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Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms
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We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in
an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent
Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The
properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In
particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are
all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured
with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the
equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze
the nonequilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to
explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet
formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on,
we find that real-time dynamics shows crossovers reminiscent of poor man’s renormalization group flow used to
describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the formation
of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic behavior.
On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections to the
well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate. Theoretical

results discussed in our paper can be measured using currently available experimental techniques.
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I. INTRODUCTION

The Kondo effect is a ubiquitous phenomenon in electron
systems. It was originally studied in the context of the anoma-
lous temperature dependence of resistivity of metals, which
arises from electron scattering on magnetic impurities [1-3].
Subsequent experimental and theoretical work showed that in
systems with a periodic lattice of localized spins and itinerant
electrons the Kondo effect gives rise to a whole new family
of strongly correlated electron systems, the so-called heavy
fermion materials [4-8]. Strong enhancement of the quasipar-
ticle mass in these materials has its origin in the formation of
Kondo singlets [7,9-11]. Some of the most intriguing examples
of the non-Fermi liquid behavior of electrons have been
observed in the vicinity of the quantum critical point between
the heavy fermion phase and the magnetically ordered state
[6,12]. In mesoscopic systems, Kondo effect also takes on a
central role; in particular, transport through small quantum dots
in the Coulomb blockade regime for odd occupation numbers
is strongly affected by the formation of Kondo resonances
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[13—-19]. Through its equivalence to the spin-boson problem,
the Kondo model also describes the process of decoherence
and dissipation in many-body quantum systems [20-25] and
macroscopic quantum tunneling [26-30].

From the conceptual point of view, the Kondo effect
provides a striking example of the nonperturbative effect of
interactions in many-body systems. The antiferromagnetic
Kondo interaction is a relevant perturbation, so even for
small Kondo scattering the system “flows” to the strongly
coupled fixed point at low temperatures [31]. The charac-
ter of the low-temperature fixed point cannot be captured
within a simple mean-field approximation and low-energy
properties of the system are very different from those of the
original free electrons. Formation of the Kondo resonance at
the Fermi energy intrinsically has a many-body character as
manifested, for example, by the anomalous Wilson ratio [32].
Accurate theoretical analysis from the spin susceptibility to
the specific heat of the Kondo system is possible either in
the high-temperature/energy limit, where interactions can be
treated perturbatively or at very low temperatures where one

©2018 American Physical Society
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can start from the low-energy fixed point. Many theoretical
approaches introduced to study the Kondo model attest to
the importance and difficulty of this problem. These include
perturbative renormalization group [31], Bethe ansatz, large-N
[33,34], and noncrossing approximations [35-38], as well
as numerical studies utilizing the numerical renormalization
group (NRG), density matrix renormalization group (DMRG)
[39], density matrix numerical renormalization group (DM-
NRG) [40] approaches and the flow equation method [41].
The Kondo effect has been one of the most fruitful areas of
condensed matter theory, with many techniques developed in
this field subsequently being extended to other systems.

Most of the earlier theoretical work on Kondo systems
focused on equilibrium properties on the linear response to
external perturbations. In the last few years, out-of-equilibrium
properties of the system have also become the subject of active
research. This analysis is motivated by experimental studies of
transport through quantum dots at finite bias voltage [42—44],
optical spectroscopy [45,46], as well as pump and probe ex-
periments [47]. Theoretical analysis of the out-of-equilibrium
dynamics of Kondo systems is particularly challenging due to
the interplay of degrees of freedom at different energies.

We have recently seen considerable progress in realizing
a new experimental platform for studying strongly correlated
many-body systems, using systems of ultracold atoms as a
quantum simulator [48]. Recent experiments demonstrated the
fermionic Mott state with long-range antiferromagnetic order
[49], observed spin-charge separation in the one-dimensional
Fermi-Hubbard model [50], studied BCS to BEC crossover in
the vicinity of the Feshbach resonance [51,52], and observed
a long-lived prethermalized state in one-dimensional Bose
systems [53], just to name a few. Ultracold quantum gas exper-
iments promise to shed a completely new light on the Kondo
model, which has been studied for decades in condensed matter
environments. The slow dynamical timescales of ultracold
systems make it possible to study Kondo dynamics in real
time. Such measurements are rather challenging in condensed
matter environments due to the fast timescales of the electronic
degrees of freedom [46]. In addition, quantum gas microscopy
can probe the impurity and the bath in a spatially resolved way.
This would make it possible for the first time to measure the
spatial structure and dynamics of the Kondo screening cloud.
Recent proposals [54—59] suggest that ultracold alkaline-earth
atoms are ideal candidates to realize both the isotropic ferro-
magnetic (FM) and antiferromagnetic (AFM) Kondo model
using static optical potentials. However, beyond the physics of
the isotropic model, a wealth of additional exotic phenomena
opens up if one breaks its SU(2) symmetry and introduces
anisotropy between the Kondo couplings.

In this paper, we consider a system of '"*Yb atoms in
an optical lattice, as shown in Fig. 1(a), such as the one
studied recently in experiments by S. Folling and collabora-
tors [60]. We show how by adding Floquet-type control of
interactions one can realize a particularly intriguing regime
of the Kondo model: ferromagnetic (FM) interactions with
tunable exchange anisotropy between the Kondo couplings
J; and J, corresponding to the z and the (x,y) directions,
respectively. While in the commonly studied antiferromagnetic
(AFM) Kondo model spin anisotropy is irrelevant, systems
with ferromagnetic easy-axis and easy-plane couplings behave
in a very different way. Systems with easy-axis anisotropy
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FIG. 1. Experimental realization. (a) Blue (red) atoms denote the
|g) (Je)) states of alkaline-earth atoms. Only two of the 2/ + 1 nuclear
spin states of |g) atoms are populated initially. A dim laser pulse
excites a small fraction of |g 1) atoms into the |e 1}) state, whereas the
|g ) atoms are left unaltered. The |e) atoms are anchored by a deep
optical lattice, acting as impurities that interact with the itinerant |g)
atoms through strong on-site interaction. (b) In the quench experiment
discussed in Sec. VB, the |e) atoms are excited at time T = O into
the |{}) state, during a time that can be considered instantaneous
on the timescales of the Kondo dynamics. They gradually lose their
spin orientation due to the spin exchange with the |g) atoms. The
magnetization of the impurity (S3(7)) can be measured after an
evolution time t.

(|J;] > |JL|) and those with SU(2) symmetry flow to weak
coupling, so that at low temperatures, the impurity spin
becomes effectively decoupled from the conduction electrons.
Easy-plane systems (| J;| < |J1|), by contrast, have a nontrivial
renormalization group flow, which first goes in the direction of
decreasing ferromagnetic coupling, but later crosses over to the
antiferromagnetic regime and flows toward the strong coupling
fixed point. Therefore, at the lowest temperatures, the impurity
spin acquires a screening cloud [61-63], although the original
microscopic model had ferromagnetic interactions with easy-
plane anisotropy. We consider several types of experiments that
can probe this exotic regime.

Furthermore, we also analyze quench-type experiments
demonstrating the formation of the Kondo cloud in real
time. We find the most intriguing dynamics in the regime
of easy-plane ferromagnetic couplings: whereas the dynamics
initially has ferromagnetic characteristics, it crosses over to
antiferromagnetic behavior at long times, as characterized by
the formation of the screening cloud. This calculation can not
be handled using the NRG approach since it requires analyzing
the long-time dynamics of the low-temperature system. We
thus use a new nonpertubative variational approach to describe
the time evolution of anisotropic Kondo systems across the
phase diagram [64]. We also discuss the measurement of the
impurity spin relaxation in the regime of easy-axis ferromag-
netic couplings. We show that the ultracold atomic experiment
could be the first to resolve quantum corrections [21] to the
well-known Korringa law [65], describing the temperature
dependence of the spin relaxation rate.

II. KONDO MODEL

A. Formulation of the model

To establish notations, we begin by introducing the Kondo
model including some additional terms, which will be used
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in subsequent discussions. We will also remind the readers
of some basic facts about the Kondo model that will lay the
foundation for analysis in the next sections. The Kondo Hamil-
tonian Hyondo = HX + HX, + HE describes the interaction
of a localized impurity spin with the surrounding fermionic
bath. The dynamics of the bath is governed by the Hamiltonian

Hblgth = Zeav glagam ()
where the operators g,, annihilate a bath atom with spin o
in the bath eigenmode «. Here, the indices « run over those
eigenmodes of the bath around the impurity which couple to
the impurity. The single particle energies €,, also include a
Zeeman splitting between the [1) and || ) bath fermions. The
density of states of these modes o(¢) factors in the strength
of the coupling of the bath to the impurity (see Appendix A
for the full definition). In a three dimensions, 0(0) = 0.118/r.
Interaction between the impurity spin S, = (57,57, 5?) and the
surrounding bath of fermions is given by the anisotropic Kondo
interaction Hamiltonian

1 .
[{1{; = M Z ((JZ/z) S; 0;0’ g;a gﬁﬁ/

afoo’
+HIL/2(S: 050+ 57 0,,) 8ho 80
+ K 850 gla 8Bo’ )v @)

where the Pauli matrices are denoted by (6¥,07,0%). M stands
for the number of lattice sites of the system, whereas J, and
J, denote the longitudinal and transverse Kondo couplings,
respectively. S = S¥ £ S, are spin-flip operators acting on
the impurity. The associated dimensionless couplings j, = J.0
and j, = J) o characterize the coupling strength between the
impurity and the bath, and determine the temperature scale
of the onset of the Kondo effect [11]. In addition to the
spin-dependent scattering, the impurity also gives rise to the
potential scattering term K which is the last term in Eq. (2).
This term has no significant effect on the low-energy Kondo
dynamics of the system and can be eliminated using a basis
transformation [11].

