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Conditions where random phase approximation becomes exact in the high-density limit
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It is shown that, in d-dimensional systems, the vertex corrections beyond the random phase approximation
(RPA) or GW approximation scales with the power d − β − α of the Fermi momentum if the relation between
Fermi energy and Fermi momentum is εf ∼ p

β

f and the interacting potential possesses a momentum power law
of ∼p−α . The condition d − β − α < 0 specifies systems where RPA is exact in the high-density limit. The
one-dimensional structure factor is found to be the interaction-free one in the high-density limit for contact
interaction. A cancellation of RPA and vertex corrections render this result valid up to second order in contact
interaction. For finite-range potentials of cylindrical wires a large-scale cancellation appears and is found to be
independent of the width parameter of the wire. The proposed high-density expansion agrees with the quantum
Monte Carlo simulations.
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I. INTRODUCTION

The correlation energy in electron gases has been a topic
of long-time investigations. In order to avoid divergences in
perturbation theory already Macke [1] summed an infinite
series of diagrams (RPA). Later Gell-Man and Bruckner show
that the RPA at zero temperature becomes exact in the high-
density limit [2,3], confirmed up to orders of the logarithm
of density [4]. The corresponding momentum distributions
in RPA have been computed already in [5,6] and recently
an improved parametrization has been presented by cumulant
expansions [7]. It confirms that the high-density limit is indeed
given by the RPA calculation. The analytic expressions of
the electron gas have been found [8,9] and an approximation
bridging the low- and high-density expansion of the correlation
energy has been provided [10].

The Migdal theorem [11] contains a similar statement that,
for an electron-phonon coupling, higher-order vertex correc-
tions vanish in orders of the ratio of the phonon frequency to the
Fermi energy. Violations of this theorem appear if the magnon
frequency becomes large [12,13] or nonadiabaticity leading
eventually to a polaron collapse [14]. For heavy fermion sys-
tems the Migdal theorem is not valid [15] and near the magnetic
boundary the quasiparticle spectra is different from the Eliash-
berg theory [16] which means the applicability of RPA calcu-
lations in high-Tc superconductivity [17,18] is questionable.

It is therefore desirable to have a simple criterion when
vertex corrections vanish in the high-density limit. Here we
provide an argument from simple scaling for interacting Fermi
systems which shows that the power exponent of the inter-
action and the dimensionality of the system together with the
exponent of the relation between Fermi energy and momentum
determines the expansion of the vertex corrections in terms
of the Fermi momentum. First we drive an exact scaling law

combining the dimensionality, the form of Fermi energy, and
the momentum behavior of the potential into a condition when
RPA is exact. As an application, we calculate the structure
factor and pair correlation function for a wire of fermions and
compare the result with recent quantum Monte Carlo simula-
tion data [19,20] to check the proposed high-density expansion.

An exact scheme for many-body correlations based on
the variational technique by Hedin [21] is used in various
applications. This scheme allows a systematic numbering of
Feynman diagrams [22] and has been solved exactly in zero
dimensions [23]. The scheme provides systematic vertex cor-
rections beyond the GW approximation [24], giving evidence
of a convergence of the expansion. It is as well useful to
describe spin-dependent interactions [25]. For an overview
about recent numerical methods to solve GW approximations
and corresponding Bethe-Salpeter equations, see [26].

II. SCALING OF HEDIN EQUATIONS

We will use this Hedin scheme to analyze the high-
density limit. To recall the basic formulas, let us consider
the causal propagator as the many-body averaging of the
time-ordered product T of creation and annihilation operators
G = 1

i
〈T �(1)�+(2)〉, where arguments denote cumulatively

space, time, etc. coordinates.
The Hedin equations consist first of the Dyson equation for

this causal propagator

G(1,2) = G0(1,2) + G0(1,3)�(3,4)G(4,2), (1)

where about double occurring indices will be integrated. The
self-energy � is given in terms of the three-point vertex
function � and the screened potential W as

�(1,2) = G(1,3)W (1,4)�(3,2,4). (2)
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FIG. 1. Five Hedin equations where the thin line is G0. The
numbers give the space-time variable in general and the letters denote
the frequency-momentum ones after Fourier transform in equilibrium.
Please note that the ∓ sign for Fermi/bosons will be absorbed into
closed propagator lines when expanded to get the standard Feynman
diagrams.

