experimental fabrication of graphene, more two-
dimensional (2D) materials have been predicted and discov-
ered [30–34]. Furthermore, quantum simulations with cold
atoms in photonic lattices can be implemented on more systems
with gauge field and spin-orbit coupling and open up a new
way for the realization and the study of 2D systems with
various symmetries [35]. These progress pave the way to the
realizations of topological semimetals with certain symme-
tries. The present work concentrates on the vacancy-induced
CZEMs of chiral-unitary-class (AIII) and chiral-symplectic-
class (CII) 2D disordered Dirac semimetals. We consider
a 2D square bipartite lattice as proposed by Hou [36] and
Young et al. [37], on which tight-binding Hamiltonians of
chiral unitary class (AIII) and chiral symplectic class (CII)
can be realized. Within the framework of the tight-binding
models, the longitudinal conductivity σxx can be calculated
numerically by using the Kubo-Greenwood formula [42–44] in
the linear response approximation with the kernel polynomial
method (KPM) [38,40,41]. The results show that, qualitatively
similar to those of graphene (i.e., chiral orthogonal class), the
vacancy-induced CZEMs also emerge in chiral-unitary-class
(AIII) and chiral-symplectic-class (CII) Dirac semimetals. The
critical delocalization is displayed in CZEMs. At the Dirac
point, the longitudinal conductivity σxx remains a nonzero
value, i.e., σCZEM ≈ 1.05 e2

h
. This value is insensitive to the

sample sizes, the vacancy concentrations, and the numbers
of moments of Chebyshev polynomials (corresponding to the
inelastic broadening parameter). In other words, it is almost
a universal constant over a wide range of parameters we
consider. It should be noted that, for the classes AIII and CII
Dirac semimetals on a 2D square bipartite lattice, the CZEM
conductivities are almost equal to each other (i.e., 1.05 e2

h
).

However, they are not equal to that of graphene (i.e., 4e2

πh
),

which belongs to the class BDI semimetal on a 2D hexagonal
bipartite lattice. In addition, when the vacancy concentrations
on two sublattices are different, namely, for the vacancy
densities of imbalance between A and B sublattices, we find
that the CZEM conductivity disappears and the systems exhibit
localization at the Dirac point. The band gaps and mobility
gaps emerge in the vicinity of the Dirac point. Moreover,
there are a large number of localized states at the Dirac point
and in the band tails of the valence and conduction bands as
well.

This paper is organized as follows. Section II outlines the
theoretical framework, Sec. III gives the results and analysis,
Sec. IV summarizes the main findings of our work, and finally
Appendix gives a brief overview of the KPM method.

II. MODEL AND METHOD

As the simplest models of the classes AIII and CII Dirac
semimetals, both systems considered here are all built on
the 2D square bipartite lattice [36,37], including A and B
sublattices (i.e., containing one atom A and one atom B in
each unit cell), as shown in Fig. 1. The model of the class
AIII Dirac semimetals for spinless fermions requires a phase
factor γ along with the nearest-neighbor hopping for breaking
time-reversal symmetry [see the black arrows in Fig. 1(a)]. The
2D tight-binding Hamiltonian in real space [36] can be written
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y
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FIG. 1. 2D square bipartite lattice and Brillouin zone. (a) Chiral-
unitary-class (AIII) Dirac semimetals. (b) Chiral-symplectic-class
(CII) Dirac semimetals. (c) Brillouin zone.

as (setting h̄ = 1)

Hu = −t
∑
m∈A

a†
m

[
e−iγ bm+ 1

2 (x̂− ŷ) + e−iγ bm− 1
2 (x̂− ŷ)

+ eiγ bm+ 1
2 (x̂+ ŷ) + eiγ bm− 1

2 (x̂+ ŷ)

] + H.c., (3)

where a
†
m (b†m) and am (bm) denote the creation and annihilation

operator, respectively, at the lattice site m on sublattice A
(B). x̂ and ŷ indicate the lattice basis vectors of the unit
cell shown in Fig. 1(a), t is the hopping energy between the
nearest-neighbor sites, and γ = π

