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We investigate the microscopic mechanisms of the charge-density-wave (CDW) formation in a monolayer
TiSe2 using a realistic multiorbital d-p model with electron-phonon coupling and intersite Coulomb (excitonic)
interactions. First, we estimate the tight-binding bands of Ti 3d and Se 4p orbitals in the monolayer TiSe2 on the
basis of the first-principles band-structure calculations. We thereby show orbital textures of the undistorted band
structure near the Fermi level. Next, we derive the electron-phonon coupling using the tight-binding approximation
and show that the softening occurs in the transverse phonon mode at the M point of the Brillouin zone. The stability
of the triple-q CDW state is thus examined to show that the transverse phonon modes at the M1, M2, and M3 points
are frozen simultaneously. Then, we introduce the intersite Coulomb interactions between the nearest-neighbor
Ti and Se atoms that lead to the excitonic instability between the valence Se 4p and conduction Ti 3d bands.
Treating the intersite Coulomb interactions in the mean-field approximation, we show that the electron-phonon and
excitonic interactions cooperatively stabilize the triple-q CDW state in TiSe2. We also calculate a single-particle
spectrum in the CDW state and reproduce the band folding spectra observed in photoemission spectroscopies.
Finally, to clarify the nature of the CDW state, we examine the electronic charge density distribution and show
that the CDW state in TiSe2 is of a bond type and induces a vortexlike antiferroelectric polarization in the kagome
network of Ti atoms.
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I. INTRODUCTION

Transition-metal dichalcogenides (TMDs) [1,2] are repre-
sentative materials that show the charge-density-wave (CDW)
states [3,4]. The majority of the group-IV (Ti, Zr, and Hf)
TMDs are simple d0 semiconductors, in which the Fermi level
is located between the valence chalcogen p and conduction
transition-metal d bands [2]. However, 1T -TiSe2, one of the
group IV TMDs, is either a slightly band-overlap semimetal
or a small band-gap semiconductor [5,6], which is the only
material that shows the CDW transition among this group
[7–9]. Thus, in contrast to the conventional (nesting induced)
CDWs in low-dimensional solids [10,11] or to the CDWs in the
d1 TMDs [12,13], a peculiar mechanism of the CDW formation
should be expected in the d0 TMD, 1T -TiSe2. Furthermore, in
1T -TiSe2, it is known that the emergence of superconductivity
(SC) with melting of the CDW is caused by intercalation
[14–21], applying pressures [22,23], or carrier doping [24,25].
Therefore, clarifying the origin of the CDW is significant also
for the elucidation of the mechanism of its SC.

Because the electronic band structure of TiSe2 is located
near the semimetal-semiconductor phase boundary, its CDW
phase has been investigated as a candidate for the excitonic
phase [26,27]. This phase is also referred to as an excitonic
insulator state, where a spontaneous hybridization between
the orthogonal valence and conduction bands occurs by the
interband Coulomb interaction to open the band gap [28–33].

Studies of the excitonic phases have recently been developed
in terms of localized orbital models appropriate for strongly
correlated electron systems [34–40] and adaptation of the
excitonic theory for real materials is desired. Because TiSe2

as well as another candidate material Ta2NiSe5 [41–46] are
among transition-metal compounds, the orbital textures and
Coulomb interactions between the local orbitals may be essen-
tial factors in considering their electronic properties. In fact,
photoemission spectroscopies and related theoretical analyses
have suggested that the excitonic mechanism can be applied
for the CDW formation in TiSe2 [47–60].

The phononic mechanism (or the band-type Jahn-Teller
mechanism) of the CDW formation has also been suggested
[61,62], where the CDW transition around T = 200 K as-
sociated with the 2 × 2 × 2 periodic lattice displacement
(PLD) [7–9] is essentially explained by the electron-phonon
coupling. Microscopic theory of the phononic mechanism
was developed by Motizuki and coworkers [3,63–68] using
the realistic crystal and electronic structures of 1T -TiSe2.
The realization of the 2 × 2 × 2 PLD was thereby explained
quantitatively. Recent first-principles phonon calculations
[69–74] have also predicted consistent results with those of
Motizuki et al.. Experimentally, the lattice dynamics and
phonon softening corresponding to the superlattice formation
have been studied by the Raman and infrared spectroscopy
[75–80], as well as by the inelastic neutron and x-ray scattering
experiments [81–85].

2469-9950/2018/97(15)/155131(23) 155131-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.155131&domain=pdf&date_stamp=2018-04-16
https://doi.org/10.1103/PhysRevB.97.155131


TATSUYA KANEKO, YUKINORI OHTA, AND SEIJI YUNOKI PHYSICAL REVIEW B 97, 155131 (2018)

Thus the two different driving forces for the CDW forma-
tion, i.e., excitonic and phononic forces, have been suggested
in TiSe2, of which the determination is still controversial.
Recent theoretical studies have also suggested that the electron-
phonon coupling and excitonic interactions cooperatively sta-
bilize the CDW state [86–89]. These studies, however, do not
assume the electron-phonon couplings with realistic phonon
modes corresponding to the experimentally observed PLD.
The studies by Motizuki et al. and first-principles phonon
calculations, on the other hand, do not assume the excitonic
ordering induced by the interband Coulomb interaction. In
addition, local orbital textures of the CDW in TiSe2 have
not been investigated in detail. Therefore, to elucidate the
origin and local structure of the CDW and PLD in TiSe2, it
is highly desired to develop a quantitative microscopic theory
based on a realistic model that reflects the actual crystal and
electronic orbital structures in TiSe2, taking into account both
the phononic and excitonic interactions.

Motivated by these developments in the field, here we
investigate the microscopic mechanisms and electronic struc-
tures of the CDW phase in a monolayer TiSe2 on the ba-
sis of the realistic multiorbital d-p model, where both the
electron-phonon coupling and intersite Coulomb interactions
are taken into account. We thereby clarify both the phononic
and excitonic mechanisms of the CDW transition. Although
we assume the monolayer TiSe2 for simplicity, our theoretical
study will provide helpful interpretations of recent experiments
on monolayer as well as few-layer TiSe2 [90–94].

First, we construct the tight-binding bands of the Ti 3d and
Se 4p orbitals in the monolayer TiSe2 using the first-principles
band-structure calculations. From the obtained energy bands in
the undistorted crystal structure, we show orbital components
of the bands and deduce the effective electronic structure
near the Fermi level. Next, we derive the electron-phonon
coupling in the tight-binding approximation for the transverse
phonon modes, of which the softening has been observed
experimentally [9]. Then, taking into account the electron-
phonon coupling only, we show the softening of the transverse
phonon mode at the M point of the Brillouin zone (BZ). We
thus discuss the instability toward the triple-q CDW state,
where the transverse phonon modes at the M1, M2, and M3

points are frozen simultaneously. Furthermore, we introduce
the intersite Coulomb interaction between the nearest-neighbor
Ti and Se atoms that induces the excitonic instability between
the valence Se 4p and conduction Ti 3d bands. We investigate
the roles of the excitonic interaction in the triple-q CDW state
using the mean-field approximation for the intersite Coulomb
interactions. We thus show that the electron-phonon and
excitonic interactions cooperatively stabilize the triple-q CDW
state in TiSe2. We can also show that the calculated single-
particle spectrum in the CDW state can reproduce the band
folding spectrum observed in photoemission spectroscopies.
Finally, we examine the nature of the CDW state by calculating
the change in the electron density distribution and predict that
the CDW state in TiSe2 is of a bond-centered type, rather than
a site-centered type, and induces a vortexlike antiferroelectric
polarization in the kagome network of Ti atoms.

The rest of this paper is organized as follows. In Sec. II,
we derive the effective eleven-orbital d-p model for the
monolayer TiSe2 taking into account both the electron-phonon

FIG. 1. Schematic representations of the crystal structure of the
monolayer TiSe2. X, Y , and Z are the global coordinate axes and
x, y, and z are the local coordinate axes in the TiSe6 octahedron.
Dashed ellipse is the unit cell taken in this paper. a1 and a2 are the
primitive translation vectors.

coupling and intersite Coulomb interactions. In Sec. III, we
show the effective electronic structure near the Fermi level
in the undistorted crystal structure. In Sec. IV, we present the
phonon softening and instability toward the triple-q CDW state
without taking into account the intersite Coulomb interactions.
In Sec. V, we briefly review the mean-field approximation for
the excitonic ordering and discuss the roles of the Coulomb
interaction for the triple-q CDW in TiSe2. In Sec. VI, we show
the single-particle spectrum and charge density distribution in
the CDW state. Discussions and summary are given in Sec. VII.
Details of the calculations are provided in Appendices A–E.

II. MODEL

First, let us construct the effective eleven-orbital d-p model
for the monolayer TiSe2 taking into account the electron-
phonon coupling and interband Coulomb interactions. The
model enables us to consider both the phononic and excitonic
mechanisms of the CDW transition. The crystal structure,
tight-binding bands, electron-phonon coupling, and Coulomb
interactions in TiSe2 are discussed in the following subsec-
tions.

A. Crystal structure

The crystal structure of the monolayer 1T -TiSe2 is illus-
trated in Fig. 1 [95]. We assume the lattice constant a =
3.54 Å [96] and use the primitive translation vectors a1 =
(
√

3a/2, − a/2) and a2 = (0,a) shown in Fig. 1. The unit cell
contains one Ti ion and two Se ions, Se(1) and Se(2). The
position of the Ti and Se ions in the unit cell are τTi = (0,0,0)
and τ Se1 = −τ Se2 = (a/2

√
3, − a/2,zSe) with zSe = 1.552

Å, where we apply the atomic position optimization in the
WIEN2K code [97] to determine zSe [98]. We also illustrate the
BZ of the monolayer TiSe2 in Fig. 2, where the reciprocal
primitive vectors are given by b1 = (4π/

√
3a,0) and b2 =

(2π/
√

3a,2π/a).

B. Tight-binding bands

We use the energy bands in the tight-binding (TB) approxi-
mation as a noninteracting band structure. The Hamiltonian of
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FIG. 2. (a) The BZ of the monolayer TiSe2, where b1 and b2 are
the reciprocal primitive vectors. (b) Three M points and reduced BZ
(RBZ). q1, q2, and q3 corresponding to the modulation wave vectors
of the CDW in TiSe2. Red shaded area indicates the RBZ in the 2 × 2
superlattice structure.

the TB bands is given by

He =
∑

k

∑
μ�,νm

tμ�,νm(k)c†k,μ�ck,νm, (1)

where c
(†)
k,μ� is the annihilation (creation) operator of an electron

in orbital � of atom μ at momentum k. We do not write the spin
index explicitly in this paper. tμ�,νm(k) is the Fourier transform
of the transfer integral

tμ�,νm(k) =
∑
Rn

tμ�,νm(Rn)e−ik·Rn . (2)

tμ�,νm(Rn) is the transfer integral between the atomic orbitals
μ� and νm at Rn = n1a1 + n2a2, where n1 and n2 are
integers. The energy levels of the atomic orbitals are given
by tμ�,μ�(Rn = 0) = εμ�.