The screened potential W in turn is determined by the interac-
tion potential V and the polarization � in a RPA-like equation

W (1,2) = V (1,2) + V (1,3)�(3,4)W (4,2). (3)

The polarization can be expressed by the vertex function
similar to (2) as

�(1,2) = ∓G(1,3)G(4,1)�(3,4,2) (4)

for fermions/bosons, respectively. Compared to (2) the last two
variables are interchanged. To close the above equation system
one can express now the vertex function as the variation of the
self-energy with respect to the propagator

�(1,2,3) = δ12δ13 + δ�(1,2)

δG(4,5)
G(4,6)�(6,7,3)G(7,5). (5)

This set of five equations are exact in equilibrium and nonequi-
librium and can be shown by variational technique [27]. In
equilibrium the functions above become dependent on the
difference of the space and time coordinates and a Fourier
transformation leads to actually a factorization in (Matsubara)
frequencies and momentum with one integration remaining
for closed loops. In short we write p = (ω, �p). Pictorially we
illustrate the set of equations in Fig. 1.

Now we analyze the exact Hedin equations with respect
to their density dependence. Therefore, we scale explicitly all
momentum and energy variables in terms of Fermi momentum.

This scaling is not providing a dimensionless quantity. We
only extract the dependence on the Fermi momentum. The
Fermi momentum as the radius of Fermi sphere is related to
the density via n ∼ pd

f . Very often the expansions are given in
terms of the Wigner-Seitz radius which describes the radius of
a sphere containing one particle. Therefore, the scaling with the
density is rs ∼ n−1/d and one has pf ∼ 1/rs . The high-density
limit is the high-Fermi-momentum limit or the small-rs limit.

An integration over an internal momentum and energy is
proportional to p

d+β

f , where d is the dimension of the system
and we assume a general relation between Fermi energy and
momentum of εf ∼ p

β

f . For quadratic dispersion we have of
course β = 2 but one might think on non-Fermi liquids as well.
The used potential is supposed to have a q−α dependence which
leads to the scaling V = {V } p−α

f , where we will denote the
scaled function with the bracket {} and an overline. The prop-
agator scales as inverse energy G = {G} p

−β

f and we have in
(3) only one internal momentum-energy integration, see Fig. 1,
such that we obtain for (3)

W = {V } p−α
f + {V } �W p

d+β−α

f . (6)

This implies the scaling W = {W }p−α
f and � = {�} p

α−β−d

f .
Equation (4) also contains only one internal integration such
that one gets

� = {G} {G} � p
d−β

f , (7)

which let us conclude � = {�} pα−2d
f . Analogously one sees

for (2) and (5)

� = {G} {W } � pd−α
f ,

G = {G0} p
−β

f + {G0} � {G} p
d−β

f . (8)

Therefore, this implies � = {�} p−d
f which fits the fourth

equation. The equation for the vertex (5) finally scales as

� = 1 + δ{�}{W }�
δ{G} {G}�{G}pd−β−α

f = 1 + {· · · }�2p
d−β−α

f

= 1 + O(pd−β−α

f ). (9)

Here we have used in (5) the expression for the self-energy
(2) before scaling. This equation (9) for the vertex shows how
further iterations scale with the orders of the Fermi momentum.
In other words, the vertex function becomes unity in first order
of the power of Fermi momentum p

d−β−α

f . In the case that
d − β − α < 0 the RPA is consequently exact in the high-
density limit.