Using a static external Zeeman field in the experiment
breaks the SU(2) symmetry of the low-energy Kondo model
to a U(1) symmetry, associated with the conserved spin in
the z direction. This leads to anisotropy between the Kondo
couplings J, # J,. In addition, the field also breaks the m
rotation symmetry along the x or y axis, and therefore allows
for the appearance of additional effective magnetic couplings

1 m
HE = —m, 5 — 5 ﬁg > 0%, 8l 8po- 3)

aBoo’

Whereas m, acts as an external local magnetic field for the
impurity atom, the coupling m, creates magnetic scattering
for the bath atoms. Note that this scattering occurs only at the
position of the impurity, however, it does not involve the spin
of the impurity. As we discuss in Sec. IV, large enough values
of these magnetic terms can be detrimental to the formation of
the screening cloud in the antiferromagnetic model. However,
modulating the external field restores the 7 rotation symmetry
of the low-energy Floquet Hamiltonian, and the magnetic
couplings vanish (see Sec. III B). We show that a combination
of static and modulated external fields can be used to control the

AFM
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FIG. 2. Anisotropic Kondo phase diagram in the absence of an
effective magnetic field. j, is the dimensionless coupling between
the z components of the impurity and the bath atoms, whereas j,
is associated with spin-flip processes. Gray arrows indicate the poor
man’s scaling renormalization group flows, arising from the second-
order perturbation theory [31]. Couplings in the white region flow
to the line of ferromagnetic fixed points (j, = 0, j, < 0), where the
Kondo impurity remains unscreened. In contrast, all points in the dark
(green) region flow into the antiferromagnetic fixed point, where the
Kondo impurity forms a singlet with the surrounding cloud of atoms.

magnetic terms m, and m independently from the anisotropy
a=1J 1 — JZ.

B. Phase diagram and the relevant energy scales

When the effective local magnetic fields m, and m , are zero,
the Kondo model is described by the phase diagram shown
in Fig. 2. The universal equilibrium behavior is determined
by the dimensionless Kondo parameters defined as j, = J, o0
and j; = J, o. The gray lines in the phase diagram denote
the renormalization group flows of the dimensionless Kondo
couplings j, and j; under the poor’s man scaling flow [11,31].
Note that the sign of j, is not relevant as it can be changed by
a r rotation of the spins in the x-y plane, but the sign of j is
important.

In the shaded region of the phase diagram in Fig. 2,
the parameters flow towards the strong coupling AFM fixed
point, (j,,ji1) — 0o. At zero temperature, the impurity spin
is completely screened by a cloud of itinerant atoms, whose
total spin forms a singlet with the impurity. The Kondo
screening survives as long as the temperature is below a
fundamental energy scale, called the Kondo temperature, Tk
(see Appendix B). A hallmark of the Kondo regime is that
every physical quantity depends on the microscopic model
parameters solely through Tk, so determining Tk precisely
is essential. To better understand how we define Tk, it is
useful to discuss the isotropic situation j, = j; = jegr first. The
isotropic coupling jeg is always positive in the AFM region.
Then Tk is found to depend on this dimensionless parameter
and is regularized by an energy cutoff of the order of bandwidth
D[11]

Tx = D/ jetr exp(—1/jete), Jetr > 0. 4

In the case of anisotropic coupling, Tk is associated with
the infrared divergence in the poor’s man scaling equations
(discussed in Appendix B). As a rule of thumb, in the limit
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when jeg — 0, the Kondo temperature Tk, vanishes expo-
nentially. The formation of the Kondo cloud does not survive
in the easy-axis FM (white) region of the phase diagram in
Fig. 2, where the physics is completely different. At low
temperatures, apart from some logarithmic corrections, the
impurity spin behaves essentially as a free local moment.
Here the fixed point Hamiltonian corresponds to free fermions
with an additional degeneracy due to the uncoupled spin.
In this limit, the effective coupling j.s is always negative,
and represents a marginally irrelevant interaction. Solving the
same scaling equation [see (B1) in Appendix B] allows us to
introduce another characteristic energy scale [66]

Eo > D/ jett| exp(—=1/jer) s Jett < 0. )

This expression is formally similar to that of Tk and, further-
more, can be associated with the ultraviolet divergence in the
scaling equations. Therefore we expect Ey, in general, to be
larger than the bandwidth D itself and to diverge in the limit
when jeir — 0. Numerical results for Tx and E are presented
in Sec. IVA.

Discovering the crossover between these two regions, un-
derstanding the effect of magnetic fields and following the low-
energy nonequilibrium dynamics of the impurity constitutes
both a challenge and an opportunity for experiments with
ultracold atoms.

III. EXPERIMENTAL REALIZATION OF THE KONDO
HAMILTONIAN

In this section, we present our proposal for creating a
tunable version of the anisotropic Kondo model Egs. (2) and
(3) using alkaline earth atoms. These species have been widely
used both in atomic clocks [67-69] and in quantum emulation
experiments recently [70-77]. Their special properties arise
from their closed outer electron shell, making the total
electronic angular momentum zero. Their nuclear spin thus
decouples from the electronic degrees of freedom, and it is
not affected by ultracold collisions [74]. Fermionic isotopes
with nuclear spin [ realize systems with SU(N) symmetric
interactions [74,78]. By populating only N spin components,
the symmetry group of the model is tunable from N =1 to
its maximal value of 27 + 1. This can be as large as N = 6
and N = 10 for '>Yb and ¥Sr, respectively. Furthermore,
besides their electronic ground states 'Sy = |g), these atoms
exhibit an excited clock state > Py = |e) of exceptionally long
lifetime [67—-69,79]. The ultranarrow linewidth of the |e) state
is the basis of the significantly increased precision of recent
atomic clocks based on these species. As the |e) state also
has a closed outer shell, the interaction is SU(/N) symmetric
in all channels, |g) — |g), |e) — |g), and |e) — |e) [72,74,78].
In quantum emulation experiments, this makes it possible to
realize higher symmetry analogs of several impurity models,
where the role of the impurity is played by atoms in the excited
state [78].

Our starting point is the Hubbard-Anderson model of the
|g) and |e) states of alkaline-earth atoms. (For a detailed
discussion of the microscopic model of alkaline-earth atoms

in optical lattices we refer the readers to Refs. [78-82].)
The key element of our setup is the state-dependent optical
lattice, which allows to strongly localize |e) fermions while
keeping the |g) atoms highly mobile [60]. We use a time-
dependent Schrieffer-Wolff transformation to show that the
low-energy properties of this system can be described by the
Kondo Hamiltonian. Our analysis extends earlier work on
the subject (see, e.g., Ref. [78]) by including both static and
modulated Zeeman fields, which leads to a much broader class
of anisotropic Kondo Hamiltonians.

A. Hubbard-Anderson model

We now outline the steps needed to realize the spin-1/2
anisotropic Kondo model. Two nuclear spin components pro-
vide the analog of electron spin in electron systems. Atoms are
initialized in the |g) state in a three-dimensional optical trap.
A weak m-polarized laser pulse is then used to excite a small
fraction of one of the nuclear spin components into state |e) [see
Fig. 1(a)]. Different polarizability of |g) and |e) states makes it
possible to create an optical lattice that anchors the atoms in the
clock state but creates only a weak lattice potential for those in
the ground state [79]. Thus the few impurities created by the
laser pulse are coupled to the Fermi sea of mobile ground state
atoms [78].

The bath atoms interact with each other through the nuclear-
spin-independent scattering length a,,. In case of 173Yb, this
is given by ag, = 199.4 ay, where ay denotes the Bohr radius.
As the optical lattice is shallow for the bath atoms, we assume
that they are in the Fermi liquid phase and the |g) — |g)
interaction only renormalizes the Fermi liquid parameters.
Interaction between the impurities and the gas is characterized
by two scattering lengths a;:,, corresponding to symmetric and
antisymmetric combinations of their orbital wave functions
(Ige) £ leg))/+/2, as shown in Fig. 3. Due to the Pauli
principle, the nuclear spins are thus in a singlet and triplet
states, respectively.

Assuming that both the |g) and |e) atoms occupy the lowest
vibrational state on each lattice site, their on-site repulsion is

givenby UZ = % g [ d*r Jwy(r)|? |w,(r)|*. Here, w, and
w, denote the Wannier orbitals of |g) and |e) atoms, respec-
tively. This expression holds as long as the oscillator frequency
of the local potential is much larger than the on-site repulsion.
When the scattering length of an interaction channel becomes
large, the band gap created by the harmonic oscillator potential
effectively limits the interaction energy [83]. In particular for
173Yb, this is the case for the symmetric interaction channel
scattering length a;rg close to 2000 aq [76]. In addition, bound
states can strongly influence the interaction in case of cer-
tain trap configurations [60,84]. The antisymmetric scattering
channel is also repulsive, with A,y = 219.5 ag. Therefore the
on-site repulsion in the absence of bound state resonances is
much stronger in the symmetric than in the antisymmetric
channel. For the computations in this paper, we use the constant

ratio
+
Ueg

Ueg

~ 15.
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FIG. 3. Low-energy spin dynamics in the Hubbard-Anderson
model. (a) Whereas the impurity atom |e) is localized by a strong
optical potential, the bath of |g) atoms is itinerant, with a hopping en-
ergy t. Energy scales of the system are shown in (b), with € denoting
the Fermi energy. The impurity interacts with the bath through on-site
interactions U, and U jq, corresponding to the triplet and singlet spin
channels, respectlvely The on-site interactions are much larger than
the tunneling matrix element to the impurity site. Interactions with
the impurity, therefore, happen only virtually through second-order
processes. Since U,, < U, ::g, the virtual state is dominated by the spin
triplet channel, Wthh leads to FM Kondo couplings J, = J, <0
in the low-energy effective Hamiltonian. An external Zeeman field
creates A, and A, Zeeman splittings, acting on the |e) and |g)
atoms, respectively. The Zeeman splitting A = A, — A, leads tolevel
repulsion and mixing between the singlet and the triplet channels. As a
result, the Kondo parameters become anisotropic and a finite magnetic
term appears in the Kondo Hamiltonian, see Eqgs. (2) and (3).

