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Stability of the Nagaoka-type ferromagnetic state in a t2g orbital system on a cubic lattice
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We generalize the previous exact results of the Nagaoka-type itinerant ferromagnetic states in a three-
dimensional t2g orbital system to allow for multiple holes. The system is a simple cubic lattice with each
site possessing dxy , dyz, and dxz orbitals, which allow two-dimensional hopping within each orbital plane. In
the strong-coupling limit of U → ∞, the orbital-generalized Nagaoka ferromagnetic states are proved to be
degenerate with the ground state in the thermodynamic limit when the hole number per orbital layer scales slower
than L

1
2 . This result is valid for arbitrary values of the ferromagnetic Hund’s coupling J > 0 and interorbital

repulsion V � 0. The stability of the Nagaoka-type state at finite electron densities with respect to a single spin flip
is investigated. These results provide helpful guidance for studying the mechanism of itinerant ferromagnetism
for the t2g orbital materials.
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I. INTRODUCTION

Itinerant ferromagnetism, i.e., ferromagnetism of metallic
states with Fermi surfaces, remains a challenging problem of
condensed-matter physics. Since the Coulomb interaction is
spin independent, it cannot directly give rise to electron spin
polarizations at the classic level, and the mechanism of itinerant
ferromagnetism is hence fundamentally quantum mechanical.
As first described through Stoner’s criterion [1], itinerant ferro-
magnetism arises from the direct exchange interaction among
electrons with the same spin. However, this criterion overlooks
correlation effects among electrons with opposite spins. In
fact, even in the presence of very strong interactions, electrons
can remain unpolarized and build up highly correlated wave
functions to reduce repulsive interactions. Due to the intrinsic
strong-correlation nature of the problem, it is usually difficult to
obtain a precise description based on perturbative approaches,
and thus, nonperturbative results have played important roles in
the study of itinerant ferromagnetism [2–14]. The previously
known exact results of ferromagnetism are largely classified
into two categories: Nagaoka ferromagnetism [3,15] for single-
band Hubbard systems and flat-band ferromagnetism [7,8].

A key result in the study of itinerant ferromagnetism is
Nagaoka’s theorem for the Hubbard model, which proves the
ground state is fully spin polarized for exactly one hole away
from half filling in the U → ∞ limit [3]. The underlying
physics is that the fully polarized state maximally facilitates
the hole’s coherent hopping to reduce the kinetic energy. Tasaki
[15] simplified the proof of Nagaoka’s theorem by using the
Perron-Frobenius theorem [2]. However, this method typically
breaks down for fermionic systems with multiple holes in two
or higher dimensions because of the fermion sign originating
from the antisymmetry under exchange. For the case of a
single-band Hubbard model in the U → ∞ limit, the Nagaoka-
type ferromagnetic state with multiple holes was proven to
be degenerate with the ground state under the following
conditions [16,17]: The hole number Nh ∼ Lα for 0 � α < 1
on an L × L square lattice in the limit of L → ∞. This stability
was investigated using a squeeze theorem argument in which a

variational upper bound to the ground-state energy was shown
to be equal to a lower bound for suitably low Nh in the
thermodynamic limit. The variational trial state used was the
fully spin polarized Nagaoka-type state. The lower bound was
given by the Gershgorin circle theorem from linear algebra,
which is explained in the Appendix.

In contrast to single-band Hubbard models, most itinerant
ferromagnetic metals are orbital active. In such systems, the
multiorbital structure together with Hund’s interaction plays an
important role in the onset of itinerant ferromagnetism despite
Hund’s interaction being local and typically polarizing only
spins on the same site. Recently, exact results of itinerant
ferromagnetism in strongly correlated multiorbital systems
were proven, providing a sufficient condition for ferromag-
netism driven by Hund’s coupling [18]. Different from the
Nagaoka theorem, an entire phase of itinerant ferromagnetism
is set up with a wide range of electron filling. Furthermore,
since such systems are free of the fermion sign problem
of quantum Monte Carlo simulations [18], the Curie-Weiss
metal phase and critical scalings of the ferromagnetic phase
transitions have been simulated by quantum Monte Carlo
to high numerical precision [19]. However, the proof of the
ground-state ferromagnetism is based on the Perron-Frobenius
theorem, which requires one-dimensional bands to avoid issues
related to fermionic exchange. In order to generalize itinerant
ferromagnetism to orbital-active systems with a quasi-two-
dimensional band structure, a t2g orbital system was previously
studied [20] with the number of holes restricted to exactly one
away from half filling in each orbital plane. In this case, a
multiorbital generalization of the Nagaoka-like ferromagnetic
state was proven to be the unique ground state up to spin
degeneracy. Nevertheless, its stability has not been previously
studied.

