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Chiral d-wave superconductivity in a triangular surface lattice mediated by long-range interaction
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Adatom systems on the Si(111) surface have recently attracted an increasing attention as strongly correlated
systems with a rich phase diagram. We study these materials by a single band model on the triangular
lattice, including 1/r long-range interaction. Employing the recently proposed TRILEX method, we find
an unconventional superconducting phase of chiral d-wave symmetry in hole-doped systems. Contrary to
usual scenarios where charge and spin fluctuations are seen to compete, here the superconductivity is driven
simultaneously by both charge and spin fluctuations and crucially relies on the presence of the long-range tail of
the interaction. We provide an analysis of the relevant collective bosonic modes and predict how a cumulative
charge and spin paring mechanism leads to superconductivity in doped silicon adatom materials.
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I. INTRODUCTION

The search for materials with unconventional high temper-
ature superconductivity (SC) has been one of the most active
fields in correlated solid state physics since the discovery of
the cuprate high Tc compounds. Sophisticated synthesis tech-
nology nowadays allows for the construction of new materials
like heterostructures or surface systems on an atomic length
scale. Recently, many-body studies on experimentally well-
controlled correlated adatom lattices X:Si(111) and X:Ge(111)
with (X = Pb,Sn,C) led to interesting results [1–5] and allowed
for the unification of the materials in a single phase diagram [3].
A first-principles derivation of the low-energy Hamiltonian of
these systems [2,3] revealed sizable long-range interactions,
explaining why the standard Hubbard model fails to capture
the materials’ ground states or low-energy spin and charge
fluctuations. Depending on the species of the adatom, some of
the materials were shown to be in close vicinity to a triple point
between a Fermi liquid, a Mott insulator, and a charge-ordered
insulator. Sn:Si(111) and Pb:Si(111) in particular turned out to
be close to a charge-order Mott insulator phase transition with
sizable charge fluctuations which, in the case of Sn:Si(111)
were visible in core-level spectroscopy [5]. In complementary
studies [4], the importance of spin fluctuations for Sn:Si(111)
was emphasized. Silicon adatom systems with intrinsic long-
range interactions are, hence, promising candidates to search
for new physics like unconventional SC.

For such systems, theoretical methods are needed which
are capable to capture both local and non-local electronic
correlations. Dynamical mean-field theory (DMFT) [6,7] has
been proven to be a powerful approach to treat local cor-
relations and Mott physics. If nonlocal interactions have
to be treated, extended DMFT (EDMFT) [8] captures their
effects on the local self energy and charge polarization by a
retarded onsite interaction. Local approximations like DMFT
and EDMFT are, however, not sufficient when nonlocal
fluctuations start to play an important role. To overcome

these shortcomings of DMFT, several extensions have been
proposed [9,10]. Cluster extensions of DMFT in real and
reciprocal space [10–13], e.g., are capable to treat nonlocal
short-range fluctuations. Long-range fluctuations, on the other
hand, can be taken into account by DMFT+GW [14–16]
or dual boson methods [17–20]. For our paper, we em-
ploy the recently developed TRILEX approximation [21–24],
which combines a balanced treatment of long-range spin and
charge fluctuations with comparatively little computational
effort.

In this paper, we show that the triangular lattice model
for the adatom materials has a dome-shaped superconducting
phase of chiral d-wave symmetry as a function of hole doping
in realistic parameter regimes. The long-range interaction is
key for enhanced critical temperatures and distinguishes the
adatom Hamiltonian from triangular Hubbard models [25–
32]. By analyzing spin- and charge-response functions (and
their dependence on the materials’ long-range interaction), we
further show that the pairing mechanism crosses over from a
cumulative spin/charge fluctuation character at small dopings
to a charge-dominated one at large doping.