In the case of a two-component gas, the interaction decouples
in the triplet

111) = %(Igd —leg)) 1),
W) = %<|ge> leg) 144),
1
=) = 5(1ge) — leg) (1) + 141)

and the singlet channels
[+) = 3(1ge) + leg)(d) — [41)),

where |{}') and |{}) denote the spin states of the impurity and |1)
and || ) are those of the bath atom. The (nuclear) spin singlet
configuration, which interacts with the symmetric molecular

potential, therefore experiences stronger repulsive interaction
than the triplet configuration.

The dynamics of the impurity at the origin i = 0 and the
surrounding gas is thus governed by the Hamiltonian

H = HS) + H).

imp*

The kinetic and impurity parts of H are given by

0

Hyg = —t Z 8l 8o ©)
Hlil?;) =U (ngor + ”gOL)(”eOﬂ + neoy)

+ Uex Z g(Jgg/e(T)(; €00’ 800 5 (7)

oo’

where U = (U, + U*)/2 and Ux = (U; U;;)/Z < 0 are
the on-site charge and spin exchange 1nteract10ns. The operator
gio annihilates a bath atom of spin o on site i, whereas ey, is the
annihilation operator of the impurity on site i = 0 with spin o.
At the impurity site, the number operator of the impurity and

bath atoms are given by ng, = ggo 8o and 1.9, = egge()a,
respectively.

Due to the large scattering lengths a and the strong
confinement of the impurities, the system is in the regime
UZ >t where the Schrieffer-Wolff transformation can be
applied. The impurity site is filled by the |e) atom only, and
bath atoms interact with the impurity through virtual tunneling.
This leads to the spin interactions of the Kondo model, shown
in Eq. (2). Since the interaction Uy, in the triplet channel is
much weaker, virtual tunneling into these states has a higher
amplitude. This leads to ferromagnetic isotropic couplings
J. = J; < 0 between the impurity and the bath atoms (see
Sec. IIIB).

We mention that earlier proposals discussed the opposite
regime of weak to intermediate interactions ¢ > U ~ [57,58].
A caveat of this regime is that the fast formatlon of a weakly
bound state may change the on-site interaction and break down
the Kondo dynamics at long times (see, e.g., the discussion in
Ref. [85]).

1. Artificial Zeeman fields

The SU(2) symmetry of the Kondo model can be broken us-
ing an external effective magnetic field. Ultracold experiments
with alkaline-earth atoms have used various ways to create
different (effective) Zeeman fields for the |e) and |g) atoms. A
well-established approach is to create a state-dependent optical
Stark shift, which has been routinely used for optical Stern-
Gerlach separation of the nuclear spin components [74,80—-82].
This allows one to create both static and modulated Zeeman
fields for the atoms. By modulating the intensities or detunings
of the lasers, time-dependent Zeeman fields can be created
(see Appendix C). Effective Zeeman fields can also be created
using a large external magnetic field, as has been demonstrated
in the recent realization of orbital Feshbach resonances of
alkaline-earth atoms [76]. This technique relies on the slightly
different Landé g factors of the bath and impurity atoms [86]. It
works well in case of static Zeeman shifts, requiring external
magnetic fields of the order of 50 G [76]. Modulating such
large magnetic fields at radio frequencies can, however, be
challenging experimentally. In an external effective magnetic
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field, the Zeeman shifts A, and A, are slightly different in the
Hamiltonian:

A

0

Hyin = Héirz — ?g 2(8Z¢8i¢ - ngu), (8)
i£0

o _ Be _
Himp = Hp > M = 1D

Ag
- 7(”g0¢ - ng0¢)~ 9)

In the subspace of the {|{1|),]{1)} states, the interaction
Hamiltonian of the impurity site with a single |g) atom reads
(78]
ex U - A/ 2 U ex

Hi,, = ( Us, U+ A/2>' (10)
Here, A = A, — A, denotes the difference between the Zee-
man splittings of |e) and |g) atoms. This magnetic coupling
mixes the singlet |[+) and triplet | —) states and breaks the SU(2)
symmetry of the model. As we show in Fig. 3(b), this leads to
on-site energies Ex = U £ /U2 + (A/2)?. In contrast, the
energies of the states [f1) and |{|) simply get shifted by
(A, + Ay).

The breakdown of the spin rotation symmetry in the
Hubbard-Anderson Hamiltonian leads to an anisotropy in the
corresponding low-energy Kondo model, as we discuss in
Sec. III B. This anisotropy allows us to realize a large fraction
of the Kondo phase diagram in Fig. 2. The additional magnetic
terms in Eq. (3) can be used to mimic the effect of an external
magnetic field m, acting on the Kondo impurity as well as the
magnetic scattering term m,. Oscillating Zeeman fields on the
other hand average the magnetic terms out, while they preserve
the anisotropy of the model (see Sec. III B 2).

In order to reach sensitive control of the Kondo parameters,
the driving frequency often needs to be in the range of U, gig
(see Sec. IIIB). This means that the driving is usually in the
1 — 10kHz regime, and it is much faster than the dynamical
timescales of the system

T <t <o~ Uy, an

Therefore, on the timescales of Kondo dynamics, the mod-
ulation averages out, and we can use an effective Floquet
description to model the system, as we show in Appendix D.

B. Kondo parameters of the driven model

In this section, we derive the Kondo Hamiltonian governing
the low-energy impurity-bath dynamics. Due to the strong
confinement and interaction between the impurity and the
bath atoms, tunneling to the impurity site by bath atoms is
strongly suppressed, ¢ < Ue;,,U:g,. This is the regime where
the coupling between the impurity and the bath arises from
virtual tunneling to the impurity site. The impurity’s on-
site interaction is described by Hj, in Eq. (9), where the
periodically modulated Zeeman splittings depend on time t.
The bath Hamiltonian

Hyan = Z(Ea —0Ay(1)/2) glogao

a

also has time-dependent energies. The coupling between the
impurity and the bath modes is given by the Hamiltonian [11]

\%4
Hy =Y T 8by 8uo + Hec., (12)

with the hybridization matrix element V = ,/z¢, where z de-
notes the coordination number of the optical lattice. The origin
of the mixing term as well as the calculation of the density of
states o of bath eigenmodes is discussed in Appendix A.

1. Static Zeeman field

Here, we discuss how static Zeeman fields can be used to
control the Kondo parameters in Eqgs. (1-3). We derive the
effective Hamiltonian of the system using the Schrieffer-Wolff
transformation S = —ST [87] and obtain

Her = Py ® (Hpah + Himp + Hmix) e > P, (13)

where the projector Py maps onto the subspace of excitations
with no |g) atoms at the impurity site. States with a single (P;)
and two (IP,) |g) atoms can be neglected from the low-energy
description of the system, as they are separated by an energy
U fg from the Py sector. The transformation § is chosen such
that it cancels the coupling between the bath and the impurity
at first order:

IEI)l Hinix PO = ]Pl [Hbath + I-Iimpv S]PO (14’)

The resulting effective Hamiltonian at second order in S then
becomes

Heip = Po(Hoan + Himp + 215, Hix]) Po. (15)

We solve the Schrieffer-Wolff equation Eq. (14) using the
ansatz

l ’
S= 7 Y TI2K) gl,els eorgho — He.  (16)

K,00'66’

In order to assure spin conservation, the amplitudes I'7Z, (k)
should be nonzero only in case when o + & = ¢’ 4 . Using
the ansatz in the last equation, we obtain the Schrieffer-Wolff
parameters in the |{}1) and |{}}) channels:

U+ Ux —ea)lgg(k)=V. a7

In the {|ft}),|U 1)} basis, the on-site energy U.x mixes spin
channels, and the Schrieffer-Wolff coefficients

o = (F#%@ Fﬁ“ﬂ) i
o T

obey a matrix equation:

0 e (v 07)] =
0 H,®) \—reay o J]TT

The Hamiltonian matrix Hif  is defined in Eq. (10), whereas

ex —A/2 0
Hioun (k) = (Ek 0 / ek+A/2> (19)

describes the energies of the incoming modes. The Kondo
parameters only depend on the difference A between the fields
A, and A, but not on their average (see also Appendix D),
which can be removed using a unitary transformation [86].
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The effective Hamiltonian Eq. (15) takes on the same
form as the Kondo model in Egs. (2) and (3). We note that
during spin-flip processes |} ) <> |{1), the scattered |g) atom
changes its energy with +A. In order to make sure that the
scattering exchanges particles between the Fermi levels of
|g 1) and |g |) atoms, the Fermi energies also need to be
separated with this energy €ry —€r, = A. The imbalance
of Fermi energies can lead to differences in the density of
states for the two components g4 # ¢,. The Kondo scaling
equations, and thus the low-energy properties of the model,
are determined by the dimensionless product of the couplings
and the densities of states, as we discuss in Appendix B.
Therefore the anisotropies of the dimensionless couplings
might be different from that of J, and J, .

The Zeeman field dependence of the Kondo parameters at
the Fermi energy is given by

Uex (U — UZ — 555 A?)

J.(A) =2V? e
Z (U2 - U2)’ - U A2
U (U2 — U2
Ji(A) =2V? o (U — US) 1)

(U2 —U3)' — U2 A%

where we introduced the notation Uy = U — € for brevity.
The potential scattering K and the magnetic terms m, =
—mg = m become

Uk Uex

K(A)=—— —F—— — — ——— Ji(D),
2 Ui-Us 4wy
1 U2
mA)=A|=—V? ; o ; ) (22)
2 (Uk - Uezx) — U A’

The dependence of these parameters on the Zeeman splitting
A is shown in Fig. 4. In the absence of magnetic field, the
interaction is SU(2) symmetric J,(0) = J, (0) = J, with

2 2
J=-avr Yo —(V—_ - V—), (23)
Uezx - Ul% Ueg U:é_’

whereas the dimensionless Kondo parameters equal j =
J 0(0). The applicability of the Schrieffer-Wolff transforma-
tion requires that the broadening parameter over the on-site
interaction I'/U g = 7 j be smaller than unity. Larger cou-
plings could be possible to achieve, however, our calculations
for the Kondo couplings are not reliable in that regime.