From the first-principles band calculations [5,6], it is known
that the band structure of TiSe2 is given by six bands based
on the Se 4p orbitals below the Fermi level and five bands
based on the Ti 3d orbitals above the Fermi level. Therefore
we consider the total eleven orbitals from the five 3d orbitals in
the Ti atom and three 4p orbitals in the Se(1) and Se(2) atoms.
A TiSe6 octahedron has the D3d point-group symmetry and
therefore we define the local coordinate axes x, y, and z from
the global coordinate axes X, Y , and Z using the rotational
transformation [99]⎛

⎝x

y

z

⎞
⎠ =

⎛
⎝ 1/

√
6 −1/

√
2 1/

√
3

1/
√

6 1/
√

2 1/
√

3
−2/

√
6 0 1/

√
3

⎞
⎠

⎛
⎝X

Y

Z

⎞
⎠ (3)

as shown in Fig. 1. In the local coordinate axes x, y, and z, we
define the dxy , dyz, dzx , dx2−y2 , and d3z2−r2 orbitals in the Ti
atom and px , py , and pz orbitals in the Se(1) and Se(2) atoms.

Since a TiSe6 has octahedral structure, we consider the
energy levels εdγ , εdε, and εp of the Ti dγ (dx2−y2 , d3z2−r2 ), Ti
dε (dxy , dyz, dzx), and Se p (px , py , pz) orbitals, respectively
[3,63,68,100]. The transfer integrals tμ�,νm(Rn) are obtained
by the Slater-Koster scheme [101] as the nine transfer in-
tegrals, t(pdσ ), t(pdπ ), t(ddσ ), t(ddπ ), t(ddδ), t(ppσ )1,
t(ppπ )1, t(ppσ )2, and t(ppπ )2, where t(pdσ ) and t(pdπ )
are the transfer integrals between the nearest-neighbor (NN)
Ti 3d and Se 4p orbitals, and t(ddσ ), t(ddπ ), and t(ddδ)

TABLE I. Slater-Koster transfer integrals determined by fitting to
the first-principles DFT bands shown in Fig. 3(a). In this fitting, the
energy levels of the Ti dγ (dx2−y2 , d3z2−r2 ), Ti dε (dxy , dyz, dzx), and Se
p (px , py , pz) orbitals satisfy εdγ − εdε = 1.112 eV and εdε − εp =
2.171 eV. Note that t(pdσ ) = −t(dpσ ) and t(pdπ ) = −t(dpπ ).

Transfer integral (eV)

t(pdσ ) = −1.422 t(ppσ )1 = 0.709
t(pdπ ) = 0.797 t(ppπ )1 = −0.103
t(ddσ ) = −0.347 t(ppσ )2 = 0.592
t(ddπ ) = 0.119 t(ppπ )2 = −0.009
t(ddδ) = −0.030

are the transfer integrals between the NN Ti-Ti 3d orbitals.
The subscripts 1 and 2 in t(ppσ ) and t(ppπ ) indicate the
transfer integrals between the NN Se(1)-Se(1) [Se(2)-Se(2)]
4p orbitals and between the NN Se(1)-Se(2) 4p orbitals,
respectively. The Slater-Koster transfer integrals are evaluated
by a least-square fitting of the TB bands to the first-principles
DFT bands along the high-symmetry lines 	-M-K-	. In
the DFT band calculation [102], we use the full-potential
linearized augmented-plane-wave method with the generalized
gradient approximation (GGA) [103] for electron correlations
implemented in the WIEN2K code [97]. As the initial values
of the parameters in the least-square fitting procedure, we
use the Slater-Koster transfer integrals [t(pdσ ), etc.] roughly
estimated from the TB bands obtained via the maximally
localized Wannier functions [104,105]. We use 252 k points
along the 	-M-K-	 lines in our least-square fitting.

The optimized values of the transfer integrals are summa-
rized in Table I. The obtained TB bands are compared with
the original DFT bands in Fig. 3(a) to find a good agreement,
indicating that our TB band structure can capture the overall
character of the first-principles DFT band structure. We find
that the valence bands are composed mainly of the Se p (px ,
py , pz) orbitals and the conduction bands near the Fermi level
are composed mainly of the Ti dε (dxy , dyz, dzx) orbitals.
The Ti dγ bands are located well above the dε bands due
to the crystal field splitting εdγ > εdε. The valence-band top
is located at the 	 point of the BZ and the conduction-band
bottom is located at the M points of the BZ. The valence-band
maximum and conduction-band minimum are +0.081 and
−0.007 eV, respectively, from the Fermi level, resulting in the
semimetallic band structure located in the vicinity of a zero-gap
semiconducting state.

C. Electron-phonon coupling

To discuss the lattice displacements in TiSe2, we introduce
the electron-phonon coupling, following the method of Mo-
tizuki et al. [3,63–68]. The electron-phonon coupling strengths
are given by the changes in the transfer integrals with respect to
the lattice displacements δRiμ from their equilibrium positions
Riμ. In the reciprocal lattice space, δRiμ is given by

δRiμ = 1√
N

∑
q

eiq·Ri uq,μ

= 1√
NMμ

∑
q

eiq·Ri ε(q,μ)Qq, (4)
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FIG. 3. (a) Tight-binding (TB) bands of the monolayer TiSe2

compared with the density-functional-theory (DFT) based bands used
as the reference bands in the fitting of the TB parameters. The Fermi
energy of the TB bands is set to zero, and thus the Fermi energy of
the DFT bands is located at −0.19 eV. (b) Density of states (DOS) of
the TB bands of the monolayer TiSe2. The partial densities of states
of the Ti (dashed line) and Se (dotted line) orbitals are also shown.

where uq,μ is the lattice displacement in q space given by
uq,μ = (ε(q,μ)/

√
Mμ)Qq . The displacement uq,μ is charac-

terized by the normal coordinate Qq and polarization vector
ε(q,μ) of a particular phonon mode at q, where Mμ is the mass
of atom μ. Details of the derivation and general form of the
electron-phonon coupling are summarized in Appendix A 1.
In this approach, the Hamiltonian of the electron-phonon
coupling is given by

Hep = 1√
N

∑
k,q

∑
μ�,νm

gμ�,νm(k,q)Qqc
†
k,μ�ck−q,νm (5)

with the electron-phonon coupling constant

gμ�,νm(k,q) =
∑
Rn

[∇tμ�,νm(Rn)]

·
[

ε(q,μ)√
Mμ

e−i(k−q)·Rn − ε(q,ν)√
Mν

e−ik·Rn

]
,

(6)

FIG. 4. Schematic representation of the transverse phonon modes
at the (a) M1, (b) M2, and (c) M3 points of the BZ. (d) Periodic lattice
displacement in the triple-q state.

where ∇tμ�,νm(Rn) is the first derivative of the transfer integral
with respect to Rn.

In Fig. 4(d), we show the schematic picture of the periodic
lattice displacement (PLD) observed experimentally in TiSe2

[8]. Realization of this PLD has been explained theoretically
by Motizuki et al. [3,68]. A first-principles calculation for
this PLD has also been performed by Bianco et al. [70].
Accordingly, the 2 × 2 PLD shown in Fig. 4(d) is realized by
the sum of the transverse phonon modes at the M1, M2, and M3

points of the BZ illustrated in Figs. 4(a)–4(c). Therefore the
2 × 2 PLD is the triple-q structure characterized by the wave
vectors q1 = b1/2, q2 = (b2 − b1)/2, and q3 = −b2/2 shown
in Fig. 2(b). In this paper, we consider the transverse phonon
modes shown in Figs. 4(a)–4(c) as the specific phonon modes
in Eqs. (4)–(6).

To estimate the coupling constants gμ�,νm(k,q), we need the
polarization vector ε(q,μ) characterized by the eigenstate of
the transverse phonon mode. ε(q,μ) for the PLD in TiSe2 has
been provided by Motizuki et al. [3,68] (see also Appendix C).
When the ratio between the lattice displacements of Ti and Se
ions is given as ξ = |uqj ,Se|/|uqj ,Ti|, the polarization vectors
for the transverse phonon mode at the M1 point, which are
perpendicular to the vector q1, are given by

ε(q1,Ti) =
√

MTi/M∗eY , (7)

ε(q1,Se1) = ε(q1,Se2) = −ξ
√

MSe/M∗eY , (8)
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where M∗ = MTi + 2ξ 2MSe is the effective mass of the trans-
verse mode at the M point. Similarly, the polarization vectors
ε(q2,μ) and ε(q3,μ) are perpendicular to their respective wave
vectors (see also Appendix C). The ratio ξ was estimated
as ξ � 1/3 in previous experimental [8,94] and theoretical
[66,70] studies. We therefore assume ξ = 1/3 and M∗ =
MTi + (2/9)MSe (= 65.416 u) [3,68] throughout this paper.

In addition to the polarization vector ε(q,μ), the first
derivative of the transfer integrals ∇tμ�,νm(Rn) is required to
estimate the coupling constants gμ�,νm(k,q). Here we briefly
describe the estimation of this quantity and the details are found
in Appendix B. We follow the approximation introduced by
Motizuki et al. [3,63]:

t ′(pdσ )

t(pdσ )
= αc

s ′(pdσ )

s(pdσ )
, etc., (9)

where t ′(pdσ ) is the first derivative of the transfer integral
t(pdσ ) with respect to the interatomic distance, and s(pdσ )
and s ′(pdσ ) indicate the overlap integral and its derivative,
respectively. αc is the coupling constant that determines the
strength of the electron-phonon coupling. In this paper, we
treat αc as a tunable parameter; the value of αc is determined
such that the calculated results are in good agreement with ex-
periment. Note that αc = 0 does not indicate gμ�,νm(k,q) = 0
since ∇tμ�,νm(Rn) also includes the terms given by the transfer
integrals t(pdσ ) (see Appendix B). In the estimation of the
overlap integrals and their derivatives, we use the Slater-type
orbital [106–108]. We can thus calculate the values analytically

TABLE II. Ratio between the Slater-Koster overlap integral and
its first derivative estimated by the Slater-type orbital. s(pdσ ) and
s(pdπ ) are the overlap integrals between nearest-neighbor Ti d and Se
p orbitals. s ′(pdσ ) and s ′(pdπ ) are the first derivative of the overlap
integrals. In the Slater-type orbitals, we use the orbital exponents
ζ3d = 2.7138 and ζ4p = 2.0718, for the Ti 3d and Se 4p orbitals,
respectively [107,108]. R is the distance between Ti and Se ions:
RTi-Se = 2.566 Å.

R × s ′(pd)/s(pd) s ′(pd)/s(pd) (1/Å)

R×s ′(pdσ )/s(pdσ ) = −3.860 s ′(pdσ )/s(pdσ ) = −1.504
R×s ′(pdπ )/s(pdπ ) = −5.933 s ′(pdπ )/s(pdπ ) = −2.312

(see Appendix B). The Slater-type orbital is characterized by
the orbital exponents, which are estimated by Clementi et al.
[107,108]: ζ3d = 2.7138 and ζ4p = 2.0718 for the Ti 3d and Se
4p orbitals, respectively. As shown in Fig. 3(b), the valence and
conduction bands near the Fermi level are composed of Se p

(px , py , pz) and Ti dε (dxy , dyz, dzx) orbitals, respectively (see
also Fig. 5). We therefore consider the electron-lattice coupling
between the nearest-neighbor Ti dε (dxy , dyz, dzx) and Se p (px ,
py , pz) orbitals only. In this approximation, we need the ratio
between the overlap integral and its first derivative for both
pdσ and pdπ ; the estimated values given by the Slater-type
orbitals are listed in Table II.