II. MODEL AND METHOD

We make use of the extended Hubbard model on the
triangular lattice with 1/r interactions,

H =
∑
i,j,σ

tij ĉ
†
iσ ĉjσ + 1

2

∑
i,j

Uij n̂i n̂j − μ
∑

i

n̂i , (1)

to study the low-energy physics of adatom systems, following
a first principles constrained random-phase approximation
(cRPA) derivation [2] where ĉ

†
iσ (ĉiσ ) are electron creation

(annihilation) operators on site i with spin σ = ↑,↓. n̂i =
n̂i↑ + n̂i↓ is the density operator on site i, and μ is the
chemical potential. tij and Uij are the hopping integrals and
long-range Coulomb interaction strength between sites i and j .
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For translational invariant two-dimensional systems, the long-
range Coulomb interaction, in momentum space, reads Uq =
U0 + V

∑
i �=0 eiq·Ri /|Ri |, where Ri are real space coordinates,

U0 is the on-site interaction, and V is the strength of the
long-range interaction, respectively (Supplemental Material A
in Ref. [33] and Ref. [34]). More specifically, we adopt hop-
ping parameters up to next-nearest-neighbors (t = 0.042 eV
and t ′ = −0.02 eV) from Refs. [2,3] derived from density-
functional theory (DFT) for the Pb:Si(111) adatom system
(closest to the triple point) and vary the interaction parameters
in realistic regimes for the adatom materials found by cRPA [3].

TRILEX approximates the three-legged fermion-boson in-
teraction vertex using a local self-consistent quantum im-
purity model. For systems retaining SU(2) symmetry, the
self-consistent TRILEX equations [21–24] for the fermionic
single particle self-energy �(k,iωn) and bosonic polarization
in charge and spin channel P c,s(q,iνn) can be rewritten as

�k,iωn
= �

imp
iωn

−
∑

η,q,iνn

mηG̃k+q,iωn+iνn
W̃

η

q,iνn
�

imp,η

iωn,iνn
,

P
η

q,iνn
= P

imp,η

iνn
+ 2

∑
k,iωn

G̃k+q,iωn+iνn
G̃k,iωn

�
imp,η

iωn,iνn
, (2)

where the index η = {c,s} corresponds to charge and spin
channel, respectively, and ωn and νn are fermionic and bosonic
Matsubara frequencies. Gk,iωn

is the dressed Green’s function,
and W

c,s
q,iνn

are the fully screened interactions in the charge
and spin channels, respectively. The local part of self-energy
and polarization are replaced by their impurity counterparts
�

imp
iωn

and P
imp,η

iνn
, respectively, and for any quantity X, X̃k,iωn

=
Xk,iωn

− Xloc
iωn

with Xloc
iωn

= 1
Nk

∑
k∈B.Z. Xk,iωn

. We employ the
Heisenberg decomposition of the interaction [22], for which
we have mc = 1, ms = 3, and W

η

q,iνn
= U

η
q [1 − U

η
q P

η

q,iνn
]−1.

Bare interactions in charge and spin channel are, hence, given
by U c

q = U0
2 + vq and U s = −U0

6 (for details see Supplemental
Material A in Ref. [33]). This spin/charge ratio is a choice
(dubbed “Fierz ambiguity” [22,24]). Moreover, in the param-
eter range explored in this paper, we have observed (Fig. 2
and Supplemental Material B in Ref. [33] and Ref. [35])
that using �

imp,η

iωn,iνn
≈ 1 in Eq. (2) does not change our results

qualitatively as it was also found in Ref. [23]. This simplified
TRILEX version can be seen as a GW+EDMFT-like scheme
which, however, can treat simultaneously both charge and
spin fluctuations. The impurity problem was solved using
the segment picture in the hybridization-expansion continuous
time quantum Monte-Carlo algorithm [36–40] implemented
with the TRIQS library [41].

To probe SC instabilities, we solve the linearized gap
equation with converged simplified TRILEX results as an
input [23]. For singlet d-wave pairing, the corresponding
eigenvalue equation for the gap reads

λ	k,iωn
= −

∑
k′,iω′

n

∣∣Gk′,iω′
n

∣∣2
	k′,iω′

n
V eff

k−k′,iωn−iω′
n
, (3)

where the singlet pairing interaction is given by

V eff
q,iνn

= mcW c
q,iνn

− msW s
q,iνn

, (4)

and is therefore a combination of effective interaction in charge
and spin channel. The SC instability occurs when the largest

FIG. 1. Phase diagram of the Hamiltonian Eq. (1) as function
of temperature (for T > 40 K) and doping for U0 = 0.7 eV, V =
0.2 eV (circles) and V = 0.3 eV (diamonds). Green/blue regions
correspond to 1 � Max[−Ps(q,iνn = 0)Us] � 0.95 for q ∈ B.Z. Or-
ange/red regions indicate chiral d-wave superconductivity.

eigenvalue λ = 1. The pairing symmetry is monitored by the
k dependence of the gap function 	k,iωn

.