4 is the nontrivial hopping
phase. Hereafter, we adopt t as the energy unit and the
lattice basis vector of the unit cell as the length unit. The
band structure of model (3) possesses two inequivalent Dirac
points at X1 = (π,0) and X2 = (0,π ), respectively, with the
same energy, as shown in Fig. 2(a) in momentum space.
By performing Fourier transforms ak = 1√

N

∑
ma

ama
e−ik·ma ,

bk = 1√
N

∑
mb

bmb
e−ik·mb , and by introducing �k = (ak,bk)T ,

the Hamiltonian can be written as Hu = ∑
k �

†
kHu(k)�k with

Hu(k) =
(

0 h(k)

h∗(k) 0

)
, (4)

where

h(k) = −eiγ [e−i(kx+ky ) + e−i(2γ+kx ) + e−i(2γ+ky ) + 1]. (5)

The Hamiltonian matrix (4) does not have diagonal terms in
the sublattice space, hence the system possesses the chiral
symmetry as defined by Eq. (1). However, the time-reversal
symmetry is broken, and therefore the system belongs to the
symmetry class AIII.

In order to construct the model of the chiral symplectic class
CII, we consider a time-reversal-invariant nearest-neighbor
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FIG. 2. (a) Dispersion relation of the class AIII Dirac semimetals
in the Brillouin zone. (b) Dispersion relation of the class CII Dirac
semimetals in the Brillouin zone.

spin-orbit interaction and introduce a Hamiltonian of a 2D
Dirac semimetal given by the form in real space:

Hs = tSO

2

{
−

∑
m

a
†
m↓

[(
bm+ 1

2 (x̂− ŷ),↑ − bm− 1
2 (x̂− ŷ),↑

)
− i

(
bm+ 1

2 (x̂+ ŷ),↑ − bm− 1
2 (x̂+ ŷ),↑

)]
+

∑
m

a
†
m↑

[(
bm+ 1

2 (x̂− ŷ),↓ − bm− 1
2 (x̂− ŷ),↓

)

+ i
(
bm+ 1

2 (x̂+ ŷ),↓ − bm− 1
2 (x̂+ ŷ),↓

)] + H.c.

}
, (6)

where the spin indices ↑ and ↓ refer to spin up and
spin down, respectively, and tSO denotes the nearest-
neighbor hopping parameter with spin flip. We also set
tSO = 1 for simplicity. As shown in Fig. 2(b), the dis-
persion relation of Hamiltonian (6) exhibits two degener-
ate inequivalent Dirac points at M = (π,π ) and � = (0,0),
respectively. Performing the Fourier transforms ak↑(↓) =

1√
N

∑
ma

ama↑(↓)e
−ik·ma , bk↑(↓) = 1√

N

∑
mb

bmb↑(↓)e
−ik·mb , and

introducing �k = (ak↑,bk↑,ak↓,bk↓)T , the momentum-space
Hamiltonian takes the form Hs = ∑

k �
†
kHs(k)�k with

Hs(k) = τx ⊗ (σy sin k′
x − σx sin k′

y)

=

⎛
⎜⎝

0 0 0 K

0 0 K 0
0 K∗ 0 0

K∗ 0 0 0

⎞
⎟⎠, (7)

where K = −(i sin k′
x + sin k′

y), with k′
x = −(kx − ky)/2 and

k′
y = (kx + ky)/2. τ = (τx,τy) and σ = (σx,σy) indicate Pauli

matrices describing the sublattice and spin degrees of freedom,
respectively. Similarly, in Eq. (7), the Hamiltonian matrix
also has a block off-diagonal form as required by Eq. (1),
thereby possessing the chiral symmetry. Moreover, the sys-
tem possesses the time-reversal symmetry, but the spin-orbit
interaction breaks the spin-rotation symmetry. Consequently,
the system belongs to the symmetry class CII [6,7].

In a tight-binding representation, a vacancy (i.e., a missing
atom) can be modeled by cutting off all adjacent bonds to a
given atom. Consequently, vacancies do not destroy the chiral
symmetry of the original model. On the other hand, a vacancy is
equivalent to a locally infinite potential. As a result, vacancies
strongly affect DOS near the Dirac point, resulting in the
emergence of the CZEMs.

