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Parity-violating hybridization in heavy Weyl semimetals

Po-Yao Chang1,* and Piers Coleman1,2

1Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA
2Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

(Received 2 November 2017; published 17 April 2018)

We introduce a simple model to describe the formation of heavy Weyl semimetals in noncentrosymmetric heavy
fermion compounds under the influence of a parity-mixing, onsite hybridization. A key aspect of interaction-driven
heavy Weyl semimetals is the development of surface Kondo breakdown, which is expected to give rise to a
temperature-dependent reconfiguration of the Fermi arcs and the Weyl cyclotron orbits which connect them
via the chiral bulk states. Our theory predicts a strong temperature-dependent transformation in the quantum
oscillations at low temperatures. In addition to the effects of surface Kondo breakdown, the renormalization
effects in heavy Weyl semimetals will appear in a variety of thermodynamic and transport measurements.
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I. INTRODUCTION

Heavy fermion materials are a tunable class of compounds
in which strong electron correlations give rise to a wealth of
metallic, superconducting, magnetic, and insulating phases. A
new aspect of these materials is the possibility of topological
behavior, epitomized by the topological Kondo insulator (TKI)
SmB6 [1–6], in which a topologically nontrivial entanglement
between local moments and conduction electrons, gives rise
to Dirac surface states [7–10]. An important second class of
topological behavior occurs in the presence of broken inversion
or time-reversal symmetry, which transforms the quantum
critical point between normal and topological insulators into
a Weyl semimetal phase, with relativistic chiral fermions in
the bulk and Fermi arc states [11–13] on the surface. Various
Weyl semimetallic phases have been proposed and discovered
in weakly interacting systems [14–16]. Most Weyl semimetals
are noncentrosymmetric crystals [11].

A preponderance of noncentrosymmetric heavy fermion
materials offers an exciting opportunity to explore strongly
interacting, or “heavy Weyl semimetals” (hWSMs) [17,18].
Four candidates have already come to light: CeRu4Sn6 [19],
Ce3Bi4Pd3 [20], CeRu4Sb12 [21,22], and YbPtBi [23]. Optical
measurements on CeRu4Sn6 [19] and transport measurements
on CeRu4Sb12 [21,22] indicate anisotropic semimetallic be-
havior. More remarkably, the recent observation of a giant T 3

component to the specific heat of Ce3Bi4Pd3 [20] and YbPtBi
[23] reveals the presence of point-node excitations.

Recent density-functional calculations [17,24] confirm that
heavy fermion systems are expected to host Weyl points with
surface Fermi arcs. Lai et al. [18] have recently proposed
a tight-binding model for hWSMs [18], predicting that the
density of states near the Weyl nodes is strongly renormalized
by the hybridization with f-electrons. These works raise a
number of open questions:

(1) What is the relationship between hWSMs and TKIs?

*pychang@physics.rutgers.edu

(2) Beyond renormalization, what are the qualitative ef-
fects of strong interactions?

In this paper, we propose a simple a two-band model
which links the emergence of hWSMs at the topological
quantum critical point (tQCP) between Kondo and TKIs to
the development of a parity-breaking on-site hybridization
between d and f states in noncentrosymmetric Kondo lattices
[Fig. 1(a)].

One of the qualitative effects predicted by our model
is the phenomenon of Kondo breakdown, whereby the loss
of coordination of local moments at the surface leads to a
reduction of the surface Kondo temperature. This phenomenon
has been proposed as the origin of light surface quasiparticles
observed in SmB6 [25]. The analogous effect on the Fermi arcs
causes them to reconfigure their geometry [Fig. 2] as a function
of temperature, giving rise to a strong temperature dependence
in the intersurface cyclotron orbits [26–28].