III. STATIC STRUCTURE FACTOR AND PAIR
CORRELATION FUNCTION

As an illustrative example let us calculate the static structure
factor for fermions in one dimension

S(q) = − 1

nπ

∫ ∞

0
dω Im

�

1 − Vq�

= − 1

nπ

∫ ∞

0
dω

Im�

(1 − VqRe�)2 + (VqIm�)2
. (10)
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FIG. 2. Expansion of the vertex function (5) up to first-order
interaction.

The pair-correlation function is obtained from the structure
factor as

g(r) = 1 + 1

n

∫ ∞

−∞

dq

2πh̄
e

i
h̄
qr [S(q) − 1]. (11)

We first consider the expansion with respect to the interaction
potential and will see that it agrees with the high-density limit.
To calculate the vertex equation (5) we need the variation of
the self-energy (2). The latter one becomes together with the
screened potential (3)

δ�(1,2)

δG(4,5)
= δ14δ35W (1,6)�(3,2,6) + O(V 2), (12)

such that the vertex (5) gets the expansion as illustrated in
Fig. 2.

The resulting polarization (4) is plotted in Fig. 3, where the
first term is the RPA result

�0(q,ω) =
∫

dp

2πh̄

fp+ q

2
− fp− q

2

εp+ q

2
− εp− q

2
− h̄ω − i0

, (13)

which becomes for zero temperature

Im�0 = −mgs

2h̄q
�(ω − |ω−|)�(|ω+| − ω),

Re�0 = mgs

2πh̄q
ln

∣∣∣∣ω2 − ω2
−

ω2 − ω2+

∣∣∣∣, (14)

with h̄ω± = q

m
( q

2 ± pf ), the Fermi momentum pf = h̄kf , and
spin degeneracy gs .

Expanding the response function in terms of the coupling
parameter rs requires one to consider the self-energy and vertex
corrections beyond �0 which we denote as �0 + �̃ plotted in
Fig. 3. If we now expand the integrand of (10) with respect to
the interaction which is the expansion in terms of the coupling
parameter rs , we get

Im
�

1 − V �
= Im�0 + Im�̃ + 2V Im�0Re�0 + O(V 2).

(15)

We see that the correction to the polarization contributes
to the same order in the potential as the expansion of the
denominator of (10). We will denote with subindex 1 this first
part of expansion in interaction to distinguish from the vertex
correction signed by the subscript v.

Let us inspect the corrections �̃ = �se + �v more in detail.
The self-energy correction �se as the second part of Fig. 3 is

++2

FIG. 3. First-order expansion of the polarization function (4) in
terms of interaction when using the vertex of Fig. 2.

given by

�se =
∑
k,p

Vq(k − q)(fk − fk+q)(fp − fp+q )

[h̄ω + (εk − εk+q)]2
(16)

and can be written as the frequency derivative �se ∼ ∂ω(ω −
pq/m)−1 such that it does not contribute to (10). In fact, due to
(15) the contribution of �se goes to zero by integrating over the
imaginary axis as has been done in [28]. The only contributing
part is the last one of Fig. 3 which is the vertex correction �v

given by

�v(q,ω) = −
∫

dpdk

(2πh̄)2
Vp−k

fp+ q

2
− fp− q

2

εp+ q

2
− εp− q

2
− h̄ω − i0

× fk+ q

2
− fk− q

2

εk+ q

2
− εk− q

2
− h̄ω − i0

. (17)

For contact potentials we have �v = −V �2
0 and Im�v =

−2V Im�0Re�0 and consequently an exact cancellation of
the first-order term in (15) and we get the noninteracting
structure factor.