At increasing Zeeman splittings, the couplings go into the
|J1]| > |J;| easy plane regime. However, the anisotropy is not
sufficient to reach the anisotropic AFM Kondo fixed point since
static Zeeman fields also lead to the appearance of the finite
effective magnetic term m(A). Due to this term, the RG flow no
longer flows into the AFM fixed point, and the Kondo screening
breaks down. We will show in the next section that this term
can be canceled by periodically modulating effective Zeeman
fields.

The primary effect of static external Zeeman fields is that
they create magnetic terms m, and m,, which grow linearly at
small values of A (see Fig. 4). These terms can substantially
change the spin susceptibility of the impurity (see Sec. IV).
Our calculations are reliable at small and intermediate Zeeman
splittings, but they break down near A, = (U2 — UZ2)/ Uk,

& o
0.4r AFM
o 7
02f
M
00 1 1 1 1 1
-04 -0.2 0.0 0.2 0.4
),

04 | (b) | ()

31

02k i |

Dimensionless parameters
=
N o
1

FIG. 4. (a) Dependence of the dimensionless Kondo parameters
J. and j, in Egs. (20) and (21) on a static Zeeman splitting A in
the anisotropic Kondo phase diagram. Red line shows the effect of
increasing A on the isotropic system j, = —j, = 0.2 (black dot).
Gray lines denote the directions of the poor man’s scaling flow
[31] in the absence of magnetic terms. [(b) and (c)] Dependence of
Kondo model parameters of Eqs. (2) and (3) on A. Here, k = Ko
denotes the dimensionless potential scattering term and 7 = m,0 =
—my0 corresponds to the dimensionless magnetic couplings. These
parameters become resonant at the Zeeman field A, at the edges of the
plots. The Schrieffer-Wolff transformation and the Kondo description
is not valid anymore in the vicinity of A,, as indicated by the dotted
line in (a). (Parameters of the plot: Ujg =15 Ugo t = 0.35 Ug,s and
€ = 0)

where the Kondo parameters become resonant. At this point,
the on-site energy E_ turns negative (see Fig. 3) and dou-
ble occupancy of the impurity site becomes energetically
favorable, therefore our Kondo description can no longer be
applied. Furthermore, in the vicinity of A,, our assumption
that higher-order terms in the Schrieffer-Wolff transformation
are negligible starts to break down. However, such large values
of the Zeeman field should not be reached in the Kondo regime
KU ;';,. Since the chemical potential difference needs to be
comparable to the Zeeman splitting, A cannot be larger than the
bandwidth z z. Therefore we can always assume that the static
Zeeman field A remains smaller than Uy, . Since the anisotropy
of the Kondo couplings J; and J; grows quadratically with
A, the anisotropy remains small at such small values of the
Zeeman energy. As we show in the next section, modulated
Zeeman fields can reach much larger anisotropies between the
Kondo parameters, at large driving amplitudes.

2. Driven Zeeman field

In order to obtain full control of the Kondo model, it is
important to find a way to tune the anisotropy of the Kondo
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parameters independently from the magnetic terms m, and
m, in Eq. (3). This can be achieved using a periodically
modulated Zeeman field A(t). The main insight is that the
magnetic term in Eq. (22) is an odd function of the static
Zeeman field A. It is therefore expected to average out to zero
when the field is oscillating. In contrast, we expect that the
anisotropy will remain finite, since it is an even function of the
driving [see Fig. 4 and Egs. (20) and (21)]. Furthermore, by
combining the static and oscillating Zeeman field components,
both the anisotropy and the magnetic terms can be controlled
individually.

Engineering of driven Floquet Hamiltonians has been suc-
cessfully applied in a wide variety of ultracold atomic systems.
This technique has been used broadly to create synthetic
gauge fields, topological bands [88-95] and artificial spin-
orbit coupling [96]. Driving has also been used in interacting
systems to tune the superfluid to Mott insulator transition in
bosonic systems [97] as well as to control the interaction
between atoms [98,99]. Although one could naively expect
that driving interacting systems could lead to heating, these
experiments have demonstrated that excessive heating can
be avoided by choosing the driving frequency far from the
system’s many-body excitations. We achieve this by choosing
the driving frequency to be larger than the bandwidth, as we
show in Eq. (11).

Similarly to the static case, we obtain the low-energy Kondo
parameters using a Schrieffer-Wolff transformation, which
decouples the high-energy and the low-energy subspace of the
Hubbard-Anderson Hamiltonian. Since the bath and on-site
Hamiltonians contain oscillating terms, the transformation
needs to be time-dependent, and it is chosen to have the
same periodicity as the driving field. The low-energy sector
contains terms that are much smaller than the driving frequency
w. This allows us to perform a Floquet expansion in the
transformed basis [100-102] in powers of 1/w, and thereby
derive the static Kondo parameters J, and J . Since the driving
is much faster than the Kondo dynamics, we can stop at the
lowest-order Floquet term, which is simply the time average of
the Hamiltonian. The details of this calculation can be found
in Appendix D, we only present the results here.

Figure 5 shows how the Kondo couplings j, and j, depend
on the amplitude of the oscillating field A(t) = Ay cos(wt).
Depending on the frequency of the driving, the couplings can
show very different anisotropies. In Figs. 5(a) and 5(b), the
driving w tuned below U, et’ creates a FM anisotropy at weak
Zeeman fields. After an initial decrease where the couplings
reach the line of FM fixed points J; = 0, they grow again as
the driving amplitude increases. Eventually, the couplings go
from the FM to the AFM phase, allowing the experimental
study of the phase transition. The experimental signatures of
this transition, specific to cold atoms, are discussed in Sec. IV.
The couplings exhibit the opposite behavior when the driving
frequency is tuned below the U, ng on-site energy of the singlet
spin state, see Figs. 5(c) and 5(d). As the driving amplitude
increases, the system goes into the AFM phase already at
weak driving. We confirmed numerically that the magnetic
couplings m, and mg, vanish when the driving field’s static
component is zero. In both of the above cases, the driving is red
detuned from the on-site interactions U, j; By suppressing the
phase space available for particle-hole excitations, this reduces
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FIG. 5. Kondo model parameters in an oscillating Zeeman field
A(t) = Ay cos(wt). The dimensionless couplings j, and j, as well
as the potential scattering term k = K 0(0) are determined at driving
frequencies [(a) and (b)] = 0.8 U,, and [(¢) and (d)] = 0.95 Ujg
as the Zeeman energy A, increases. The panels on the right show these
parameters as functions of A. As the field has no static component,
the effective magnetic couplings m, and m, vanish. [(e) and ()]
Resonant behavior of the Kondo parameters at frequencies around
(e) U,,, with adriving amplitude A = 0.6 U, and (f) near Uet,, with
an amplitude Ag = 1.5U,,. Close to the resonance (dotted part of
the curve) the Schrieffer-Wolff transformation becomes unreliable.
[Parameters of the plot: + = 0.35 Ue;, and UL,; =15 U;g.]

heating of the bath arising from the optical driving. Since the
driving frequency is below the on-site interaction energies, the
excitation processes need to borrow an energy equal to the
detuning dw = U,, — w from the bath. When the temperature
is much smaller than the detuning 7 < Sw, the probability
of available quasiparticle hole excitations are exponentially
reduced, leading to suppressed heating effects.

We find that the Kondo parameters depend resonantly on
the driving frequency as it approaches the on-site interactions
Ueig, shown in Fig. 5(e). The driving field dresses the atoms
entering the impurity site with multiples of the frequency w.
When the dressed incoming energy approaches one of the on-
site energies, we expect a resonant interaction between the
impurity and the bath atoms, similarly to traditional Feshbach
resonances. Our second-order Schrieffer-Wolff results become
unreliable close to the resonance when the Floquet energies
become of the order of the coupling V, as indicated by the
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dotted parts of the curves. In this regime, the higher-order terms
in the expansion can become non-negligible and more accurate
calculations are needed to characterize the Kondo parameters’
dependence on the driving.

We finally mention that the Kondo parameters can also
be tuned by modulating the optical lattice amplitude, as we
discuss in Appendix E. Similar driving has recently been used
to turn antiferromagnetic into ferromagnetic correlations, the
interactions in the Fermi-Hubbard model [103]. This type of
driving preserves the SU(2) symmetry of the effective spin-
1/2 Hubbard-Anderson Hamiltonian. The Kondo parameters,
therefore, remain isotropic. In addition, this method allows for
extending the physics to SU(N > 2)-symmetric systems, as
the SU(N) symmetry of the underlying atoms is not broken.

IV. FERROMAGNETIC TO ANTIFERROMAGNETIC
PHASE TRANSITION

In this section, we discuss the experimental signatures of
the phase transition between the easy-axis and easy-plane
ferromagnetic Kondo interactions. As Figs. 5(a) and 5(c) show,
periodically modulated Zeeman fields allow one to tune the
anisotropy of the exchange couplings and cross the phase
boundary that separates the two regimes.

A. Local magnetization

Here, we consider the particular protocol in which dimen-
sionless couplings (j;, j ) are linearly tuned from (—0.5, 0) to
(0, 0.5), as indicated by the dashed line in the inset of Fig. 6(a).
The evolution of the characteristic energy scales Tx and Ej
is displayed in Fig. 6(a). These characteristic energy scales
were defined in Sec. [IB. When (j, j1) = (0, 0.5), the Kondo
temperature is maximum, Tx ~ 0.05 U,,. Moving towards the
FM-AFM boundary, Tx decreases exponentially and vanishes
at the phase boundary (j,, j1 ) =(—0.25,0.25). On the FM side
of the phase boundary, E is order of magnitudes larger, Ey ~
10? U,, and increases towards the (—0.5, 0) point. Although
Tk and E are the essential energy scales that characterize the
two regimes, measuring them is a difficult task in general.