III. RESULTS

Emergence of d-wave SC. In Fig. 1, we plot the temperature–
doping (T –δ) phase diagram for V = 0.2 eV and V = 0.3 eV
for a fixed value of U0 = 0.7 eV in the simplified TRILEX
approximation. At half-filling (δ = 0) we obtain a correlated
Fermi liquid (Supplemental Material C in Ref. [33]) with
strong magnetic fluctuations. The static spin-spin correlation
function χ s(q,iνn = 0) is very large at some q but has not
diverged yet, i.e., no phase transition has occurred. More
precisely, we use Max[−Ps(q,iνn = 0)Us] with q ∈ B.Z.,

which reaches 1 at a second-order spin-ordering phase tran-
sition to quantify the strength of the spin fluctuations and
color code regions in the phase diagram for which 1 >

Max[−Ps(q,iνn = 0)Us] � 0.95 in green (V = 0.2 eV) and
blue (V = 0.3 eV). From this plot, we see that spin fluctuations
are slightly enhanced by increasing V . For δ > 0.2 we observe
the emergence of a dome-shaped superconducting phase (a
plot of λ in Eq. (3) as a function of temperature is shown
in the Supplemental Material D in Ref. [33]). The pairing
symmetry of the SC phase is of d-wave character and includes
doubly degenerate dx2−y2 - and dxy-wave pairing channels (see
Supplemental Material E in Ref. [33] and Ref. [42] for a plot
of the gap function). The degeneracy of these two pairing
symmetries is protected by the C6v point group of the triangular
lattice, which then yields chiral d-wave symmetry below Tc to
maximize condensation energy. The predicted chiral SC phase
depends crucially on V : Tc increases from V = 0.2 eV (red
circles) to V = 0.3 eV (orange diamonds) as shown in Fig. 1.
Moreover, for V = 0.0 eV and V = 0.1 eV (not shown here),
we do not find a SC phase for T > 40 K.

Impact of long-range interaction on susceptibilities and
single particle spectra. The crucial impact of V on the SC
instability is reflected in the effective singlet-pairing inter-
action V eff

q,iνn
, which depends on fluctuations in both charge

and spin channels. We analyze the respective susceptibilities
χ c/s(q,iνn) with the data shown in Fig. 2: In the upper panels
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FIG. 2. Maximum values of the static charge (a) and spin (b)
response functions versus hole doping. Color coding indicates the
position of the maximum in the first Brillouin zone as defined
in the inset. Data is shown for fixed U0 = 0.7 eV and T = 40 K
and nonlocal interaction strength V = 0.3 eV (diamonds) and V =
0.2 eV (circles). (c) Charge- and spin-response functions on the
real frequency axis (obtained by analytical continuation with the
maximum entropy method [43]) at their maximum in momentum
space (qmax.) with (dashed) and without (solid) vertex corrections
for T = 116 K and δ = 0.2. (d) Characteristic frequency of charge
(filled symbols) and spin (open symbols) fluctuations with the same
convention and parameters as (a) and (b).

we show the maximum values of the static (iνn = 0) charge
(left hand side) and spin (right hand side) susceptibilities as
a function of hole doping. The corresponding position of the
maximum in the first Brillouin zone is color coded (see inset).