For finite-range potentials we also expect a compensation
with some small effect remaining which we are going to
calculate now for the example of a cylindrical wire with a
smoothed real-space interaction potentialv(r) ∝ (r2 + b2)−1/2

and its Fourier transform V (q) = 2 e2

4πε0
K0(bq), where K0 is

the modified Bessel function of the second kind and b is the
width of the wire. The imaginary part of (17) is easily found by
partial decomposition and integrating over p. The imaginary
part of �0 of (14) factors out and for zero temperature and
using Vk = V−k we obtain

Im�v = −Im�0
mgs

πh̄q

[∫ mh̄
q

(ω−|ω−|)

mh̄
q

(ω−|ω+|)
+

∫ mh̄
q

(ω+|ω−|)

mh̄
q

(ω+|ω+|)

]
dk

k
Vk,

(18)

with h̄ω± = qpf

m
± q2

2m
. For the explicit calculation it is con-

venient to use x = q/2pf and z = mω/2p2
f x to get for the

structure factor (10) with (15)

S(q) = S0(q) + S1(q) + Sv(q) (19)

with the free one

S0(q) = 1

2

∫ |1+x|

|1−x|
dz = x�(1 − x) + �(x − 1). (20)

The next term of (15) is the one from the expansion of the
denominator, 2V Im�0Re�0, which reads [20] for x < 1

S1(q) = −v(q)
g2

s rs

π2 x
[|1−x| ln |1−x| + (1+x) ln (1+x)],

(21)

and an additional term −2x ln x for x > 1. In the small limit
of x, the S1(q) takes the simpler form

S1(q) = −v(x → 0)
g2

s rs

π2
x. (22)

Here and in the following we use V (q) = v(q)e2/4πε0.
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FIG. 4. First-order corrections in rs to the structure factor accord-
ing to the denominator (21), (A2) (black, lower lines) and the vertex
corrections (24), (25) (red, upper lines) for a cylindrical potential. The
sum of both corrections is nearly independent of b (blue, middle line)
and visually not distinguishable.

The vertex correction (18) with (15) leads to the part

Sv(q) = −rs

g2
s

2π2x

∫ |1+x|

|1−x|
dz

(∫ z−|1−x|
2

z−|1+x|
2

+
∫ z+|1−x|

2

z+|1+x|
2

)
dx̄

x̄
v(x̄),

(23)

where we will now interchange the order of integrations. The
first integral vanishes and the second one leads to

Sv(q) = −rs

g2
s

π2x

[(
(1 + x)

∫ 1+x

1
−(1 − x)

∫ 1

1−x

)
dx̄

x̄
v(x̄)

+
( ∫ 1

1−x

−
∫ 1+x

1

)
dx̄ v(x̄)

]
(24)

for x < 1 and similarly for x > 1

Sv(q) = −rs

g2
s

π2x

[(
(1 + x)

∫ 1+x

x

−(x − 1)
∫ x

x−1

)
dx̄

x̄
v(x̄)

+
(∫ x

x−1
−

∫ 1+x

x

)
dx̄ v(x̄)

]
. (25)

The explicit integrals appearing in (24) and (25) can be
solved analytically and are given explicitly in the Appendix.
Especially interesting is the small-q expansion of (24) like (21)
which yields for any potential

Sv(q) = −2g2
s rs

π2
v(x → 0)x + O(x)2. (26)

In Fig. 4 we compare the first-order corrections (21) with the
vertex correction (24). As expected there is a large compen-
sation of both corrections. Interestingly the remaining sum
of both corrections S1 and Sv is independent of the width

g0

gRPA rs 0.6

gRPA rs 1

g0 g1 gv rs 0.6

g0 g1 gv rs 1

0 2 4 6 8 10
0.6

0.3

0

0.3

0.6

0.9

1.2

kf r

g
r

FIG. 5. Interaction-free pair-correlation function, g0, which is the
high-density limit (28) together with the ones from RPA (10), and
the first-order expansion (27) in cylindrical potential with thickness
parameter b = 0.1.

parameter as can be seen analytically and we get for x < 1

S1 + Sv = rsg
2
s

π2x

{
(1 + x) ln(1 + x)

[
2 + ln

x2

1 + x

]