In order to investigate the vacancy-induced CZEMs of the
above two systems, we numerically calculate their DOS and
longitudinal conductivities σxx using the Kubo-Greenwood
formula [13,44–46], which can be derived from the Kubo
formula [42,43] in the zero-temperature limit and written in
the form

σxx(EF ) = h̄e2

π	
Tr[ImG+(EF − H )vxImG+(EF − H )vx],

(8)

where 	 is the size (or area) of the system, vx = 1
ih̄

[rx,H ]
denotes the x component of the velocity operator and rx

indicates that of the position operator, G+ = 1
EF +iη−H

is the
retarded Green’s function at the Fermi energy EF and η → 0+
is the energy (inelastic) broadening parameter that is associated
with the dephasing strength [47]. The numerical calculation
requires that the broadening parameter η should be larger than
the mean level spacing δE, i.e., η � δE. In addition, the DOS
is given by

ρ(ε) = 1

D
Tr[δ(ε − H )], (9)

where ε is the energy of fermions. For both kinds of disordered
chiral systems, periodic boundary conditions are imposed.

The validity of the CZEM conductivity calculated here, as in
the case of most of the interesting physical quantities, requires
the thermodynamic limit, i.e., 	 → ∞ and η → 0, where 	

denotes the size (or area) of the system and η is the energy
(inelastic) broadening parameter. Thus, in order to carry out a
reliable quantitative investigation, one should make numerical
calculations for the system size as large as possible. Moreover,
the disorder averaging should be performed for hundreds of
disorder configurations. All of this causes the accurate large-
scale numerical calculations to be computationally expensive.

In the present paper, we implement numerical calculations
using the progressively arisen KPM method. Different from
the Chebyshev-polynomial Green function method used by
Ferreira et al. [13], the KPM expressions of the conductivity
and DOS do not depend explicitly on the broadening parameter
η, but depend on the number of moments of Chebyshev
polynomials (N ), which is associated with η, specifically,
N ∝ 1/η [13,38,39]. A brief overview of the KPM method
is given in Appendix.
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(a)

(b)

FIG. 3. (a) DOS of pristine class-AIII Dirac semimetals as a
function of the energy. (b) DOS of pristine class-CII Dirac semimetals
as a function of the energy.

III. NUMERICAL RESULTS AND DISCUSSIONS

Here we carry out the large-scale numerical calculations for
the class AIII and the class CII Dirac semimetals. To ensure
a reasonable precision, we employ more than 500 disorder
configurations to perform the disorder averaging for each
datum computed in this work.

In order to have first impressions for models (3) and (6),
we numerically compute the DOS for infinite clean sys-
tems in the momentum space using the expression of DOS
ρ(ε) = − 1

πD
Im{Tr[G+(ε − H )]}. As shown in Fig. 3, for both

systems, the DOS is zero at the Dirac point, and the DOS close
to the Dirac point depends linearly on the energy, similar to
graphene [48].

We next consider the disorder caused by randomly dis-
tributed vacancies. In Fig. 4, we show the DOS for disordered
systems with the vacancy concentration nv = 1%. It can be
seen that, for both systems, sharp peaks emerge at the Dirac
point. This indicates that the randomly distributed vacancies
lead to the emergence of numerous quantum states at zero

(b)

(a)

FIG. 4. (a) DOS of disordered class-AIII Dirac semimetals with
2×200×200 sites (i.e., the number of unit cells along x or y direction
M = 200) as a function of the energy. (b) DOS of disordered class-CII
Dirac semimetals with 2×150×150 sites (i.e., the number of unit
cells along x or y direction M = 150) as a function of the energy. For
both systems, the vacancy concentration nv = 1%, and the number of
moments of Chebyshev polynomials N = 10 000.

energy in the vicinity of vacancy defects [19], forming the
vacancy-induced CZEMs, despite the dilute vacancy concen-
tration nv = 1%.