Dzero et al. have emphasized that the spin-orbit driven
topological behavior in heavy fermion systems derives from
the odd-parity hybridization between d (φd ) and f -orbitals
(φf ) [1–3] given by the Slater-Koster overlap integral:

Ṽαβ (R) =
∫

d3xφ∗
dα(x − R)V(x)φfβ (x), (1)

where V(x) is the electronic potential. Inversion symmetry in
centrosymmetric crystals fully eliminates the onsite hybridiza-
tion between the opposite parity d and f states (Vαβ(0) = 0)
[Fig. 1(b)], and in momentum space, the residual intersite
components of the hybridization then acquire the odd-in time,
odd-in momentum, relativistic form Vαβ(k) ∼ k · �σ near the
high symmetry points. The band crossing permitted by this
nodal hybridization drives the formation of TKIs. On the
other hand, in noncentrosymmetric crystals, the asymmetric
potential V(x) �= V(−x) distorts the f and d orbitals and
eliminates parity conservation, giving rise to a finite onsite
d-f hybridization Wαβ = Ṽαβ(R = 0) [Fig. 1(b)]. Under the
influence of this perturbation, TKIs become hWSMs as shown
in Fig. 1(a). A minimal model for the hybridization that
captures these features in a two-band model is obtained
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FIG. 1. (a) Topological quantum critical point (tQCP) at the nexus
between normal and topological Kondo insulators (KI/TKIs) and
heavy Weyl semimetals (hWSMs). g and W are the band tuning
and inversion symmetry breaking parameters, respectively. At the
tQCP, charge neutrality pins the bulk Dirac cone to the Fermi energy
(occupied bands indicated by light blue). Finite W > 0 splits the Dirac
point into four symmetry-related Weyl points, pinned to the Fermi
energy. (b) Breaking of inversion symmetry leads to a finite onsite
hybridization W > 0.

by generalizing the nearest-neighbor model introduced by
Alexandrov, Coleman, and Erten [25] (ACE) to include an
additional onsite term as follows:

Ṽ (R)αβ =
{−i�vR · σ αβ, R ∈ n.n.
w0 + i �w · σ R = 0.

, (2)

where the vector �vR = (v1R1,v2R2,v3R3) describes the
strength of the nearest neighbor hybridization while w0 and �w
describe the inversion-symmetry breaking onsite hybridization
terms, in a time-reversal invariant form.
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FIG. 2. (a) Kondo Breakdown in a heavy Weyl semimetal,
contrasting the spectrum before (solid lines) and after (dashed
lines) surface Kondo breakdown as a function of kz at kx = 0.
Surface spectrum (b) before and (c) after surface Kondo break-
down: red and blue lines indicate the Fermi arcs on the top and
bottom surfaces, respectively. Black dots indicate the projection
of the Weyl nodes onto the surface. Parameters were taken to
be (tx,ty,tz,μ,α,Vx,Vy,Vz,W2,b,λ) = (2,1,1,−6,−0.1,0.7,0.7,1.05,

0.8,0.89,0.087) in Eq. (5). (d) Sche-matic of the Weyl orbits, where
arrows indicate the quasiparticle trajectory.

II. MODEL

We use a noncentrosymmetric modification of the ACE
model [25]:

H =
∑

i,j,σ,σ ′
�

†
iσHij,σσ ′�jσ ′ + U

∑
i

nif ↑nif ↓, (3)

where

Hij,σσ ′ =
(

(−t ci,j − μcδij )δσσ ′ Ṽσσ ′(Ri − Rj )

Ṽσσ ′(Ri − Rj ) (−t
f

i,j − μf δij )δσσ ′

)
.

(4)

Here �
†
iσ = (c†iσ , f

†
iσ ) with c

†
iσ and f

†
iσ are the creation op-

erators for conduction and f-electrons. t
c/f

ij is the hopping
amplitude and μc/f is the chemical potential for c/f electrons.
U is the onsite Coulomb repulsion between f-electrons.

In the large U limit, a slave-boson approach leads to
the mean-field Hamiltonian [29], H = ∑

k �†(k)H(k)�(k) +
Nsλ(|b|2 − Q) with

H(k) =
(

εc(k) − μ
∑

j Vjσj sin kj∑
j Vjσj sin kj εf (k) + λ

)

+
(

0 W0 + i �W · �σ
W0 − i �W · �σ 0

)
. (5)

Vi = vib and Wi = wib are the renormalized hybridiza-
tion terms, b is the slave boson projection amplitude. The
f-hopping amplitude becomes t̃ f = b2tf The dispersion of the
conduction electrons is taken as εc(k) = −2

∑
i ti cos ki and

εf (k) = αεc(k) for simplicity. The constraint field λ imposes
the mean-field constraint Q = nf + b2 with Q being the local
conserved charge associated with the slave boson approach
in the infinite U limit, and is taken to be Q = 1. Ns is the
total number of sites. We solve the slave-boson mean-field
Hamiltonian self-consistently [see Appendix A].