A more useful way to visualize the transition between
the FM and AFM regimes is to consider the temperature
and magnetic field dependence of the magnetization of the
impurity (SZ), shown in Figs. 6(b)-6(e). The finite temperature
magnetization was determined using numerical renormaliza-
tion group calculations [104]. In the low-temperature AFM
regime (T K Tk ), the many-body ground state (GS) is a Kondo
singlet, (SZ) ~ 0. In contrast, the ground state becomes a
doublet in the FM regime. In the AFM phase, applying an
effective magnetic field m, < Tk does not break up the singlet
state. On the other hand, in the FM state, even a small m,
is sufficient to lift the degeneracy of the GS and polarize
the local moment. This induces a finite local magnetization
(SZ%) ~ 1/2.This behavioris clearly capturedin Fig. 6(b) where
results for the local magnetization at 7 = 0 are presented. At
finite temperature 7' > 0, thermal fluctuations suppress the
impurity magnetization, therefore larger effective magnetic
fields m, = T are required to fully polarize the local spin on
the FM side of the transition.
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FIG. 6. (a) The evolution of the Kondo temperature Tk in the
AF regime and the characteristic temperature E, in the FM domain.
The parameters (j,, j, ) are continuously tuned along the red (dotted)
line in the inset from (—0.5, 0) towards (0, 0.5). When —0.5 < j, <
—0.25, the system displays the FM behavior and when —0.25 < j, <
0 the system is in the AFM state. (b)—(e) Zero- and finite-temperature
equilibrium magnetization of the impurity (SZ) across the phase

transition. Different line colors corresponds to different magnetic
fields, as indicated in (b).

B. Magnetic susceptibility of the impurity

Whereas the ferromagnetic Kondo behavior can be investi-
gated by measuring the impurity magnetization, this probe does
not tell much about the AFM part of the phase diagram. (SZ) can
be suppressed both by temperature fluctuations and by Kondo
screening, therefore the on-set of the Kondo effect cannot be
determined by looking at this observable alone. In this section,
we show, however, that the dynamical spin susceptibility of
the impurity can be used to directly detect Kondo screening. It
is, therefore, a useful probe to determine the phase transition
between the AFM and the FM phase.

We investigate the time-dependent correlation of the local
spin S%(1),

Xzt — ) = i([Si (D), S; (2]} (x — ), (24)

and determine the corresponding spin susceptibility spec-

trum x/ () = Im x..(2), which can be measured in an
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ultracold system using a Ramsey protocol, as described in
Ref. [105]. x;.(£2) can be determined numerically using the
numerical renormalization group. Analytically, however, it is
easier to compute another response function, ¥..(t —1') =
i{[SZ(1),S:(t")])6(r — '), instead, using perturbation theory.
In frequency space, the spectral functions of these response
functions are closely related,
xu@) = T2
We rewrite the interaction term in the Hamiltonian by intro-
ducing the field Yo = }_, a0, Which annihilates atoms with
spin o in the bath. Using the equation of motion, we obtain

VU—”XN*eM—SMWM (26)

(25)

We evaluate ¥,,(t) perturbatlvely order by order in j, and j,.
The zeroth order gives

mj? 1
Xeel(®) = o @7
As it is derived, Eq. (27) is valid in both the FM as well as
in the AFM regime, irrespective of the sign of the exchange
coupling.

1. AFM regime

When the system is in the AFM regime, one obtains
logarithmic corrections to the exchange coupling at a higher
order. These contributions can be summed up by a perturba-
tive renormalization group procedure [11]. This amounts to
replacing the bare coupling j with its renormalized counterpart
j— j() = l/ln(Q/TK). We then find that

1
4 QIn*(Q /TK)
In the Kondo limit, |2] <« Tx, on the other hand, the
spin spectral function takes on a universal form, y,.(2) =
f(2/Tk)/Tk. Here, f(x) is a universal function that can be
determined numerically. Its imaginary part can be approxi-
mated as f”(x) ~ x, implying

X (R )N [2] > Tk. (28)

KUQ) ~ i 191 < T, 29)
K

abehavior that is characteristic for a Fermi liquid [32,106]. This
leads to a finite spin susceptibility y,, ~ 1/ Tk, in agreement
with the Bethe ansatz results [107]. Figures 7(a), 7(b), 7(e), and
7(f) show results for x/ (€2) obtained using the NRG approach
in the AFM regime. The figures display the Fermi liquid
properties described above: a linear increase, x/.(2) ~ €, at
small frequencies 2 <« Tk, followed by a broad resonance
at Q ~ Tk, and the decay predicted by Eq. (28) at large
frequencies. This behavior survives in the presence of a small
magnetic term, as can be seen in Figs. 7(e) and 7(f). The
Kondo state is affected only by a relatively large magnetic
field m, > Tk.

~

2. FM regime

At the transition point, the logarithmic correction is
asymptotically exact down to frequencies 2 — 0. Using the
same procedure, the renormalized coupling becomes j(2) =
1/ In(2/ Ep). In this regime, the spectral function is then given
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FIG. 7. Magnetic susceptibility of the anisotropic Kondo impurity
across the FM to AFM phase transition for 7 = 0. Figures on the
left (right) show results at zero (finite) magnetic fields. At zero
magnetic field in the AF regime [(a) and (b)], the susceptibility
depends linearly on the driving frequency ! (2) ~ €, indicating
AFM Kondo screening. This behavior changes on the other side of the
phase transition, where the FM ground state exhibits x/ (2) ~ 1/
scaling. In case of finite magnetic fields, the low-frequency behavior
of the imaginary part of the susceptibility always shows ~€ scaling
at frequencies 2 < B. The symbols in the inset in (a) indicate the
points (j;, ji ) in the phase diagram where the susceptibility has been
computed in each panel.

by

&4>~§ 2] > 0 (30)

QIn*(Q/Ey) :
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and it diverges in the & — 0 limit. In the ferromagnetic phase,
however, the effective coupling j, (€2) scales to 0 as j, (2) ~
Q¢. As a consequence, here ., displays a power law behavior,
Xz2 ~ Q%71 ascanbe seenin Fig. 7(d). This singular behavior
is also supported by the NRG results [see panels (c) and (d)
in Fig. 7]. In this respect, the FM side of the transition shows
a singular Fermi liquid behavior [108], as the ferromagnetic
coupling tends to zero very slowly. The presence of a finite
magnetic field introduces a new energy scale, given by the
Zeeman energy. This can be associated with the Fermi liquid
scale Ty, below which the regular nature of the Fermi liquid
is restored and the x(2) ~ € behavior is recovered.

V. NONEQUILIBRIUM DYNAMICS

With several orders of magnitude slower dynamics than
electronic systems, ultracold atoms provide an ideal setup
to test the nonequilibrium dynamics of many-body dynamics
[109]. In addition to their good time resolution, quantum gas
microscopes allow for spatially resolved imaging of both the
Kondo impurity and the bath in real time [110,111]. After the
creation of the impurity in the |{}) spin state [see Fig. 1(b)], both
the impurity’s and the bath’s dynamics can be studied. Thereby
the dynamical formation of the Kondo screening could be
measured. One can heuristically understand the dynamics after
the quench as follows: the short time dynamics is governed by
the high-energy excitations, whereas the long-time behavior is
determined by the low-energy degrees of freedom. Therefore
the system’s behavior mimics that of the RG flows, where the
RG parameter’s role is played by the time. Depending on the
value of the bare couplings, the dynamics of the system either
leads to a ferromagnetic or antiferromagnetic behavior at long
times.

A. Relaxation in the easy-axis ferromagnetic regime
at finite temperature

We start this section by focusing on the long-time expo-
nential relaxation of the impurity in the easy-axis ferromag-
netic regime, as characterized by the Korringa law [65,112].
Whereas quantum corrections to the Korringa relaxation have
been predicted early on [21], these corrections have not been
observed experimentally so far. We argue that at sufficiently
low temperatures, these corrections should be measurable in
ultracold atomic experiments.

In the easy axis FM regime, |J.| < |J;|, the zero-
temperature behavior of the system is dominated by the spin-
dependent scattering term J,. This is the white region below the
isotropic line on the phase diagram Fig. 2. Here, the RG flow
brings the couplings into the line of ferromagnetic fixed points,
with vanishing spin-flip terms J, = 0. Thus the ground state
of the system is purely ferromagnetic, and bath atoms only
participate in Ising-type spin scattering. Based on the poor
man’s scaling equations, one would expect that the impurity
spin freezes in this regime.

At finite temperature, the RG flow does not take its full
course, and it is stopped when the energy cutoff reaches the
range of the temperature [11]. At this point, the effective
spin-flip term remains finite but suppressed compared to its
bare value. Due to the thermal excitations from the bath, the

impurity relaxes to its equilibrium value with a rate v(T).
The temperature dependence of the relaxation rate has been
estimated by Korringa based on the phase space available
to thermal excitations in Fermi’s golden rule. The Korringa
law states that the relaxation rate shall depend linearly on the
temperature, and the impurity freezes at zero temperature. This
result has been confirmed in a number of NMR measurements
in solid state systems.

However, as has been pointed out early on [21], quantum
corrections lead to a power-law temperature dependence of the
relaxation rate,

w(T) ~ T,

This work obtained quantum corrections originally within the
spin-boson model, describing the relaxation of a spin in a
decohering many-body bosonic environment. This model is
intimately related to the Kondo problem through bosonization
of the bath [22]. Quantum corrections obtained in Ref. [21] also
describe the relaxation of the Kondo impurity close to the line
of FM fixed points. Making use of the connection between the
Kondo and spin-boson model parameters, the relaxation rate
can be expressed as
2
n=—jz+%+....

