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Search for multipolar instability in URu2Si2 studied by ultrasonic measurements
under pulsed magnetic field
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The elastic properties of URu2Si2 in the high magnetic field region above 40 T, over a wide temperature range
from 1.5 to 120 K, were systematically investigated by means of high-frequency ultrasonic measurements. The
investigation was performed at high magnetic fields to better investigate the innate bare 5f -electron properties,
since the unidentified electronic thermodynamic phase of unknown origin, the so-called “hidden order” (HO), and
associated hybridization of conduction and f electrons (c-f hybridization) are suppressed at high magnetic fields.
From the three different transverse modes we find contrasting results; both the �4(B2g) and �5(Eg) symmetry
modes C66 and C44 show elastic softening that is enhanced above 30 T, while the characteristic softening of
the �3(B1g) symmetry mode (C11 − C12)/2 is suppressed in high magnetic fields. These results underscore the
presence of a hybridization-driven �3(B1g) lattice instability in URu2Si2. However, the results from this work
cannot be explained by using existing crystalline electric field schemes applied to the quadrupolar susceptibility
in a local 5f 2 configuration. Instead, we present an analysis based on a band Jahn-Teller effect.
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I. INTRODUCTION

The heavy-fermion unconventional superconductor
URu2Si2 undergoes an enigmatic phase transition at TO =
17.5 K to the so-called “hidden order” (HO) phase [1–3],
whose order parameter still remains unsolved [4]. This
compound has a body-centered-tetragonal (bct) ThCr2Si2-type
crystal structure (space group No. 139, I4/mmm, D17

4h).
Recently, several experimental findings regarding a possible
symmetry lowering of the electron and/or lattice system
in the HO phase have been reported, including results of
magnetic torque [5], synchrotron x-ray [6], Raman scattering
[7], and elastoresistance measurements [8]. However, the
proposed broken symmetries conflict with each other. Many
theories have been proposed to explain the HO phase, e.g.,
a higher multipolar order from rank 3 to 5 [9–13], hastatic
order [14], spin interorbital density wave [15], and dynamic
antiferromagnetic moment fluctuations. [16] A comprehensive
interpretation which can explain all of the experimental
observations is lacking. With high magnetic fields applied
along the [001] axis at low temperatures, URu2Si2 undergoes
three metamagnetic transitions in the range between 35 and
39 T which are followed by a collapse of the HO phase [17].
In Fig. 1(b), we show a temperature–magnetic field phase
diagram of URu2Si2 for H ‖ [001], which is constructed
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from the data of the present work and previous magnetization
measurements [18]. First, the HO phase is suppressed at 35 T,
followed by a cascade of transitions, where the spin-density
wave with a propagation wave vector k = (0.6,0,0) is
established in the intermediate phase [19]. Finally, the system
enters the polarized paramagnetic (PPM) regime in the high
magnetic field region above 40 T [17]. URu2Si2 also exhibits
a strong hybridization between conduction and 5f electrons
(c-f hybridization) below T ∗ ∼ 50 K in low magnetic fields.
This c-f hybridization is also suppressed in association with
the collapse of HO under high magnetic fields above 40 T
for H ‖ [001] [18]. Beyond 40 T, the electronic ground state
of URu2Si2 changes from delocalized to a more localized
5f -electron regime [18]. Understanding the dual nature of
the uranium 5f electrons that are neither fully localized
nor itinerant will likely provide insight on the origin of the
HO. A theory which fully describes both the hybridization
effect and the localized electron degrees of freedom has
yet to be developed. There are two approaches to overcome
these issues, either starting from the itinerant electron system
(strong-coupling limit) or from the localized electron system
(weak-coupling limit). A constraint is that the “symmetry”
of the order parameter itself must be the same, both in the
itinerant and localized components of the 5f electrons as they
both play a role in developing the HO. Ultrasonic measurement
is one of the sensitive probing techniques to investigate both
itinerant band instabilities, such as the band Jahn-Teller effect,
and the local anisotropic charge distribution, such as that
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FIG. 1. (a) Magnetic field dependence of elastic constants C11,
(C11 − C12)/2, C33, C44, and C66 at fixed temperatures of 22–23 K for
H ‖ [001]. C11 is divided by 10 to allow a better comparison. (b) The
temperature–magnetic field phase diagram of URu2Si2 for H ‖ [001]
is compiled from the present ultrasonic experiments and the previous
results [18]. The blue horizontal lines indicate the trajectories where
the pulsed field measurements were performed at fixed temperatures
of 22.5 and 1.5 K. (c) is the same as (a) at 1.5 K. The dotted lines are
visual aids.