FIG. 5. Weighted band dispersions and equal energy surfaces (lines) of the undistorted TB band structure. The width of the curves is in
proportion to the weight of the [(a) and (b)] Ti dxy , [(c) and (d)] Ti dyz, [(e) and (f)] Ti dzx , [(g) and (h)] Se px , [(i) and (j)] Se py , and [(k) and
(l)] Se pz orbitals. In (b), (d), and (f), we plot the equal energy surfaces above the Fermi energy, EF + 0.1 eV, and in (h), (j), and (l), we plot
the equal energy surfaces below the Fermi energy, EF − 0.7 eV. Dashed line indicates the original BZ without distortion.
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When the ions are displaced from their equilibrium position,
the lattice system increases the elastic energy. The Hamiltonian
of the elastic term is given by

Hp = 1

2

∑
q

ω2
0(q)|Qq |2, (10)

where ω0(q) is the bare phonon frequency of the transverse
mode at momentum q. A bare phonon frequency ω0(q) has
been estimated by Motizuki et al. in comparison with the
experimentally observed phonon dispersions [3,65,68]. Mon-
ney et al. have also assumed the value close to it [100]. In

this paper, we use a similar value M∗ω2
0(qM ) = 10 eV/Å

2

[ω0(qM ) � 6.11 THz] at the M point (q = qM ). We may also
treat ω0(qM ) as a tunable parameter.

D. Coulomb interaction

To treat the excitonic mechanism of the CDW formation,
we also consider the intersite Coulomb interactions. In general,
the excitonic order (or excitonic insulator state) should be
induced by the interband Coulomb interactions. In TiSe2, the
interband Coulomb (or excitonic) interactions are given by the
interactions between the valence Se 4p and the conduction
Ti 3d bands. In real space, the interband Coulomb (or exci-
tonic) interaction in TiSe2 is essentially given by the intersite
Coulomb interaction between the nearest-neighbor Ti and Se
sites. Therefore, as the excitonic interactions, we consider the
intersite Coulomb interaction between the nearest-neighbor Ti
and Se sites given by

Hee =
∑

Rj ,Rn

∑
�,νm

V
dp

�,νm(Rn)nd
� (Rj )np

νm(Rj + Rn)

= 1

N

∑
k,k′,q

∑
�,νm

V
dp

�,νm(k − k′)d†
k,�dk′,�p

†
k′−q,νm

pk−q,νm,

(11)

where V
dp

�,νm(Rn) is the intersite Coulomb interaction between
the nearest-neighbor Ti d� and Se(ν) pm orbitals, and nd

� (Rj )
and n

p
νm(Rj ) are the number operators of the electron of the

Ti d� and Se(ν) pm orbitals, respectively, in the unit cell at
Rj . Second line of Eq. (11) indicates the Fourier transformed
Coulomb interaction, where

V
dp

�,νm(k − k′) =
∑
Rn

V
dp

�,νm(Rn)e−i(k−k′)·Rn , (12)

and d
(†)
k,� and p

(†)
k,νm are the annihilation (creation) operators of

an electron in the Ti d� and Se(ν) pm orbitals, respectively, at
momentum k. In this paper, we assume the orbital independent
interaction, V

dp

�,νm(Rn) = V , for simplicity, and we treat V as
a tunable parameter.

III. UNDISTORTED BAND STRUCTURE

Before discussing the CDW state caused by the electron-
phonon and excitonic interactions, we overview the characters
of undistorted band structure given by diagonalizing the TB
Hamiltonian He.

Figure 5 shows the calculated band dispersions along the
k path through the M1, M2, and M3 points of the BZ defined
in Fig. 2(b). Here, we also plot the weight of orbitals on each
band given by |u(0)

μ�,a(k)|2, where u
(0)
μ�,a(k) is the μ� component

of the eigenvector for the band a. Figures 5(a), 5(c), and 5(e)
show the weighted band dispersions of the Ti dxy , dyz, and
dzx orbitals, respectively. We find that the Ti dxy , dyz, and dzx

orbital characters appear in the conduction-band bottom at the
M1, M2, and M3 points of the BZ, respectively. To show the
corresponding characters in k space, we also plot in Figs. 5(b),
5(d), and 5(f) the equal energy surfaces (lines) above the Fermi
level EF with the weight of the Ti d orbitals. We find that the
equal energy surface around the M1 point is almost completely
composed of the Ti dxy orbital. Similarly, the equal energy
surfaces around the M2 and M3 points are given by dyz and
dzx orbitals, respectively. Thus the characters of the Ti dxy ,
dyz, and dzx orbitals are related to each other by the 2π/3
rotation around the 	 point. These results are consistent with
the orbital characters in the bulk TiSe2, which was pointed
out by van Wezel [109]. Figures 5(g)–5(l) show the weighted
band dispersions and the equal energy surfaces below EF for
the Se px , py , and pz orbitals. We find that the two valence
bands around the 	 point are composed of the Se p orbitals
but that the inequivalence in the weight of the px , py , and
pz orbitals appears along the different k directions. The equal
energy surfaces in the valence bands show the similar 2π/3
rotational property of Se px , py , and pz orbitals around the 	

point.
Figures 6(a)–6(c) show the Bloch wave functions ψ

(0)
k,a(r)

of the conduction-band bottoms at the M1, M2, and M3

points. When the Hamiltonian in the TB approximation is
diagonalized, the Bloch wave function of band a is given by
ψ

(0)
k,a(r) = ∑

μ� u
(0)∗
μ�,a(k)φ(0)

k,μ�(r), where φ
(0)
k,μ�(r) is the Bloch

sum of the atomic orbitals φ
(0)
k,μ�(r) = (1/

√
N )

∑
Ri

φ�(r −
Riμ)eik·Ri and we use the Slater-type orbital as the atomic
orbital φ�(r), as in the estimation of the overlap integrals
discussed in Sec. II C. We find in Fig. 6(a) that the Bloch wave
function ψ

(0)
k,a(r) at the M1 point clearly shows the shape nearly

consistent with the dxy orbital around Ti atoms. Note that, due
to eik·Ri = eiq1·Ri in the Bloch function at the M1 point, the
wave functions on Ti atoms change signs along the direction
of q1. Similarly, the shapes of the dyz and dzx orbitals appear in
the Bloch functions at the M2 and M3 points, respectively. Ti
dxy , dyz, and dzx orbitals, which appear in the Bloch functions
at the M1, M2, and M3 points, respectively, are rotated by 2π/3
around the Z axis in the global coordinates due to the threefold
rotational symmetry of the crystal structure. We do not show
the Bloch functions of the valence-band top at the 	 point here,
but we have confirmed that they clearly show the shapes of the
p orbitals around Se atoms.

Figure 6(d) summarizes the Fermi surfaces of the undis-
torted band structure of the monolayer TiSe2 schematically.
The hole pockets (i.e., valence-band top) at the 	 point are
characterized by the Se p orbitals and the electron pockets (i.e.,
conduction-band bottom) at the M1, M2, and M3 points are
characterized by the Ti dxy , dyz, and dzx orbitals, respectively.
The CDW state in TiSe2 may therefore be given by the mixture
of the Se p orbitals at the 	 point and Ti dxy , dyz, dzx orbitals
at the M1, M2, and M3 points.
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FIG. 6. Bloch wave functions ψ
(0)
k,a(r) of the conduction-band

bottom at the (a) M1, (b) M2, and (c) M3 points, where the Slater-type
orbitals are employed as the atomic orbitals. (d) Schematic Fermi
surfaces of the monolayer TiSe2. Note that areas of the hole and
electron pockets are slightly larger than those of our TB bands.

IV. PHONON SOFTENING AND CDW

In this section, we discuss the realization of the CDW
without introducing the excitonic interaction. We first discuss
the softening of the transverse modes at the M points shown
in Figs. 4(a)–4(c). We then examine the stability of the static
triple-q CDW state, where the transverse phonon modes at the
M1, M2, and M3 points are frozen simultaneously, as shown in
Fig. 4(d).

A. Phonon softening

To discuss the structural instability in TiSe2, we evaluate
the effective phonon frequency ω(q) given as [3]

ω2(q) = ω2
0(q) − χ (q), (13)

where ω0(q) is the bare phonon frequency of the transverse
mode and χ (q) is the susceptibility including the electron-
phonon coupling gμ�,νm(k,q) (see Appendix A 2). Specifically,
the susceptibility χ (q) is given by

χ (q) = − 2

N

∑
k

∑
a,b

|Vep(ak,bk − q)|2f
(
ε

(0)
k,a

) − f
(
ε

(0)
k−q,b

)
ε

(0)
k,a − ε

(0)
k−q,b

(14)

FIG. 7. Calculated temperature dependence of the bare electronic
susceptibility χ0(q) as a function of q.

with

Vep(ak,bk − q) =
∑

μ�,νm

u
(0)∗
μ�,a(k)gμ�,νm(k,q)u(0)

νm,b(k − q),

(15)

where ε
(0)
k,a is the undistorted energy band, u

(0)
μ�,a(k) is the μ�

component of the eigenvector for the band a, and f (ε(0)
k,a)

is the Fermi distribution function (see Appendix A 2). In
the calculations of the susceptibility, we use 500 × 500 k
points for summation. In Eq. (9), we assume αc = 0.1, which
provides results in good agreement with the observed lattice
displacement [8] (see next section) if we use M∗ω2

0(qM ) =
10 eV/Å

2
as the bare phonon frequency ω0(q) at the M point.

In this section, we assume αc = 0.1 unless otherwise stated.
The αc dependence will be discussed in the next section.

Before discussing the phonon softening, we show the
character of the bare electronic susceptibility [3,63,69] given
as

χ0(q) = − 1

N

∑
k

∑
a,b

f
(
ε

(0)
k,a

) − f
(
ε

(0)
k−q,b

)
ε

(0)
k,a − ε

(0)
k−q,b

. (16)

Note that, if k and q dependencies of Vep(ak,bk−q) in Eq. (14)
are negligible, χ0(q) corresponds to χ (q). In Fig. 7, we show
the calculated bare electronic susceptibility χ0(q) at different
temperatures T . The behavior of the q dependence of χ0(q)
reflects the band structure near EF [see Fig. 3(a)], which is in
good agreement with previous theoretical estimates [63,69].
We find the temperature sensitive peak in χ0(q) at the M

point (q = qM ), which corresponds to the wave vector of the
CDW in monolayer TiSe2. An enhancement of χ0(qM ) with
decreasing temperature induces softening of the phonon mode
at the M point. We note that χ0(q) has a peak also at the 	 point.
However, previous studies have found that the phonon mode
at the 	 point does not show softening [65,69–74] because the
phonon frequencies of the optical modes at the 	 point is higher
than the frequency of the softened transverse mode at the M

point. We therefore consider the susceptibility χ (q) only at the
M point in the following discussion.

Figure 8 shows the temperature dependence of the sus-
ceptibility χ (q) and effective phonon frequency ω(q) at
the M point (q = qM ), where we assume M∗ω2

0(qM ) =
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FIG. 8. Calculated temperature dependence of the (a) susceptibil-
ityχ (qM ) [χ (qM )/ω2

0(qM )] and (b) effective phonon frequencyω(qM )

at the M point. We assume M∗ω2
0(qM ) = 10 eV/Å

2
[ω0(qM ) � 6.11

THz], which gives the transition temperature Tc � 443 K.