In this paper, we extend the multiorbital Nagaoka-type
ferromagnetic states proven in Ref. [20] to the multihole
case and investigate its stability. The analyses are done in
the presence of two- and three-dimensional band structures in
the strong-correlation regime. By generalizing the method used
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in Refs. [16,17] to include Hund’s coupling and interorbital
repulsion, we show that in the strong-interaction limit, the
generalized Nagaoka ferromagnetic state with the t2g orbitals
remains degenerate with the ground state in the multihole case
in the thermodynamic limit. Although the hole density remains
zero, the hole number can go to infinity, scaling as a finite
power of the system size. An analysis of the stability of the
generalized Nagaoka state against flipping a single spin is also
performed, which shows that the region of instability shrinks
in the presence of Hund’s coupling.

The remainder of this paper is organized as follows: In
Sec. II, we introduce the multiorbital Hubbard model for
a three-dimensional (3D) t2g orbital system with a two-
dimensional (2D) band in a cubic lattice. In Sec. III, we analyze
the stability of the ferromagnetic ground state in the presence of
multiple holes for the multiorbital model presented in Sec. II.
Then, by analyzing the change in energy due to a single flipped
spin [21], a region in which the fully polarized state is no longer
a ground state is identified. The Nagaoka-type ferromagnetic
state and its stability in the presence of a 3D band structure is
studied in Sec. IV. Conclusions and discussion are presented
in Sec. V.

II. THE t2g ORBITAL SYSTEM WITH MULTIORBITAL
INTERACTIONS

In this section, we present the band structure of the 3D t2g

orbital system and the on-site multiorbital Hubbard interac-
tions.

The system to be studied is a 3D multiorbital Hubbard model
on an L × L × L simple cubic lattice with dxy , dyz, and dxz

orbitals at each site with on-site multiorbital interactions. The
Hamiltonian can be written as

H = HK + HU + HV + HJ , (1)

where HK , HU , HV , and HJ represent the kinetic energy,
the intraorbital Hubbard interaction, the interorbital Hubbard
interaction, and the interorbital Hund’s coupling, respectively.
Since the t2g orbitals are planar, the hopping term for each
orbital is anisotropic in general. For the system with quasi-
2D band structure studied here and in Sec. III, transverse
hopping perpendicular to the orbital plane is much weaker
than intraplane hopping and hence will be neglected. A fully
3D band structure including transverse perpendicular hopping
terms will be considered in Sec. IV. With intraplane hopping
neglected, the kinetic term corresponding to the dxy orbital
takes the form

HK
xy = t

∑
r,σ

[d†
xy,σ (r)dxy,σ (r + x̂)

+ d†
xy,σ (r)dxy,σ (r + ŷ) + H.c.], (2)

where the lattice constant is taken to be 1 and t is the hopping
integral. The hopping terms for the other orbital planes have the
same form with the directional indices replaced as necessary,
and the full kinetic term HK is a sum of hopping terms for the
dxy , dyz, and dxz orbital planes.

For a simple cubic lattice with negligible transverse hop-
ping, Eq. (2) and its yz and xz counterparts constitute all
nearest-neighbor hoppings allowed by symmetry. Different

orbitals do not mix at this level due to the cubic symmetry
of the system, which can be seen as follows. Without loss of
generality, consider an x bond between sites r and r + x̂. Since
this bond is invariant under reflections with respect to both the
xy plane and the xz plane, hopping along this bond should
respect these symmetries. The dxy orbital is even, while dxz

and dyz orbitals are odd under the former reflection. Thus,
dxy does not mix with either dxz or dyz through this hopping.
Furthermore, dxz is even, while dyz is odd under the latter
reflection, and thus, they do not mix either.

