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Bosonic excitations and electron pairing in an electron-doped cuprate superconductor
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By applying ultrafast optical spectroscopy to electron-doped La1.9Ce0.1CuO4±δ , we discern a bosonic mode of
electronic origin and provide the evolution of its coupling with the charge carriers as a function of temperature.
Our results show that it has the strongest coupling strength near Tc and can fully account for the superconducting
pairing. This mode can be associated with the two-dimensional antiferromagnetic spin correlations emerging
below a critical temperature T † larger than Tc. Our work may help to establish a quantitative relation between
bosonic excitations and superconducting pairing in electron-doped cuprates.
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I. INTRODUCTION

In unconventional superconductors, such as high-Tc

cuprates, it has been a longstanding challenge to reveal the
effective interaction of charge carriers (fermionic quasiparti-
cles) with phonons or other bosonic excitations of electronic
origin [1–3]. In particular, huge efforts have been made to
unravel the electronic excitations likely giving rise to the
superconducting (SC) pairing, such as charge, spin, and orbital
fluctuations [2–8]. However, an unambiguous solution to the
pairing issue remains obscure because it is extremely difficult
to quantitatively identify the most relevant bosonic excitations
and their related interactions near Tc due to various types of
excitations entangled in the energy domain [9–12].

Ultrafast optical spectroscopy provides a unique opportu-
nity to directly probe the related interactions in the time domain
[13]. Its capability of distinguishing between phonons and
other bosons of electronic origin has also been investigated
both experimentally and theoretically [14,15]. Under nonequi-
librium conditions, these bosonic modes display distinct re-
laxation dynamics because of their different couplings to the
charge carriers and may thereby be potentially disentangled.
This technique has been extensively utilized in studying the SC
gap, pseudogap, and competing orders on high-Tc supercon-
ductors [16–21], but its application on unveiling the entangled
bosonic excitations and their temperature evolution remains
elusive [13,22,23].

In this work, by measuring the transient optical reflectivity
change �R(t)/R as a function of temperature, we unravel dif-
ferent bosonic modes and investigate their peculiar relaxation
dynamics in the electron-doped cuprates La2−xCexCuO4±δ

(LCCO). Unlike their hole-doped counterparts, where super-
conductivity is often intertwined with anomalous pseudogap,
the electron-doped cuprates are relatively simple and believed
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to exhibit prominent antiferromagnetic (AFM) spin fluctua-
tions (or correlations) [24,25]. In fact, our LCCO samples are
optimally doped with a Ce concentration of x = 0.1, which
sits near the AFM border in the temperature-doping (T -x)
phase diagram [26]. The temperature-dependent results enable
us to identify with confidence a bosonic mode of electronic
origin that is closely related to the two-dimensional (2D) AFM
spin fluctuations. We discover an enormous enhancement of
its interaction with fermionic quasiparticles as temperature
decreases from high temperatures down to Tc. We demonstrate
that this bosonic mode is of critical importance for the electron
pairing and can fully account for the SC Tc.

II. EXPERIMENT

Figure 1(a) shows the typical ultrafast optical pump-probe
spectroscopy setup [27,28]. The time-resolved transient reflec-
tivity change �R/R was measured using a Ti:sapphire oscil-
lator lasing at the center wavelength of 800 nm (∼1.55 eV). It
has a repetition rate of 80 MHz and a pulse duration of ∼35 fs.
The pump beam, with a typical fluence of ∼0.3 μJ/cm2, directs
along the normal incidence and is kept p polarized. The probe
beam, with a typical fluence of ∼0.03 μJ/cm2, is incident at
a ∼10◦ angle to the sample normal and is kept s polarized.
In order to evaluate the cumulative heating effect, we also
performed the fluence-dependent experiments using a similar
setup with a Ti:sapphire laser system with a low repetition rate
of 5.1 MHz and a pulse duration of 60 fs (see Appendix A). The
c-axis-oriented LCCO (x = 0.1) thin films with a thickness of
100 nm were deposited on the (00l)-oriented SrTiO3 substrates
by a pulsed laser deposition system. Details on the sample
preparation and characterization are given in the Supplemental
Material [29].