The spectrum of the Hamiltonian [Eq. (5)] is

E(k) = h0 ±
√

h2
1 + W 2

μ + �V 2
k ± 2

√
W 2

μ
�V 2

k − ( �W · �Vk)2,

(6)

where h0/1 = 1
2 [εf (k) + λ ± (εc(k) − μ)],W 2

μ = W 2
0 + �W 2

and �Vk = (V1 sin k1,V2 sin k2,V3 sin k3).
The energy spectrum has line or point nodes determined by

the intersections between three surfaces:SI where h1 = 0,SII ,
where (W 2

μ − �V 2
k )2 = 0, and SIII where �W · �Vk = 0. When

there is no common intersection between these surfaces, the
ground state remains a fully gapped insulator. However, once
W exceeds a critical value, a semimetallic state develops. There
are two cases:

(1) Line-node semimetal ( �W = 0), for which the constraint
SIII is trivial. Since SI and SII are spheroids that share
the same center, they intersect to form two rings {r1,r2} =
SI ∩ SII of gapless excitations [Fig. 3(a)] (see Appendix E for
the detailed discussion).

(2) Weyl semimetal ( �W �= 0). HereSIII is the plane normal
to �W , intersecting with rings {r1,r2} at four Weyl points
[Fig. 3(b)].

Time reversal and reflection symmetries play an important
role in Weyl semimetals. Our model preserves time-reversal
symmetry, T −1H(k)T = H(−k), where T = iσ2K and K is
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FIG. 3. (a) A line-node semimetal: when �W = 0, the line-node
solution from Eq. (6) is determined by the intersections {r1,r2} =
SI ∩ SII indicated by blue lines. (b) A Weyl semimetal: When
�W �= 0, point-node solutions of Eq. (6), indicated by blue dots,

develop at the intersections of plane SIII normal to �W with the line
nodes, SI ∩ SII ∩ SIII .

the conjugation operator. In the absence of W0, providing the
inversion-symmetry breaking vector �W = Wl̂ points along a
crystal axis l̂, then the model also retains reflection symmetries
in the two planes with normals ĵ �= l̂ perpendicular to l̂.
For our model, the reflection operator is Rj = σjτ3 and
R−1

j H(k)Rj = H(kR), where kR is the wave vector reflected

in the plane perpendicular to ĵ and τ are the Pauli matrices in
c,f space. Suppose, for example, �W = W2ŷ, then the energy
spectrum has four Weyl points located in the ky = 0 plane,
each related to one another by time reversal and reflection
symmetries Rx and Rz.

The effective Hamiltonian near the Weyl points is obtained
from Eq. (5) by projecting it onto the eigenvectors of the
two central bands (see Appendix B). For �W = W2ŷ, we have
four Weyl points �k0, Rx

�k0 = (−kx0,0,kz0), Rz
�k0 = (kx0,0,

−kz0), and T �k0 = −�k0, related by reflection and time-reversal
symmetries, respectively. The effective Hamiltonian can be
expressed in a general form

Heff (�k0,δk) =[A(�k0)]iαδkiσα, (7)

with implied summation on i ∈ [x,y,z] and α ∈ [0,1,2,3] with
σ0 = I2×2. Here [A(�k0)]iα is a 3×4 matrix defined at each Weyl
point �k0, each proportional to the hybridization amplitudes
Vi (see Appendix B). These four effective Hamiltonians are
related by reflection and time-reversal symmetries (Rx(z) :
Heff (�k0,δk) → Heff (Rx(z)�k0,Rx(z)δk) and T : Heff (�k0,δk) →
Heff (−�k0,−δk)), which constrains the four Weyl points to lie
at the same energy.