+ |1 − x| ln |1 − x|
[

2 + ln
x2

|1 − x|
]}

, (27)

and for x > 1 an additional term 2x ln x[2 + ln x] appears.
We conclude that for contact interactions up to second order

in the interaction or rs parameter, the structure factor (10) is
the interaction free one (20) valid approximately also for finite
short-range interactions. This provides the noninteracting pair-
correlation function (11)

g0(r) = 1 + 2
cos (2kfr) − 1

(2kfr)2 . (28)

The first-order high-density (rs) corrections due to (27) are

g1(r) + gv(r) = 2rsg
2
s

9π2
(3 + π2)(rkf )

2 + o(rkf )
4 (29)

and we see that the artifact of RPA to provide negative pair-
correlation functions at small distances is cured due to the
cancellation of vertex and RPA corrections.

Let us return to the high-density limit. In one-dimensional
systems, d = 1, for quadratic dispersion, β = 2, and contact
interaction, α = 0, according to (9) we have � = 1 + O(p−1

f )
and the RPA is the exact limit as we have shown above. For
the cylindrical potential we have the expansion

v(q) =
{−γ + ln(2) − ln(bq) for bq → 0,

e−bq
√

π
2bq

for bq → ∞.
(30)

Therefore, K0[bq] has no scale of Fermi momentum, i.e.,
α = 0, which is also clear from the Fourier transform of 1/x.
Therefore, we have � = 1 + o(p−1

f ) for β = 2 and d = 1
rendering the RPA exact in the high-density limit. In detail
we have seen that up to the same order the structure factor
becomes the noninteracting one.

We use (15) in (10) and get the structure factor S(q)
for cylindrical wire and employ (11) to obtain g(r) with
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FIG. 6. Pair-correlation function g(r) with first order in rs includ-
ing the vertex correction is plotted as a function of r at several densities
and compared with recent quantum Monte Carlo (QMC) simulation
data [19].

no negative values of the pair correlation function at small
distances (29), as seen in Fig. 5. In this figure the pair
correlation function is plotted in various approximations. We
see that the RPA leads to the known negative values at
small distances since the exchange (vertex) corrections are not
included. The interaction potential alone in the denominator
of RPA is justified neither by the small interaction nor the
high-density limit. This artifact is removed if we include the
first-order exchange correction to the RPA in the high density
limit. In Fig. 6 we compare our pair correlation function with
the quantum Monte Carlo (QMC) simulation [19]. The details
of QMC calculations are mentioned in Refs. [29,30]. One
sees a good agreement for small distances as well as for the
oscillations at larger distances. The high-density limit of RPA
can only be approached numerically but not analytically.

IV. SUMMARY

To summarize we have shown by scaling of the exact
Hedin equations with respect to Fermi momentum that vertex
corrections behave as p

d−β−α

f with dimensionality d, particle
dispersion εp ∼ pβ , and potential Vq ∼ q−α . That means for
β + α > d the vertex corrections vanish in the high-density
limit. This scaling relation also answers the question under
which conditions one might expect an exception of the Migdal
rule mentioned in the Introduction. For 3D systems (d = 3)
and Coulomb interaction (α = 2) we see that the dispersion
relation between momentum and energy (εf ∼ p

β

f ) has to have
a value β > 1 in order to allow the vanishing vertex correction
in the high-density limit. For non-Fermi liquids with β = 1
we see that the vertex corrections do not vanish and we have
different properties like anomalous transport and violation of
Migdal’s rule.