III. RESULTS AND DISCUSSION

Figure 1(b) displays the obtained �R(t)/R as a func-
tion of temperature within ∼10 ps in four optimal-doped
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FIG. 1. Temperature-dependent �R(t)/R in optimally doped La1.9Ce0.1CuO4±δ . (a) Schematic of optical pump-probe experimental setup.
(b) �R(t)/R as a function of temperature in four different samples, I, II, III, and IV, with different oxygen concentration δ. (c) Detailed plot
of �R(t)/R measured in sample II. (d) A typical fitting of �R(t)/R at 35 K using two exponential decays shown by the red line. Two decay
components are indicated by the blue (Ae−�t ) and magenta (A†e−�† t ) lines. (e) The � values at T > Tc follow well a power law: � ∝ T 1.65±0.1.
The black and green arrows indicate the positions of T † and Tc, respectively. Inset: Tc increases monotonically with T † for the investigated
samples.

La1.9Ce0.1CuO4±δ with different δ. The signals from different
photoexcitation spots in all samples are very consistent but be-
have distinctively in separate temperature regimes. Figure 1(c)
plots �R(t)/R measured in sample II (Tc = 25.1 K). The
relaxation seems to take simple exponential decay at both
high and low temperatures. However, a peculiar and relatively
slow rising process following the initial instantaneous uprising
is observed at intermediate temperatures between ∼25 and
∼60 K as manifested by the bumplike behavior after ∼100 fs.
This type of signal corresponds to the dark blue region in
Fig. 1(b) and seems to be quite common in cuprates [19–21].
Due to similarities between the four samples, all detailed
analyses below are for data taken from sample II except where
noted.

We focus mainly on the experimental data for T > Tc,
measured with low pump fluence, so that we can ignore
the complexity of interpreting the quasiparticle dynamics in
the SC state [30]. As seen in Fig. 1(d), �R(t)/R with the
bumplike feature can be well fitted using a function of the
form �R(t)/R = Ae−�t + A†e−�†t + D, where A (or A†) and
� (or �†) are the amplitude and decay rate, respectively. D

is a t-independent offset. Specifically, A† = 0 for T > T †

(T † � 60 K). The emergence of the nonzero A† component
indicates the onset of a new scattering channel between
quasiparticles and bosons around T †. Since this change oc-
curs instantaneously after photoexcitation, we expect that it
is caused by bosonic excitations that are strongly coupled
with the nonequilibrium quasiparticles in the initial relaxation

dynamics. Figure 1(e) plots the decay rate � for T > Tc, where
we find the data nearly follow a power law: � ∝ T α (α �
1.65 ± 0.1). In fact, below ∼0.3 μJ/cm2, � is nearly fluence
independent for T > Tc (see Appendix A). Therefore, low
pump fluence is crucial as it helps yield fluence-independent
parameters and enables us to extract accurate physical in-
formation using the fitting model described below. At high
pump fluences, � below T † will obviously deviate from this
power law (see Ref. [21] and Appendix A). Similar scaling
has also been observed in the T -dependent resistivity [24,31],
suggesting an intimate connection between the resistivity scal-
ing and the coupling to the bosonic excitations. In addition, we
surprisingly notice thatTc increases withT † for the investigated
samples, as seen in the inset of Fig. 1(e). Such a result suggests
that the bosonic excitations contributing to the new scatterings
emerging below T † are closely related to the SC property.

In order to reveal the mechanisms behind our above ob-
servations, one common theoretical approach is the effective-
temperature model [13]. In the frame of this model, one
can understand the temporal evolution of the nonequilibrium
state as the energy exchange among the electron and boson
reservoirs via the electron-boson and boson-boson scatter-
ing processes. However, this model generally can describe
well only the case of Fermi-liquid-like systems [13] where
the photoexcited hot electrons are quickly quasithermalized
via electron-electron (e-e) scatterings ahead of the dominant
electron-boson interactions. Therefore, it is not appropri-
ate to directly apply the effective-temperature model to a
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FIG. 2. Typical fitting via the effective-temperature model. (a) Energy relaxations between electrons (Te), bosons with electronic origin
(Ts), hot phonons (Tp), and the rest of the lattice (Tl) are described by the effective-temperature model (Appendix B). The time evolutions
of Te and Tj (j = s,p,l) are determined by the bosonic spectra function �j (�) and the anharmonic phonon decay gpl . The thermalization
timescales are given by the fitted Te(t) and Tj (t). (b) Fitting results at several typical temperatures. (c) The bosonic function �(�) obtained by
fitting �R/R at 35 K. The red and blue areas represent �s(�) and �p(�) associated with the electronic and phononic excitations, respectively.
(d) The corresponding Te(t) and Tj (t) at 35 K, characterizing the electrons, bosons with electronic origin, hot phonons, and the rest of the lattice.