III. KONDO BREAKDOWN

We now examine the effect of “Kondo breakdown” on the
Fermi arcs. The topological charges C = ±1 (see Appendix C)
associated with the Weyl points give rise to the formation of
Fermi arcs, which link the projections of oppositely charged
Weyl points onto the surface Brillouin zone (BZ). The analytic
form of the localized Fermi arcs can be derived from the
effective Hamiltonian (see Appendix D). In the presence of
interactions, the reduction in coordination number of the f-
elections at the surface suppresses the surface Kondo temper-
ature T ∗

K below that of the bulk, T s
K < TK . In the intermediate

temperature regime T s
K < T < TK , the bulk is topological but

the conduction electrons at the surface are liberated from the
local moments, leading to surface Kondo breakdown. The
surface Kondo breakdown scenario has been confirmed in
inhomogeneous mean-field approach [25] and dynamical mean

field calculations [30]. To model this effect, we suppress the
slave boson amplitude b to zero on the surface layer of hWSMs
and recompute the Fermi arcs.

The effect of Kondo breakdown on the surface spectra for a
(010) slab geometry is shown in Figs. 2(a)–2(c): we see that the
intersections between two surface chiral modes sink beneath
the Fermi sea. This effect causes the right and left chiral modes
to bulge outwards, leading to a differential reconfiguration of
the Fermi arcs on opposite surfaces as shown in Fig. 2(c). In
fact, the detailed configuration of the Fermi arcs will in general
depend on the microscopic parameters of the Hamiltonian.
For example, in CeRu4Sn6 [17], the nonequivalent cleavage
surfaces are found to give rise to different configurations of
Fermi arcs. This indicates that the Fermi arcs are sensitive to
the surface morphologies and chemical potential. The config-
uration of the Fermi arcs will also be sensitive to the surface
hybridization. Thus the surface Kondo breakdown introduces
the reconfiguration of the Fermi arcs. The configuration of the
Fermi arcs is a global property of the system, dependent on both
bulk and surface properties. In particular, the configuration
depends on the locations of the projected Weyl points on the
surface BZ and the detailed dispersions of the surface spectrum.
On the other hand, the topology of each Weyl point is a local
property, with a generic form as described by Eq. (7). The
finite topological charge C = ±1 of the Weyl point, ensures
the formation of Fermi arcs which link with the projections of
oppositely charged Weyl points on the surface BZ. However,
this local property does not constrain the way the pairs of
oppositely charged Weyl points are linked.

The reconfiguration of the Fermi arcs will have various
distinct signatures in both angle-resolved photoemission spec-
troscopy and quantum oscillation measurements. In a field,
quasiparticles on the surface move under the influence of
the Lorentz force k̇ = −evS × B, where vS is their velocity,
processing from one projected Weyl point to another. When
they reach a Weyl point, the gapless bulk chiral Landau level
provides a transport channel to coherently move the quasipar-
ticles between surfaces, giving rise to closed inter-plane Weyl
orbits [26,27], as shown in Fig. 2(d). Quantization of the Weyl
orbital motion leads to discrete energy levels En = πh(n+γ )vB

L+βk0/(eB) ,
where k0 is the length of the Fermi arcs, L is the thickness of the
sample, γ is a constant, and β = vB/vS with vB being the bulk
velocity. Such Landau levels have been observed in Shubnikov-
de Haas oscillations in Cd3As2, a weakly interacting Dirac
semimetal which is the crystal-symmetry-protection analogy
of a Weyl semimetal [28].

One of the most dramatic consequences of the differential
reconfiguration is the merger of two small orbits into a single
large orbit as shown in Fig. 2(d), and the effect that will modify
the quantum oscillations. Suppose the chemical potential is
fixed to be μ and vary the magnetic field B, the nth energy
level crosses the μ with the condition

1

Bn

=
{

e
βk0

(
vBπh

μ
(n + γ ) − L

)
, T < T s

K < TK

e
β ′(k′

0+k1)

(
vBπh

μ
(n + γ ) − 2L

)
, T s

K < T < TK

, (8)

where k′
0 and k1 are the arc-lengths on the bottom and top

surfaces respectively [see right panel in Fig. 2(d)], while
β ′ = vB/v′

S with v′
S being the surface velocity of quasiparticles

with surface Kondo breakdown.
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IV. RENORMALIZATION EFFECTS

During the transition of surface Kondo breakdown, the
spacing of the density of states as a function of 1/B has a dra-
matic change, ωB−1 = eπhvB

βμk0
→ eπhvB

β ′μ(k′
0+k1) . The magnetic field

1/B threshold of observing this oscillation also changes from
eL/βk0 → 2eL/β ′(k′

0 + k1). The differential reconfiguration
of the Fermi arc states can be detected by measuring the change
of oscillation frequency and a threshold of the magnetic field
in Shubnikov-de Haas oscillations.