The charge fluctuations increase with hole doping to a maxi-
mum value around δ = 0.5 and, thereafter, decrease approach-
ing the “empty” limit at δ = 1. The spin fluctuations, instead,
decrease monotonically as a function of δ. While χ c(q,iνn = 0)
always peaks at K , the maximum of χ s(q,iνn = 0) moves from
M to K when the system is slightly doped, and then follows
K → M → � when the system is further hole doped. The
peak position of the charge response function as a function
of doping remains at the K point since its momentum depen-
dence is mainly determined by the doping-independent v(q),
which energetically favors a 3 × 3 charge configuration in real
space [3]. The momentum dependence of the spin response
function, however, is mostly determined by the topology of
the Fermi surface. Indeed, the V dependence is much stronger
for the charge response [compare diamond (V = 0.3 eV) and
circle (V = 0.2 eV) symbols in Fig. 2]. There are, however,
small effects of V to the spin-response function, which can
be understood by the V -dependent renormalization of the
one-particle spectra as show in Fig. 3 [44]. At fixed T = 40 K
and δ = 0.2, V is increased from 0.0 eV to 0.3 eV (subplots
from left to right hand side). Upon increasing V , the bandwidth
is effectively reduced and the spectral weight near to the Fermi
energy is increased. Consequently, particle-hole excitations
that contribute to the spin polarization P s(q,iνn) and the spin
susceptibility are enhanced.
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FIG. 3. Single particle spectral function A(k,ω) along the path
�-M-K-� (see inset of Fig. 2) for fixed doping δ = 0.2, T = 40 K,
U0 = 0.7 eV and four values of V .

We now extend these considerations to the frequency
dependence of the bosonic fluctuations. In Fig. 2(c), we plot
the dynamic response functions at the q-points where they
are maximal (qmax.) for doping δ = 0.2. The data clearly
shows a peaked structure of the dynamic response functions.
Moreover, we show in this plot the impact of the vertex
corrections (compare solid and dashed lines). which are only
quantitative in the considered case as claimed in the intro-
duction. Figure 2(d) shows the doping dependence of the
characteristic frequency ω

c,s
0 (qmax.) defined by ω

c,s
0 (qmax.) =∫ ∞

0 ωIm[χ c,s(qmax.,ω)]dω/
∫ ∞

0 Im[χ c,s(qmax.,ω)]dω in both
channels. Inside the superconducting region (indicated by the
vertical red dashed lines), the characteristic frequency of the
fluctuations are of the order of 100−200 meV. Moreover,
|ωc

0-ωs
0| is small and minimal for the region of maximum Tc. In

agreement with our discussion above, we see that an increase of
V yields even smaller |ωc

0-ωs
0|, which suggests that charge and

spin contributions to the SC pairing mechanism are cumulative.
Separating spin and charge channels in the pairing mech-

anism. To disentangle the interplay between charge and spin
degrees of freedom in gap Eq. (3), we solve for λ, including
contributions from only spin (λs) and only charge channel
(λc), i.e., V eff

q,iνn
= −3W s

q,iνn
and V eff

q,iνn
= W c

q,iνn
, respectively.

First, we follow the phase boundary of the SC phase in
the underdoped regime for fixed V = 0.3 eV, starting from
(δ,T ) = (0.2,40 K) up to (δ,T ) = (0.38,65 K). In Fig. 4(a) we
plot λ, λs , and λc: Since we are following the phase transition
line, λ ≈ 1. λc and λs are both smaller than λ and λc + λs ≈ λ,
indicating a cumulative charge and spin contribution for the
chiral d-wave pairing in the underdoped regime. This observa-
tion is surprising and in stark contrast to the expectation that
spin and charge fluctuations drive competing instabilities. The
same conclusion can be drawn when the λ values are calculated
at the critical doping δc = 0.2 as a function of the nonlocal
interaction V as depicted in Fig. 4(b).

Our data indicates that overall both spin and charge fluc-
tuations are important for the SC phase. As a function of
doping, however, we observe that charge fluctuations become
increasingly dominant and λs becomes negligible. This effect is
reflected in the V dependence of the SC dome in Fig. 1, which is
stronger at larger dopings. We arrive at the same conclusions
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FIG. 4. Eigenvalue λ of the gap equation Eq. (3)(λ = 1 signals SC
transition) for full effective singlet pairing interactionV eff

q,iνn
(cyan) and

charge/spin only channels (red/green). (a) Plot for V = 0.3 eV along
the SC phase boundary up to doping δ = 0.38. (b) Plot as a function
of V for fixed doping δ = 0.2 and temperature T = 40 K.

when we analyze the dependence of λ on the choice of the
Fierz parameter that defines the charge-to-spin fluctuation ratio
(Supplemental Material F in Ref. [33]).