found in multipolar ordering. Therefore, the present work is
aimed at obtaining better information on the dual nature of
the 5f -electron states in URu2Si2. Our recent investigation
of the elastic constant (C11 − C12)/2 of URu2Si2 under
pulsed magnetic fields strongly suggests that the hybridized
electronic state possesses an orthorhombic (x2 − y2) lattice
instability with �3(B1g) symmetry [20]. The origin of the
lattice instability is considered to be either a potential
deformation due to the Jahn-Teller effect of hybridized bands
or a simple crystalline electric field (CEF) effect of uranium’s
5f electrons; however, the origin of the �3(B1g) lattice
instability and its relation to the HO parameter are still open
questions. In order to verify that the system does not exhibit

a lattice instability for other symmetries, and to examine the
theoretical predictions of CEF ground-state schemes for high
magnetic fields and related higher-multipolar order parameter
scenarios for the HO phase as well, we study the elastic
responses of the other symmetry-breaking strains. In the
present paper, we report on the responses of C44 with �5(Eg)
symmetry and C66 with �4(B2g) symmetry under a high
magnetic field, and compare these results with the previously
reported (C11 − C12)/2 with �3(B1g) symmetry.

II. EXPERIMENTAL DETAILS

We investigated two single crystals of URu2Si2 grown using
the Czochralski technique by a tetra-arc furnace at UC San
Diego (sample No. 1) and CEA Grenoble (sample No. 2).
For sample No. 1, the dimensions are 3.8 × 1.8 × 1.2 mm3

with parallel [110] facets as grown. A residual resistivity
ratio (RRR) ∼ 10 was used for (C11 − C12)/2, C44, and C33

measurements, and for sample No. 2, 3.38 × 1.67 × 1.5 mm3

with parallel [100] facets, annealed in vacuum, RRR ∼ 29
is used for C11, C44, C66. Note there is no obvious sample
dependence in the magnetic field dependence of C44 for both
samples, except for a difference in the signal-to-noise ratio.
The sample surfaces were well polished and characterized by
x-ray Laue diffraction to check the characteristic symmetries
of the facets. Ultrasound was generated and detected by using
LiNbO3 transducers with a thickness of 40–100 μm, which
were fixed on the sample surfaces with room-temperature-
vulcanizing (RTV) silicone or superglue. We used pulsed
magnetic fields up to 68 T with a pulse duration of about
150 ms at the Dresden High Magnetic Field Laboratory.
The sound-velocity measurements were performed by using
a conventional phase comparative method using a digital
storage oscilloscope. Ultrasound induces both linear strain
and a rotation field (similar to Raman modes; a summary
with the D4h point group is shown in Table I) in the solid,
which behave as conjugate fields for the electric quadrupole or
electric hexadecapole moments. These multipolar responses
can be observed as a sound-velocity change and ultrasonic
attenuation via an electron-phonon interaction. The sound
velocity vij is converted to the elastic constant Cij by using the
formula Cij = ρv2

ij . Here, ρ = 10.01 (g/cm3) is the density of
URu2Si2.

III. RESULTS

In Fig. 1, we show the magnetic field dependence of the
following elastic constants, C11/10, (C11 − C12)/2, C33, C44,
and C66, at fixed temperatures of 22–23 K [Fig. 1(a)] and
1.5 K [Fig. 1(c)] for H ‖ [001] which are measured with
ultrasonic frequencies of 75 MHz for C11, 159.5 MHz for
(C11 − C12)/2, 78.7 MHz for C33, 164 MHz for C44, and
166 MHz for C66. At 22–23 K, the elastic constants C33, C44,
and C66 decrease with increasing magnetic field through the
crossover region of the c-f hybridization (below 30 T) and
toward the polar-paramagnetic region (above 45 T), while C11

and (C11 − C12)/2, both related to the �3-symmetry response,
increase above 35 T.

The magnetic field–temperature (H -T ) phase diagram is
displayed in Fig. 1(b) for comparison, where the horizontal
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TABLE I. Symmetry, symmetrized strain and rotation, and multipoles for different elastic constants.

Symmetry (D4h group) Strain and rotation Multipole Elastic constant

�1(A1g) εxx,εyy C33 = −3CB + 4Cu + 4C13

�1 ⊕ �3(A1g ⊕ B1g) εzz = εB/3 − εB/
√

3 C11 = 3CB − Cu + (C11 − C12)/2 − 2C13

�3(B1g) εv = εxx − εyy Ov = √
3
(
J 2

x − J 2
y

)
/2 Cv = (C11 − C12)/2

�4(B2g) εxy Oxy = √
3(JxJy + JyJx)/2 C66

�5(Eg) εyz Oyz = √
3(JyJz + JzJy)/2 C44

εzx Ozx = √
3(JzJx + JxJz)/2 C44

�1(A1g) εB = εxx + εyy + εzz CB = (2C11 + 2C12 + 4C13 + C33)/9
�1(A1g) εu = (2εzz − εxx − εyy) Ou = √

3
(
2J 2

z − J 2
x − J 2

y

)
/2 Cu = (C11 + C12 − 4C13 + 2C33)/6

�2(A2g) ωxy Hα
z = √

35(J 4
+ − J 4

−)/4i C66,Cv

lines connect to features in the elastic constant data. In Fig. 1(c),
all elastic constants at 1.5 K show successive steplike anoma-
lies through the cascade of metamagnetic transitions with the
destruction of the hidden order [21]. The overall tendency to
decrease or increase with field reproduces from the magnetic
field dependence at 22–23 K [Fig. 1(a)]. Such a clear contrast of
decreasing or increasing tendency in the three transverse modes
in the paramagnetic phase just above TO ∼ 17.5 K supports the
idea that the �3-type orthorhombic lattice instability is related
to a symmetry-breaking band instability that arises due to the
c-f hybridization and is probably linked to the origin of HO
in this compound [20].