As Fig. 5 shows, the dimensionless coupling can be as large
as j, ~ 0.1-0.2. The resulting correction to the Korringa law
is of the order of n ~ 0.1-0.2, which could be measurable in
the ultracold setup.

B. Quench dynamics at zero temperature

Ultracold atoms not only make it possible to explore the
equilibrium properties of the screening cloud in the ground
state; they also allow one to study how it is formed starting from
an initial nonequilibrium state. Our discussion will emphasize
new aspects of the Kondo dynamics that can be analyzed
using quantum gas microscopes. This includes, for example,
time-dependent spin correlations between the impurity and
spins of the bath atoms. We now consider quench dynamics
of the anisotropic Kondo model. For T < 0, the impurity
spin is completely decoupled from the fermionic bath, and
this coupling is switched on abruptly at T = 0. This protocol
is closely related to the optical spectroscopy performed in
electron systems in experiments by Tureci et al. [46]. The most
intriguing aspect of the Kondo system that we aim to explore
is the formation of the screening cloud around the impurity
spin. This effect is particularly striking in the ferromagnetic
easy-plane regime of the model: the impurity spin gets screened
even though interactions are ferromagnetic, to begin with. We
note that the Kondo model is integrable (when the density of
states can be assumed to be constant) [113-116]. Hence the
dynamics should contain signatures of the conservation laws
of the system. We will not discuss integrability aspects of the
problem in the current paper (see Refs. [113—-115,117-121] for
a discussion of some of these issues).

Arguably, the most interesting possibility of the ultracold
atomic realization of the Kondo model is the opportunity to
measure its nonequilibrium dynamics in real time. We discuss
smoking gun experimental signatures of this process specific
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FIG. 8. Time evolution after the creation of the impurity. (a—c) show the time-resolved impurity-bath spin correlations C;(t) [shown in
Eq. (31)]. The excess polarization is emitted ballistically after the Kondo cloud forms around the impurity. The time evolution of the correlations
C;—o(7) at the impurity site and that of the impurity magnetization are shown in (d) and (e), respectively. The dynamics of these observables
follow our expectations based on the RG flow shown in (f). The bare couplings corresponding to figures (a) j, = —0.35, j. = 0.15; (b) j, =
—0.15, j, = 0.35;and (c) j, = 0.15, j; = 0.35 are denoted as FM (rectangle), FM — AFM (star), and AFM (circle). The easy-axis couplings
in (a) flow to the ferromagnetic line of fixed points (j, = 0), the dynamics remains ferromagnetic, as the impurity becomes ferromagnetically
correlated with the surrounding bath of atoms. In contrast, the bare couplings, shown in (b) and (c), flow into the antiferromagnetic fixed point.
After the formation of the Kondo screening cloud, the impurity magnetization decays and the impurity becomes antiferromagnetically aligned
with the surrounding bath atoms. The bare ferromagnetic couplings in (b) determine the initially ferromagnetic dynamics. However, this quickly
crosses over to antiferromagnetic behavior [see also (d)]. [The calculation was done for a 1D open chain of range [—L, L] with L = 200 sites,
and with the impurity at the origin. 7 denotes the tunneling matrix element along the chain.]

to cold atomic experiments, at several parts of the phase
diagram. Among other observables, we discuss how quantum
gas microscopy can be used to measure the screening and the
bath’s spin dynamics.

We point out that the time-dependent and spatially resolved
Kondo dynamics is still an area of active theoretical research,
with many open questions. The ultracold atomic toolbox could
provide enormous insight into testing theoretical predictions.
Despite the wide variety of methods used to solve this problem,
current techniques are often limited to certain parts of the
phase diagram or they can only determine the dynamics of
the impurity but not that of the bath degrees of freedom.
Earlier works have relied on nonequilibrium Monte Carlo
[122], DMRG [123,124], TD-NRG, the flow equation method
[125,126], time-evolving block decimation (TEBD) [127,128],
as well as analytical solutions [129-134]. Techniques such as
perturbative renormalization group methods [3,135] have been
mainly limited to the regime of weak coupling between the
quantum dot and the reservoirs [125,136-139].

The dynamics of the system is governed by the Kondo
Hamiltonian, Eqgs. (1) and (2), with a vanishing potential
scattering term. In order to make the calculations numerically
tractable, we model the bath by a one-dimensional chain, with
a tunneling 7. The density of states of the chain is set to
01p(0) = 1/(277). We consider the quench dynamics starting
from the decoupled initial state |¥y) = |1)|FS), where |{}) is

the impurity spin in a positive spin-z direction and |FS) denotes
the Fermi sea of bath fermions, i.e., the ground state without the
Kondo coupling. Using the experimental procedure outlined in
Sec. I, we refer the reader to Appendix F for the details. At time
t© = 0, a7 pulse of a weak laser excites a small number of bath
fermions from the |g 1) state into the |e ') state. We determine
the time evolution of the coupled bath-impurity system. In
Figs. 8(a)-8(c), we plot the impurity-bath spin correlations

Ci(t) =) _(S¢
oo’

in FM (a) and AFM [(b) and (c)] phases, where i labels a lattice
site and (- - - ); denotes an expectation value with respect to the
time-evolving state |\W;). (d) shows the correlation C;—(7) at
the impurity site. Note that our calculations can be done without
relying on the bosonization, in which one assumes a strictly
linear dispersion of the bath, see, e.g., the TD-NRG method.
This allows us to analyze an experimentally relevant situation
of fermions on a lattice, where a cutoff scale is naturally given
by the lattice bandwidth and the energy dispersion is nonlinear
in general.

Figure 8(a) corresponds to the easy-axis ferromagnetic part
of the phase diagram and demonstrates the formation of the
ferromagnetic correlations. This indicates the triplet state of
the impurity spin and the co-aligned spin cloud in the bath. The

Yeligir — 8, 80)), 31
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excess local polarization is emitted and propagates ballistically.
Inside the light cone of the spin polarization, the ferromagnetic
correlations develop at the timescale of the Fermi energy, as a
result of the fast response from the Fermi sea.

Above the line of isotropic couplings in Fig. 2, the pa-
rameters flow into the AFM fixed point. Mimicking this RG
flow, the dynamics shows a cross-over from the easy-plane
FM regime to the AFM phase, as shown in Fig. 8(b). In the
short-time evolution, the corresponding correlation C;—o(7)
increases and becomes positive [see Fig. 8(d)]. This indicates
the formation of the triplet state between the impurity spin
and the surrounding fermions. At later times, however, bath
fermions near the impurity change their spin polarization
abruptly, and become antiferromagnetically aligned, as sig-
nified by the antiferromagnetic correlation C;—o(7) < 0. This
contrasts with the dynamics in the intrinsically AFM regime
with a coupling j, > 0 [Fig. 8(c)], where the parameters
monotonically flow into the AFM fixed point (Fig. 2) and
thus the localized fermions exhibit the antiferromagnetic spin
correlation C;—o(t) < 0 at all times. After the emission of the
ferromagnetic excess spin polarization, correlations between
the impurity and the surrounding spins quickly become an-
tiferromagnetic [see Figs. 8(b) and 8(c)]. The nonvanishing
correlations outside the light cone can be attributed to the initial
entanglement in the bath Fermi sea in coordinate space [134].

We show the dynamics of the impurity magnetization (SZ),
in Fig. 8(e) in the corresponding regimes. In the AFM phase
with positive j, > 0 [Fig. 8(f)], the impurity spin monotoni-
cally relaxes to zero, indicating the formation of the Kondo
singlet. This is consistent with the results [140] obtained in
the spin-boson model, which is equivalent to the bosonized,
low-energy effective theory of the anisotropic Kondo model
[22]. We find the oscillations with period 27 /i/D = 7w h /27, as
characterized by the bandwidth D = 47. These are associated
with a high-energy excitation of a particle from the bottom
of the band to the Fermi level [141] and were absent in the
bosonized treatments. Correspondingly, the long-lasting oscil-
lations with the same period can also be found in the impurity-
bath spin correlations, see also Figs. 8(a), 8(b) and 8(d). In the
AFM phase, the couplings flow into the infinite AFM fixed
point, which should make the magnetization ultimately relax
to an equilibrium value close to zero (see Fig. 6). Such an
ultimate relaxation is hampered in the plotted timescale due to
the small Kondo temperature of the parameters, leading to an
exponentially slow decay during the FM to AFM crossover.

Figure 9 shows the spin correlations C;(t) between the
impurity and the bath atoms. After the formation of the Kondo
singlet in the long-time regime, the correlations reach the
equilibrium values of the ground state, with spatially dependent
AFM correlations. These correlations are only formed within a
finite light cone at intermediate times. At the edge of the cone,
the propagation of the excess spin of the Kondo impurity leads
to FM correlations between the bath and the impurity (see also
Ref. [127]).