Let us stress two important points: (i) The true long-
range character is crucial for the predicted SC in silicon
adatom materials. If only short-range (i.e., nearest-neighbor)
interactions are considered, charge ordering is overestimated
and, long before any SC emerges, the system turns into a
charge-ordered insulator as proven by calculations shown in
the Supplemental Material G in Ref. [33]. (ii) The degeneracy
of the dx2−y2 - and dxy-wave-pairing state is important for
the cumulative charge and spin interplay. Since the origin of
this degeneracy is connected to the lattice symmetry group, a
different behavior can be expected for the 2D square lattice (see
Supplemental Material H in Ref. [33]): in the square geometry
with relatively large V/U0, the q dependence of χ c(q,iνn = 0)

favors dxy−pairing symmetry while χ s(q,iνn = 0) prefers
dx2−y2−pairing symmetry, and the two channels compete with
each other.

IV. CONCLUSION

We predict the existence of a dome-shaped unconventional
chiral d-wave superconducting phase for hole-doped triangular
lattice systems with ∝1/r interactions, which could be realized
by hole-doping existing α phase Si(111) adatom materials.
The analysis of spin and charge correlation functions reveals
that lattice geometry as well as the nonlocal interaction are
necessary conditions for the emergence of SC. The nature of the
pairing undergoes a crossover from an unexpected combined
charge/spin mechanism in the underdoped regime toward a
charge fluctuation dominated one at higher doping. In future
studies, high hole-doping levels will be considered in more
detail. Here, triplet f −wave pairing symmetry may begin to
become important due to the appearance of a disconnected
Fermi surface [45].

Note added. During the review process of this paper,
we became aware of very recent experimental activities on
strongly hole-doped Sn:Si(111). F. Ming. and coworkers [46]
were able to reach doping levels up to 10−12% by using boron-
doped silicon as a substrate without perturbing the symmetry
of the adatom lattice. This first success proves the feasability
of synthezising heavily doped adatom systems and motivates
further experimental work along the lines of our prediction.

ACKNOWLEDGMENTS

O.P. and T.A. are supported by the FP7/ERC under Grant
Agreement No. 278472-MottMetals. We thank Yi Lu, Alessan-
dro Toschi, Ciro Taranto, Thomas Schaefer, and Daniil Man-
tadakis for helpful discussions.

[1] S. Schuwalow, D. Grieger, and F. Lechermann, Phys. Rev. B 82,
035116 (2010).

[2] P. Hansmann, L. Vaugier, H. Jiang, and S. Biermann, J. Phys.:
Condens. Matter 25, 094005 (2013).

[3] P. Hansmann, T. Ayral, L. Vaugier, P. Werner, and S. Biermann,
Phys. Rev. Lett. 110, 166401 (2013).

[4] G. Li, P. Höpfner, J. Schäfer, C. Blumenstein, S. Meyer, A.
Bostwick, E. Rotenberg, R. Claessen, and W. Hanke, Nat.
Commun. 4, 1620 (2013).

[5] P. Hansmann, T. Ayral, A. Tejeda, and S. Biermann, Sci. Rep. 6,
19728 (2016).

[6] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

[7] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865
(2006).

[8] Q. Si and J. L. Smith, Phys. Rev. Lett. 77, 3391 (1996).
[9] G. Rohringer, H. Hafermann, A. Toschi, A. Katanin, A. Antipov,

M. Katsnelson, A. Lichtenstein, A. Rubtsov, and K. Held,
arXiv:1705.00024 [Rev. Mod. Phys. (to be published)].

[10] T. A. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev.
Mod. Phys. 77, 1027 (2005).

[11] M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T.
Pruschke, and H. R. Krishnamurthy, Phys. Rev. B 58, R7475
(1998).

[12] A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 62, R9283
(2000).

[13] G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli, Phys. Rev.
Lett. 87, 186401 (2001).