The on-site multiorbital Hubbard interactions consist of
intraorbital and interorbital terms. The intraorbital interaction
HU is expressed as

HU = U
∑
r,a

na,↑(r)na,↓(r), (3)

where a is the orbital index and na,σ (r) = d
†
a,σ (r)da,σ (r). The

interorbital interaction takes the form

HV = V
∑

r,a>b

[1 − na(r)][1 − nb(r)], (4)

where na(r) = na,↑(r) + na,↓(r). HV is expressed in terms
of the hole number occupation, which is equivalent to the
corresponding electron number form up to an overall constant.
Since we will explore the stability of the Nagaoka state in
which nearly every orbital on every site is filled, the hole
representation will be more convenient.

The final interaction in the model, the on-site interorbital
Hund’s coupling, reads

HJ = −J
∑

r,a>b

[
Sa(r) · Sb(r) − 1

4
na(r)nb(r)

]
. (5)

For any two orbitals a and b on site r, the energy from
the Hund’s coupling is non-negative if J > 0. The energy
contribution is J if both orbitals are filled and form a spin
singlet and zero otherwise.

Below, we consider the limit of U → ∞, in which no
individual orbital can hold two electrons. Instead, individual
sites can hold up to three electrons, all in different orbitals,
with their interaction determined by HV and HJ . We also
consider only the case of V � 0, i.e., with repulsive interorbit
interaction, and J > 0, i.e., ferromagnetic Hund’s coupling.

III. STABILITY OF THE GENERALIZED
NAGAOKA-LIKE STATE

In this section, we investigate the stability of the generalized
Nagaoka state in the 3D t2g orbital systems with quasi-2D band
structure. Such a state with a single hole per orbital layer was
proven previously in Ref. [20].

Since the hopping term HK allows only holes to hop within
orbital planes, the number of holes in each orbital plane is
conserved. For simplicity, assume that each orbital plane has
the same number nh of holes. Since there are L layers for each
of the three orbital plane directions, the total number of holes
is then Nh = 3Lnh. Note that in what follows, the number
of holes will always refer to the number of holes above the
half-filled background or the number of electrons below half
filling.
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As in Ref. [20], conservation of the hole number in each
orbital plane allows the overall Hilbert space to be written as a
tensor product of Hilbert spaces for each layer in each orbital
plane direction. For the lth layer of orbital type a, we define
a reference state |Ra,l,↑〉 in which each orbital is filled with
a spin-↑ electron. |Ra,l,↑〉 is equivalent to the state with all
single-particle momentum states k in the 2D Brillouin zone
fully filled. Now we add nh holes by removing nh electrons
one by one from the highest filled single-particle state. The
resulting many-body state, a Slater determinant state with all
electron spins up, is expressed as

|ha,l,↑〉 =
nh∏
i=1

da,l(ki)|Rl,a,↑〉, (6)

where da,l(ki) = 1
L

∑
r da,l(r)eikir and ki and r represent 2D

momentum and lattice vectors, respectively. The momenta
take values ki = ( 2m1π

L
, 2m2π

L
) with m1,2 integers. We consider

the limit of nh/L
2 → 0, where the single-particle spectrum

becomes parabolic. From the sign convention of t in Eq. (2),
m1 and m2 start from (0,0) and take values in ascending order
of m2

1 + m2
2.

A. Estimation of the upper bound

In order to show the existence of a fully spin-polarized
ground state, consider a trial state

|ψt 〉 =
L⊗

l=1

|hxy,l,↑〉 ⊗ |hyz,l,↑〉 ⊗ |hxz,l,↑〉, (7)

where the constraint of nh holes per layer is enforced by
the form of the basis states. This is a fully spin polarized
state with the maximum spin S = Sz = Ns

2 for Ns spins. Since
the Hamiltonian possesses SU(2) symmetry, applying ST,− =
ST,x − iST,y successively on |ψt 〉, where 	ST is the total spin
operator, produces a 2Ns + 1 SU(2) multiplet.