In order to investigate the properties of the vacancy-induced
CZEMs, we numerically calculate the longitudinal conduc-
tivities σxx using the Kubo-Greenwood formula (8). We find
that, as an interesting property of disordered chiral systems,
qualitatively similar to those of graphene (i.e., the class BDI)
[13], the CZEM conductivities of the classes AIII and CII Dirac
semimetals remain a robust constant, which does not vary with
the sample sizes, the energy broadening parameter, and even
the vacancy concentrations over a wide range of parameters.

In Fig. 5, we first exhibit the longitudinal conductivities
of both kinds of disordered chiral systems as functions of the
Fermi energy for different numbers of moments of Chebyshev
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(a)

(b)

FIG. 5. (a) Longitudinal conductivities of disordered class-AIII
Dirac semimetals with 2×200×200 sites as functions of the Fermi
energy. (b) Longitudinal conductivities of disordered class-CII Dirac
semimetals with 2×150×150 sites as functions of the Fermi energy.
For both systems, the black, red, and blue solid curves correspond
to the cases of the numbers of moments of Chebyshev polynomials
N = 800, 900, and 1000, respectively. The vacancy concentration
nv = 1%. The insets show the zooms of peaks at the Dirac points.

polynomials N . Near the Dirac points but except for the Dirac
points, the longitudinal conductivities decrease as N increases.
This can also be seen clearly in Fig. 6. The longitudinal
conductivities at EF = 0.01t (red squares) indeed decrease
with increasing N . This indicates that, during the process of
approaching the thermodynamic limit, i.e., η ≈ δE → 0, the
localization effects become more and more important.

Most interesting features emerge at the Dirac points as-
sociated with the CZEM. In Fig. 6, the conductivity σxx at
EF = 0 (black round dots) almost remains a constant, i.e.,
σCZEM ≈ 1.05 e2

h
, for N ranging from 500 to 1000. These results

imply the following two facts about the CZEMs. First, for both
disordered chiral systems, the conductivities at the Dirac points
are insensitive to dephasing [47]. Secondly, the conductivities
at the Dirac points approach a fixed value in the thermodynamic

(a)

(b)

FIG. 6. (a) Longitudinal conductivities of disordered class-AIII
Dirac semimetals with 2×200×200 sites as functions of the numbers
of moments of Chebyshev polynomials. (b) Longitudinal conductivi-
ties of disordered class-CII Dirac semimetals with 2×150×150 sites
as functions of the numbers of moments of Chebyshev polynomials.
For both systems, the black round dots correspond to the CZEM
conductivities at the Dirac points, and the red squares correspond to
the case of the Fermi energy EF = 0.01t . The vacancy concentration
nv = 1%. The error bars represent the standard deviation due to
disorder average.

and quantum mechanical limits. These results also indicate
that, for the Fermi energy EF = 0, the critical delocalization
of the CZEMs is protected by the chiral symmetry. This robust
conductivity at the Dirac point implies the existence of a
quantum critical point [13,49].

Now we concentrate on the fluctuations of conductivities.
For example, as shown in Fig. 6, for the CZEM conductivities
(black error bars) for the numbers of moments of Chebyshev
polynomials N = 500, the standard deviations are 0.12038 for
the class-AIII Dirac semimetals, and 0.13109 for the class-CII
Dirac semimetals, corresponding to 11.4% and 12.4% of the
average values, respectively. The error bars increase slowly
with increasing N because the matrices Tn(H̃ ) (shown in
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(b)

(a)

FIG. 7. (a) Longitudinal conductivities of disordered class-AIII
Dirac semimetals as functions of the sample sizes. The black round
dots correspond to the CZEM conductivities at the Dirac point. The
red squares correspond to the case of the Fermi energy EF = 0.1t . (b)
Longitudinal conductivities of disordered class-CII Dirac semimetals
as functions of the sample sizes. The black round dots correspond
to the CZEM conductivities at the Dirac point. The red squares
correspond to the case of the Fermi energy EF = 0.05t . For both
systems, the vacancy concentration nv = 1%, and the number of
moments of Chebyshev polynomials N = 500. The error bars stand
for the standard deviation due to disorder average.