VI. OUTLOOK

Alkaline-earth atoms allow the realization of a wide variety
of Kondo systems that are beyond the scope of this work.
Whereas we considered localized impurities, mobile heavy
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FIG. 9. Nonequilibrium and equilibrium impurity-bath spin cor-
relations. The correlation C;(t) [defined in Eq. (31)] in the steady-
state regime t = 50/ agrees with the equilibrium values of the
corresponding ground state obtained by the imaginary-time evolution.
At the intermediate time T = 5/7, the emitted spin polarization forms
an effective light cone in which the AFM correlations are partially
developed. All the parameters are set to be the same as in Fig. 8(c).

impurities are expected to show even more complex behavior.
Such impurities can be realized by introducing shallower
lattice potentials [55-58] as well as by using atomic mixtures
[142,143]. In one-dimensional systems, this may lead to the
realization of a two-channel Kondo model, as was shown
in Ref. [144]. In higher dimensions, the recoil energy of
the collision between the impurity and the bath atoms could
suppress low-energy spin exchange processes. We, therefore,
expect that Kondo screening will appear only at finite values
of the coupling J. This behavior is also characteristic of
narrow-gap semiconductors and semimetals such as graphene:
since the density of states is suppressed at the Fermi energy, a
magnetic impurity only shows a Kondo effect if the strength of
the coupling is strong enough [145-150]. These band structures
can be realized using honeycomb and optical superlattices,
which allow one to control the density of states at the Fermi
level. Quantum gas microscopy could provide a completely
new experimental perspective on the interplay of two Kondo
impurities. This system has been studied early on [151-154]:
in the SU(2) symmetric case, its equilibrium properties de-
pend nonuniversally on the dimensionless ratio of the RKKY
interaction strength and the Kondo temperature. This ratio
can be controlled by changing the spatial separation of the
impurities as well as by modifying the filling of the band
[154,155]. Ultracold experiments could study the screening
process in these phases in a spatially resolved way. Further
intriguing questions arise in the case of quench dynamics,
which is exceptionally hard to investigate theoretically, espe-
cially in the case of anisotropic interactions, made possible
by optical driving. Creating a Kondo impurity at each site of
the optical lattice realizes the Kondo lattice, the paradigmatic
model of heavy-fermion materials [4—8]. These systems exhibit
enormous quasiparticle masses as compared to that of the bath
fermions. This mass renormalization should be measurable in
transport and Bloch oscillation measurements. These systems
also exhibit quantum critical behavior, topological and exotic
superconducting orders. Using the periodically modulated
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optical fields discussed in this work, one could also realize the
anisotropic Kondo lattice model and study its complex phases.
Further interesting questions arise about the effect of disorder
on the Kondo dynamics. Optical speckle potentials have been
used extensively to create Anderson localized and diffusive
phases in cold atomic baths [156—158]. Since disorder leads
to local changes in the density of states, the Kondo energy
scales will also become randomly distributed. The disordered
Kondo model still shows non-Fermi-liquid behavior in the
AFM phase [159]. In quench experiments performed in the
localized phase, spin polarization emitted by the impurity is
expected to show revivals, which might be detrimental to the
formation of the Kondo singlet. Three-dimensional disordered
systems show diffusive behavior below the mobility edge
[158]. Instead of ballistic propagation, the spin polarization
emitted by the Kondo impurity will propagate diffusively
and will likely lead to a very different time evolution of
the impurity-bath correlations as compared to the disorder
free case. We finally mention that by populating N > 2 spin
components of alkaline-earth atoms, one can naturally create
an SU(N) symmetric version of the FM Kondo model. As
we discuss in Appendix C, the optical driving suggested in
this paper can break this symmetry down to a product of
U (1) symmetries. In quench experiments, we expect that the
anisotropy of the Kondo coupling terms will lead to several
different dynamical time-scales. Ultracold experiments would
allow studying the effect of this symmetry breaking on the
Korringa relaxation and on the crossover from the FM to the
screened phase.
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APPENDIX A: DERIVATION OF THE HYBRIDIZATION

In this section, we discuss the derivation of the hybridization
V in Eq. (12) and the density of states o of bath eigenmodes.
The calculation below applies to cubic lattices in any dimen-
sion d, as well as to arbitrary fillings.

The hybridization couples the impurity site to the bath
modes |¢,0) = ggm |0). This coupling arises from the tunneling
Hamiltonian between the impurity and the surrounding sites,

Hyy = —t Z g;rg 8os hc. =-V Z(gljw 8oo + H.c.),

(8,0), 0 o

where V = ,/zt is the hybridization. In the last equation,
we introduced the creation operator of the hybridizing orbit
|h,o) = gth |0), which is the equal superposition of states on
sites neighboring the impurity,

1
T Z t
gha = géa'
vz (8.0)

The bath’s dynamics is described by the hopping Hamiltonian
on the remaining sites, Hpyn = Hiin — Hun. This operator
obeys d-dimensional cubic symmetries. Since the hybridizing
orbit transforms trivially under these symmetry group, its
overlap A, = (o,0|h,0) with bath modes is nonzero only
for modes with the same symmetry [160]. These overlaps are
nontrivial due to the boundary conditions the bath eigenmodes
obey at the impurity site. Since Hy,, does not contain the
tunnel coupling between the impurity and its neighbors, its
eigenmodes need to vanish at the impurity site. The density of
states o(w), defined as

0@) =Y |Aul’ 8w — €4) = M | A(@)] pran(®).

incorporates the density of states of these modes, together with
their coupling to the hybridizing orbit. Here, A(w) denotes the
average matrix element of the hybridizing orbit with states at
energy o, and ppum(w) = % Za 8(w — €y) is the density of
states of bath atoms.

We determine o(ep) = —% Im G}If(ep) using the re-
tarded Green’s function G,’f(t) = (FS|{gh(r),g:l(O)}|FS). The
time evolution of the operator g,(t) = exp(i HyanT) gn
exp(—i HpanT) is generated by the bath Hamiltonian. We cal-
culate G, (w) by introducing an auxiliary lattice Hamiltonian

I:Ibalh()\-) =—t Z giTang + )“g(J;UgOU
(i,j).0

with the potential A at the impurity site. For A — oo, Hoan(1)
is equivalent to the bath Hamiltonian. Therefore the Green’s
function Gf, () generated by Hyan (1) also becomes identical
to GR(w) in this limit. We determine GF, (@) by expanding it
in terms of A to infinite order. The lowest-order term is given by

N 1 (ex/1)?
GRp@) = — Y —————
ha=0(@) M A= o — e +i0t

1 Obath (€)
= = [ de(ejryp —Gn’®
Z/ € (€/1) w—e€+i0t

with 0% denoting an infinitesimally small positive constant. A
straightforward calculation leads to the higher-order terms in
the Lippmann-Schwinger equation:

2 [}
Gy (@) = G5 _o(@) + A Yo w). (Al
n=1

Z
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The local Green’s function I1(w) in the last equation is defined
as

1 1 Obath(€)
T1 - — N — I s A
(@) MEk:a)—ek+iO+ /dew—e+i0+’

whereas A(w) = (o [I(w) — 1)/t.
The Green’s function in Eq. (A1) can be summed up as a
geometric series. After taking the A — oo limit, we find that

(A2)

1 A (w)

Gji(w) = z )

Gh A= —o(w) —

As a final step, we determine the tunneling density of states
from the imaginary part of the last equation,

1

Figure 10 shows o(er) together with ppun(€p) in spatial
dimensions d = 1, 2, and 3. At half-filling, the real-part of
IT(w) vanishes due to particle-hole symmetry, and we find
o(0)=1/ (7% 2t pran(0)). In three spatial dimensions, we get
0r(0) = 0.118/¢, which is slightly suppressed as compared
to Ppath(0) = 0.143/¢. In contrast, o is enhanced significantly
towards the band edges.

We mention that, for a numerical evaluation, it is useful to
express the local Green’s function in Eq. (A2) as an integral.
We rewrite the first denominator as an exponential integral
and make use of the integral representation of Bessel func-
tions Jy(x) = f i exp(lx cos(k)). The Green’s function in

T 271
d dimensions is thus given by

: o0
M(w) = _é / dix @O (o).
0

APPENDIX B: DIMENSIONLESS PARAMETERS AT
ANISOTROPIC DENSITY OF STATES

In this Appendix, we outline Anderson’s poor man’s scaling
equations in the case when the density of states of the fermionic
degrees of freedom is different for the two spin components
o+ # 0,. Weillustrate how the anisotropy of the dimensionless
Kondo couplings can be different from those of J; and J, . We
discuss a simplified case when the magnetic terms in Eq. (3)
are neglected and the density of states is constant within the
bandwidth [—D, D] of the bath. Scaling in the more general
case (with energy-dependent density of states and magnetic
terms) more detailed numerical calculations. This can be done
using numerical renormalization group methods [104].

As a first step, we represent the Kondo interaction Hamil-
tonian in a vectorial form

=0 ¥ L

aﬂoaa X, .2

g(ra’ CO{O‘ Cpo’»

where the bath spins are represented by the spin matrices
S, = (sg,sg,sg). The couplings are given by (Jy,J,,J;) =
(J1,J1,J;). In this representation, Anderson’s poor man’s
scaling relations become [161-163]

SJ S A ; aa'a” o
ﬁ =2i Z £ (J Seor )QUH (J ”Sga U)

a'a"c"
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FIG. 10. Density of states o(er) in a (a) three (b) two and (c)
one-dimensional optical lattice (solid line), as a function of the Fermi
energy €r. The ppyn density of states of the bath (dashed line) is
also shown. In three dimensions, o(er) is slightly suppressed near
half-filling as compared to pu.m, Whereas it is enhanced towards the
band edges. In contrast, the density of states is always smaller than
Pran 1IN lower dimensions.

The dimensionless Kondo couplings are most naturally chosen
as

. oy to,
L, =J,—,
Jz z )
jL=JiL ooy

With this choice, the couplings follow the usual poor man’s
scaling equations that also arise in the case of equal density of
states [31],

8j: _ 2

slogD JL B
31 .

SlogD =T L

Thus the renormalization group flow of these couplings will
be identical to the ones shown in Fig. 2.
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FIG. 11. Schematics of the laser configurations realizing effective
Zeeman shifts for the |e) atoms, using circularly polarized o laser
fields. Only the couplings to the m; = £5/2 fields are shown. The
laser frequencies are detuned relative to the |e) — |*D;)-transition
with a detuning comparable to the hyperfine splitting. Due to their
different matrix elements, the o™ lasers couple differently to the
two nuclear spin states. Thick arrows denote large matrix elements
whereas narrow ones correspond to weak couplings. By choosing
appropriate detunings of the lasers, a Zeeman shift (a) A, < 0 and
(b) A, > 0 can be realized. Modulated Zeeman fields can be realized
by modulating the amplitudes of the laser configurations in (a) and (b).