An upper bound on the ground-state energy Eg is derived
by evaluating the energy expectation value ET of the Nagaoka-
like trial state |ψt 〉,

ET = EK + EU + EJ + EV , (8)

where EK = 〈ψt |HK |ψt 〉/〈ψt |ψt 〉 and expressions for EU ,
EJ , and EV can be defined similarly. EU = 0 since every
individual orbital is, at most, singly occupied in the U → ∞
limit. Since |ψt 〉 describes a fully polarized state, any two
electrons form a spin triplet, and EJ = 0 as well. EV can
be evaluated easily by noting that the hole distributions on
different layers are uncorrelated for this trial state, and thus,

EV = V
∑
r,a>b

〈ψt |1 − na(r)|ψt 〉〈ψt |1 − nb(r)|ψt 〉
〈ψt |ψt 〉2

= 3
n2

h

L
V.

(9)

The upper bound on the kinetic energy can be estimated as
follows. EK is the sum of the kinetic energies of each layer.
Up to a constant, the dispersion for each band can be rewritten
in terms of hole number occupation as

HK
xy = −4t

∑
k,σ

(
1 − k2

4

)
[1 − nxy,σ (k)], (10)

with parabolic dispersion near k = 0 in the nh/L
2 → 0 limit.

Expressions for HK
yz and HK

zx follow by changing the indices.
Since the trial state corresponds to removing nh electrons
from the band maximum of the fully filled Brillouin zone,
or, equivalently, adding nh holes to the band minimum in the
hole description, the kinetic energy for a single layer can be
estimated as

−4nht + tL2
∫ k0

0

k3dk

2π
= −4nht + tO

(
n2

h

L2

)
, (11)

where (L/2π )2πk2
0 ≈ nh. Summing over all 3L layers gives

EK = −12nhLt + tO

(
n2

h

L

)
. (12)

Including the EV contribution, the total trial state energy serves
as an upper bound on the ground-state energy Eg of

Eg � −12nhLt + tO

(
n2

h

L

)
+ 3V

n2
h

L
. (13)

B. Estimation of the lower bound

Since both HJ and HV are non-negative operators, their lower
bounds are zero. Thus, a lower bound on HK is also a lower
bound on Eg . Since HK is the sum of the kinetic energies of
each layer, the sum of the lower bounds on the kinetic energy
of each layer is also a lower bound on Eg . The lower bound
on the kinetic energy of each layer is simply −4nht , which
has been worked out [16,17] by applying the Gershgorin circle
theorem and considering a configuration where each hole has
no neighboring holes. A brief review of this result is provided
in the Appendix. Summing over each layer, we arrive at the
lower bound on the ground-state energy

−12nhLt � Eg. (14)

Combining the upper and lower bounds, the ground-state
energy satisfies

−12nhLt � Eg � −12nhLt + tO

(
n2

h

L

)
+ 3V

n2
h

L
. (15)

So far, we have assumed the same number of holes nh in each
layer. In fact, the result of Eq. (15) can be straightforwardly
generalized to the case with different number of holes in
different layers as

−4Nht � Eg � −4Nht + tO

(
n2

h,m

L

)
+ 3V O

(
n2

h,m

L

)
,(16)

where Nh is the sum of hole numbers of all layers and nh,m

is the maximal layer hole number. As a result, the generalized
Nagaoka trial state becomes degenerate with the energy of the
ground state Eg in the thermodynamic limit, when the maximal
layer hole number nh,m in each layer scales as Lα with α < 1

2 .
Hence, the total bulk hole number can increase to the order of
L

3
2 , which is higher than the single-band case in the 3D cubic

lattice [16,17], in which α < 6
5 . This is due to the combined

effect of the quasi-2D band structure and Hund’s coupling.
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C. Instability against a single spin flip