10 eV/Å
2

[ω0(qM ) � 6.11 THz] as a bare phonon frequency.
At this frequency ω0(qM ), we find that the susceptibility
χ (qM ) becomes larger than ω2

0(qM ) at T � 443 K. To show
this character clearly, we plot χ (qM )/ω2

0(qM ) as a func-
tion of T in Fig. 8(a). When the susceptibility reaches
χ (qM )/ω2

0(qM ) = 1, the effective phonon frequency ω(qM )

[= ω0(qM )
√

1 − χ (qM )/ω2
0(qM )] vanishes, resulting in the

structural phase transition. The transition temperature Tc is
given by ω(qM ) = 0, or χ (qM )/ω2

0(qM ) = 1, in this estima-
tion. Although Tc is higher than the experimental value in this
parameter setting, the temperature dependent curve of ω(qM )
is in good agreement with experimental result obtained by the
x-ray diffuse scattering [9].

To investigate ω0(qM ) dependence of the critical tem-
perature Tc, we also show the temperature dependence of
χ (qM )/ω2

0(qM ) in Fig. 9(a) for different values of ω0(qM ).
With increasing ω0(qM ) and thus decreasing χ (qM )/ω2

0(qM ),
Tc is suppressed and vanishes at ω0(qM ) = 6.7 THz. Fig-

FIG. 9. (a) Calculated temperature dependence of χ (qM )/ω2
0(qM )

at different values of ω0(qM ). (b) Calculated transition temperature
Tc as a function of ω0(qM ).

ure 9(b) shows the transition temperature Tc as a function of
ω0(qM ). We find that the calculated Tc is in good agreement
with the experimental value Tc � 200 K when ω0(qM ) =
6.2–6.3 THz. Note that the estimation of χ (q) in Eq. (14)
corresponds to a random phase approximation [3] and over-
estimations of Tc may be due to this approximation.

B. Triple-q CDW

In this section, we discuss the stability of the static
triple-q CDW state induced by the electron-phonon coupling
gμ�,νm(k,q). Here, we estimate the change in the total energy
when the static triple-q crystal structure shown in Fig. 4(d) is
realized.

When the transverse phonon modes at q1, q2, and q3 are
frozen simultaneously, the corresponding expectation value
is 〈Qqj

〉 = √
NM∗u and the electron-phonon coupling in the

static triple-q structure is given by

Hep =
∑
k,qj

∑
μ�,νm

ḡμ�,νm(k,qj )uc
†
k,μ�ck−qj ,νm, (17)

where ḡμ�,νm(k,qj ) ≡ √
M∗gμ�,νm(k,qj ) for qj = q1, q2, q3

and u corresponds to the magnitude of the displacement of the
Ti atoms [3,68]. Since Eq. (17) is not diagonal for k in the
original BZ without distortion, we must introduce the reduced
BZ (RBZ) shown in Fig. 2(b). In order to write the Hamiltonian
simply in the matrix notation, here we introduce the 11 × 11
matrices of the transfer integral t̂(k) and electron-phonon
coupling ˆ̄g(k,q), and the eleven-dimensional vector of the
annihilation (creation) operator c(†)

k . When we define the row

vector c̄†k = ( c†k0
c†k1

c†k2
c†k3

) with kj = k − qj and q0 = 0,
the Hamiltonian of the tight-binding band and electron-phonon
coupling Hep

cdw = He + Hep may be written as

Hep

cdw =
∑

k∈RBZ

c̄†kĤ
ep

k c̄k =
∑

k∈RBZ

∑
i,j

c†ki
Ĥep

ki ,kj
ckj

, (18)

where Ĥep

ki ,kj
is the 11 × 11 block matrix of (ki ,kj ) component

of Ĥep

k and is given as

Ĥep

ki ,kj
=

{
t̂(ki) (ki = kj )
ˆ̄g(ki ,qi + qj )u (ki 
= kj )

. (19)

We estimate the distorted energy band εk,a in the static triple-q
structure by diagonalizing the 44 × 44 matrix Ĥep

k in the RBZ.
See Appendix C for details.

Figure 10(a) shows the calculated energy bands εk,a of the
undistorted (u/a = 0) and triple-q superlattice (u/a = 0.02)
structures in the RBZ. In the normal state, the conduction-
band bottoms at the M points are folded to the 	 point of
the RBZ and the semi-metallic state is realized with the small
band overlap. When the electron-phonon coupling induces the
lattice displacement with u 
= 0, the band hybridization occurs
to open the band gap around the 	 point in the RBZ.

By the gap opening at the Fermi level, the electronic energy
in the triple-q structure is lowered. The energy difference at
zero temperature is simply given as

�Eelec(u) = 2

N

⎡
⎣ occ.∑

k,a

εk,a(u) −
occ.∑
k,a

εk,a(0)

⎤
⎦, (20)
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FIG. 10. (a) Calculated band dispersions of TiSe2 in the undis-
torted structure (u/a = 0) and triple-q superlattice structure (u/a =
0.02) displayed in the RBZ. The energy 0 corresponds to the Fermi
energy in the undistorted structure (u/a = 0). (b) Calculated energy
�E(u) as a function of u. We assume αc = 0.1 and M∗ω2

0(qM ) =
10 eV/Å

2
[ω0(qM ) � 6.11 THz], and a (= 3.54 Å) is the lattice

constant. A solid dot indicates the stationary point in (b).

where εk,a(u) and εk,a(0) are the band energies in the triple-q
and undistorted structures, respectively, and occ. indicates the
sum over the occupied k points in the RBZ. N and 2 in Eq. (20)
correspond to the number of the unit cells in the normal phase
and spin degrees of freedom, respectively. When the atoms are
displaced from their equilibrium positions, the energy of the
lattice system increases as

�Eelas(u) = 1

2

∑
qj

M∗ω2
0(qj )u2, (21)

where ω0(qj ) [= ω0(qM )] is the bare phonon frequency for
qj = q1, q2, and q3. The sum of the electronic and elastic
terms in Eqs. (20) and (21) gives the change in the total energy
in the triple-q structure,

�E(u) = �Eelec(u) + �Eelas(u). (22)

Figure 10(b) shows the calculated �E(u) as a function

of u, where we assume M∗ω2
0(qM )=10 eV/Å

2
[ω0(qM )�

6.11 THz] and αc = 0.1 in the electron-phonon coupling
gμ�,νm(k,qj ). The sum over k in Eq. (20) is evaluated by the
tetrahedron method [110] with a sampling of 100 × 100 k
points in the RBZ. In this parameter setting, the energy
curve of �E(u) has a stationary point at a finite value of u,
indicating the realization of the stable triple-q CDW state. The
calculated lattice displacement u/a = 0.010 at the stationary
point is consistent with the experimental value u/a = 0.012
estimated by the neutron diffraction [8]. Recent x-ray study
for monolayer TiSe2 also observed a consistent value [94].

We also check the stability of the triple-q CDW state for
different values of ω0(qM ) and αc at T = 0. In Fig. 11(a),
we show the stationary u point in �E(u) as a function of
ω0(qM ) at αc = 0.1. The lattice displacement u is suppressed
with increasing ω0(qM ) and vanishes at ω0(qM ) = 6.8 THz.
Note that the phase boundary of ω0(qM ) shown in Fig. 11(a) is
slightly larger than the boundary shown in Fig. 9(b) estimated
from the phonon softening χ (qM )/ω2

0(qM ). This is because
the susceptibility χ (q) is derived from the perturbation for a

FIG. 11. (a) Calculated lattice displacementu in the triple-q CDW
state as a function of ω0(qM ) at αc = 0.1. a (= 3.54 Å) is the lattice
constant. (b) Calculated phase boundary between the normal (u = 0)
and triple-q CDW (u 
= 0) states.

single-q phonon mode (see Appendix. A 2) and the triple-q
CDW state including the couplings among different q phonon
modes is more stable than a single-q CDW state, which is also
discussed in Refs. [68,70]. As shown in Fig. 11(a), the lattice
displacement u is in good agreement with the experimental
value when ω0(qM ) = 6.0 – 6.1 THz. Moreover, we estimate in
Fig. 11(b) the phase boundary between the normal (u = 0) and
triple-q CDW (u 
= 0) state in the parameter space of αc and
ω0(qM ) at T = 0. We find that, with increasing αc, the triple-q
CDW state becomes more stable due to the enhancement of the
electron-phonon coupling gμ�,νm(k,q), despite the fact that the
bare phonon frequency ω0(qM ) becomes larger.

V. ROLES OF EXCITONIC INTERACTION

In this section, we treat the intersite Coulomb interaction
term Hee in the mean-field approximation and discuss roles
of the excitonic interaction for the triple-q CDW state shown
in the previous section. Hereafter, we assume αc = 0.1 in
the electron-phonon coupling gμ�,νm(k,q) unless otherwise
indicated.

A. Excitonic order

Let us briefly discuss the mean-field approximation for
the intersite Coulomb interaction term Hee. Details of the
calculations are given in Appendix D. In TiSe2, the locations
of the top of the valence Se p bands and the bottom of the
conduction Ti d bands are separated in momentum space by
qj = q1, q2, and q3. We therefore introduce the excitonic order
parameters defined by

�
dp

�,νm(k,qj )≡− 1

N

∑
k′

V
dp

�,νm(k−k′)
〈
p
†
k′−qj ,νm

dk′,�
〉
, (23)

for qj = q1, q2, q3. The order parameters thus defined indicate
the spontaneous hybridization between the Se p and Ti d bands
due to the Coulomb interaction V

dp

�,νm(k−k′), which results in
the excitonic CDW state. The driving force of the CDW state
is hence the interband Coulomb interaction. The mean-field
Hamiltonian may then be written as Hee ∼ HMF

ee = Hex
cdw +
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FIG. 12. (a) Calculated energy �E(u) as a function of u with

different values of V . We assume M∗ω2
0(qM ) = 10 eV/Å

2
and a =

3.54 Å. Solid dots indicate the stationary points. (b) Calculated lattice
displacement u at the stationary point and the corresponding order
parameter �̄(qj ) as a function of V .

Eex
0 with

Hex
cdw =

∑
k,qj

∑
�,νm

�
dp

�,νm(k,qj )d†
k,�pk−qj ,νm + H.c., (24)

Eex
0 = −

∑
k,qj

∑
�,νm

�
dp

�,νm(k,qj )
〈
d
†
k,�pk−qj ,νm

〉
. (25)

We may write the Hamiltonian in the matrix form in the RBZ,
using the 5 × 6 matrix of the order parameter �̂(k,qj ), the five-
dimensional vector of the annihilation (creation) operator of Ti
d orbitals d(†)

k , and six-dimensional vector of the annihilation

(creation) operator of Se(ν) p orbitals p(†)
k . Thus we may

rewrite Eq. (24) as

Hex
cdw =

∑
k∈RBZ

c̄†kĤex
k c̄k =

∑
k∈RBZ

∑
i 
=j

c†ki
Ĥex

ki ,kj
ckj

, (26)

where c†ki
= ( d†

ki
p†

ki
) and Ĥex

ki ,kj
is the 11 × 11 block matrix

consisting of the (ki ,kj ) components of Ĥex
k , i.e.,

Ĥex
ki ,kj

=
[

0̂ �̂(ki ,qi + qj )

�̂†(kj ,qi + qj ) 0̂

]
. (27)

In the calculation, we assume the excitonic order parameters
defined between the nearest-neighbor Ti dε (dxy , dyz, dzx) and
Se p (px , py , pz) orbitals only. We diagonalize the mean-field
Hamiltonian, Ĥex

k defined above plus Ĥep

k defined in Eq. (18),
and optimize the order parameter �̂(ki ,qj ) self-consistently
at each value of the lattice displacement u. Using the band
dispersion with the optimized order parameters, we evaluate
�E(u) = �Eelec(u) + �Eelas(u) + Eex

0 /N and find the sta-
tionary point of �E(u). In the self-consistent calculation, we
use a sampling of 50 × 50 k points in the RBZ.