Appendix) become less and less sparse, and the numerical
processes lose more precisions.

Note that the exact robustness property of the CZEM con-
ductivities requires the thermodynamic limit (i.e., 	 → ∞).
Because only finite-size systems can be dealt with for nu-
merical computations, we need to perform numerical scaling
by calculating results for increasingly larger sample sizes,
so that we can extrapolate the properties of the CZEMs to
the thermodynamic limit. In Fig. 7, we display the CZEM
conductivities as functions of sample sizes. It can be seen
that the CZEM conductivities (black round dots) of both chiral
systems do not change with the sample sizes for the numbers
of sites ranging from 20 000 to 80 000, and almost remain a

(b)

(a)

FIG. 8. (a) Longitudinal conductivities of disordered class-AIII
Dirac semimetals with 2×200×200 sites as functions of the vacancy
concentrations nv . The black round dots correspond to the CZEM
conductivities at the Dirac point. The red squares correspond to the
case of the Fermi energy EF = 0.1t . (b) Longitudinal conductivities
of disordered class-CII Dirac semimetals with 2×150×150 sites as
functions of the vacancy concentrations nv . The black round dots
correspond to the CZEM conductivities at the Dirac point. The red
squares correspond to the case of the Fermi energy EF = 0.05t . For
both systems, the number of moments of Chebyshev polynomials N is
set to 1000 for the cases of nv = 0.2% and 0.4%, whereas N = 500 for
all other vacancy concentrations. The error bars represent the standard
deviation due to disorder average.

constant, namely, σCZEM ≈ 1.05 e2

h
. This result further suggests

that the robustness of the CZEM conductivities is an universal
and intrinsic property of the systems.

In Fig. 7, we also plot the size dependencies of conductivi-
ties for nonzero Fermi energies (red squares). It is worth noting
that this scaling invariance is also valid in a small energy range
around the Dirac point, for both models. This result is similar
to the delocalization of disordered graphene demonstrated by
Zhang et al. [3].

Next, we consider the effects of the vacancy disorder itself.
The disorder strength can be characterized by the vacancy
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 9. [(a), (e), and (i)] DOS of disordered class-AIII Dirac semimetals as functions of the energy for (a) the vacancy concentrations of the
sublattice A nva = 0.1% and the sublattice B nvb = 1%, (e) nva = 0.1% and nvb = 1.5%, and (i) nva = 0.1% and nvb = 2%. [(b), (f), and (j)]
Longitudinal conductivities of disordered class-AIII Dirac semimetals as functions of the Fermi energy for (b) nva = 0.1% and nvb = 1%, (f)
nva = 0.1% and nvb = 1.5%, and (j) nva = 0.1% and nvb = 2%. [(c), (g), and (k)] DOS of disordered class-CII Dirac semimetals as functions of
the energy for (c) nva = 0.1% and nvb = 1%, (g) nva = 0.1% and nvb = 1.5%, and (k) nva = 0.1% and nvb = 2%. [(d), (h), and (l)] Longitudinal
conductivities of disordered class-CII Dirac semimetals as functions of the Fermi energy for (d) nva = 0.1% and nvb = 1%, (h) nva = 0.1% and
nvb = 1.5%, and (l) nva = 0.1% and nvb = 2%. For both systems, the samples have 2×100×100 sites. The number of moments of Chebyshev
polynomials N is set to 10000 for DOS, and N = 500 for longitudinal conductivities.

concentrations nv . To investigate the influences of the disorder
strength on the CZEM conductivity, we numerically compute
the longitudinal conductivities at the Dirac points for different
vacancy concentrations ranging from 0.2% to 2%. As shown
in Fig. 8 (black round dots), the CZEM conductivity almost
remains constant (i.e., σCZEM ≈ 1.05 e2

h
) over an order of magni-

tude in nv , except that, for the weak disorder strength (namely,
the dilute vacancy concentration), the CZEM conductivity
slightly increases as the vacancy concentration decreases. Our
physical understandings of this behavior are as follows.