The Shastry-Krishnamurthy-Anderson method [21,22] pro-
vides a useful way to identify a region of instability of the
Nagaoka trial state. Here we generalize it for the multiorbital
systems. The method considers modifying the state by remov-
ing a spin-up particle from the Fermi surface of one orbital
layer, flipping its spin, and adding it back to the bottom of the
spin-down band. The U = ∞ limit is enforced by projecting
out doubly occupied orbitals in real space. This procedure takes
the form

|φl,a〉 =
∏
r∈l

[1 − na↑(r)na↓(r)]d†
a↓(q)da↑(kF)|ψt 〉, (17)

where r, q, and kF are all in layer l and orbital type a. Here
kF is a Fermi wave vector, and q is a momentum vector at the
band bottom. The energy difference between |φl,a〉 and |ψt 〉
as a function of the filling can be computed, and a region of
instability can be identified when |φl,a〉 has lower energy. Since
a spin has been flipped in only one band relative to the fully
polarized generalized Nagaoka state, the energy difference
between |φl,a〉 and |ψt 〉 follows only from the kinetic energy
change in the up and down spins in layer l and from Hund’s
interaction between orbital a and the other two orbital types at
sites on layer l.

The kinetic energy difference due to a spin flip in a single
band on a square lattice, as evaluated in Ref. [21], is

�EK = −εF − ENag

nh

− 4t
nh

L2

[
1 −

(
ENag

4tnh

)2
]
, (18)

where ENag/L
2 = ∫ εF

−4t
ερ2D(ε)dε and nh/L

2 =∫ 4t

εF
ρ2D(ε)dε. Here ρ2D(ε) = 1

2π2t

(4t − |ε|)K(1 −

ε2/16t2), with K being a complete elliptic integral of
the first kind, is the density of states for a square lattice
with nearest-neighbor hopping. Eh is the kinetic energy of a
single-band Nagaoka state with nh holes on a square lattice,
corresponding to the state in Eq. (6).

Since HV is concerned only with the number of holes,
flipping a single spin does not change EV , i.e., �EV = 0, as
can be verified by explicit calculation. What remains is then
to evaluate �EJ = 〈φl,a|HJ |φl,a〉/〈φl,a|φl,a〉. Expressing the
spin operators in terms of dσ and d†

σ , the only terms that can
possibly contribute to 〈HJ 〉 are those involving a down-spin
operator in only orbital a,

�EJ = J

2

∑
r ∈ l,

b = a

〈φl,a|na↓(r)nb↑(r)|φl,a〉
〈φl,a|φl,a〉 . (19)

Since |φl,a〉 is a direct product of wave functions of each layer,
na↓ and nb↑ are uncorrelated, in spite of the strong intralayer
correlations. Then we have

�EJ = J

2

∑
r ∈ l,

b = a

〈φl,a|na↓(r)|φl,a〉〈φl,a|nb↑(r)|φl,a〉
|〈φl,a|φl,a〉|2

= J

2
L2

∑
b =a

n̄la↓n̄lb↑, (20)

FIG. 1. The electron density n̄c below which the generalized
Nagaoka state becomes unstable to a single spin flip. W = 8t is the
bandwidth for a 2D square band. When J/W is larger than a critical
value around 0.57, a single spin flip is not sufficient to destabilize the
state for any electron density.

where n̄la↓ and n̄lb↑ are independent of r since |φl,a〉 is a
momentum eigenstate. It is easy to evaluate that n̄la↓ = 1/L2

and n̄lb↑ = 1 − nh/L
2; hence,

�EJ = J n̄, (21)

where n̄ = 1 − nh

L2 is the electron density per site in the orbital
plane.

Combining the Hund’s interaction energy change with the
kinetic energy change from Ref. [21], we have

�E(n)/t = (�EK + �EV + �EJ )/t

= −w − 4(1 − n̄)+ wy

1 − n̄

(
wy

4
− 1

)
+J

t
n̄, (22)

where w = εF /t , y = ∫ 1
−4/w

xρ2D(xεF )dx, and w(n̄) is de-

termined through the relation of n̄ = ∫ 1
−4/w

ρ2D(xεF )dx. The
electron density n̄c below which the generalized Nagaoka
state becomes unstable to a single spin flip can be solved by
requiring �E(n̄c) = 0. The critical density n̄c(J/W ) is plotted
in Fig. 1, where W = 8t is the bandwidth. As J increases, the
ferromagnetic ground state becomes more and more stable.
There exists a value of J/W ≈ 0.57, beyond which the Nagoka
state is stable against a single spin flip at any electron density.