[14] P. Sun and G. Kotliar, Phys. Rev. B 66, 085120 (2002).
[15] P. Sun and G. Kotliar, Phys. Rev. Lett. 92, 196402 (2004).
[16] T. Ayral, S. Biermann, and P. Werner, Phys. Rev. B 87, 125149

(2013).
[17] A. Rubtsov, M. Katsnelson, and A. Lichtenstein, Ann. Phys. 327,

1320 (2012).
[18] E. G. C. P. van Loon, H. Hafermann, A. I. Lichtenstein, A. N.

Rubtsov, and M. I. Katsnelson, Phys. Rev. Lett. 113, 246407
(2014).

[19] E. G. C. P. van Loon, M. Schüler, M. I. Katsnelson, and T. O.
Wehling, Phys. Rev. B 94, 165141 (2016).

155145-4

https://doi.org/10.1103/PhysRevB.82.035116
https://doi.org/10.1103/PhysRevB.82.035116
https://doi.org/10.1103/PhysRevB.82.035116
https://doi.org/10.1103/PhysRevB.82.035116
https://doi.org/10.1088/0953-8984/25/9/094005
https://doi.org/10.1088/0953-8984/25/9/094005
https://doi.org/10.1088/0953-8984/25/9/094005
https://doi.org/10.1088/0953-8984/25/9/094005
https://doi.org/10.1103/PhysRevLett.110.166401
https://doi.org/10.1103/PhysRevLett.110.166401
https://doi.org/10.1103/PhysRevLett.110.166401
https://doi.org/10.1103/PhysRevLett.110.166401
https://doi.org/10.1038/ncomms2617
https://doi.org/10.1038/ncomms2617
https://doi.org/10.1038/ncomms2617
https://doi.org/10.1038/ncomms2617
https://doi.org/10.1038/srep19728
https://doi.org/10.1038/srep19728
https://doi.org/10.1038/srep19728
https://doi.org/10.1038/srep19728
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/PhysRevLett.77.3391
https://doi.org/10.1103/PhysRevLett.77.3391
https://doi.org/10.1103/PhysRevLett.77.3391
https://doi.org/10.1103/PhysRevLett.77.3391
http://arxiv.org/abs/arXiv:1705.00024
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/PhysRevB.58.R7475
https://doi.org/10.1103/PhysRevB.58.R7475
https://doi.org/10.1103/PhysRevB.58.R7475
https://doi.org/10.1103/PhysRevB.58.R7475
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/PhysRevB.66.085120
https://doi.org/10.1103/PhysRevB.66.085120
https://doi.org/10.1103/PhysRevB.66.085120
https://doi.org/10.1103/PhysRevB.66.085120
https://doi.org/10.1103/PhysRevLett.92.196402
https://doi.org/10.1103/PhysRevLett.92.196402
https://doi.org/10.1103/PhysRevLett.92.196402
https://doi.org/10.1103/PhysRevLett.92.196402
https://doi.org/10.1103/PhysRevB.87.125149
https://doi.org/10.1103/PhysRevB.87.125149
https://doi.org/10.1103/PhysRevB.87.125149
https://doi.org/10.1103/PhysRevB.87.125149
https://doi.org/10.1016/j.aop.2012.01.002
https://doi.org/10.1016/j.aop.2012.01.002
https://doi.org/10.1016/j.aop.2012.01.002
https://doi.org/10.1016/j.aop.2012.01.002
https://doi.org/10.1103/PhysRevLett.113.246407
https://doi.org/10.1103/PhysRevLett.113.246407
https://doi.org/10.1103/PhysRevLett.113.246407
https://doi.org/10.1103/PhysRevLett.113.246407
https://doi.org/10.1103/PhysRevB.94.165141
https://doi.org/10.1103/PhysRevB.94.165141
https://doi.org/10.1103/PhysRevB.94.165141
https://doi.org/10.1103/PhysRevB.94.165141


CHIRAL d-WAVE SUPERCONDUCTIVITY IN A … PHYSICAL REVIEW B 97, 155145 (2018)

[20] H. Hafermann, E. G. C. P. van Loon, M. I. Katsnelson, A. I.
Lichtenstein, and O. Parcollet, Phys. Rev. B 90, 235105 (2014).