photoexcited strongly correlated system in the whole time
domain [32]. Instead, one should consider the nonthermal
behavior of hot electrons in a more comprehensive model
(see Ref. [33] and Appendix B). In addition, in cuprate
superconductors under the SC and pseudogap states, �R/R

might directly arise from the spectral weight redistributions
due to modifications of these states by the optical pump
pulses. Under such conditions, it is not straightforward or very
difficult to investigate the electron-boson interactions using the
effective-temperature model.

Nevertheless, in the complex hole-doped cuprate
Bi2Sr2CaCu2O8+x (Bi2212) system, at high temperatures
without pseudogap and SC states a quasithermal behavior was
observed instantaneously after photoexcitation [14,32,34], and
the e-e scattering time was believed to be less than ∼10 fs [32].
In addition, the rising time (∼45 fs) of �R/R immediately
following the photoexcitation derived from our experimental
data is almost equivalent to the optical pulse duration. Such
observation suggests an ultrafast e-e scattering time existing
in the LCCO samples because a strong indication of a long e-e
scattering process is that the rising time is much larger than
the pulse duration [35]. Therefore, these results imply that
at high temperatures, e.g., T > TC , the effective-temperature
model might still be applicable when discussing the dynamics
in the electron-doped LCCO.

Figure 2(a) illustrates the energy exchanges and relax-
ation between four reservoirs in the frame of the effective-
temperature model: one for the charge carriers and three for
the bosonic excitations. Each reservoir is characterized by
an effective temperature Te or Tj (j = s,p,l). The subscript
e denotes the charge carriers. The bosonic excitations are
classified by their electronic origin such as spin fluctuations
(s) or phononic origin, including hot phonons (p) and the rest
of lattice excitations (l). The time evolution of the effective
temperatures is quantitatively connected to the interactions
between charge carriers and bosonic modes. The interaction
associated with each mode can be fully accounted for by its
linear contribution �j (�) to the total bosonic spectral function

�(�) [13,14]. Conventionally, �s(�) and �p,l(�) are also
expressed as I 2χ (�) and [α2F (�)]p,l . In principle,Te(t),Tj (t),
and �j (�), which decide the electronic self-energy 	(t,�),
can be derived from the time-dependent optical conductivity
σ (t,ω) or reflectivity R(t,ω) using the extended Drude model
[14,34]. Such a relationship provides us with the possibility
to disentangle the electronic and phononic excitations and
quantitatively elucidate the temperature evolution of their
interactions with the fermionic quasiparticles that leads to the
electron pairing at Tc.

However, different from previous work done at room tem-
perature [14], we find that during quasiparticle thermalization
it is necessary to include the additional coupling term gpl

describing the anharmonic decay to explain our T -dependent
experiments in the low-temperature regime (see Appendix B).
Therefore, hot phonons are an indispensable and dominant
scattering medium for the excited quasiparticles to equilibrate
with the lattice. In fact, incorporating gpl eventually leads to a
negligible �l(�) (�0).

Figure 2(b) shows the fit to experimental data using the
effective-temperature model (see Appendix B). Excellent
agreement is obtained for all investigated temperatures. In
fact, the number of free fitting parameters is even less than
that in the simple two-exponential decay equation frequently
used for interpreting the time-resolved data. Details on the
fitting procedure are provided in the Supplemental Material
[29]. During the fitting, the electron-phonon couplings are
assumed to be independent of temperature [34,36]. As an
example, the total bosonic spectra �(�) at 35 K and the
corresponding �s(�) and �p(�) [�l(�) � 0] are illustrated
using a histogramlike function in Fig. 2(c) [13,14]. In fact,
the final fitting results are quite robust against the detailed
shape of �(�) [14]. A crucial result yielded by our fitting
is the specific heat associated with �s(�): Cs < 0.018Ce,
as seen in Fig. 3(a). Although we have already pointed out
that the e-e scattering ends rapidly in LCCO, one might
still question whether such small Cs can be contributed by
the nonthermalized electrons. Indeed, under the premise of
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FIG. 3. Temperature-dependent fitting results and the long-relaxation processes in �R(t)/R. (a) The specific heat Cs as a function of
temperature. Cs reaches a maximum around T †, indicated by the dashed line. (b) The electron-boson coupling constant λs as a function of
temperature (black open squares). The red solid line indicates the experimental data below the critical temperature T † strongly increase with
decreasing temperature. The estimated maximum SC transition temperature (Tc)s is shown by the black open triangles. The green dotted line
indicates Tc (=25.1 K). The black dashed line shows the position of T †. (c) T -x and T -δ phase diagram for LCCO. In the T -x phase diagram,
the green dashed line with open circles represents the SC boundary, while the red dashed line with open squares represents the AFM boundary
estimated by the in-plane angular magnetoresistance measurements [24,38]. In the T -δ phase diagram, the green area is the SC dome, while
the red area, evaluated from this work, represents the 2D AFM spin-fluctuation regime. (d) �R(t)/R as a function of temperature on a long
timescale for sample II. The red dashed line represents the long-relaxation component extending into the nanosecond regime. T # is the critical
temperature where the amplitude of the long-relaxation component flips sign. T # as a function of Tc is shown in the inset.