B. Enhancement of CDW

Figure 12(a) shows the calculated u dependence of the

energy �E(u) at M∗ω2
0(qM ) = 10 eV/Å

2
for different values

of the Coulomb interaction V [= V
dp

�,νm(Rn)]. We find that, with
increasing V , the energy of the triple-q CDW state becomes
more stable and the lattice displacement u at the stationary

FIG. 13. Orbital dependence of the averaged order parameters:
�̄�,m(q1) (upper panels), �̄�,m(q2) (middle panels), and �̄�,m(q3)
(lower panels) at V = 0.3 eV. Also see Fig. 12.

point is enhanced. The stationary values of u are shown in
Fig. 12(b) as a function of V , which clearly indicates that
the excitonic (intersite Coulomb) interactions stabilize the
triple-q CDW state in TiSe2, working cooperatively with the
electron-phonon coupling.

To study the character of the excitonic ordering, we calcu-
late the average of the absolute values of the order parameters
defined by

�̄�,m(qj ) ≡ 1

N

∑
k∈RBZ

3∑
i=0

∑
ν=1,2

∣∣�dp

�,νm(ki ,qj )
∣∣. (28)

As an indicator of the excitonic ordering, we also define the
total value of the averaged order parameters �̄�,m(qj ),

�̄(qj ) ≡
∑
�,m

�̄�,m(qj ). (29)

As shown in Fig. 12(b), the calculated total order parameter
�̄(qj ) satisfies the relation �̄(q1) = �̄(q2) = �̄(q3) due to
the three-fold rotational symmetry. With increasing V , �̄(qj )
increases monotonically from �̄(qj ) = 0 at V = 0, which
indicates that the excitonic order coexists with the phononic
triple-q CDW order and enhances the d-p hybridizations,
supporting the realization of the stable triple-q CDW state.

Figure 13 shows the orbital dependence of the averaged
order parameters �̄�,m(qj ) at V = 0.3 eV. We find that the
components between the Ti dxy orbital and Se px and py

orbitals [�̄xy,x(q1) = �̄xy,y(q1)] are dominant in the order
parameter with q1. This behavior is understood from the orbital
character of the undistorted band structure shown in Figs. 5
and 6; the conduction band around the M1 point is mostly
given by the Ti dxy orbital and the valence bands around the
	 point are mostly given by the Se p orbitals. We find that
the components �̄xy,x(q1) and �̄xy,y(q1) are dominant but the
component �̄xy,z(q1) is very small. This is because the Se pz

orbital are nearly perpendicular to the Ti dxy orbital but the Se
px and py orbitals can enhance the pdπ bonding with the Ti
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FIG. 14. Calculated ω0(qM ) dependence of (a) the lattice dis-
placement u and (b) order parameter �̄(qj ) for different values of

V . a (= 3.54 Å) is the lattice constant.

dxy orbital. In the same way, the dyz components are dominant
in the order parameter with q2 [�̄yz,y(q2) = �̄yz,z(q2)] and the
dzx components are dominant in the order parameter with q3
[�̄zx,z(q3) = �̄zx,x(q3)], reflecting the orbital character in the
undistorted band dispersions.

We also check the stability of the triple-q CDW state for
different values of ω0(qM ) and V . Figure 14 shows ω0(qM )
dependence of the lattice displacement u and order parameter
�̄(qj ) for different values of V . With increasing ω0(qM ),
the PLD in the triple-q CDW state is suppressed, but with
increasing V , the lattice displacement u is enhanced. Similarly,
�̄(qj ) is suppressed with increasing ω0(qM ). We note that
the pure excitonic state, where the triple-q CDW state occurs
without lattice displacements, is not realized in our calcula-
tions, similar to the previous report in Refs. [87,88]. Figure 15

FIG. 15. Calculated ground-state phase diagram of the triple-q
CDW state in the parameter space of V and ω0(qM ).

shows the ground-state phase diagram in the parameter space
of V and ω0(qM ). Apparently, the area of the triple-q CDW
phase is enlarged with increasing V . The excitonic interaction
V thus enhances the triple-q CDW state in TiSe2. We may
therefore regard the CDW state in this enlarged region as the
exciton-induced CDW state.

VI. ELECTRONIC STRUCTURE IN CDW

In order to discuss the electronic structure of the triple-q
CDW state, here we calculate the single-particle spectrum,
simulating the angle-resolved photoemission spectroscopy
(ARPES), and also the electronic charge density distribution in
the TB approximation, discussing the local charge distribution
in the CDW state of TiSe2.

A. Single-particle spectrum

In our one-body approximation, the single-particle spec-
trum is given by

A(k,ω) =
∑
μ�

∑
a

∣∣uq0μ�,a(k)
∣∣2

δ(ω − εk,a), (30)

where uq0μ�,a(k) is the coefficient of the unitary transformation
ck−qj ,μ� = ∑

a uqj μ�,a(k)γk,a in the diagonalization of the

44 × 44 Hamiltonian matrix Ĥep

k + Ĥex
k . Detailed derivation

is given in Appendix E. In the spectral calculation, each δ

function in Eq. (30) is represented by a Lorentzian function
with a finite broadening factor η.

Calculated results for A(k,ω) in the normal and triple-q
CDW states are shown in Fig. 16 along the line 	-M (M1)
of the unfolded BZ. We assume V = 0.0, 0.1, 0.2, and 0.3 eV
to obtain the self-consistent solutions for the CDW states as
in Fig. 12. In the normal state, the single-particle spectrum
reproduces the semimetallic band structure with a small band
overlap as shown in Figs. 3 and 5. In the CDW state without the
excitonic interaction (V = 0 eV), the single-particle spectrum
shows the small hybridization gaps both in the valence band
around the 	 point and in the conduction band around the
M point. The gaps open due to folding and splitting of the
bands in the RBZ, caused by the lattice distortion, as shown in
Fig. 10. With increasing V , the energy gap Eg becomes larger
due to the enhancement of the triple-q CDW state, where the
calculated energy gaps are given by Eg ∼ 0.06, 0.11, 0.18,
and 0.26 eV at V = 0.0, 0.1, 0.2, and 0.3 eV, respectively.
In addition, with increasing V , the single-particle spectrum
clearly indicates the band folding behavior, giving rise to the
2 × 2 superlattice formation. The effect of the band folding
has clearly been observed at the M point of the unfolded BZ
in the ARPES experiments [91–93], which is consistent with
our calculated results shown in Fig. 16. The additional spectral
weight can clearly be observed around the M point of the BZ,
reflecting the bands around the 	 point, which is caused by the
spontaneous hybridization between the valence and conduction
bands.

Two remarks are in order. First, the intersite Coulomb
interaction V is essential to reproduce the experimental
ARPES spectrum in the monolayer TiSe2 [91–93]. When the
intersite Coulomb interaction is absent (V = 0), the calculated
band gap and effect of band folding are small and weak in
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FIG. 16. Calculated single-particle spectra A(k,ω) of the normal and triple-q CDW states of the monolayer TiSe2, presented in the unfolded
BZ. We assume the self-consistent solutions for V = 0.0, 0.1, 0.2, and 0.3 eV shown in Fig. 12. The spectra are broadened with η = 0.05 eV.
The energy zero is set to the lowest edge of the band above the Fermi level.

comparison with the experiment. However, the band gap and
folding spectrum are enhanced with increasing V and the
single-particle spectrum around V ∼ 0.2 eV may be in good
agreement with the ARPES spectrum. Second, since our model
omits the spin-orbit coupling, our calculations do not reproduce
the spin-orbit splitting of the valence Se 4p bands at the 	

point [111,112]. The spin-orbit interaction is required for more
accurate comparison.

B. Charge density distribution

To elucidate the local electronic structure in the triple-q
CDW state, we calculate the charge density distribution in
TiSe2. In general, the electronic charge density is given by

ρ(r) =
∑

k

∑
a

|ψk,a(r)|2f (εk,a), (31)

where ψk,a(r) is the Bloch wave function of band a. Here,
we do not write the elementary charge e explicitly. Note that
the charge density ρ(r) in Eq. (31) is a density of electrons;
the charge distribution of atomic cores (ions) should be added
in the evaluation of the total charge density or net electric
polarization. In the TB approximation, the Bloch functions
are given by the linear combinations of atomic orbitals. The
charge density ρ(r) can then be rewritten as

ρ(r) =
∑
Ri ,Rj

∑
μ�,νm

〈c†i,μ�cj,νm〉 φ�(r− Riμ)φm(r− Rjν), (32)

where c
(†)
i,μ� is the annihilation (creation) operator of an electron

on the atomic orbital μ� in the ith unit cell [113]. Here, we use
the Slater-type orbitals as the atomic orbitals φ�(r), which we
have used in the estimation of the overlap integrals in Sec. II C.
In the evaluation of Eq. (32), we include the on-site expectation
values 〈c†i,μ�ci,μm〉 for all the atoms and the d-p bonding

contributions 〈d†
i,�pj,νm〉 between the nearest-neighbor Ti and

Se(ν) atoms. We omit other (more distant) expectation values
because they are negligibly small. In the triple-q CDW state,
we extend the unit cell as shown in Fig. 4(d) and estimate
the expectation values for the four TiSe2 units in the extended
2 × 2 unit cell.

Figure 17 shows the calculated charge density distributions
in the normal and triple-q CDW states. Here, we assume as the
CDW state the self-consistent solution for V = 0.3 eV shown

in Fig. 12. Note that the results are qualitatively the same even
if we assume V = 0.2 eV. In the normal state, we find that the
isosurface surrounds each atom and the charge densities ρ(r)
around Se sites are larger than those around Ti sites, reflecting
the occupation numbers of electrons. We also find that, in the
CDW state, the radius of the isosurface surrounding each atom
does not change drastically from the normal state, indicating
that the CDW state in TiSe2 is not a site-centered charge order
[114] that should have an inequivalent deviation in the onsite
electronic occupations. Instead, the deviation in ρ(r) appears
between the Ti and Se sites due to the formation of the bonding
orbital (trimer) of the Ti d and two Se p orbitals in the distorted
TiSe6 octahedra. Therefore the trimerization of the Ti and two
Se orbitals is the essence in the electronic structure, and the
bond-centered CDW [114] is a suitable description of the CDW
in TiSe2.