Strictly speaking, the Kubo conductivity of CZEM requires
the thermodynamic limit. In other words, we first need to take
the limit 	 → ∞ and then set the energy broadening parameter
η → 0. Since the biggest possible size 	 of the system is
restricted by numerical practicalities, the smallest possible η

must be a finite value. According to the fact that the momentum
relaxation time τ associated with vacancy scattering is smaller
than h̄/η [29,50] (i.e., τ � h̄/η), and, at the same time,
inversely proportional to the vacancy concentration nv [51]
(i.e., τ ∝ 1

nv
), the numerical computation requires a smaller

η for a smaller nv . Recall that smaller η means greater N

(i.e., the number of moments of Chebyshev polynomials),
which is computationally more expensive. Thus, for small nv ,
our results may have errors due to our limited computational
capability of high-performance computing. Consequently, for
the case of nv = 0.2%, although we use a greater N (namely,
N = 1000), the CZEM conductivity is slightly greater than
those for other cases of vacancy concentrations, as shown in
Fig. 8 (black round dots). However, the CZEM conductivity
almost remains constant for nv ranging from 0.4% to 2%. Note
that we also use N = 1000 for nv = 0.4%.

For comparison, in Fig. 8 (red squares) we also plot the
conductivities as functions of nv for EF = 0.1t in the class
AIII Dirac semimetals and for EF = 0.05t in the class CII
Dirac semimetals. The results display that, near the Dirac
points, the conductivities remarkably decrease with increasing
the vacancy concentration, showing prominent localization.

Another interesting fact is that the CZEM exists for each
disordered sample. Our numerical results show that there is a
δ-function-like peak of DOS at the Dirac point for each sample
of both systems. Moreover, for all samples, the conductivities
at zero energy are larger than 0.6 e2

h
, in spite of statistical
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fluctuations. These facts imply the presence of nonlocalized
states with zero energy. For a Dirac matter with chiral disorder,
the chiral symmetry protects CZEMs from localization associ-
ated with strong quantum interference effects at the Dirac point.
In other words, the chiral symmetry is a necessary condition
for the reality of CZEMs. The nature of the highly delocalized
CZEMs protected by the chiral symmetry is robust against the
variation of the sample sizes, the vacancy concentrations, and
the numbers of moments of Chebyshev polynomials. On the
other hand, for vacancy-defective graphene (chiral orthogonal
class, i.e., the class BDI), numerical results show that the
CZEM conductivity is 4e2

πh
[13]. The CZEM conductivities

are of the order of e2

h
for all three Chiral classes. The slight

difference between 1.05 e2

h
for the classes AIII and CII and

4e2

πh
for the class BDI implies that the CZEM conductivities

depend weakly on the Chiral classes. A better understanding
of this dependence remains an open question. Investigation in
this direction is currently in progress.

Finally, we numerically investigate the localization of the
classes AIII and CII Dirac semimetals for the case that the
vacancy concentrations are different in the two sublattices,
i.e., nva = nvb. Figure 9 shows DOS and longitudinal con-
ductivities as functions of the energy for different vacancy
concentration differences |nva − nvb|. The results display that
the CZEM conductivity vanishes, as shown in Figs. 9(b), 9(d)
9(f), 9(h), 9(j), and 9(l). Hence, both kinds of disordered chiral
systems exhibit localization at the Dirac point. Moreover, a
mobility gap in the conductivity curve opens around the Dirac
point. The width of the mobility gap is increasing with larger
vacancy concentration difference |nva − nvb|. In addition, as
shown in Figs. 9(a), 9(e), 9(i), 9(c), 9(g), and 9(k), a band gap
in the DOS emerges around zero energy. This numerical result
is consistent with the result predicted by the renormalization
group analysis of the nonlinear sigma model for a 2D chiral
metal (bipartite lattice) with vacancy [12]. On the other hand,
within the band gap, there is a δ-function-like peak of DOS
at the Dirac point, which is due to the presence of numerous
localized states with zero energy. Furthermore, the width of
the mobility gap is evidently larger than that of the band gap.
This result indicates that there are plenty of localized states
existing not only at the Dirac point but also in the band tails of
the valence and conduction bands.