reasonable fit, Cs remains almost unchanged even in the frame
of the extended effective-temperature model including the
nonthermal effect (see Appendix B). Thus, such a small Cs

evidently shows that the bosonic excitations associated with
�s(�) have an electronic origin, which is further confirmed
by the temperature-dependent measurements of Cs below.
This finding is also very consistent with the fact that Te and
Ts get instantaneously thermalized, in contrast to the slow
rising time of Tp (subpicosecond) and Tl (>1 ps) in Fig. 2(d).
Although �s(�) is distributed over the whole energy domain
investigated, its contribution within ∼65 meV (the upper limit
of phonon energy [21,37]), where different types of bosons are
entangled, is significant at low temperatures, e.g., �s/�p �
0.4 for � � 65 meV at 30 K.

Furthermore, our experiments show that �s(�) strongly
depends on the temperature. Specifically, the strength of
�s(� � 65 meV), represented by the red area below 65
meV in Fig. 2(c), increases significantly as T approaches
Tc (see the Supplemental Material [29]). This variation can
be best revealed by investigating the temperature-dependent

electron-boson coupling constant: λs = 2
∫

�s(�)/�d�. As
shown in Fig. 3(b), we clearly observe a pronounced enhance-
ment of λs below T † (∼60 K), corresponding to the strong
increase in �s(� � 65 meV). Remarkably, there is a peak
around T † in the specific heat Cs (<0.018Ce). Nonthermal
electrons can hardly contribute to such abnormal T -dependent
behavior. Instead, these results strongly indicate the emergence
of electronic excitations with a sufficiently long correlation
length below T †. Indeed, T † is found to have the same tem-
perature scale reported previously, below which the in-plane
twofold anisotropic magnetoresistance appears and the 2D
AFM correlations are proposed to emerge [24,38]. Therefore,
the detected bosonic mode of electronic origin should be
closely related to the 2D AFM spin fluctuations. The above
observations are in accordance with the remarkable change in
experimental �R(t)/R and also explain the appearance of the
A† component in �R/R, which is initially expected to arise
from the onset of the new scattering channel.

Assuming that each �j (�) (j = s,p) entirely
contributes to the electron pairing, we are able to estimate
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the maximum SC transition temperature (Tc)j associated
with λj via the extended McMillan formula [29,39,40]:
Tc = 0.83�̃j exp[−1.04(1 + λj )/λj ], where ln�̃j =
2/λj

∫ ∞
0 �j (�)ln�/�d�. The electron-phonon coupling λp

is found to be ∼0.47 and agrees well with previous findings in
cuprates [13,37]. It correspondingly yields a maximum critical
temperature (Tc)p of ∼15 K, which is far below Tc (= 25.1 K).
This implies that phonons alone cannot be the key pairing glue.
By contrast, the bosonic mode of electronic origin becomes
stronger with decreasing temperature. The λs at 30 K, as seen in
Fig. 3(b), can already yield a maximum (Tc)s of 34 K, which is
well above the SC transition temperature. This presents direct
evidence that the AFM spin fluctuations can fully account for
the electron pairing in LCCO. Given the increasing rate of λs

below T † is nearly the same for the investigated samples, Tc

is expected to increase monotonically with T † and agree well
with the observation in the inset of Fig. 1(e). Extracting T †

from different optimally doped samples (x = 0.1) gives us a
new temperature-oxygen concentration (T -δ) phase diagram
on top of the previous T -x phase diagram. The expected SC
dome and the 2D AFM spin-fluctuation regime are shown by
the green and red regions in Fig. 3(c), respectively. Based on
the above analysis, this phase diagram provides evidence that
stronger 2D AFM spin fluctuations will give rise to higher
Tc [41].