The renormalized velocity of the Weyl semimetals de-
scribed in Eq. (7) is proportional to the hybridization amplitude
Vi ∝ √

TKD where TK is the Kondo temperature and D is the
band width of the conduction electrons [31]. This “square-
root” renormalization effect is weaker than that seen in heavy
fermion metals, due to the hybridization origin of the nodes.
From Ref. [17], the velocity of Weyl fermion in CeRu4Sn6 is
v∗ ∼ 0.2 eVÅ. For the weakly interacting Weyl semimetals
such as TaAs [32] and TaP [14], the velocity of Weyl fermion
v ∼ 2 − 3 eVÅ. The renormalization effect in hWSMs is about
a factor of 10.

Many of the thermodynamic and transport properties in
hWSMs are affected by this quasiparticle renormalization ef-
fect. One of the most dramatic effects, is the renormalization of
the cubic specific heat. A large T 3 specific heat has been
reported in the candidate hWSM materials Ce3Bi4Pd3 [20] and
YbPtBi [23]. As pointed out by Lai et al. [18] this significant
enhancement of specific heat likely derives from the cubic de-
pendence on renormalized velocity Cv = ∂

∂T

∫
εf (ε)g(ε)dε ∝

(T/v∗)3 with g(ε) = ε2

2π2v∗3 being the density of states. In addi-
tion to the specific heat, an enhancement of the high-field ther-
mopower [33] is also expected. The high-field thermoelectric
properties of the Weyl/Dirac semimetals contrast dramatically
with those of doped semiconductors, with a thermopower that
grows linearly, without saturation, in a the magnetic field,
α := �V/�T ∝ BT/v∗, where �V and �T are the voltage
and temperature difference, respectively. The nonsaturating
behavior leads to a large thermopower which has been observed
in weakly interacting Dirac semimetal Pb1−xSnxSe [34]. The
high-field thermopower is thus enhanced by the mass renor-
malization in hWSMs.

V. CONCLUSION AND DISCUSSION

We have proposed a hybridization-driven model for
hWSMs, arguing that the onsite hybridization between f

and d orbitals in noncentrosymmetric crystals drives TKIs
into hWSMs. One of the effects of the strong interactions is
surface Kondo breakdown, which leads to a reconfiguration
of Fermi arcs on both surfaces that should appear in quantum
oscillations, while the renormalization of velocity in hWSMs
affects thermodynamic and transport properties.

There are a number of interesting new directions for
research into hWSMs that deserve mention. One aspect that
deserves exploration is the influence of nonsymmorphic space
group symmetries. According to topological band theory
[35], such symmetries can lead to nodal points with much
higher multiplicities, giving rise to a cluster of nested Dirac
cones. A particularly interesting case is the candidate hWSM
Ce3Bi4Pd3, the space group No. 220 (I 4̄3d) is expected to

produce an eightfold degenerate double Dirac point. These
nodal lines are expected to give rise to “drumhead surface
states” [13,36,37] (see Appendix E), which can potentially
cause charge/spin-density wave and superconducting insta-
bilities. A second interesting direction is the possible use of
molecular beam epitaxy techniques [38], which open up the
possibility of artificially engineered hWSMs, where tuning the
degree of inversion symmetry breaking can be used to explore
the vicinity, and possible instabilities of the tQCP [39,40].
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APPENDIX A: SELF-CONSISTENT SLAVE BOSON
MEAN-FIELD SOLUTIONS

In the large U limit, a slave-boson approach leads to
the mean-field Hamiltonian [29], H = ∑

k �†(k)H(k)�(k) +
Nsλ(|b|2 − Q) with

H(k) =
(

εc(k) − μ
∑

j Vjσj sin kj∑
j Vjσj sin kj εf (k) + λ

)

+
(

0 W0 + i �W · �σ
W0 − i �W · �σ 0

)
. (A1)

Vi = vib and Wi = wib are the renormalized hybridization
terms, b is the slave boson projection amplitude. The f-
hopping amplitude becomes t̃ f = b2tf . The dispersion of the
conduction electrons is taken as εc(k) = −2

∑
i ti cos ki and

εf (k) = αεc(k) for simplicity. The constraint field λ imposes
the mean-field constraint Q = nf + b2 with Q being the local
conserved charge associated with the slave boson approach in
the infinite U limit, and is taken to be Q = 1. Ns is the total
number of sites.