To illustrate the deviation in the electronic density clearly,
Fig. 18(a) shows the difference in the electron density distribu-
tions between the CDW and normal states �ρ(r) = ρCDW(r) −
ρN(r). Clearly, �ρ(r) exhibits the electric dipole structure
in the distorted TiSe6 octahedra due to the deviation in the
electronic density. The schematic representation of the dipole
structure is shown in Fig. 18(b), where we only describe the
Ti sites, omitting the Se sites, and an arrow indicates the
electric polarization in �ρ(r). We thus find in Fig. 18(b) that
the polarization in the Ti sites forms a kagome network and
the dipoles show the structure of clockwise and anticlockwise
vortices on the triangles in the kagome network.

The polarization structure in Fig. 18 given by the electronic
density ρ(r) demonstrates the presence of a vortexlike anti-
ferroelectric structure. In this vortexlike structure shown in
Fig. 18(b), we identify the local electric toroidal moment [115–
117] along the Z axis at the center of the vortex defined by the
three dipoles on the triangle. The clockwise and anticlockwise
vortices making opposite axial toroidal vectors can be regarded
as the antiferroelectric toroidal network.

VII. DISCUSSION AND SUMMARY

Here, we discuss the implications of our results in recent
developments in studies of TiSe2. Recent experimental studies
have pointed out the difficulty in the pure excitonic driving
force in the formation of the CDW state in TiSe2, where the
PLD is survived even if the excitonic interactions are screened
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FIG. 17. Calculated isosurface of the electronic charge density ρ(r) in the (a) normal and (b) triple-q CDW states. In (b), we assume the
self-consistent solution for V = 0.3 eV shown in Fig. 12. We use the Slater-type orbitals as the atomic orbitals and plot the isosurfaces at an
isovalue 0.025 in both (a) and (b). (c) Schematic representation of the periodic lattice displacement (PLD) in the triple-q CDW state.

[118–121]. However, these studies have admitted possible
contributions of the excitonic correlations to the development
in the rigid CDW state of the electron-phonon coupled system
[118–121]. Moreover, other experimental results [122,123]
have rather supported the cooperative scenario for the CDW
formation, as was suggested theoretically [86–89]. In this
paper, we have shown that the electron-phonon and excitonic
interactions work cooperatively with each other to enhance the
stability of the triple-q CDW state. Our microscopic theory
has thus advanced and strengthened the cooperative scenario
suggested in simplified models [86–89].

However, the pure phononic mechanism may not be denied
completely in our present theory since we have shown the

FIG. 18. (a) Isosurface of the difference in the electronic charge
densities between the triple-q CDW and normal states, �ρ(r) =
ρCDW(r) − ρN(r), where we assume the self-consistent solutions for
V = 0.3 eV given in Fig. 12. We plot the isosurface at an isovalue
±0.007 and the red and blue surfaces indicate the positive and
negative part of �ρ(r), respectively. (b) Schematic representation
of the electric polarization in the electronic density shown in (a). An
arrow indicates the electric dipole at the Ti sites.

stability of the CDW state without the excitonic interaction, as
discussed in Sec. IV. To regard the CDW state in TiSe2 as an
excitonic insulator or excitonic condensation state assertively,
we must elucidate the contribution of an excitonic interaction,
namely an interband Coulomb interaction, in comparison with
experiment. As one of the methods of verification, we may
suggest the application of time-resolved experiments [124–
129], where we can make use of the difference in the time scales
between the excitonic and phononic systems. In particular,
theoretical studies of the photo-induced dynamics for excitonic
orders have been investigated in the two-band excitonic insu-
lator models [130,131]. To understand the real materials, how-
ever, we need a quantitative microscopic models, for which our
theoretical study for TiSe2 will be proven to be useful. Besides
the photo-induced dynamics, responses to other external fields
[132–134] should also be studied theoretically, for which our
microscopic model for the CDW state of TiSe2 will be valuable
to elucidate the contributions of the excitonic interaction.

In such studies, we also need to extend our monolayer model
to the bulk 1T -TiSe2 model. In the bulk structure, because the
bottoms of the conduction band are located at the L points,
which are kZ = π/c above the M points [5,6], a triple-q
CDW state with the modulation vector qL = qM + (π/c)eZ

is anticipated, where the TiSe2 layers with antiparallel lattice
displacements stack alternately along the Z direction, keeping
the in-plane structure to be the same as our monolayer triple-
q structure. Our monolayer studies have thus captured the
essential characters of the in-plane structure of the bulk system.
However, to understand the bulk 1T -TiSe2 in detail, it is neces-
sary to investigate the roles of the inter-layer coupling carefully.

To conclude, we have investigated the electronic structure
and microscopic mechanism of the triple-q CDW state in
the monolayer TiSe2 on the basis of the realistic multiorbital
d-p model with the electron-phonon coupling and intersite
Coulomb (excitonic) interactions. The phononic and excitonic
mechanisms of the CDW transition have thus been considered.
First, using the first-principles band-structure calculations, we
have constructed the tight-binding bands made from the Ti
3d and Se 4p orbitals in the monolayer TiSe2. From the
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undistorted band structure, we have shown that the valence-
band top at the 	 point is characterized by the Se p orbitals and
the conduction-band bottom at the M1, M2, and M3 points are
characterized by the Ti dxy , dyz, and dzx orbitals, respectively.
Next, we have constructed the electron-phonon coupling in the
tight-binding approximation for the transverse phonon modes,
of which the softening has been observed experimentally [9].
Taking into account the electron-phonon coupling only, we
have shown that the transverse phonon mode softens at the
M point of the BZ and that the instability toward the triple-q
CDW state occurs when the transverse modes at the M1, M2,
and M3 points are frozen simultaneously (i.e., representing the
phononic mechanism for the triple-q CDW state).

Furthermore, we have introduced the intersite Coulomb
interaction between the nearest-neighbor Ti and Se atoms,
which induces the excitonic instability between the valence
Se 4p and conduction Ti 3d bands. We have treated the
intersite Coulomb (excitonic) interaction in the mean-field
approximation and have shown that the excitonic interaction
favors to further stabilize the triple-q CDW state caused by
the phononic mechanism. We have thus demonstrated that
the electron-phonon and excitonic interactions cooperatively
stabilize the triple-q CDW state in the monolayer TiSe2. Here,
we have also shown the orbital characters of the excitonic order
parameters explicitly in the triple-q CDW state. Using the
mean-field solution for the ground state of the proposed model,
we have calculated the single-particle spectrum in the triple-q
CDW state to reproduce the band folding spectrum observed in
the ARPES experiments. To illustrate the electronic structure
in the triple-q CDW state intuitively, we have also calculated
the charge density distribution in real space and have shown
that the the bond-type CDW occurs in the monolayer TiSe2.
In addition, we have found out a vortexlike antiferroelectric
electron polarization in the kagome network of Ti atoms.
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APPENDIX A: ELECTRON-PHONON COUPLING

1. Derivation of electron-phonon coupling

Here, following Motizuki et al. [3], we derive the electron-
phonon coupling used in Sec. II C. The electron-phonon
coupling is derived from the change in energy when the ions
are displaced from their equilibrium positions. Motizuki et al.
[3] adopted the Fröhlich approach [135] in the tight-binding
approximation, where the atomic wave functions move rigidly
with the ions.

First, for the undistorted system, we write the Bloch wave
function in the tight-binding approximation as

φ
(0)
k,μ�(r) = 1√

N

∑
Ri

eik·Ri φ�(r − Riμ), (A1)

where φ�(r) is the atomic wave function of orbital �, Riμ =
Ri + τμ, Ri is the lattice vector, and τμ is the position of atom
μ in the ith unit cell. Using this wave function, we write the
transfer integrals in the undistorted system as

T
(0)
μ�,νm(k) =

∑
Ri−Rj

e−ik·(Ri−Rj )T
(0)
iμ�,jνm, (A2)

where

T
(0)
iμ�,jνm ≡

∫
d rφ∗

� (r − Riμ)Heφm(r − Rjν) (A3)

and He represents the one-electron Hamiltonian. The trans-
fer integral T

(0)
iμ�,jνm is a function of Rn = Ri − Rj in the

two-center approximation [101]. When we write T
(0)
iμ�,jνm =

tμ�,νm(Rn) and T
(0)
μ�,νm(k) = tμ�,νm(k), the transfer integrals in

Eq. (A2) become

tμ�,νm(k) =
∑
Rn

e−ik·Rn tμ�,νm(Rn), (A4)

which correspond to Eq. (2) in the main text.
Next, to derive the electron-phonon coupling, we consider

the Bloch functions when the ions are displaced from their
equilibrium positions. The Bloch wave functions in the dis-
torted system with a lattice displacement δRiμ are given by

φk,μ�(r) = 1√
N

∑
Ri

eik·Ri φ�(r − Riμ − δRiμ). (A5)

In this case, the transfer integral is not diagonal with respect
to k and is given by

Tμ�,νm(k,k′) = 1

N

∑
Ri ,Rj

e−ik·Ri eik′ ·Rj Tiμ�,jνm, (A6)

where

Tiμ�,jνm ≡
∫

d rφ∗
� (r − Riμ − δRiμ)He

×φm(r − Rjν − δRjν). (A7)

Assuming the lattice displacements δRiμ are small, we expand
the transfer integral to the first order of δRiμ as

Tiμ�,jνm = T
(0)
iμ�,jνm + [∇Tiμ�,jνm] · [δRiμ − δRjν], (A8)

where the γ (= x,y,z) component of ∇Tiμ�,jνm is given by [3]

∇γ Tiμ�,jνm =
(

∂

∂Rγ
Tiμ�,jνm

)∣∣∣∣
R=Riμ−Rjν

. (A9)

Defining the Fourier transformation of δRiμ as

δRiμ = 1√
N

∑
q

eiq·Ri uq,μ, (A10)

we obtain the transfer integral Tμ�,νm(k,k′) in Eq. (A6) as

Tμ�,νm(k,k′)

= T
(0)
μ�,νm(k)δk′,k + 1√

N

∑
q

[Ṫμ�,νm(k − q) · uq,μ

− Ṫμ�,νm(k) · uq,ν]δk′,k−q, (A11)
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where we define

Ṫμ�,νm(k) ≡
∑

Ri−Rj

e−ik·(Ri−Rj )[∇Tiμ�,jνm]. (A12)

The first term of Tμ�,νm(k,k′) in Eq. (A11) is given by the
transfer integral in the undistorted system and the second term
corresponds to the electron-phonon coupling.

The displacement uq,μ is in general characterized by the
phonon normal coordinates Qqλ as

uq,μ =
∑

λ

ε(qλ,μ)√
Mμ

Qqλ, (A13)

where Mμ is the mass of atom μ and ε(qλ,μ) is the polarization
vector of the phonon of mode λ with the phonon frequency
ω0(qλ). Using the normal coordinates Qqλ, Tμ�,νm(k,k′) be-
comes

Tμ�,νm(k,k′) = T
(0)
μ�,νm(k)δk′,k

+ 1√
N

∑
q,λ

[
ε(qλ,μ)√

Mμ

· Ṫμ�,νm(k − q)

− ε(qλ,ν)√
Mν

· Ṫμ�,νm(k)

]
Qqλδk′,k−q . (A14)

Here, defining the coefficient of Qqλ in the second term of
Tμ�,νm(k,k′) in Eq. (A14) as

gλ
μ�,νm(k,q) ≡ ε(qλ,μ)√

Mμ

· Ṫμ�,νm(k − q) − ε(qλ,ν)√
Mν

· Ṫμ�,νm(k),

(A15)

we finally write the transfer integral with the small lattice
displacement as

Tμ�,νm(k,k′) = tμ�,νm(k)δk′,k

+ 1√
N

∑
q,λ

gλ
μ�,νm(k,q)Qqλδk′,k−q, (A16)

where we also use tμ�,νm(k) = T
(0)
μ�,νm(k). The second term in

Eq. (A16) is derived by the lattice distortion and gλ
μ�,νm(k,q)

corresponds to the electron-phonon coupling for the phonon
mode λ. When we write ∇Tiμ�,jνm = ∇tμ�,νm(Rn) with Rn =
Ri − Rj , gλ

μ�,νm(k,q) becomes

gλ
μ�,νm(k,q) =

∑
Rn

[∇tμ�,νm(Rn)]

·
[

ε(qλ,μ)√
Mμ

e−i(k−q)·Rn − ε(qλ,ν)√
Mν

e−ik·Rn

]
.