IV. THE STABILITY OF THE t2g NAGAOKA STATE WITH
3D BAND STRUCTURE

In this section, we consider the stability of the 3D Nagaoka
state with t2g orbitals and a 3D band structure.

Consider a Hamiltonian

H = HK + HU + HV + HJ (23)

as before, but where the kinetic terms now allow for per-
pendicular hopping within the same d orbital. Electrons now
hop along the cube, remaining in the same orbital type, and
the system is now composed of three cubic orbital bands.
Explicitly, the perpendicular dxy orbital hopping modifies

155132-4



STABILITY OF THE NAGAOKA-TYPE FERROMAGNETIC … PHYSICAL REVIEW B 97, 155132 (2018)

HK
xy to

HK
xy = t

∑
r,σ

[d†
xy,σ (r)dxy,σ (r + x̂) + d†

xy,σ (r)dxy,σ (r + ŷ)

+ d†
xy,σ (r)dxy,σ (r + ẑ) + H.c.]. (24)

The hopping Hamiltonians of the dyz and dxz orbital bands can
be similarly modified.

We can prove in the case where each orbital band has
exactly one hole that the Nagaoka state is the unique ground
state, up to trivial spin degeneracy. This can be done through
Perron-Frobenius methods used in Refs. [15,20] as follows.
Since the off-diagonal matrix elements, the hopping terms and
spin-flipping Hund’s coupling terms, all have negative matrix
elements in the basis used in Ref. [20], the nonpositivity con-
dition is satisfied. Now let us check the transitivity condition.
Within each orbital band, it is satisfied since any two spins can
be exchanged by repeatedly exchanging neighboring spins by
cycling the hole around the square plackets. Spins in different
orbitals can be exchanged by moving the spins to the same site,
exchanging them using the Hund’s coupling, and returning the
spins to their original positions following the method presented
in Ref. [20]. Since both the connectivity and nonpositivity
conditions of the Perron-Frobenius theorem are satisfied, the
ground state must be a positive-weight superposition of all
basis elements. Since the maximum total-spin state is sym-
metric under the exchange of any two spins, it has nonzero
overlap with this positive-weight superposition, and thus, the
positive-weight superposition must be a maximum total-spin
state due to the SU(2) symmetry.

With the Nagaoka-like state established as the ground state
when there is a single hole in each of the three orbital bands, the
stability of this state can be analyzed in the presence of multiple
holes as in the case of 2D band structure studied above. We
define the reference state |Ra,↑〉 where all momentum states k
in the 3D Brillouin zone are filled. In this case, there is no need
for a layer index. Adding nh holes to each band then takes the
form of Eq. (6) with no layer index. The trial state of interest
is then

|ψt 〉 = |hxy,↑〉 ⊗ |hyz,↑〉 ⊗ |hxz,↑〉, (25)

which corresponds again to filling holes up to their Fermi
energy in each band.

Now let us calculate the energy expectation value of the
trial state |ψt 〉. EU = 0 since no orbital is doubly occupied,
and EJ = 0 since the trial state is fully spin polarized. In this
case,

EV = V
∑
r,a>b

〈ψt |1 − na(r)|ψt 〉〈ψt |1 − nb(r)|ψt 〉
〈ψt |ψt 〉2

= 3
n2

h

L3
V (26)

since the nh holes in each band are now distributed over L3

sites. The kinetic energy EK can now be evaluated for each
band as

−6nht + tL3
∫ k0

0

k4dk

4π2
= −6nht + tO

(
n

5/3
h

L2

)
, (27)

where 6L3/π2k3
0 ≈ nh. Including all three bands gives a factor

of 3, and the resulting upper bound for the ground-state
energy is

Eg � −18nht + tO

(
n

5/3
h

L2

)
+ 3V

n2
h

L3
. (28)

The lower bound follows like in the t2g case. In the case
of 3D bands, the lower bound to the kinetic energy follows
from maximizing the number of possible hole hoppings, which
allows each hole to hop to six neighboring sites. Thus, each of
the three bands contributes −6nht to the lower bound, and the
ground-state energy is bounded by