IV. CONCLUSIONS

In summary, we have numerically investigated the vacancy-
induced CZEMs of the classes AIII and CII disordered Dirac
semimetals on a 2D square bipartite lattice using the Kubo-
Greenwood formula with the KPM method. It is found that,
for both systems, the CZEMs exhibit the critical delocaliza-
tion. The CZEM conductivity remains a robust constant, i.e.,
σCZEM ≈ 1.05 e2

h
. It is insensitive to the sample sizes, the vacancy

concentrations, and the numbers of moments of Chebyshev
polynomials. The CZEM conductivity is almost the same for
both kinds of disordered chiral systems. However, it is not
equal to that of graphene (namely, 4e2

πh
), which belongs to the

class BDI with 2D hexagonal bipartite lattice. Furthermore,
for the case that the vacancy concentrations are different in
the two sublattices, the CZEM conductivity vanishes, and thus

both kinds of disordered chiral systems exhibit localization at
the Dirac point. In addition, the band gap and the mobility gap
open around the Dirac point. There is a δ-function-like peak of
DOS at the Dirac point within the band gap and the width of
the mobility gap is greater than that of the band gap, because
of the presence of numerous localized states at the Dirac point
and in the band tails of the valence and conduction bands.
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APPENDIX: KERNEL POLYNOMIAL
METHOD IN A NUTSHELL

Most linear response functions can be expressed in terms of
Green’s functions. However, the degrees of freedom of meso-
scopic systems are usually so huge that numerical treatments
of the associated matrices are almost impossible. Fortunately,
for the numerical calculations of huge matrices, the kernel
polynomial method (KPM) is a very efficient and stable
algorithm [38,39,52–55]. According to KPM, the Green’s
functions can be expanded as the first kind Chebyshev poly-
nomials of the Hamiltonian matrices. As a kind of orthogonal
polynomials, Chebyshev polynomials are defined on the real
interval [−1,1]. The Chebyshev polynomials of first kind Tn(x)
can be expressed in the explicit form

Tn(x) = cos[n arccos(x)], (A1)

and obey the recursion relations,

T0(x) = 1,

T−1(x) = T1(x) = x,

Tn+1(x) = 2xTn(x) − Tn−1(x). (A2)

In KPM, the Chebyshev expansions of the Green’s functions
possess good convergence properties. What is more, after long
time practices of numerical calculations, it turned out that
applying optimal kernels, i.e., attaching appropriate auxiliary
coefficients gn to Chebyshev polynomials, can damp down the
Gibbs oscillations [56,57], which occur near discontinuities
or singularities of the expanded function for a truncation
of the infinite Chebyshev polynomial series. In addition, in
KPM, most of the numerical calculations associated with
the Green’s functions or spectral functions can be translated
into matrix-vector multiplication for the sparse Hamiltonian
matrices, taking advantage of the sparse matrix methods and
parallel algorithms.

According to KPM, an arbitrary function defined on a finite
interval can be expanded in terms of Chebyshev polynomials
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of first kind,

fKPM(x) = 1

π
√

1 − x2

[
g0μ0 + 2

N−1∑
n=1

gnμnTn(x)

]
, (A3)

where μn = ∫ 1
−1 f (x)Tn(x)dx indicate the expansion coeffi-

cients, N is the truncation number of moments of Chebyshev
polynomials, and gn denote the optimal kernels [38,55]. In this
work, we use the Jackson kernel

gn = (N − n + 1) cos πn
N+1 + sin πn

N+1 cot π
N+1

N + 1
. (A4)

By using the expression (A3), both the δ function and the
Green function can be expanded in terms of the Chebyshev
polynomials

δ(ε̃ − H̃ ) = 2

πa
√

1 − ε̃2

N∑
n=0

1

δn,0 + 1
gnTn(H̃ )Tn(ε̃), (A5)

G±(ε̃,H̃ ) = ∓ 2i

a
√

1 − ε̃2

N∑
n=0

gn

e∓in arccos(ε̃)