(A17)

If we assume that the displacement uq,μ is characterized by
a particular normal coordinate Qq with

uq,μ = ε(q,μ)√
Mμ

Qq, (A18)

the transfer integral Tμ�,νm(k,k′) in Eq. (A16) becomes

Tμ�,νm(k,k′) = tμ�,νm(k)δk′,k

+ 1√
N

∑
q

gμ�,νm(k,q)Qqδk′,k−q . (A19)

In the main text, we assume that the displacement uq,μ is
characterized only by the normal coordinate of the transverse
phonon mode shown in Figs. 4(a)–4(c).

2. Susceptibility and phonon softening

Here, we derive the susceptibility χ (q) by the second-order
perturbation theory with respect to Qq following Motizuki
et al. [3]. The susceptibility χ (q) is used in Sec. IV A to discuss
the phonon softening.

We first transform the transfer integral of Eq. (A19) from
the atomic orbital μ� representation to the band index a rep-
resentation, i.e., T̂ ′ = Û (0)†T̂ Û (0), where the transformation
matrix Û (0) is given by the eigenvectors of the undistorted
energy bands ε

(0)
k,a . Using the matrix elements u

(0)
μ�,a(k) in Û (0),

the transfer integral in the band-index representation is given
by

T ′
a,b(k,k′) =

∑
μ�,νm

u
(0) ∗
μ�,a(k)Tμ�,νm(k,k′)u(0)

νm,b(k′)

= ε
(0)
k,aδk′,kδa,b + 1√

N

∑
q

Vep(ak,bk − q)

×Qqδk′,k−q, (A20)

where ε
(0)
k,aδa,b = ∑

μ�,νm u
(0) ∗
μ�,a(k)tμ�,νm(k)u(0)

νm,b(k) and

Vep(ak,bk − q) ≡
∑

μ�,νm

u
(0) ∗
μ�,a(k)gμ�,νm(k,q)u(0)

νm,b(k − q).

(A21)

Treating the second term of Eq. (A20) as perturbation [3],
we may write the energy in the second-order perturbation
theory as

ε
(2)
k,a = 1

N

∑
q

∑
b

|Vep(ak,bk − q)Qq |2
ε

(0)
k,a − ε

(0)
k−q,b

, (A22)

and the change in the free energy as �F = 2
∑

k,a ε
(2)
k,af (ε(0)

k,a).
Using the relation V ∗

ep(ak,bk − q) = Vep(bk − q,ak), we find
�F = ∑

q �Fq with

�Fq = 1

N

∑
k

∑
a,b

|Vep(ak,bk − q)Qq |2

× f
(
ε

(0)
k,a

) − f
(
ε

(0)
k−q,b

)
ε

(0)
k,a − ε

(0)
k−q,b

. (A23)

Defining the susceptibility as

χ (q)≡ − 2

N

∑
k

∑
a,b

|Vep(ak,bk − q)|2 f
(
ε

(0)
k,a

)−f
(
ε

(0)
k−q,b

)
ε

(0)
k,a−ε

(0)
k−q,b

,

(A24)
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we obtain the q component of the change in the free energy as

�Fq = − 1
2χ (q)|Qq |2. (A25)

The change in the free energy is not only from the electronic
energy �Fq = �F elec

q but also from the elastic energy �F elas
q .

The change in the elastic energy may be written as

�F elas
q = 1

2ω2
0(q)|Qq |2 (A26)

with the bare phonon frequency ω0(q). The change in the total
free energy �F tot

q = �F elas
q + �F elec

q may thus be given by

�F tot
q = 1

2ω2
0(q)|Qq |2 − 1

2χ (q)|Qq |2 = 1
2ω2(q)|Qq |2,

(A27)

where we define the effective phonon frequency ω(q) as

ω2(q) = ω2
0(q) − χ (q). (A28)

Therefore, the structural instability of the system may be
discussed in terms of this phonon frequency [3], which includes
the influence of the electronic system via χ (q). We discuss the
phonon softening using Eq. (A28) in Sec. IV A.

APPENDIX B: ESTIMATION OF THE
ELECTRON-PHONON COUPLING CONSTANT

1. Derivatives of the transfer integrals

To estimate the electron-phonon couplings gλ
μ�,νm(k,q)

defined in Eq. (A17), the first derivatives of the transfer
integrals ∇γ tα,β(R) are required. Following Motizuki et al.
[3], we use the derivatives of the transfer integrals expressed in
terms of the Slater-Koster integrals. Here, we write the transfer
integral between the α and β orbitals located at a distance R
[=R × (l,m,n)] as tα,β(R) and its derivative in the γ (=x or y

or z) direction as

∇γ tα,β(R) = lim
δ→0

tα,β (R + δeγ ) − tα,β(R)

δ
, (B1)

where eγ is the unit vector pointing to the γ direction. For
example, the first derivative in the γ = x direction of the
transfer integral

tx,yz(R) = lmn[
√

3t(pdσ ) − 2t(pdπ )] (B2)

is given by

∇xtx,yz(R) = mn(1 − 3l2)
1

R
[
√

3t(pdσ ) − 2t(pdπ )]

+ l2mn[
√

3t ′(pdσ ) − 2t ′(pdπ )], (B3)

where t ′(pdσ ) = [dt(pdσ )/dR], t ′(pdπ ) = [dt(pdπ )/dR],
and (l,m,n) are the direction cosines. All the first derivatives
∇γ tα,β(R) expressed in terms of the Slater-Koster integrals are
tabulated in Ref. [3].

2. Overlap integrals and their derivatives estimated
by Slater-type orbitals

To estimate the first derivatives of the transfer integrals
∇γ tα,β(R), we need the first derivatives of the Slater-Koster pa-
rameters, e.g., t ′(pdσ ) and t ′(pdπ ). Motizuki and co-workers

FIG. 19. (a) Elliptic coordinate system and examples of the
orbitals for the overlap integrals (b) s(pdσ ) and (c) s(pdπ ).

estimated t ′(pdσ ), etc., using the following relation [3,63]:

t ′(pdσ )

t(pdσ )
= αc

s ′(pdσ )

s(pdσ )
, etc., (B4)

where s(pdσ ) and s ′(pdσ ) are the Slater-Koster parameter
for the overlap integral and its first derivative, respectively.
Following Motizuki et al. [3,63], we apply the Slater-type
orbitals (STOs) [106] to estimate the ratio s ′(pdσ )/s(pdσ )
and s ′(pdπ )/s(pdπ ) analytically.

In general, the overlap integral between the α and β orbitals
located at a distance R is given by

S(α,β) =
∫

d rφα(r)φβ(r − R), (B5)

where φα(r) is the atomic wave function of orbital α. In
the STO, we assume Rnα

(r) = Cαrnα−1e−ζαr as a radial wave
function. Thus the atomic orbital φα(r) in the STO is given by
[106–108]

φα(r) = Cαrnα−1e−ζαrYlαmα
(θ,ϕ), (B6)

where nα , lα , and mα are the principal, azimuthal, and mag-
netic quantum numbers of the α orbital, respectively, and
Ylαmα

(θ,ϕ) is the spherical (tesseral) harmonics. ζα is the orbital
exponent of the α orbital and Cα = (2ζα)nα+ 1

2 /
√

(2nα)! is a
normalization constant. The orbital exponents ζα are estimated
semiempirically by Slater as the Slater’s rules [106]. However,
we use values revised by Clementi et al. [107,108] based on the
Hartree-Fock method, where the effective principal quantum
number n∗

α = 3.7 estimated for the 4p (nα = 4) orbital in
the Slater’s rules [106] becomes an integer in the Clementi’s
estimation [107,108], and hence the overlap integrals can
be estimated analytically. Moreover, in transition-metal and
chalcogen atoms, the orbital exponents in the Clementi’s
estimations are larger than those in the semi-empirical Slater’s
rules [107,108], indicating that the more localized atomic
orbitals (and thus smaller overlap integrals) are realized when
we use the orbital exponents estimated by Clementi et al. Note
that we do not write the Bohr radius a0 (∼0.529 Å) explicitly
in this section; we rather assume a0 as the unit of length.

Although there are several ways to estimate the overlap inte-
grals with the STOs, we adopt the approach of Mulliken et al.
[136], where the elliptic coordinate system is employed. As
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in Fig. 19(a), we assume R = Rez and the elliptic coordinate
system defined by

ξ = rα + rβ

R
(1 � ξ � ∞), (B7)

η = rα − rβ

R
(−1 � η � 1), (B8)

ϕ = ϕα = ϕβ (0 � ϕ � 2π ), (B9)

where ϕ is the azimuthal angle. Using the coordinates ξ and η,
the distance rα , rβ and angle θα , θβ in Fig. 19(a) are given by

rα = R

2
(ξ + η), cos θα = ξη + 1

ξ + η
, (B10)

rβ = R

2
(ξ − η), cos θβ = ξη − 1

ξ − η
. (B11)

The volume element in the elliptic coordinate system is
given by d r = (R/2)3(ξ 2 − η2)dξdηdϕ. When we estimate
the overlap integrals in the elliptic coordinate system, we
usually define [136]

p = R

2
(ζα + ζβ), t = ζα − ζβ

ζα + ζβ

, (B12)

for different orbital exponents ζα and ζβ . Then, the overlap
integral S(α,β) and its derivative S ′(α,β) [= dS(α,β)/dR] are
written in terms of the parameters p and t .