−18nht � Eg � −18nht + tO

(
n

5/3
h

L2

)
+ 3V

n2
h

L3
. (29)

This Nagaoka-type trial state will be degenerate with the
ground state in the thermodynamic limit when nh scales as
Lα , where α < 6

5 .
An instability analysis of the ferromagnetic state for the

case with 3D band structure can be performed as in Sec. III C.
The resulting kinetic energy change is [21]

�EK = −εF − ENag

nh

− 6t
nh

L3

[
1 −

(
ENag

6tnh

)2
]
, (30)

where ENag/L
3 = ∫ εF

−6t
ερ3D(ε)dε and nh/L

3 =∫ 6t

εF
ρ3D(ε)dε, with ρ3D(ε) being the density of states on

a 3D simple cubic lattice. The energy change due to HV and
HJ can be shown to take the same form as in the case of 2D
bands with �EV = 0 and �EJ = J n̄, where n̄ is the electron
density in each orbital band defined as n̄ = 1 − nh/L

3. Then
the total energy change can be expressed as

�E(n̄)

t
= −w − 6(1 − n̄) + wy

1 − n̄

(wy

6
− 1

)
+ J

t
n̄,

(31)

where w = εF /t , y = ∫ 1
−6/w

xρ3D(xεf )dx, and w(n̄) is deter-

mined by n̄ = ∫ 1
−6/w

ρ3D(xεF )dx.
Again, the critical density n̄c(J/W ) below which the

Nagaoka-like state becomes unstable to a single spin flip is
solved and shown in Fig. 2, where W = 12t is the bandwidth.
At J = 0, the value of n̄c = 0.68 is consistent with previous
results in Ref. [21] for a model with a single 3D band. The
Hund’s coupling further stabilizes the Nagaoka-like state,
which is similar to the case with 2D band structure in Sec. III C.
However, a significant difference is that n̄c does not drop to
zero even at large values of J/W .

The different behavior of n̄c for 2D and 3D bands is due to
the different scalings of the density of states at low energy. It
is easy to check that in the low-density limit, the energy costs
of a single spin flip in Eqs. (22) and (31) can be expanded to
the leading order as

�Ed (n̄d ) ≈ −(εF − εb) + J n̄d, (32)

where εb is the band bottom energy and n̄d is the particle
density for d-dimensional bands. In the low-density limit,
εF − εb ∝ (n̄d )2/d . In three dimensions, the kinetic energy
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FIG. 2. The critical value of electron density n̄c below which the
Nagaoka-like state |ψ3D

t 〉 becomes unstable to a single spin flip. W =
12t is the bandwidth for the 3D cubic bands. Unlike in the case of
2D bands, n̄c does not approach zero for finite J/W because the 3D
density of states vanishes at the low-density limit.

change in Eq. (32) dominates the Hund’s coupling energy
cost, allowing a single spin flip to lower the total energy
and destabilize the Nagaoka state. By contrast, both terms in
Eq. (32) scale the same in two dimensions, and a single spin
flip costs energy when J is large enough.

V. CONCLUSIONS AND DISCUSSION

We have studied the stability of the generalized Nagaoka
ferromagnetic state in a 3D cubic lattice with t2g orbitals.
Applying the bounding method of Refs. [16,17], for a cubic
lattice with size L × L × L and a quasi-2D t2g orbital band
structure, the fully polarized Nagaoka state becomes degen-
erate with the ground state as L → ∞ when the number of
holes in each orbital plane scales slower than L

1
2 or the total

hole number scales slower than L
3
2 . For the case with 3D

band structure, we have generalized the Nagaoka theorem to
the case that each orbital has a single hole. Again, for the
multihole case, the fully polarized Nagaoka ferromagnetic
state remains degenerate with the ground state at L → ∞ when
the hole number scales slower than L

6
5 . These results apply

in the limit of U → ∞ and arbitrary ferromagnetic Hund’s
coupling J > 0 and interorbital repulsion V � 0. We have
also examined the stability of the orbital-generalized Nagaoka
states against a single spin flip for both quasi-2D and 3D
band structures. In both cases, the instability region shrinks
as Hund’s coupling increases.