One may consider the possibility of magnetostriction on the
sound-velocity change, since the magnetic field change of the
elastic constant looks very similar to the magnetization and
magnetostriction change in pulsed magnetic fields. However,
by applying a magnetic field along the [001] axis of URu2Si2,
the c-axis length decreases only by �Lc/Lc ∼ 10−4 at 45 T
and 1.5 K, and the a axis expands by the same order of
magnitude due to the Poisson effect [22]. In the present case,
such an effect would mainly lead to enhanced softening of
the longitudinal C11 mode in the vicinity of the cascade
transitions. C11 includes a contribution from the bulk modulus
(volume strain). Based on the modified Ehrenfest equation
[23], the estimated contribution of the magnetostriction to
the sound-velocity change is �vij /vij ∼ 10−4, which is less
than only 5% of the total velocity change ∼2 × 10−3 of the
transverse ultrasonic modes C44, C66, and (C11 − C12)/2. The
hardening of (C11 − C12)/2 at the collapse of the HO phase
has a tendency opposite to the magnetostriction along [100],
since it is equivalent to 1/

√
2 of the magnetostriction along

[110]. Consequently, the �3 elastic response originates from
the drastic change of the transverse acoustic phonon dispersion
due to strong coupling to the 5f electrons.

In Figs. 2(d) and 2(g), we show the isotherms of the modes
C44 and C66 as a function of increasing and decreasing mag-
netic field applied along [001]. For comparison, our previous
results [20] for the (C11 − C12)/2 are also shown in Fig. 2(a).
From these data, we determined the elastic constants as a
function of temperature in fixed magnetic field, shown in
Figs. 2(c), 2(f) and 2(i). The middle column combines three-
dimensional plots of the elastic constants versus temperature
and magnetic field H ‖ c for the three different symmetries;
(C11 − C12)/2 for the �3(B1g) [Fig. 2(b)], C66 for the �5(Eg)
[Fig. 2(e)], and C44 for the �4(B2g) [Fig. 2(h)] of the D4h point

group symmetry. The bottom of each cubic box shows the H -T
phase diagram. The blue-white-red color gradation indicates
the relative stiffness of each ultrasonic mode, stiffer in blue
and softer in red. In the soft-mode regions, the system may
indicate lattice instabilities of the corresponding symmetry.
For example, for the (C11 − C12)/2 mode, the corresponding
�3(B1g) lattice instability is enhanced in the low-temperature
and low magnetic field region, where strong c-f hybridization
occurs, and is suppressed at high temperatures and high mag-
netic fields. The �4(B2g) and �5(Eg) modes show the opposite
tendency. Such a clear difference in the three transverse modes
indicates the presence of the �3(B1g) lattice instability in the
HO phase, and in the strong c-f hybridization region at low
magnetic fields in URu2Si2.

IV. DISCUSSION

A. Band Jahn-Teller model (delocalized 5 f -electron state)

In Figs. 3(a)–3(c) the normalized elastic constants ver-
sus temperature at various magnetic fields are shown for
�3(B1g): (C11 − C12)/2 [Fig. 3(a)], �4(B2g): C66 [Fig. 3(b)],
and �5(Eg): C44 [Fig. 3(c)], with the phonon background
subtracted. For simplicity, we made phenomenological fits
to the elastic constants of ThRu2Si2 measured from 300 to
1.5 K in zero magnetic field as the phonon background shown
as the dotted lines in Figs. 2(c), 2(f) and 2(i). A similar
subtraction was also performed in our previous work [24].
First, we analyzed the softening of (C11 − C12)/2 by using the
phenomenological theory of the band Jahn-Teller (BJT) effect
assuming a rigid degenerate two-band state [25]. The solid
lines in Fig. 3(a) were calculated from the following equation,

(C11 − C12)

2
= Cph − 2d2N0{1 − e−(EF−E0)/kBT }. (1)