Nonzero �s(�) persists to high temperatures above T †,
where it is dominantly distributed above ∼65 meV. The
obtained coupling λs gradually decreases with increasing tem-
perature. For T > T †, the estimated maximum (Tc)s becomes
comparable to or even smaller than (Tc)p. Thus, experiments
limited to high temperatures may fail to catch the decisive
temperature evolution of bosonic excitations and cannot tell
which bosons are truly responsible for the high Tc in LCCO.
At this stage, we cannot clarify the exact origin of the electronic
excitations above T †. Nevertheless, they may act as an impor-
tant scattering medium for the T 1.6 scaling of the resistivity by
quantum criticality at the edge of the superconductivity dome
[24,31].

An interesting phenomenon is observed when we turn
to the long-relaxation process in the nanosecond regime. In
this regime, the relaxation for metalliclike systems is often
attributed to the low-energy excitations. As shown in Fig. 3(d),
the amplitude of such long-relaxation dynamics changes
sign from negative to positive with decreasing temperature.
Specifically, it has a negative amplitude at high temperatures,
e.g., 100 K, where the long relaxation with the nanosecond
timescale should be attributed mainly to the thermal diffusion
processes or the dissipation of low-energy acoustic phonons.
As the temperature gradually decreases, there appears to be a
hidden positive long-decay component which competes with
the negative one, shifts the overall long-relaxation signal
towards zero at a certain temperature T #, and causes a positive
amplitude in the nanosecond regime at lower temperatures,
indicated by the red dashed line in Fig. 3(d). We investigated
T # in a set of various oxygen-tuned samples and found
that T # can be either above or below Tc. However, more
surprisingly, an anticorrelation relation exists between T # and
Tc, as seen in the inset of Fig. 3(d). These phenomena suggest
a competing order associated with T # that can coexist with the
superconductivity. A natural candidate of such a competing

order is the three-dimensional antiferromagnetism [42]. We
note that T # indicates only the existence of the competing
order and cannot reveal the exact temperature where it starts to
appear. In addition, although below ∼0.3 μJ/cm2 the absolute
value of T # can change slightly as the pump fluence varies
[21], the anticorrelation behavior between T # and Tc will not
change.

IV. CONCLUSION

Our results provide quantitative and unambiguous evidence
for the electron-doped cuprates known so far that bosons
with electronic origin, i.e., 2D AFM spin fluctuations, are the
imperative glue for the SC pairing, although we cannot exclude
the possibility that other electronic excitations and phonons
could also participate in the electron pairing process. Our
work demonstrates that ultrafast optical spectroscopy in the
temperature domain not only can extract the strongest coupling
associated with the electronic excitations near Tc but also is
capable of elucidating the origin of these excitations via their
temperature dependence. Therefore, this investigation forges a
path for systematically exploring interactions between charge
carriers and bosons with both electronic and phononic origins
in cuprates and other correlated materials.
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APPENDIX A: CUMULATIVE HEATING EFFECT

At low temperatures, possible non-negligible accumulated
heating on samples may hinder our attempt to reveal the
physics behind using laser systems with a high repetition rate.
Therefore, in order to evaluate such an effect, we performed
similar experiments using another Ti:sapphire laser system
with a lower repetition rate of 5.1 MHz and a pulse duration
of ∼60 fs.