We have discussed the structure factor and pair correlation
function and show that there is a cancellation of vertex
corrections and the RPA denominator maintaining the free
result up to second-order interaction for contact interactions.
This result is in line with the general observation that some
many-body effects like phase transitions get reduced when
using approximations beyond RPA. The high-density limit is
shown to be the same as the interaction-free result consistent
with the expansion in the vertex. For a finite-range potential,
the compensation of vertex and RPA corrections renders the
structure factor independent of the width parameter and repairs
the pair-correlation function to be positive at small distances.
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APPENDIX: EXPANSION IN TERMS OF THE WIDTH OF CYLINDRICAL WIRE

To get the small b expansion of S1(q) we simply expand vq for a cylindrical wire. The first order correction to the structure
factor for x < 1 is given by

S1(q) = 2

[
ln

(
bq

2

)
+ γ

]
g2

s rs

π2 x
[(1 − x) ln(1 − x) + (1 + x) ln (1 + x). (A1)

Similarly, for x > 1 one obtains

S1(q) = 2

[
ln

(
bq

2

)
+ γ

]
g2

s rs

π2 x
[(x − 1) ln(x − 1) + (1 + x) ln (1 + x) − 2x ln x]. (A2)

The finite-b results for the cylindrical potential are

∫
2K0(bt)

dt

t
= −1

2
G

3,0
1,3

⎛
⎝bt

2
,
1

2

∣∣∣∣
1

0,0,0

⎞
⎠,

∫
2K0(bt)dt = πt[LLL−1(bt)K0(bt) + LLL0(bt)K1(bt)] (A3)

in terms of the modified Struve function Ln(x) and the Meijer G function. It is noted that it is easier to take the limit b → 0 from
(24) and (25) by expanding K0(bt) appearing in the integrand since after integration the limit of the Meijer function for b → 0
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does not exist. The analytical expression for finite b of the vertex correction for x < 1 is given by

Sv(q) = − rsg
2
s

π2x

{
x − 1

2
G

3,0
1,3

⎛
⎝b − bx

2
,
1

2

∣∣∣∣
1

0,0,0

⎞
⎠ + G

3,0
1,3

⎛
⎝b

2
,
1

2

∣∣∣∣
1

0,0,0

⎞
⎠ − x + 1

2
G

3,0
1,3

⎛
⎝bx + x

2
,
1

2

∣∣∣∣
1

0,0,0

⎞
⎠

−π (x + 1)[LLL−1(bx + b)K0(bx + b) + LLL0(bx + b)K1(bx + b)] + π (x − 1)

× [LLL−1(b − bx)K0(b − bx) + LLL0(b − bx)K1(b − bx)] + 2π [LLL−1(b)K0(b) + LLL0(b)K1(b)]

}
(A4)

and for x > 1 as

Sv(q) = − rsg
2
s

π2x

{
1 − x

2
G

3,0
1,3

⎛
⎝bx − b

2
,
1

2

∣∣∣∣
1

0,0,0

⎞
⎠ + xG

3,0
1,3

⎛
⎝bx

2
,
1

2

∣∣∣∣
1

0,0,0

⎞
⎠ − x + 1

2
G

3,0
1,3

⎛
⎝bx + b

2
,
1

2

∣∣∣∣
1

0,0,0

⎞
⎠

−π (x + 1)[LLL−1(bx + b)K0(bx + b) + LLL0(bx + b)K1(bx + b)] − π (x − 1)

× [LLL−1(b − bx)K0(bx − b) − LLL0(b − bx)K1(bx − b)] + 2πx[LLL−1(bx)K0(bx) + LLL0(bx)K1(bx)]

}
. (A5)

It is also noted that the negativeness of the pair correlation function also depends on the thickness of the wire. For infinitesimally
small thickness, the pair correlation function remains positive.

[1] W. Macke, Z. Naturforschg. 5A, 192 (1950).
[2] M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957).
[3] N. H. March, Phys. Rev. 110, 604 (1958).
[4] Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991).
[5] E. Daniel and S. H. Vosko, Phys. Rev. 120, 2041 (1960).
[6] O. Kulik, J. Exptl. Theoret. Phys. (U.S.S.R.) 40, 1343 (1961)

[Sov. Phys. JETP 13, 946 (1961)].
[7] P. Gori-Giorgi and P. Ziesche, Phys. Rev. B 66, 235116 (2002).
[8] P. Ziesche, Phys. Status Solidi B 244, 2022 (2007).
[9] P. Ziesche, Ann. Phys. (Berlin) 522, 739 (2010).