The saddle point equations can be obtained from δ〈H 〉
δb

= 0
and δ〈H 〉

δλ
= 0.

1

Ns

∑
k,σ

〈f †
k,σ fk,σ 〉 + b2 = 1, (A2)

1

2Ns

∑
k,σ,i,j,α,β

{(vi sin ki[σi]αβ + w0δαβ + iwj [σj ]αβ), (A3)

〈c†k,αfk,β〉 + H.c.} + b

(
λ − 1

Ns

∑
k,σ

〈ε̃f (k)f †
k,σ fk,σ 〉

)
= 0,

(A4)

where ε̃f (k) = 1
b2 εf (k) is the bare spectrum of the f-electron.

In the paper, we consider the case of nonzero on-site
hybridization w2 �= 0. For the specific calculations carried
out in the paper, we have chosen the bare parameter values
to be (vx,vy,vz,w2,α,tx,ty,tz,μ) = (0.786,0.786,1.179,0.89,

−0.126,2,1,1,−6), leading to a self-consistently determined
slave boson amplitude and the constraint field with values
(b,λ) = (0.89,0.087).
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APPENDIX B: EFFECTIVE TWO-DIMENSIONAL
HAMILTONIAN NEAR THE WEYL POINTS

Now we analyze the effective Hamiltonian around the
Weyl points. We consider the inversion breaking hybridization
W2 �= 0 such that the Weyl points are located at ky = 0 plane.
The locations of the Weyl points in momentum space satisfy

− 2tx cos kx0 − 2tz cos kz0 − (μ + 2ty) = 0,

W 2
2 = V 2

1 sin2 kx0 + V 2
3 sin2 kz0. (B1)

We can expand the Hamiltonian around the Weyl points up to
linear terms in k.

H(δk) ∼ H0 + H1(δk), (B2)

where

H0 = [V1(sin kx0)σ1 + V3(sin kz0)σ3]τ1 + W2σ2τ2, (B3)

and

H1(δk) = 1
2 (1 + α)[2tx sin kx0δkx + 2tz sin kz0δkz]τ3

+ [V1(cos kx0δkx)σ1 + V2δky

+ V3(cos kz0δkz)σ3]τ1. (B4)

Here we have dropped terms proportional to the identity matrix,
which only shift the spectrum without changing the band
topology. To obtain the effective two-dimensional Hamiltonian
in the vicinity of the Weyl points we first find two eigenvectors
of H0 with zero energy,

|v1〉 = 1√
2
(
V 2

1,kx0
+ V 2

3,kz0

) + 2V1,kx0

√
V 2

1,kx0
+ V 2

3,kz0⎛
⎜⎜⎝

V1,kx0 +
√

V 2
1,kx0

+ V 2
3,kz0

0
−V3,kz0

0

⎞
⎟⎟⎠,

|v2〉 = 1√
2
(
V 2

1,kx0
+ V 2

3,kz0

) + 2V1,kx0

√
V 2

1,kx0
+ V 2

3,kz0⎛
⎜⎜⎝

0
V3,kz0

0

V1,kx0 +
√

V 2
1,kx0

+ V 2
3,kz0

⎞
⎟⎟⎠, (B5)

where V1(3),kx/z0 = V1(3) sin kx(z)0,and V2,ky0 = V2 with �k0 being
the position of the Weyl point.