First of all, we note that in this work our main focus
is on the experimental data at temperatures above Tc, i.e.,
T � 30 K. In the high-temperature regime (normal state),
the continuous heating effect is greatly minimized. Second,
Fig. 4 illustrates the typical results taken at 35 K for sample I
using a 5.1-MHz laser system. For excitation fluences below
∼0.6 μJ/cm2, the normalized �R/R data follow almost the
same time-dependent behavior, or � defined in Fig. 1 is nearly
fluence independent. For comparison, Fig. 4 also shows the
normalized �R/R measured with a fluence of ∼0.6 μJ/cm2

using the 80-MHz laser system. It can be seen that the signal
nearly overlaps with those measured below ∼0.6 μJ/cm2

using the 5.1-MHz system. These observations imply that for
T � 30 K the cumulative heating effect is minimized or can
be neglected for fluences below ∼0.6 μJ/cm2. The low pump
fluence of ∼0.3 μJ/cm2 used in our work is less than this value.
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FIG. 4. Fluence-dependent �R/R measurements for sample I
(Tc = 18.6 K) at 35 K using 5.1- and 80-MHz laser systems. The
inset shows the maximum values of |�R/R| as a function of fluence;
the dashed line is a liner fit to the data (open circles). In the inset,
the red open square corresponds to a pump fluence of ∼0.6 μJ/cm2

for the 80-MHz laser system. The black arrow indicates the fluence
(∼0.3 μJ/cm2) used in the main text.

APPENDIX B: EFFECTIVE-TEMPERATURE MODEL

The energy transfer rate between nonequilibrium charge
carriers and phonons in the two-temperature model is con-
nected to the Eliashberg coupling spectra function α2F (�) and
was solved by Allen [43]. Very recently, a similar theoretical
frame was extended to include I 2χ (�), associated with the
bosonic excitations with electronic origin. The corresponding
energy transfer rate is defined as [13,14]

G(�j,Tj ,Te) = 6Ce

πh̄k2
bTe

∫ ∞

0
�j (�)�2[n(�,Tj )

− n(�,Te)]d�, (B1)

where j (= s, p, l) represents the electronic excitations (s),
hot phonons (p), and the rest of the lattice (l); [α2F (�)]p,l and
I 2χ (�) are represented by �p,l(�) and �s(�), respectively.
The total bosonic spectral function �(�) is defined as �(�) =
�p(�) + �l(�) + �s(�). Te is the electronic temperature,
and Tj is the effective temperature characterizing each type of
bosonic excitation. n(�,T ) is the Bose-Einstein distribution
and is given by n(�,T ) = 1/(e�/kBT − 1). Here, the Fermi-
Dirac distribution is assumed to build up instantaneously

after photoexcitation. Therefore, the energy transfer between
nonequilibrium fermionic quasiparticles (Te) and bosonic exci-
tations (Tj ), schematically shown in Fig. 2(a), can be described
by the effective-temperature model via a set of coupled rate
equations:

∂Te

∂t
= G(�s,Ts,Te)

Ce

+ G(�p,Tp,Te)

Ce

+ G(�l,Tl,Te)

Ce

+ p(t)

Ce

, (B2)

∂Ts

∂t
= −G(�s,Ts,Te)

Cs

, (B3)

∂Tp

∂t
= −G(�p,Tp,Te)

Cp

+ gpl

Cp

(Tl − Tp), (B4)

∂Tl

∂t
= −G(�l,Tl,Te)

Cl

− gpl

Cl

(Tl − Tp), (B5)

where p(t) is the Gaussian-like excitation source, Ce or Cj

is the specific heat, and gpl describes the coupling between
hot phonons and the rest of the lattice due to the anharmonic
decay process [44]. The gpl coupling term is neglected in
previous studies [14]. But our work shows that it has to
be included for temperature-dependent experiments to fit the
�R/R data. The couplings between phonons and electronic
excitations are ignored [14], mainly due to the instantaneous
equilibration of Te and Ts . In general, the specific heat of
each subsystem satisfies the relation Cs < Ce < Cp � Cl .
Additionally, the electron-phonon coupling function�p,l(�) is
expected to be temperature independent [34,36]. The detailed
fitting procedure is given in the Supplemental Material [29].

When the nonthermal electrons have to be taken into
account for the fitting, an extension of the above effective-
temperature model can be used according to Ref. [33]. The
essential part of the extended model is that on the right side of
each above rate equation there will be an additional distinct heat
source corresponding to the electrons or bosons. These terms
are expressed as ∂Uee/∂t , ∂Ues/∂t , ∂Uep/∂t , and ∂Uel/∂t ,
respectively. They are given in detail in Ref. [33]. Compared
with the effective-temperature model, the introduction of these
terms will not add extra free fitting parameters for a given e-e
scattering time τee. To check the potential contribution to Cs

from the nonthermal electrons, we arbitrarily set several τee

between 5 fs and 1 ps. In fact, a good fit can be obtained only
for τee less than 100 fs.
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