[10] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[11] A. B. Migdal, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 1438 (1958)

[Sov. Phys. JETP 34, 996 (1958)].
[12] J. Hertz, K. Levin, and M. Beal-Monod, Solid State Commun.

18, 803 (1976).
[13] M. Ikeda, A. Ogasawara, and M. Sugihara, Phys. Lett. A 170,

319 (1992).
[14] A. S. Aleksandrov, V. N. Grebenev, and E. A. Mazur, Pis’ma

Zh. Eksp. Teor. Fiz. 45, 357 (1987) [JETP Lett. 34, 455 (1987)].
[15] R. J. Wojciechowski, Phys. B (Amsterdam, Neth.) 259, 498

(1999).
[16] P. Monthoux, Phys. Rev. B 68, 064408 (2003).
[17] C. Grimaldi, L. Pietronero, and S. Strässler, Phys. Rev. Lett. 75,

1158 (1995).

[18] C. Grimaldi, L. Pietronero, and S. Strässler, Phys. Rev. B 52,
10530 (1995).

[19] V. Ashokan, N. D. Drummond, and K. N. Pathak (unpublished).
[20] V. Ashokan, R. Bala, K. Morawetz, and K. N. Pathak, Eur. Phys.

J. 91, 29 (2018).
[21] L. Hedin, Phys. Rev. 139, A796 (1965).
[22] L. G. Molinari, Phys. Rev. B 71, 113102 (2005).
[23] Y. Pavlyukh and W. Hübner, J. Math. Phys. 48, 052109

(2007).
[24] A. Schindlmayr and R. W. Godby, Phys. Rev. Lett. 80, 1702

(1998).
[25] F. Aryasetiawan and S. Biermann, J. Phys.: Condens. Matter 21,

064232 (2009).
[26] X. Leng, F. Jin, M. Wei, and Y. Ma, Wiley Interdiscip. Rev.:

Comput. Mol. Sci. 6, 532 (2016).
[27] K. Morawetz, Interacting Systems Far from Equilibrium–

Quantum Kinetic Theory (Oxford University Press, Oxford,
2017).

[28] R. Bala, R. K. Moudgil, S. Srivastava, and K. N. Pathak, J. Phys.:
Condens. Matter 24, 245302 (2012).

[29] R. J. Needs M. D. Towler N. D. Drummond and P. L. Ríos,
J. Phys.: Condens. Matter 22, 023201 (2010).

[30] R. M. Lee and N. D. Drummond, Phys. Rev. B 83, 245114
(2011).