The effective two-dimensional Hamiltonian is then ob-
tained by projecting the Hamiltonian onto these eigenvalues,
[Heff ]i,j = 〈vi |H1(δk)|vj 〉 with i,j = 1,2, giving rise to

Heff (δk) = −h0,�k0
σz − V2,ky0δkyσx

+
V1,kx0 +

√
V 2

1,kx0
+ V 2

3,kz0

V 2
1,kx0

+ V 2
3,kz0

+ V1,kx0

√
V 2

1,kx0
+ V 2

3,kz0

×[V1,kx0 Ṽ1,kx0δkx + V3,kz0 Ṽ3,kz0δkz]σy, (B6)

where h0,�k0
= 1

2 (1 + α)[2tx sin kx0δkx + 2tz sin kz0δkz], and
Ṽ1(3),kx(z)0 = V1(3) cos kx(z)0.

For simplicity, we express the Hamiltonian as

Heff (δk) = (Aδkx + Bδkz)σz

+(Cδkx + Dδkz)σy + Eδkyσx, (B7)

where

A = −1 + α

2
(2tx sin kx0), B = −1 + α

2
(2tz sin kz0)

C =
V1,kx0 +

√
V 2

1,kx0
+ V 2

3,kz0

V 2
1,kx0

+ V 2
3,kz0

+ V1,kx0

√
V 2

1,kx0
+ V 2

3,kz0

V1,kx0 Ṽ1,kx0 ,

D =
V1,kx0 +

√
V 2

1,kx0
+ V 2

3,kz0

V 2
1,kx0

+ V 2
3,kz0

+ V1,kx0

√
V 2

1,kx0
+ V 2

3,kz0

V3,kz0 Ṽ3,kz0 ,

E = −V2,ky0 . (B8)

APPENDIX C: TOPOLOGICAL INVARIANCE
OF THE WEYL POINTS—BERRY CURVATURE

The topological invariance of the Weyl points is the Berry
curvature computed from a two-dimensional surface encircling
the Weyl point. The definition of the Berry curvature is

C = i

2π

∑
α∈occ

∫
d2k〈∂ki

uα|∂kj
uα〉 − (ki ↔ kj ), (C1)

where uα are the occupied bands and the two-dimensional
integral is a closed surface around one Weyl point.

Now we compute the Berry curvature around the Weyl point
by using Eq. (B6). Without loss of generality, we define k̃x =
Aδkx + Bδkz, k̃z = Cδkx + Dδkz, and k̃y = Eδky .

We now choose a fixed radius R around the Weyl point with
R2 = ∑

i=x,y,z k̃2
i . The occupied band with energy −R is

u−(θ,φ) =
(

− sin θ
2 e−iφ

cos θ
2

)
, (C2)

where we parametrize k̃z = R cos θ, k̃x = R sin θ cos φ, and
k̃y = R sin θ sin φ.

The only nonvanishing component of the Berry connec-
tion is

Aφ = 1

R sin θ
〈u−(θ,φ)|∂φu−(θ,φ)〉 = i

2R
cot θ. (C3)

The Berry curvature around the Weyl point is then

C = i

2π

∫
sphere

ds(∇ × �A) = i

2π

∫
R2 sin θdθdφ

−i

2R2
= 1.

(C4)

The Berry curvature of the the other time-reversal related Weyl
points at −�k0, is C = −1.
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APPENDIX D: FERMI ARC STATES IN THE EFFECTIVE HAMILTONIAN

We analyze the Fermi arc state from the effective two-dimensional Hamiltonian in Eq. (B6). In the presence of (010) surface,
the effective Hamiltonian around the Weyl point is expressed as

Heff =
(

Aδkx + Bδkz −iCδkx − iDδkz − iE∂y

iCδkx + iDδkz − iE∂y −Aδkx − Bδkz

)
. (D1)

We consider a cylindrical surface surrounding the Weyl point with radius k0. The effective Hamiltonian becomes

Heff =
(

Ak0 cos θ + Bk0 sin θ −ik0

√
C2 + D2 cos(θ − φ) − iE∂y

ik0

√
C2 + D2 cos(θ − φ) − iE∂y −Ak0 cos θ − Bk0 sin θ

)
, (D2)

where φ = cos−1 C√
C2+D2 , δkx = k0 cos θ , and δkz = k0 sin θ .