Here, Cph is the phonon background [as shown in Fig. 2(c)], d is
a deformation-potential coupling constant, N0 is the density of
states at the Fermi energy EF, and E0 is the energy at the bottom
of the conduction band. The term 2d2N0 is set to be temperature
independent. Figure 4 shows the magnetic field dependence of
the fit parameters (2d2N0) and (EF − E0). We obtain EF −
E0 = 43 K at 0 T and EF − E0 = 28 K at 35 T. The value
of 2d2N0 = 0.071 × 1010 J m−3 at 0 T gradually decreases
with increasing magnetic field, which is consistent with the
reduction of c-f hybridization under a magnetic field, where it
causes a weakening of the deformation-potential coupling. The
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FIG. 2. Left column: Magnetic field dependence of the elastic constants (a) (C11 − C12)/2, (d) C66, and (g) C44 for H ‖ [001] of URu2Si2 at
selected temperatures. The lower panel in each figure shows the sound-attenuation change �α vs H . These data were taken for both increasing
and decreasing field. Middle column: Three-dimensional plots of the elastic constants vs temperature and magnetic field aligned along the c axis
of URu2Si2. The bottom of the boxes shows the magnetic field–temperature phase diagram of URu2Si2 for H ‖ [001]. Right column: Normalized
elastic constants vs temperature at various magnetic fields H ‖ [001] converted from (a), (d), and (g), except for the zero magnetic field data.
Green dotted lines indicate the estimated phonon background. The panels arranged horizontally show the modes, (a)–(c) for (C11 − C12)/2
reprinted from Ref. [20], (d)–(f) for C66, and (g)–(i) for C44.

parameters obtained below 30 T are comparable to the values
reported for the typical band Jahn-Teller system LaAg1−xInx

[26], where the compounds with x = 0 and x = 0.11 do not
show a structural transition but exhibit a softening in (C11 −
C12)/2 due to �3 lattice instability. Here, for URu2Si2, the
obtained deformation-potential coupling energy is less than
1/5 of the value of LaAg (x = 0, 2d2N0 = 0.375 × 1010 J m3),
suggesting that the effect is too weak to induce a structural
phase transition. Above 40 T, the gap and the fitting error bar

drastically increase, which appears to be extrinsic and shows
the limitations of this theory.

B. Crystalline electric field models (localized 5 f -electron state)

We compare elastic responses obtained in the high magnetic
field region with uniform quadrupolar susceptibilities, which
are calculated by using CEF schemes in the 5f 2 configuration,
proposed thus far. We have considered a variety of CEF level
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FIG. 3. Temperature dependence of the normalized elastic constants of (a) �3: (C11 − C12)/2, (b) �4: C66, and (c) �5: C44 at various magnetic
fields H ‖ [001], where the phonon background is subtracted. Solid lines in (a) are calculated by using the band Jahn-Teller model (see text),
and the solid lines in (b) and (c) are visual aids. Calculated uniform quadrupolar susceptibilities of (d) �3: O2

2 , (e) �4: Oxy , and (f) �5: Oyz for
different CEF models (see Table III) at 0 and 60 T.

schemes, especially based on the U4+(5f 2) ionization and
non-Kramers 3H4 (J = 4) Hund’s rule ground-state multi-
plet; a non-Kramers configuration can easily reproduce the
reported anisotropic magnetization along the a and c axis of
this compound [27]. The details of the four CEF schemes
considered are listed in Table II. It should be noted that the
present CEF scheme 1 has two lowest-lying U 5f singlets,
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FIG. 4. Magnetic field dependence of the BJT fit parameters for
(C11 − C12)/2: The gap between the two levels EF-E0 (red, left axis)
and 2d2N0 (blue, right axis, see text for details). The dotted curves
are a visual aid.

�
(1)
1 = α(|4〉 + | − 4〉) − β|0〉 and �2 = i(|4〉 − | − 4〉)/√2,

which is identical to the level scheme in the theoretical models
originally predicting the A2g-type hexadecapolar order as the
order parameter of the HO state, which has been proposed by
Haule and Kotliar [10], or by Kusunose and Harima[9].

The present analysis allows us to qualitatively compare
the measured normalized elastic constants [Figs. 3(a)–3(c)]
with the calculated quadrupolar susceptibilities as shown in
Figs. 3(d)–3(f) (Appendix A). At first glance, none of these
CEF schemes successfully reproduces experimental observa-
tions. A detailed analysis follows below.

(i) (C11 − C12)/2, �3(B1g) symmetry: Only schemes 1 and
3 reproduce the temperature and magnetic field dependence of
(C11 − C12)/2. Scheme 2 shows a steep softening below 20 K
at H = 0 T and scheme 4 shows a broad minimum at around
50 K at H = 0 and 60 T, inconsistent with the experimental
data at low and high magnetic fields.

(ii) C66, �4(B2g) symmetry: Only scheme 3 roughly repro-
duces the temperature dependence of C66 at a high magnetic
field. However, the expected softening at 0 T in scheme 3 is not
seen in the experimental data. Scheme 2 again shows a steep
softening at H = 0 below 20 K and schemes 1 and 4 show
local minima and upturns, inconsistent with the experiment.

(iii) C44, �5(Eg) symmetry: Only scheme 4 reproduces the
softening at 60 T, but its magnetic field dependence shows an
opposite tendency (no softening in the magnetic field). All the
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TABLE II. Labels, CEF level scheme, active multipoles, author, and references.

Labels Level scheme (K) Active multipoles (symmetry) Authors Ref.