155147-6

https://doi.org/10.1103/PhysRev.106.364
https://doi.org/10.1103/PhysRev.106.364
https://doi.org/10.1103/PhysRev.106.364
https://doi.org/10.1103/PhysRev.106.364
https://doi.org/10.1103/PhysRev.110.604
https://doi.org/10.1103/PhysRev.110.604
https://doi.org/10.1103/PhysRev.110.604
https://doi.org/10.1103/PhysRev.110.604
https://doi.org/10.1103/PhysRevB.44.13298
https://doi.org/10.1103/PhysRevB.44.13298
https://doi.org/10.1103/PhysRevB.44.13298
https://doi.org/10.1103/PhysRevB.44.13298
https://doi.org/10.1103/PhysRev.120.2041
https://doi.org/10.1103/PhysRev.120.2041
https://doi.org/10.1103/PhysRev.120.2041
https://doi.org/10.1103/PhysRev.120.2041
https://doi.org/10.1103/PhysRevB.66.235116
https://doi.org/10.1103/PhysRevB.66.235116
https://doi.org/10.1103/PhysRevB.66.235116
https://doi.org/10.1103/PhysRevB.66.235116
https://doi.org/10.1002/pssb.200642474
https://doi.org/10.1002/pssb.200642474
https://doi.org/10.1002/pssb.200642474
https://doi.org/10.1002/pssb.200642474
https://doi.org/10.1002/andp.201000022
https://doi.org/10.1002/andp.201000022
https://doi.org/10.1002/andp.201000022
https://doi.org/10.1002/andp.201000022
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1016/0038-1098(76)90209-X
https://doi.org/10.1016/0038-1098(76)90209-X
https://doi.org/10.1016/0038-1098(76)90209-X
https://doi.org/10.1016/0038-1098(76)90209-X
https://doi.org/10.1016/0375-9601(92)90262-K
https://doi.org/10.1016/0375-9601(92)90262-K
https://doi.org/10.1016/0375-9601(92)90262-K
https://doi.org/10.1016/0375-9601(92)90262-K
https://doi.org/10.1016/S0921-4526(98)00907-7
https://doi.org/10.1016/S0921-4526(98)00907-7
https://doi.org/10.1016/S0921-4526(98)00907-7
https://doi.org/10.1016/S0921-4526(98)00907-7
https://doi.org/10.1103/PhysRevB.68.064408
https://doi.org/10.1103/PhysRevB.68.064408
https://doi.org/10.1103/PhysRevB.68.064408
https://doi.org/10.1103/PhysRevB.68.064408
https://doi.org/10.1103/PhysRevLett.75.1158
https://doi.org/10.1103/PhysRevLett.75.1158
https://doi.org/10.1103/PhysRevLett.75.1158
https://doi.org/10.1103/PhysRevLett.75.1158
https://doi.org/10.1103/PhysRevB.52.10530
https://doi.org/10.1103/PhysRevB.52.10530
https://doi.org/10.1103/PhysRevB.52.10530
https://doi.org/10.1103/PhysRevB.52.10530
https://doi.org/10.1140/epjb/e2017-80530-8
https://doi.org/10.1140/epjb/e2017-80530-8
https://doi.org/10.1140/epjb/e2017-80530-8
https://doi.org/10.1140/epjb/e2017-80530-8
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRevB.71.113102
https://doi.org/10.1103/PhysRevB.71.113102
https://doi.org/10.1103/PhysRevB.71.113102
https://doi.org/10.1103/PhysRevB.71.113102
https://doi.org/10.1063/1.2728512
https://doi.org/10.1063/1.2728512
https://doi.org/10.1063/1.2728512
https://doi.org/10.1063/1.2728512
https://doi.org/10.1103/PhysRevLett.80.1702
https://doi.org/10.1103/PhysRevLett.80.1702
https://doi.org/10.1103/PhysRevLett.80.1702
https://doi.org/10.1103/PhysRevLett.80.1702
https://doi.org/10.1088/0953-8984/21/6/064232
https://doi.org/10.1088/0953-8984/21/6/064232
https://doi.org/10.1088/0953-8984/21/6/064232
https://doi.org/10.1088/0953-8984/21/6/064232
https://doi.org/10.1002/wcms.1265
https://doi.org/10.1002/wcms.1265
https://doi.org/10.1002/wcms.1265
https://doi.org/10.1002/wcms.1265
https://doi.org/10.1088/0953-8984/24/24/245302
https://doi.org/10.1088/0953-8984/24/24/245302
https://doi.org/10.1088/0953-8984/24/24/245302
https://doi.org/10.1088/0953-8984/24/24/245302
https://doi.org/10.1088/0953-8984/22/2/023201
https://doi.org/10.1088/0953-8984/22/2/023201
https://doi.org/10.1088/0953-8984/22/2/023201
https://doi.org/10.1088/0953-8984/22/2/023201
https://doi.org/10.1103/PhysRevB.83.245114
https://doi.org/10.1103/PhysRevB.83.245114
https://doi.org/10.1103/PhysRevB.83.245114
https://doi.org/10.1103/PhysRevB.83.245114