[21] T. Ayral and O. Parcollet, Phys. Rev. B 92, 115109 (2015).
[22] T. Ayral and O. Parcollet, Phys. Rev. B 93, 235124 (2016).
[23] J. Vucicevic, T. Ayral, and O. Parcollet, Phys. Rev. B 96, 104504

(2017).
[24] T. Ayral, J. Vucicevic, and O. Parcollet, Phys. Rev. Lett. 119,

166401 (2017).
[25] S. Zhou and Z. Wang, Phys. Rev. Lett. 100, 217002 (2008).
[26] S.-Q. Su, Z.-B. Huang, R. Fan, and H.-Q. Lin, Phys. Rev. B 77,

125114 (2008).
[27] K. Kuroki, Phys. Rev. B 81, 104502 (2010).
[28] R. Nandkishore, L. Levitov, and A. Chubukov, Nat. Phys. 8, 158

(2012).
[29] K. S. Chen, Z. Y. Meng, U. Yu, S. Yang, M. Jarrell, and J. Moreno,

Phys. Rev. B 88, 041103 (2013).
[30] M. L. Kiesel, C. Platt, W. Hanke, D. A. Abanin, and R. Thomale,

Phys. Rev. B 86, 020507 (2012).
[31] M. L. Kiesel, C. Platt, W. Hanke, and R. Thomale, Phys. Rev.

Lett. 111, 097001 (2013).
[32] A. M. Black-Schaffer, W. Wu, and K. Le Hur, Phys. Rev. B 90,

054521 (2014).

[33] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.97.155145 for details.

[34] T. Ayral, Ph.D. thesis, Ecole Polytechnique, 2015, https://
hal.archives-ouvertes.fr/tel-01247625/.

[35] E. A. Stepanov, A. Huber, E. G. C. P. van Loon, A. I. Lichtenstein,
and M. I. Katsnelson, Phys. Rev. B 94, 205110 (2016).

[36] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J.
Millis, Phys. Rev. Lett. 97, 076405 (2006).

[37] T. Ayral, P. Werner, and S. Biermann, Phys. Rev. Lett. 109,
226401 (2012).

[38] P. Werner and A. J. Millis, Phys. Rev. Lett. 99, 146404 (2007).
[39] J. Otsuki, Phys. Rev. B 87, 125102 (2013).
[40] H. Hafermann, Phys. Rev. B 89, 235128 (2014).
[41] O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L.

Messio, and P. Seth, Comput. Phys. Commun. 196, 398 (2015).
[42] A. M. Black-Schaffer, Phys. Rev. Lett. 109, 197001 (2012).
[43] M. Jarrell and J. Gubernatis, Phys. Rep. 269, 133 (1996).
[44] P. Werner and M. Casula, J. Phys.: Condens. Matter 28, 383001

(2016).
[45] K. Kuroki and R. Arita, Phys. Rev. B 63, 174507 (2001).
[46] F. Ming, T. S. Smith, S. Johnston, P. C. Snijders, and H. H.

Weitering, Phys. Rev. B 97, 075403 (2018).