Scheme 1 �
(1)
1 − �2(60) − �3(178) − �

(1)
5 (491) − · · · Hα

z (A2g) Yanagisawa et al. [28]
Scheme 2 �

(1)
5 − �

(1)
1 (404) − �2(1076) − · · · O2

2 (B1g) Galatanu et al. [29]
Scheme 3 �3 − �

(1)
1 (44) − �2(112) − �

(1)
5 (485) · · · O2

2 (B1g) or Txyz(B1u) Santini and Amoretti [30]
Scheme 4 �

(1)
1 − �

(2)
5 (140) − �2(300) · · · T β

x (Eu) Hanzawa and Watanabe [31]

other schemes (1–3) show neither low-temperature softening
nor enhancement under magnetic fields.

Therefore, based on this logic, we conclude that the present
experimental results cannot be fully explained by CEF schemes
in the 5f 2 configuration. Note that other CEF schemes have
been tested and also resulted in poor agreement with the ex-
perimental data, for example, �(1)

1 − �4(45 K) − �
(2)
5 (51 K) −

�2(100 K) [32], which cannot be explained by tetragonal
CEF since this theory is considering many-body effects,
�

(1)
1 − �2(42 K) − �

(2)
1 (170 K) [27], and �4 − �

(1)
1 (44 K) −

�2(112 K) [30].
Here, we discuss conditions for the application of the CEF

schemes to URu2Si2. As mentioned, the 5f 2 non-Kramers
multiplet is the best assumption to reproduce the anisotropy
in the magnetization. Here, Jz has diagonal matrix elements in
doublet-doublet states. On the other hand, Jx and Jy only have
off-diagonal elements between singlet-doublet states. Thus, if
the singlet and doublet states are separated in non-Kramers
J = 4 CEF states (as schemes 1 and 2), one can naturally get
magnetic anisotropy. Indeed, CEF schemes 3 and 4, where the
singlet and doublet are relatively close (�300 K), cannot fully
reproduce the anisotropic magnetization. On the other hand,
all CEF schemes above are inconsistent with the occurrence
of softening in the C44 mode, because the corresponding
quadrupolar moments of Oyz and Ozx have a �J = ±1
transition and are always accompanied by a magnetic moment
Jz. Thus, it is difficult to find a CEF scheme which satisfies
the mutually exclusive features. Therefore, it is even more
challenging to find a CEF scheme which balances the compet-
ing transitions of Oxy with �J = ±2, and Oyz and Ozx with
�J = ±1 and also reproduces all elastic constant softenings at
high magnetic fields, where the present system is not affected
by both c-f hybridization and PPM states. Therefore, we need
to find an appropriate CEF scheme and/or consider another
origin or modulation to reproduce the experimental data. One
possibility is a rotation effect [33,34]. A rotation invariant
of the Hamiltonian describing a quadrupole-strain interaction
will produce a finite modulation of the transverse mode under
magnetic field. In the present experiments, the geometry of the
C44 mode (k ‖ [100],u ‖ H ‖ [001]) is the case to consider this
effect. This ultrasonic mode induces the strain field εzx and also
induces the rotation of ωzx , which will couple to the magnetic
torque of the total angular momentum J . We tried to compute
such an effect on CEF scheme 3 which originally shows no
softening in C44, but the rotation does not reproduce this. CEF
scheme 1, on the other hand, can generate the softening in C44

when the rotation effect is considered (not shown). To verify
whether or not this modulation exists, further measurements of
C44 with different geometries, for example, (k ‖ H ‖ [001],u ‖
[100]) and (k ‖ H ‖ [100],u ‖ [001]), need to be performed.

C. Consideration of hexadecapolar contribution

In contrast to C44 and other modes, C66 measured with
(k ‖ [100], u ‖ [010], and H ‖ [001]) has no rotation-effect
contribution. As mentioned, none of these CEF schemes could
reproduce the low-temperature softening of C66 in a high
magnetic field.

A possible explanation for this softening is a higher-rank
multipolar contribution, such as an electric hexadecapolar con-
tribution to the elastic constant. As shown in Table I, the trans-
verse ultrasonic mode C66 and (C11 − C12)/2, which propagate
in the c plane (k ⊥ [001]), also induce the rotation ωxy , which
couples to the electric hexadecapole Hα

z = √
35(J 4

+ − J 4
−)/4i,

with �2(A2g) symmetry (Appendix B). This is the theoretically
predicted order parameter of scheme 1 in Table II. It should also
be noted that recent inelastic x-ray scattering measurements
showed that the 5f ground-state wave function is mainly
composed of �1 and/or �2, which is consistent with CEF
scheme 1 [35].