The above bounding estimation proves only the degeneracy
of the Nagaoka-type ferromagnetic state with the ground state
but does not prove the uniqueness of the ground state. Hence,
even within the above bounds, the above results actually do not
prove the ground-state ferromagnetism for the multihole case.
Nevertheless, the stability of the ground-state ferromagnetism
is still conceivable. The above analysis does not imply that the
fully polarized state must break down when the hole number
exceeds the above bounds. Recent numerical calculations
based on the density-matrix renormalization-group method
have shown evidence of the stability of the Nagaoka state at

finite hole densities for the 2D single-band case [23], although
exact proof remains an open question.

The above study is not just of academic interest. In fact,
itinerant ferromagnetism has been discovered in the t2g or-
bital active material SrRuO3, which is a weak ferromagnet
with partial polarization and Curie temperature Tc ≈ 160 K
[24–26]. Its electronic structure can be modeled by the multior-
bital Hubbard model with the quasi-2D band structure and the
prominent Hund’s coupling. Certainly, the filling is 4/3 electron
per orbital on each site and thus significantly far from the
half filling, which corresponds to one electron per orbital. The
real system of SrRuO3 implies that the Hund’s-rule-facilitated
itinerant ferromagnetism may remain stable at finite values
of U and away from half filling. Our work provides useful
guidance for studying itinerant ferromagnetism in this class of
materials.
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APPENDIX: STABILITY OF THE ONE-BAND
NAGAOKA STATE

The method of applying the Gershgorin circle theorem
to study the stability of the Nagaoka state was used for a
one-band Hubbard model on a square lattice in Ref. [16],
where the model used corresponds to H = HU + HK

xy . The
method, as generalized to a d-dimensional hypercubic lattice in
Ref. [17], is reviewed here for completeness. For a single-band
Hubbard model, the fully polarized Slater determinant state
|h〉 in Eq. (6) can be taken as a variational trial state. In 2D
bands on a simple square lattice, this trial state corresponds
to a single orbital plane a,l. The trial state can be generalized
to d-dimensional bands on a hypercubic lattice by taking r
and k to be d-dimensional lattice and momentum vectors,
respectively.

The energy EK of this trial state was evaluated by consid-
ering the dispersion for a d-dimensional hypercubic lattice. In
terms of the hole number occupation picture,

HK = −2dt
∑
k,σ

(
1 − k2

2d

)
[1 − nσ (k)]. (A1)

This parabolic dispersion holds in the limit nh/L
d → 0. The

energy of the trial state can then be evaluated as

EK = −2dtnh + tLd

∫ k0

0

�dk
d+1dk

(2π )d
, (A2)

where �d is the surface area of a unit d sphere and
(L/2π )dVdk

d
0 ≈ nh, with Vd being the volume of a unit d

sphere. The upper bound on the ground-state energy is then

Eg � −2dtnh + tO

⎛
⎝n

d+2
d

h

L2

⎞
⎠. (A3)

The lower bound follows from the Gershgorin circle theorem,
which states that for any eigenvalue λ of a square matrix H ,

155132-6



STABILITY OF THE NAGAOKA-TYPE FERROMAGNETIC … PHYSICAL REVIEW B 97, 155132 (2018)

there exists a row i such that

|λ − Hii | �
∑
j =i

|Hij |. (A4)

It follows that a lower bound on the ground-state energy is
given by

min
i

⎧⎨
⎩Hii −

∑
j =i

|Hij |
⎫⎬
⎭ � Eg. (A5)

Intuitively, the lower bound is the configuration that mini-
mizes the energy of an analogous bosonic system, where sign

changes from hopping are neglected. For the 2D square lattice,
this configuration corresponds to placing all holes on either
the even or odd sublattice, allowing each hole to hop to four
neighboring sites. Thus,

−4nht � Eg. (A6)

The lower and upper bounds on the ground-state energy
coincide in the thermodynamic limit as long as nh ∼ Lα , where
0 � α < 2d

d+2 . Thus, the fully spin polarized trial state is a
ground state that remains stable for a number of holes that
grows sufficiently slowly.
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