δn,0 + 1
Tn(H̃ ). (A6)

Substituting Eqs. (A5) and (A6) into Eqs. (9) and (8) given in
main text, respectively, we obtain the Chebyshev expansions
of the DOS and longitudinal conductivity:

ρ(ε̃) = 2ξ

πa
√

1 − ε̃2

1

D

N∑
n=0

gn

gn

δn,0 + 1
Tr[Tn(H̃ )]Tn(ε̃), (A7)

σxx(ẼF ) = 4ξ h̄e2

πa2(1 − ε̃2)	

N∑
n,m=0

[Tn(ẼF )Tm(ẼF )μnm], (A8)

μnm = gngm

(δn,0 + 1)(δm,0 + 1)
Tr[vxTn(H̃ )vxTm(H̃ )], (A9)

where ξ = 1, 2. For the class AIII Dirac semimetals, we set ξ =
2 due to spin degeneracy. For the class CII Dirac semimetals,
we set ξ = 1 arising from the removal of spin degeneracy.

Chebyshev polynomials are defined on the real interval
[−1,1], whereas the eigenvalue spectrums of the Hamiltonian
matrices we are interested in do not fit into this interval
in general. To rescale the Hamiltonian H and energies ε

to the interval [−1,1], we therefore have to apply a linear
transformation and denote all rescaled physical quantities with
a tilde,

H̃ = H − b

a
, ε̃ = ε − b

a
, (A10)

with the scaling factors of the form

a = Emax − Emin

2 − ζ
, b = Emax + Emin

2
, (A11)

where, Emin and Emax indicate the lower and upper bounds
of the eigenvalue spectra, which can be calculated by using
the FEAST algorithm of the latest version of Intel MKL. The
parameter ζ is a infinitesimal cutoff introduced to guarantee
the numerical stability. We set a fixed value ζ = 0.0001 in our
numerical calculation.

From Eqs. (A7) and (A9), the calculations of the DOS and
longitudinal conductivity require traces over the whole Hilbert
space. For a D-dimensional matrix, the resource consumption
of numerical computation is proportional to D2. The numerical
calculation is thus computationally expensive for the case of
huge matrices. Fortunately, instead of complete trace summa-
tions, the expansion coefficients of the DOS and longitudinal
conductivity can be calculated with the random phase vector
approximation [38,40,56,58], i.e., stochastic evaluation of
traces, for large sparse matrices. In this method, a set of random
complex vectors can be constructed as

|r〉 =
D∑

i=1

ξri |i〉, r = 1,2, . . . ,R, (A12)

with a small number of random vectors R � D, where, |i〉
denotes a set of arbitrary basis vectors, the coefficients ξri are
a set of independent uniformly distributed random complex
numbers ξri ∈ C, which possess the following characteristics,

〈〈ξri〉〉 = 0, 〈〈ξ ∗
riξr ′i ′ 〉〉 = δrr ′δii ′ , (A13)

where 〈〈· · · 〉〉 indicates the statistical average. In general, the
statistical error can be reduced by choosing ξri = eiφ with φ ∈
[0,2π ] as a set of equally distributed random phases [40,56,59].
For huge sparse matrices, the full traces in Eqs. (A7) and (A9)
can be replaced by the statistical expected values in terms of
the random vectors,

Tr[Tn(H̃ )] ≈ 1

R

R∑
r=1

〈r|Tn(H̃ )|r〉, (A14)

Tr[vxTn(H̃ )vxTm(H̃ )] ≈ 1

R

R∑
r=1

〈r|vxTn(H̃ )vxTm(H̃ )|r〉.
(A15)

The resource consumption required to numerically calculate
(A14) and (A15) is now proportional to D×R instead of D2.
It can be proved that the relative error of the stochastic trace
estimate is of order O(1/

√
RD) [38,40]. That is to say, the error

of this approximation reduces with increasing the product of
the number of random vectors R and the dimension of matrix
D. Therefore only a few random vectors are necessary for
large systems. For systems with ten thousands of lattice sites
considered in this work, we find that setting R = 24 is enough
to yield a good precision.
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