Additionally, from recent resonant x-ray scattering mea-
surements, no superlattice reflections or azimuthal angle de-
pendences which evidence rank 2 and 3 multipolar order
have been observed so far [36]. Thus, the lower-rank elec-
tric quadrupole order and magnetic octupolar order can be
eliminated as candidates for the HO parameter. The remaining
unsubscribed order is an electric hexadecapole order with A2g

symmetry or a composite order corresponding to this symme-
try, such as the chiral density wave order with A2g ± B1g sym-
metry [37]. Since the elastic response of chiral density waves
is not fully understood, the following analysis is based on the
Hα

z -type hexadecapolar order predicted by Kusunose et al. [9]
with CEF scheme 1, where the Hα

z moment is active. Figure 5
show the uniform hexadecapolar susceptibility and quadrupole
susceptibility as a function of temperature [Fig. 5(a)] and
magnetic field [Fig. 5(b)] calculated by using CEF model 1.
The susceptibility of Hα

z (A2g) shows the opposite temperature
dependence as compared toOxy (B2g) and a similar temperature
dependence as O2

2 (B1g) with a relatively larger matrix element
(Hα

z in Fig. 5 is divided by 100). Again, the response shows the
opposite tendency to the increasing of the softening in higher
magnetic field regions. Since the rotation of ωxy is a unitary
transformation, the hexadecapole moment will not affect the
single-ion Hamiltonian at zero magnetic field and/or under the
field applied along the z ([001]) axis. In other words, this hex-
adecapole will affect the sound velocity only when a finite mag-
netic field along the xy plane and/or an anisotropic multipolar
interaction exist. Thus, we need to assume a large anisotropy in
the coupling mechanism of hexadecapolar-lattice interactions
and a two-electron Hamiltonian to reproduce the opposite
elastic responses between the C66 and (C11 − C12)/2. A similar
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FIG. 5. Calculated uniform multipolar susceptibilities including
the �3(B1g) and the �4(B2g)-quadrupole terms O2

2 and Oxy , respec-
tively, and the �2(A2g)-hexadecapole term Hα

z by using CEF model
1 (see Table III). (a) Temperature dependence at 0 T (open symbol)
and 60 T (solid symbol) and (b) magnetic field dependence at 0 K.

elastic response and characteristic ultrasonic attenuation were
observed in the C66 mode of the iron-based superconductor
Ba(Fe1−xCox)2As2 (x = 0.1) [38], where a hexadecapolar
order and its instability towards the superconducting phase
was predicted. However, the authors mention that the hexade-
capolar contribution is estimated to be 250 times smaller than
the quadrupolar contribution in this iron-based superconductor.
Therefore, the hexadecapolar contribution of the present elastic
constants (C11 − C12)/2 and C66 for URu2Si2 is also expected
to be minuscule, and will not reproduce the softening of C66

in high magnetic fields, unless the hexadecapolar contribution
is strongly enhanced for some unknown reason.

Using a different approach, we also checked the
hexadecapolar contribution on the elastic constant C66 in
a magnetic field applied perpendicular to the c axis. Figure 6
shows the magnetic field dependence of the elastic constant
C66 for H ‖ [100] and H ‖ [110] of URu2Si2 at 4.2 and
20 K. There is no obvious difference in the data below and
above TO and for both field orientations within the present
measurement accuracy. The quadrupolar susceptibility was
calculated using a mean-field approximation, which assumes

-0.05

-0.04

-0.03

-0.02

-0.01

0.00 U
niform

 S
usceptibility  Γ

4  (B
2g ) : O

xy

6050403020100
H (T)

-1.5x10
-3

-1.0

-0.5

0.0

0.5

1.0

1.5

ΔC
66

/C
66

H || [110]
H || [100]

URu2Si2
k || [100], u || [010]

4.2 K (HO) Exp.

20 K (PM) Exp.

20 K (PM) Calc.

4.2 K (AFH) Calc.

FIG. 6. Left axis: Magnetic field dependence of elastic constant
C66 for H ‖ [100] and H ‖ [110] of URu2Si2 at 4.2 and 20 K. Right
axis: Calculated (uniform) quadrupolar susceptibility using the mean-
field theory with CEF model 1 as described in the text.

the Hα
z -type antiferrohexadecapolar interaction as the HO

parameter, based on the theory of Kusunose et al. [9], which
predicts that a very tiny difference should appear between
the [100] and [110] directions in the antiferrohexadecapole
(AFH) order state. The calculated uniform quadrupolar
susceptibility using the mean-field theory [28] with CEF
model 1 is also displayed in Fig. 5. This predicted anisotropy
between H ‖ [100] (red line) and H ‖ [110] (blue line) cannot
be distinguished in the present scale of Fig. 6. We have
reported similar results for the mode (C11 − C12)/2 in a pre-
vious paper [28]. Thus, as in the previous investigation, higher
magnetic fields and/or improved measurement accuracy, such
as using static magnetic fields, are required to ultimately rule
out the existence of a hexadecapole interaction. In conclusion,
a hexadecapolar order is not indicated within the present
measurement accuracy under a pulsed magnetic field. The
origin of the enhanced softening of C66 for H ‖ [001] at high
magnetic fields remains an open question.