APPENDIX C: OPTICAL STARK SHIFT

The effective Kondo Hamiltonian only depends on the
difference between the Zeeman shifts of the impurity and bath
atoms. Therefore it is sufficient to address the impurities that
are in the |2 Py) = |e) electronic state to realize the required
driving. We refer the reader to Ref. [81] for the details of
how to realize the optical Stark effect in alkaline-earth atoms.
Here, we only summarize the details specific to our proposal.
The optical setup requires circularly polarized light, coupling
the |e) state to an excited state such as |6s5d > D,). Since the
external electron shell in this state is not closed, the hyperfine
coupling can mix the electronic and nuclear spins. Thus nuclear
spins can be addressed by optically exciting the electronic
degrees of freedom.

In our proposal, we assume that only the smallest and the
largest nuclear spin states m; = /I are populated. Due to its
Clebsch-Gordan coefficients, the circularly polarized o™ laser
couples stronger to the nuclear spin states with positive m;. As
Fig. 11 shows, by red (blue) detuning the o™ mode, a negative
(positive) Zeeman shift A, can be realized. A time-dependent
effective Zeeman field can thus be created by modulating the
intensities of the red- and blue-detuned lasers. The required
modulation frequencies are in the kilohertz (kHz) regime,
which is easily accessible in current experiments.

When we populate all spin states, each pair of states with
nuclear spin +m; experience different Zeeman shifts. These
two-dimensional subspaces each obey a U(1) spin rotation
symmetry. The SU(N) symmetry of the model is thus broken
down to U(1)"/2. This symmetry breaking could be used in

future works to realize anisotropy in Kondo models of higher
spin in alkaline-earth atomic systems.

APPENDIX D: TIME-DEPENDENT SCHRIEFFER-WOLFF
TRANSFORMATION

In this Appendix, we derive the Kondo parameters of
the periodically modulated model, assuming that the Zeeman
fields A.(7) and A,(7) have both static as well as an oscillating
component

A (T) = Ago cos(wT) + Ay,

Ag(T) = Agocos(wt) + Ag.
The driving frequencies are the same for both states since we
assume that the Zeeman fields are generated by the same laser
field. As a first step, we perform a unitary transformation on the

Hamiltonian that removes the oscillating part of the Zeeman
energy,

A,
Hzo(t) = —70 cos(wt)(IM) (1 — IID
A
— Tgo cos(wT)(ngot — ngoy)

Ago
- —2g cos(wr) § Ggla 8kos
ko

by using the unitary transformation W(r) =
exp (—i fr dt’ Hzo(t')) that brings the system into the
rotating frame. The Hamiltonian then becomes
HT) = i@ WHw + WHW
= Hbath + I:Iimp(‘c) + Hpix.

The transformation does not affect the mixing term and the
transformed bath Hamiltonian only contains the static part

of the Zeeman field: Hyan = Y ., (€k — 0 Ag1/2) g};a gko- The
exchange term in the impurity Hamiltonian, however, depends
on the oscillating part of the Zeeman energy,

I:Iimp(T) =U (ngOT + ngoi)(neOﬂ + neOU)
Ael

2
+ Uex Z ggg,ega €06’ 00 g*i(afa’)cpn(r)/z.

oo’

(ngor — ngoy)

The phase factor ®y(t) = fr dt' Ay cos(wt’) in the last equa-
tion is the antiderivative of the Zeeman splitting Ay(t) =
(Aqo — Agp)cos(wt), and it arises from the Zeeman energy
gains from spin-exchanging collisions with the impurity.

We derive the low-energy effective Hamiltonian using a
time-dependent Schrieffer-Wolff transformation

Hsw(t) = Po(i(3,¢5™) e + 5O (Hipa + Himp(T)
+ Huix) e S)P,. (D1)

Similarly to Sec. IIIB 1, we choose the transformation S(t)
such that the first-order terms cancel the coupling between the
impurity and the bath,

Py (i9:S(t) + Huix)Po = Pi[Hpatn + Himp(T), S(0)1Po.
(D2)
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We use the ansatz in Eq. (16) to solve the last equation
numerically, with time-dependent coefficients. In the |}1) and
[{4) sectors, the time evolution of the coefficients becomes

(=0, + U +Ux — ek)rgg(k) =V.

Therefore this channel obeys the same solution, Eq. (17), as in
the static case. In the spin-flip channel, the coefficients obey
the equations

. HE (7) 0 0 (k)
[’3’+( 0 ﬁszm<k>)’(—<re"<k>>"' 0 )}

=V,
with the Hamiltonian matrices

_ & — A1/2 0

and

mum:<U_Mﬂ

Uex e Po(0)
mp Uex e—i@(.(r) >’

U+ A/2

where we used the notation A = A, — A,y. As the last
two equations show, the Schrieffer-Wolff transformation only
depends on the difference of the Zeeman energies Ay(t)
and A; but not on their average value. In order to ensure
the time periodicity of the transformed Hamiltonian, we
require the transformation to be periodic S(t + 7)) = S(t) as
well.

The Schrieffer-Wolff transformation decouples the low and
high-energy sectors of the Hamiltonian. The low-energy part
contains terms of the order of V2/ U «g» Whereas the high-energy
sector is of the order of Uj:,. After the transformation, the
effective Hamiltonian reads

Hsw(t) = Po(Hyatn + Himp(T) + 5[ Humix, S(0)])Po
up to second order in S(t). As the driving frequency w is much
larger than the energy scale of the Kondo dynamics V?/U Py
we can simply obtain a low-energy effective Hamiltonian using
the lowest-order Floquet term. This is given by the time average
of the effective Hamiltonian [100,101],

1 T
Heyy = — / dt Hsw(T). (D3)
T Jo

H.g is of the order of O(V?/U, eg)> and the next-order correc-
tion, of the order 0($ (V2)U, Lfg)z), is negligible given that @
is usually of the order of the on-site energies. We obtain the

Kondo parameters by comparing He in the last equation to
Eqgs. (2) and (3).

APPENDIX E: MODULATION OF THE OPTICAL LATTICE

Varying the optical lattice potential leads to the modulation
of both the hopping ¢ and the on-site interactions UZ. The
latter depends polynomially on the amplitude of the lattice
potential, whereas ¢ is suppressed exponentially [48]. The
driving therefore leads to the oscillation of the ratios 7/U,,
and t/UJ,.

In order to discuss how the Kondo couplings get modified
by the driving, we first note that the oscillation of an overall
energy scale of the Hamiltonian can be removed by a gauge

-0.220
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-0.230

Dimensionless coupling, j

-0.235 1 1 I ]
0.0 0.1 0.2 0.3

Driving amplitude, éu

FIG. 12. Dimensionless isotropic Kondo coupling j = j, = j,
in the presence of periodically modulated optical lattice potentials.
The driving frequency w = 14 U,, , is red detuned. As the amplitude
du in Eq. (E1) grows, the FM coupling j < O initially decreases in
amplitude, then it crosses over to the AFM regime j > 0. [Parameters

of the plot: Uyt g = 15U, t =0.35U,,, and e = 0.]

transformation. We can thus choose the transformation such
that the tunneling remains constant in the rotating frame, and
only the on-site interactions are modulated. As Eq. (E1) shows,
the singlet and triplet sectors shall oscillate at the same relative
amplitude. Neglecting higher harmonics, we model the driving
as

Uj;(r) = Uj;_o(l + du cos(wt)). (ED)

(4

We derive the Kondo parameters using a calculation similar
to Appendix D. We use a periodic Schrieffer-Wolff transfor-
mation to decouple the low-energy sector of the Hubbard-
Anderson Hamiltonian. We then determine the couplings by
keeping the lowest-order Floquet term. Since the driving does
not break the SU(2) symmetry of the model, the Schrieffer-
Wolff transformation is diagonal in the singlet (|+)) and triplet
(]—)) spin channels,

(—id + Uz, —@)lx(k) =V,

respectively. The effective magnetic terms m, and m, thus
remain zero, whereas the Kondo parameters j, = j, = j
are tunable. Figure 12 shows how j depends on the driv-
ing amplitude du in case of a red-detuned driving w <
U,,. The lowest-order Schrieffer-Wolff calculation is most
reliable for small driving amplitudes du < 1, and it will
acquire corrections at larger driving amplitudes. In this
regime, the isotropic FM coupling j will weaken as du
increases.

APPENDIX F: INITIALIZATION OF THE IMPURITY SPIN

In order to study the nonequilibrium dynamics discussed
in Sec. VB, the impurity has to be created instantaneously
in the |f}) state. This is possible due to the separation of
energy scales in Eq. (11). The ultranarrow linewidth of the
|g) — |e) transition (below 1Hz) allows one to address the
spin states of the atoms independently. This can be achieved
by introducing an effective Zeeman field optically or using
an external magnetic field [72]. The Zeeman splitting can
easily be made larger than the linewidth of the transition.

155156-17



MARTON KANASZ-NAGY et al.

PHYSICAL REVIEW B 97, 155156 (2018)

Thus an appropriately tuned laser pulse can create only
|g 1) — |e ) transitions, while leaving the |g |) atoms
unaltered.

It is also important to ensure that the impurity sites are
singly occupied at the beginning of the dynamics. This can be
achieved if the laser pulse excites only |g) atoms only on singly
occupied sites. Since the on-site repulsions are of the order of
U et, ~ 1-10 kHz, the laser can be tuned such that the doubly

occupied sites become off-resonant. The time 7.4 to create the
impurity needs to be instantaneous on the timescales of the
Kondo dynamics. The finite time duration of the pulse leads
to a frequency broadening of the order of y ~ 1/7. Tex Can
be chosen such that y < U 2‘; so that the singly occupied sites
can be selectively addressed. By choosing J <y < U,,, the
pulse can still be made instantaneous on the timescales of the
Kondo dynamics.
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