155145-5

https://doi.org/10.1103/PhysRevB.90.235105
https://doi.org/10.1103/PhysRevB.90.235105
https://doi.org/10.1103/PhysRevB.90.235105
https://doi.org/10.1103/PhysRevB.90.235105
https://doi.org/10.1103/PhysRevB.92.115109
https://doi.org/10.1103/PhysRevB.92.115109
https://doi.org/10.1103/PhysRevB.92.115109
https://doi.org/10.1103/PhysRevB.92.115109
https://doi.org/10.1103/PhysRevB.93.235124
https://doi.org/10.1103/PhysRevB.93.235124
https://doi.org/10.1103/PhysRevB.93.235124
https://doi.org/10.1103/PhysRevB.93.235124
https://doi.org/10.1103/PhysRevB.96.104504
https://doi.org/10.1103/PhysRevB.96.104504
https://doi.org/10.1103/PhysRevB.96.104504
https://doi.org/10.1103/PhysRevB.96.104504
https://doi.org/10.1103/PhysRevLett.119.166401
https://doi.org/10.1103/PhysRevLett.119.166401
https://doi.org/10.1103/PhysRevLett.119.166401
https://doi.org/10.1103/PhysRevLett.119.166401
https://doi.org/10.1103/PhysRevLett.100.217002
https://doi.org/10.1103/PhysRevLett.100.217002
https://doi.org/10.1103/PhysRevLett.100.217002
https://doi.org/10.1103/PhysRevLett.100.217002
https://doi.org/10.1103/PhysRevB.77.125114
https://doi.org/10.1103/PhysRevB.77.125114
https://doi.org/10.1103/PhysRevB.77.125114
https://doi.org/10.1103/PhysRevB.77.125114
https://doi.org/10.1103/PhysRevB.81.104502
https://doi.org/10.1103/PhysRevB.81.104502
https://doi.org/10.1103/PhysRevB.81.104502
https://doi.org/10.1103/PhysRevB.81.104502
https://doi.org/10.1038/nphys2208
https://doi.org/10.1038/nphys2208
https://doi.org/10.1038/nphys2208
https://doi.org/10.1038/nphys2208
https://doi.org/10.1103/PhysRevB.88.041103
https://doi.org/10.1103/PhysRevB.88.041103
https://doi.org/10.1103/PhysRevB.88.041103
https://doi.org/10.1103/PhysRevB.88.041103
https://doi.org/10.1103/PhysRevB.86.020507
https://doi.org/10.1103/PhysRevB.86.020507
https://doi.org/10.1103/PhysRevB.86.020507
https://doi.org/10.1103/PhysRevB.86.020507
https://doi.org/10.1103/PhysRevLett.111.097001
https://doi.org/10.1103/PhysRevLett.111.097001
https://doi.org/10.1103/PhysRevLett.111.097001
https://doi.org/10.1103/PhysRevLett.111.097001
https://doi.org/10.1103/PhysRevB.90.054521
https://doi.org/10.1103/PhysRevB.90.054521
https://doi.org/10.1103/PhysRevB.90.054521
https://doi.org/10.1103/PhysRevB.90.054521
http://link.aps.org/supplemental/10.1103/PhysRevB.97.155145
https://hal.archives-ouvertes.fr/tel-01247625/
https://doi.org/10.1103/PhysRevB.94.205110
https://doi.org/10.1103/PhysRevB.94.205110
https://doi.org/10.1103/PhysRevB.94.205110
https://doi.org/10.1103/PhysRevB.94.205110
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.109.226401
https://doi.org/10.1103/PhysRevLett.109.226401
https://doi.org/10.1103/PhysRevLett.109.226401
https://doi.org/10.1103/PhysRevLett.109.226401
https://doi.org/10.1103/PhysRevLett.99.146404
https://doi.org/10.1103/PhysRevLett.99.146404
https://doi.org/10.1103/PhysRevLett.99.146404
https://doi.org/10.1103/PhysRevLett.99.146404
https://doi.org/10.1103/PhysRevB.87.125102
https://doi.org/10.1103/PhysRevB.87.125102
https://doi.org/10.1103/PhysRevB.87.125102
https://doi.org/10.1103/PhysRevB.87.125102
https://doi.org/10.1103/PhysRevB.89.235128
https://doi.org/10.1103/PhysRevB.89.235128
https://doi.org/10.1103/PhysRevB.89.235128
https://doi.org/10.1103/PhysRevB.89.235128
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1103/PhysRevLett.109.197001
https://doi.org/10.1103/PhysRevLett.109.197001
https://doi.org/10.1103/PhysRevLett.109.197001
https://doi.org/10.1103/PhysRevLett.109.197001
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1088/0953-8984/28/38/383001
https://doi.org/10.1088/0953-8984/28/38/383001
https://doi.org/10.1088/0953-8984/28/38/383001
https://doi.org/10.1088/0953-8984/28/38/383001
https://doi.org/10.1103/PhysRevB.63.174507
https://doi.org/10.1103/PhysRevB.63.174507
https://doi.org/10.1103/PhysRevB.63.174507
https://doi.org/10.1103/PhysRevB.63.174507
https://doi.org/10.1103/PhysRevB.97.075403
https://doi.org/10.1103/PhysRevB.97.075403
https://doi.org/10.1103/PhysRevB.97.075403
https://doi.org/10.1103/PhysRevB.97.075403