D. Comments on the small possibility of rotational symmetry
breaking in the HO

Finally, we comment on the recently proposed symmetry-
breaking scenarios. Tonegawa et al. reported that the lattice
symmetry is broken from tetragonal to orthorhombic only
when using a sample with a very high RRR, as found in
synchrotron x-ray measurements [6]. Ultrasound is a highly
powerful tool to detect symmetry-breaking lattice distortions
even when the lattice distortions are staggered or small. For
example, the tetragonal systems DyB2C2 [39] and BaFe2As2

[38,40] systems show an εxy-type staggered/uniform lattice
distortion due to antiferro/ferroquadrupolar order. A clear soft-
ening towards the phase transitions was observed in the related
symmetric ultrasonic modes. The absence of such softening in
C66 leaves an εxy-type orthorhombic lattice distortion in the
HO highly unlikely. Namely, there will be no tetragonal to
orthorhombic (fourfold to twofold) symmetry breaking in the
HO. Instead, the softening is enhanced above 37 T where the
hidden order is suppressed. It should be noted that C66 shows
a relatively large jump at TO in the temperature dependence
at 30 T for H ‖ [001] [as indicated by the red arrowhead in
Fig. 3(b)]. This fact may suggest the freezing of the related
multipolar degrees of freedom Oxy or Hα

z at TO. However, these
features appear already above the region of the Fermi-surface
reconstruction, which has been pointed out by Shishido et al.
based on the Hall effect measurement [41]. Thus, it is not clear
whether the enhancement of the elastic anomaly of C66 at TO

in a magnetic field is related to the origin of the pure HO
parameter. To more precisely determine the response of C66

in these magnetic field regions, further investigations, such as
ultrasonic measurements under a static magnetic field around
30 T, are needed.

V. SUMMARY

We performed ultrasonic measurements on URu2Si2 in
pulsed magnetic fields to check the elastic responses of this
compound and found that the �3(B1g)-type lattice instability
is dominant at low temperature and low magnetic fields. In
contrast, we observed enhancements of the elastic softening
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TABLE III. CEF parameters for the present analysis.

Labels Level scheme (K) B0
2 (K) B0

4 (K) B4
4 (K) B0

6 (K) B4
6 (K)

Model 1 �
(1)
1 − �2(60) − �3(178) − �

(1)
5 (491) − · · · 12.0 −0.43 −3.2 −0.011 0.053

Model 2 �
(1)
5 − �

(1)
1 (404) − �2(1076) − · · · −26.0 −0.01 0.3 0.062 −0.05

Model 3 �3 − �
(1)
1 (44) − �2(112) − �

(1)
5 (485) · · · −7.6241 −0.09658 −0.49981 −0.01165 0.07022

Model 4 �
(1)
1 − �

(2)
5 (140) − �2(300) · · · −7.3985 −0.01727 1.11324 0.00890 −0.11656

of the �4(B2g) and �5(Eg) symmetric modes towards low
temperatures at magnetic fields above 40 T. We discussed the
origin of these elastic responses based upon the D4h symmetry
point group analysis, starting from a local multipolar state
(crystalline electric field) assuming weak hybridization and
used an itinerant scheme based on the deformation-potential
coupling due to the band Jahn-Teller effect of a strongly c-f
hybridized band which becomes weaker as the field is in-
creased. The present analysis revealed again that the itinerant-
band Jahn-Teller model is more applicable and the c-f hy-
bridization is important in HO. On the other hand, the results
cannot be explained by the quadrupolar susceptibility based
on the crystalline electric field schemes in the 5f 2 configu-
ration which have been proposed thus far. To conclude, this
work revealed important information on the elastic response
towards the crossover from the delocalized to the localized
electric state of the present system. However, a comprehensive
interpretation of these elastic responses is still pending, and
further investigations will be required.
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APPENDIX A: FORMULATION OF THE MULTIPOLAR
SUSCEPTIBILITY

We start from the CEF Hamiltonian with the elastic-strain
mediated perturbation,

H = HCEF +
∑
ε�

∂HCEF

∂ε�

ε�. (A1)

The tetragonal CEF Hamiltonian with the Zeeman effect is
written as

HCEF = B0
2O0

2 + B0
4O0

4 + B4
4O4

4 + B0
6O0

6 + B4
6O4

6

+gJ μB

∑
i=x,y,z

JiHi. (A2)

Here, Bn
m are the CEF parameters and On

m are the Stevens
operators. The numerical values of Bn

m, which were used in
the present analysis, are listed in Table III.

The second term of Eq. (A1) is explained in terms of
an electric multipole-strain interaction. Especially for rank-2
multipoles (quadrupoles), this term is written as

H (2)
MS = −g

(2)
�3

O0
2εv − g

(2)
�4

Oxyεxy − g
(2)
�5

{Oyzεyz + Ozxεzx}.
(A3)

For rank-4 multipoles (hexadecapoles), we assume a bilinear
coupling between hexadecapoles and rotations with the same
�2(A2g) symmetry instead of using a symmetrized strain ε� as
a perturbation field,

H (4)
MS = −g

(4)
�2

Hα
z ωxy. (A4)

Here, g(2)
� and g

(4)
� are the coupling constants for the rank-2 and

rank-4 multipoles, respectively. O� and Hα
z are quadrupole

and hexadecapole operators, respectively. Those are listed
in Table I and the quadrupole operators are also defined in
Appendix B. The free energy of the local 5f electronic states
in the CEF can be written as