There are two boundary states on this cylinder surrounding the Weyl point

uy>0 =
(

1
0

)√
2κe−κy with ER(θ ) = Ak0 cos θ + Bk0 sin θ,

uy<0 =
(

0
1

)√
2κeκy with EL(θ ) = −Ak0 cos θ − Bk0 sin θ, (D3)

where κ = − k0
E

√
C2 + D2 cos(θ − φ) > 0. These boundary states are the origin of the Fermi arc states.

APPENDIX E: TIME-REVERSAL SYMMETRIC NODAL RING SEMIMETALLIC PHASE

The Hamiltonian of hWSMs with nonvanishing W0 can be expressed as

H(k) = H0(k) + H1(k), (E1)

where H0(k) = 1
2 (εc(k) + εf (k))σ0τ0 and H1(k) = 1

2 (εc(k) − εf (k))σ0τ3 + ∑
i=1,2,3 Vi sin kiσiτ1 + W0τ1.H1(k) has a chiral

symmetry, S−1H(k)S = −H(k), where S = τ2. In the presence of chiral symmetry, one can off-block diagonalize H1(k) by a
unitary transformation, V†H1(k)V = H̃1(k), where

V = 1√
2

(
I2×2 iI2×2

iI2×2 I2×2

)
, H̃(k)1 =

(
0 D(k)

D†(k) 0

)
, (E2)

with D(k) = i(εc(k) − εf (k)) + 2
∑

i Vi sin kiσi + m0. The eigenvectors of H̃(k) satisfy(
0 D(k)

D†(k) 0

)(
χ±(k)
η±(k)

)
= ±λ(k)

(
χ±(k)
η±(k)

)
. (E3)

These eigenvectors are also the eigenvector of H0(k) and they determine the topological invariant. We pick χ±(k) = 1√
2
u(k),

Then Eq. (E3) leads to η±(k) = ± 1√
2

1
λ(k)D

†(k)u(k). The flat band Hamiltonian Q(k)can be obtained from the projector

Q(k) =I − 2
∑
α∈occ

|uα(k)〉〈uα(k)|

=I −
(

u(k)

− 1
λ(k)D

†(k)u(k)

)(
u†(k) − 1

λ(k)u
†(k)D(k)

)

= 1

λ(k)

(
0 u(k)u†(k)D(k)

D†(k)u(k)u†(k) 0

)

=
(

0 q(k)

q†(k) 0

)
. (E4)

The topological invariance of the nodal ring is characterized
by a winding number of a one-dimensional loop encircling the
ring. The winding number can be calculated from the q-matrix
integral

ν = 1

2πi

∮
L

dkTr[q−1(k)∂kq(k)]. (E5)

In our model, the winding number of the nodal rings is
ν = ±1, which leads to surface flat bands bounded by the nodal
rings projected on the surface Brillouin zone [13,36]. As shown
schematically in Fig. 4(a), two nodal rings are centered along
ky axis. On (011) surface, the flat band surface states emerge
inside the bulk rings projected on the (011) surface Brillouin
zone.

155134-6



PARITY-VIOLATING HYBRIDIZATION IN HEAVY WEYL … PHYSICAL REVIEW B 97, 155134 (2018)

kz

kx

ky

(011) surface

kx

kz

(a)

(b) (c)

(d) (e)

FIG. 4. (a) Schematic plot of the bulk nodal rings centered at ky axis. On the (011) surface, the surface flat bands will emerge inside the
circles which are the projection of the bulk nodal rings. The surface spectrum as a function of (kx,k

′
z = 1√

2
(kz − ky)) from the Hamiltonian Eq. (5)

with (tx,ty,tz,μ,α,Wx,Wy,Wz,W0) = (2,1,1,−6.5,−0.1,2,2,2,1.8). (b) in the absence of surface Kondo breakdown and (c) in the presence of
surface Kondo breakdown. The surface spectrum as a function of k′

z = 1√
2
(kz − ky) at kx = 0, (d) in the absence of surface Kondo breakdown,

and (e) in the presence of surface Kondo breakdown.

Finally, we have investigated the Kondo breakdown on these
surface flat bands, summarizing the results in 4. In the absence
of the surface Kondo breakdown, the surface flat bands emerge

on (011) surface [Figs. 4(b) and 4(d)]. In the presence of the
surface Kondo breakdown, the surface flat bands sink beneath
the Fermi sea as shown in Figs. 4(c) and 4(c).
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