F = U = NkBT ln
∑

n

exp{−En(ε�)/kBT }. (A5)

Here, N is the number of ions in a unit volume, and En(ε�) is a
perturbed CEF level as a function of strain ε� . n is the number
index for J multiplets and their degenerate states. U gives the
internal energy for the strained system, which is written in
terms of the symmetry strains and elastic constants listed in
Table I as

U = 1
2

{
CBε2

B + CBuεBεu + Cuε
2
u + Cvε

2
v

+C44
(
ε2
yz + ε2

zx

) + C66ε
2
xy

}
. (A6)

Here, CBu = −(C0
11 + C0

12 − C0
13 − C0

14)/
√

3. In the second
perturbation, the temperature dependence of the elastic con-
stant is given by

C�(T ,H ) = C0
� − N

(
g

(2)
�

)2
χ�(T ,H ). (A7)

Here, C0
� is the background of the elastic constant. The

single-ion multipolar susceptibility χ� is defined as the second
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derivative of the free energy with respect to strain (in the
ε� → 0 limit),

−(
g

(2)
�

)2
χ� =

〈
∂2En

∂ε2
�

〉
− 1

kBT

{〈(
∂En

∂ε�

)2〉
−

〈
∂En

∂ε�

〉2}
.

(A8)

Here, the angle brackets mean the thermal average. Note that
when we use the rotation ωxy as a conjugate field for the
hexadecapole moment, we need to assume some mechanism of
the anisotropic hexadecapolar interaction, e.g., a two-electron
state, as discussed in Ref. [38], because the rotation ωxy is a
unitary transformation for the system, i.e., it does not change
the single-ion Hamiltonian at zero magnetic field. If Eq. (A4)
is valid, we can substitute ωxy for εxy in the formulas above
to determine the hexadecapolar susceptibility. Equation (A6)
can be rewritten in the form of a normalized elastic constant
as shown in Figs. 3(a)–3(c),

�
(
C�(T ,H ) − C0

�

) = C�(T ,H ) − C0
�(T )

C0
�(T =1.5 K)

= N
(
g

(2)
�

)2

C0
�(T =1.5 K)

χ�(T ,H ). (A9)

In the present analysis, we assume C0
�(T ) = Cph(T ) as the

phonon contribution, which is obtained from the elastic
constant of ThRu2Si2 without a 5f -electron contribution.
We now have the tools to compare the temperature and
magnetic field dependence of the normalized elastic con-
stants with the quadrupole susceptibility by assuming A =
N (g(2)

� )
2
/C0

�(T =1.5 K) being independent from T and H .

APPENDIX B: DEFINITION OF MULTIPOLAR MOMENTS
AND EQUIVALENT OPERATOR EXPRESSION

The electric multipolar operators are defined by a multipolar
expansion of the electrostatic potential as

Qlm ≡ e

nf∑
j=1

rl
jZ

∗
lm(rj ). (B1)

Here, e < 0 is the electron charge, and nf is the number of
f electrons. Zlm(rj ) is written by using spherical harmonics
Ylm(rj ) as

Zlm(rj ) ≡
√

4π/(2l + 2)Y ∗
lm(rj ). (B2)

Equation (B1) can be rewritten by replacing (x,y,z) in
Zlm with spherical tensor operators Jlm with the following
transformations,

xnx yny znz → nx!ny!nz!

(nx + ny + nz)!

∑
P

P
(
J nx

x J
ny

y J nz

z

)
. (B3)

Here, P is a sum of all possible permutations. Operator Jlm has
the following commutation relation, with the ladder operator
J± = Jx ± iJy ,

Jll = (−1)l
√

(2l − 1)!!

(2l)!!
(J+)l , (B4)

[J−,Jlm] =
√

(l + m)(l − m + 1)Jlm−1. (B5)

Following are the quadrupolar and hexadecapolar operators,
which are used in the present analysis:

(i) Rank 2 (quadrupole)

�3(B1g) :

O2
2 = Ov = 1√

2
[J22 + J2−2] =

√
3

2

(
J 2

x − J 2
y

)
, (B6)

�4(B2g) :

Oxy = i√
2

[−J22 + J2−2] =
√

3

2
(JxJy + JyJx), (B7)

�5(Eg) :

Oyz = i√
2

[J21 + J2−1] =
√

3

2
(JyJz + JzJy), (B8)

�5(Eg) :

Ozx = 1√
2

[−J21 + J2−1] =
√

3

2
(JzJx + JxJz). (B9)

(ii) Rank 4 (hexadecapole)

�2(A2g) :

Hα
z = i√

2
[−J44 + J4−4]

=
√

35

8

{(
J 3

x Jy + J 2
x JyJx + JxJyJ

2
x + JyJ

3
x

)
−(

JxJ
3
y + J 2

y JxJy + JyJxJ
2
y + J 3

y Jx

)}
.

(B10)
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