In this paper, we consider the electron-phonon coupling
between the nearest-neighbor Ti 3d and Se 4p orbitals, and
thus we estimate the overlap integrals s(pdσ ) and s(pdπ )
for nα = 4 and nβ = 3. As shown in Figs. 19(b) and 19(c),
s(pdσ ) is given by the α = 4pσ (4pz) and β = 3dσ (3d3z2−r2 )
orbitals, and s(pdπ ) is given by the α = 4pπ (4px) and
β = 3dπ (3dzx) orbitals. Using the spherical functions for
these orbitals in the elliptic coordinate system, the overlap
integrals s(pdσ ) = S(4pσ,3dσ ) and s(pdπ ) = S(4pπ,3dπ )
are given, respectively, by

S(4pσ,3dσ ) = Cpdσp8
∫ ∞

1
dξ

∫ 1

−1
dη(ξ + η)3(ξ − η)(ξη + 1)[3(ξη − 1)2 − (ξ − η)2]e−p(ξ+ηt)

= Cpdσp8[A7(3B3 − B1) + A6(6B4 − 3B2 − B0) − 3A5(B3 + B1) − 3A4(2B6 + B2 − B0)

− 3A3(B7 − B5 − 2B1) + 3A2(B6 + B4) + A1(B7 + 3B5 − 6B3) + A0(B6 − 3B4)] (B13)

and

S(4pπ,3dπ ) = Cpdπp8
∫ ∞

1
dξ

∫ 1

−1
dη(ξ + η)3(ξ − η)(ξ 2 − 1)(1 − η2)(ξη − 1)e−p(ξ+ηt)

= Cpdπp8[−A7(B3 − B1) − A6(2B4 − 3B2 + B0) + 3A5(B3 − B1) + A4(2B6 − 3B2 + B0)

+A3(B7 − 3B5 + 2B1) − 3A2(B6 − B4) − A1(B7 − 3B5 + 2B3) + A0(B6 − B4)], (B14)

where functions Ak and Bk are defined by

Ak(p) ≡
∫ ∞

1
ξke−pξdξ = e−p

k∑
μ=0

k!

(k − μ)!pμ+1
(B15)

and

Bk(pt) ≡
∫ 1

−1
ηke−ptηdη =

k∑
μ=0

k![(−1)k−μept − e−pt ]

(k − μ)!(pt)μ+1
,

(B16)

respectively, and also Cpdσ = (
√

210/80640)(1 + t)
9
2 (1 − t)

7
2

and Cpdπ = (
√

70/26880)(1 + t)
9
2 (1 − t)

7
2 .

Using the relations R[dAk(p)/dR] = −pAk+1(p) and
R[dBk(pt))/dR] = −ptBk+1(pt), we can also estimate
the dimensionless derivative parameter R × s ′(pdσ ) =
RS ′(4pσ,3dσ ) analytically. Therefore we can evaluate the
ratio s ′(pdσ )/s(pdσ ) from the dimensionless parameter R ×
[s ′(pdσ )/s(pdσ )] = RS ′(4pσ,3dσ )/S(4pσ,3dσ ).

APPENDIX C: PERIODIC LATTICE DISTORTION AND
HAMILTONIAN OF THE TRIPLE-q STRUCTURE

Here, we review the triple-q structure in TiSe2, where the
transverse phonon modes at the three M points are frozen
simultaneously. We also introduce the Hamiltonian in the static
triple-q structure.

When the transverse phonon modes at the q1, q2, and
q3 points are frozen simultaneously, the triple-q structure is
characterized by the static displacement [3,68]

δRiμ = 1√
N

∑
qj =q1,q2,q3

eiqj ·Ri 〈uqj ,μ
〉. (C1)

Since the transverse phonon modes are softened at the q1, q2,
and q3 points, the direction of 〈uqj ,μ

〉 is perpendicular to its
respective wave vector qj [see Figs. 4(a)–4(c)]. In practice,
〈uqj ,μ

〉 for Ti atom at q1, q2, and q3 are given by〈
uq1,Ti

〉
√

N
= ueY , (C2)〈

uq2,Ti
〉

√
N

= −
√

3

2
ueX − 1

2
ueY , (C3)
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and 〈
uq3,Ti

〉
√

N
=

√
3

2
ueX − 1

2
ueY , (C4)

respectively [3,68], where u is the magnitude of the displace-
ment of Ti atoms. If we assume the ratio |uqj ,Se|/|uqj ,Ti| =
1/3, 〈uqj ,μ

〉 for Se atoms at q1, q2, and q3 are given by

〈
uq1,Se1

〉 = 〈
uq1,Se2

〉 = −〈
uq1,Ti

〉/
3, (C5)〈

uq2,Se1
〉 = 〈

uq2,Se2
〉 = 〈

uq2,Ti
〉/

3, (C6)

and 〈
uq3,Se1

〉 = 〈
uq3,Se2

〉 = −〈
uq3,Ti

〉/
3, (C7)

respectively [see Figs. 4(a)–4(c)]. Note that the sign of 〈uqj ,Se2〉
is opposite to the definition of Motizuki et al. [3,68] since we
change the definition of the Se(2) position in the unit cell.

From Eq. (A18), the lattice displacement uqj ,μ
is char-

acterized by the polarization vector ε(qj ,μ) and normal
coordinate Qqj

of the transverse phonon mode as uqj ,μ
=

ε(qj ,μ)Qqj
/
√

Mμ. In the static triple-q structure, the corre-
sponding expectation value 〈Qqj

〉 is given by

〈Qqj
〉 =

√
NM∗u (qj = q1, q2, q3), (C8)

where M∗ is the effective mass of the transverse phonon soft
mode [3,68]. From the relation between uqj ,μ

and Qqj
, the

polarization vector ε(qj ,μ) of the corresponding transverse
mode is given by

ε(qj ,μ) =
√

Mμ

M∗

〈
uqj ,μ

〉
√

Nu
. (C9)

For example, the polarization vectors of the transverse phonon
mode at qj = q1 are given by ε(q1,Ti) = √

MTi/M∗eY

and ε(q1,Se1) = ε(q1,Se2) = −(1/3)
√

MSe/M∗eY . From the
normalization condition

∑
μ |ε(qj ,μ)|2 = 1, the effective

mass is given by M∗ = MTi + (2/9)MSe, where we assume
|uqj ,Se|/|uqj ,Ti| = 1/3.

When the triple-q structure is realized, the band structures
are modified through the electron-phonon couplings. Using
Eq. (C8), the Hamiltonian of the electron-phonon coupling in
the static triple-q structure becomes

Hep =
∑
k,qj

∑
μ�,νm

ḡμ�,νm(k,qj )uc
†
k,μ�ck−qj ,νm, (C10)

where ḡμ�,νm(k,qj ) ≡ √
M∗gμ�,νm(k,qj ) and is given by

ḡμ�,νm(k,qj ) =
∑
Rn

[∇tμ�,νm(Rn)]

· [n(qj ,μ)e−i(k−qj )·Rn − n(qj ,ν)e−ik·Rn ],

(C11)

with

n(qj ,μ) ≡
√

M∗ ε(qj ,μ)√
Mμ

=
〈
uqj ,μ

〉
√

Nu
. (C12)

For example, the vectors n(qj ,μ) at qj = q1 are given by
n(q1,Ti) = eY and n(q1,Se1) = n(q1,Se2) = −(1/3)eY in the
transverse phonon mode [see Figs. 4(a)–4(c)].

The Hamiltonian of Eq. (C10) is not diagonal with respect
to k in the original BZ without distortion since the transverse
phonon modes at q1, q2, and q3 are frozen. Thus, to diagonalize
the Hamiltonian, we need to introduce the RBZ, which is
1/4 of the original BZ [see Fig. 2(b)]. In order to write the
Hamiltonian simply in the RBZ, we introduce the 11 × 11
matrices of the transfer integral [t̂(k)]μ�,νm = tμ�,νm(k) and
electron-phonon coupling [ ˆ̄g(k,q)]μ�,νm = ḡμ�,νm(k,q), and
an eleven-dimensional vector of the annihilation (creation) op-
erator [c(†)

k ]μ� = c
(†)
k,μ�. Using the matrix and vector formalism,

the Hamiltonian of the transfer integral is described as

He =
∑

k∈RBZ

3∑
i=0

c†k−qi
t̂(k − qi)ck−qi

(C13)

within the RBZ, where we define q0 = 0. Similarly, the
Hamiltonian of the electron-phonon coupling in Eq. (C10) is
now

Hep =
∑

k∈RBZ

3∑
i=0

3∑
j=1

c†k−qi
[ ˆ̄g(k − qi ,qj )u]ck−qi−qj

. (C14)

Notice that due to ˆ̄g†(k,qj ) = ˆ̄g(k − qj ,qj ) = ˆ̄g(kj ,qj ), Hep

in Eq. (C14) satisfies the Hermitian property. When we define a
44-dimensional row vector as c̄†k = ( c†k c†k1

c†k2
c†k3

) with ki =
k − qi , the Hamiltonians He and Hep are written as

Hep

cdw = He + Hep =
∑

k∈RBZ

c̄†kĤ
ep

k c̄k, (C15)

with the 44 × 44 matrix

Ĥep

k =

⎛
⎜⎜⎝

t̂(k) ˆ̄g(k,q1)u ˆ̄g(k,q2)u ˆ̄g(k,q3)u
t̂(k1) ˆ̄g(k1,q3)u ˆ̄g(k1,q2)u

t̂(k2) ˆ̄g(k2,q1)u
H.C. t̂(k3)

⎞
⎟⎟⎠,

(C16)

where we use the relations q1 + q2 + q3 = 0 and c†k−2qj
= c†k.

Thus we can calculate the energy bands in the presence of the
triple-q structure by diagonalizing the Hamiltonian Ĥep

k in the
RBZ.

APPENDIX D: MEAN-FIELD APPROXIMATION FOR
THE INTERSITE COULOMB INTERACTION

Here, we summarize the details of the mean-field approx-
imation for the intersite Coulomb interaction, which leads to
the excitonic instability in TiSe2. We assume the following
intersite Coulomb interaction:

Hee = 1

N

∑
k,k′,q

∑
�,νm

V
dp

�,νm(k − k′)d†
k,�dk′,�p

†
k′−q,νm

pk−q,νm.

(D1)

In TiSe2, the top of the valence Se p bands and the bottom
of the conduction Ti d bands are located in the BZ at the
momenta separated by qj = q1, q2, and q3. Thus the order
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parameter defined by the expectation value 〈p†
k−qj ,νmdk,�〉 
= 0

is anticipated. We therefore introduce the following mean-field
approximation:∑

q

d
†
k,�dk′,�p

†
k′−q,νm

pk−q,νm

∼ −
∑

qj

〈
p
†
k′−qj ,νm

dk′,�
〉
d
†
k,�pk−qj ,νm

−
∑

qj

〈
d
†
k,�pk−qj ,νm

〉
p
†
k′−qj ,νm

dk′,�

+
∑

qj

〈
p
†
k′−qj ,νm

dk′,�
〉〈
d
†
k,�pk−qj ,νm

〉
, (D2)

where 〈· · · 〉denotes the grand canonical average at temperature
T with respect to the mean-field Hamiltonian. Note that we
assume the spin-singlet d-p hybridization because we also take
into account the electron-phonon coupling, which is known
to induce the spin-singlet hybridization [89]. The spin-triplet
hybridization is expected to occur in the presence of the
Hund’s-like exchange interaction [137]. Here, we introduce
the excitonic order parameter

�
dp

�,νm(k,qj ) ≡ − 1

N

∑
k′

V
dp

�,νm(k − k′)
〈
p
†
k′−qj ,νm

dk′,�
〉
, (D3)

and thus the mean-field Hamiltonian HMF
ee is given by

HMF
ee = Hex

cdw + Eex
0 , (D4)

where

Hex
cdw ≡

∑
k,qj

∑
�,νm

�
dp

�,νm(k,qj )d†
k,�pk−qj ,νm + H.c. (D5)

and

Eex
0 ≡ −

∑
k,qj

∑
�,νm

�
dp

�,νm(k,qj )
〈
d
†
k,�pk−qj ,νm

〉
. (D6)

Since the mean-field Hamiltonian is not diagonal with
respect to k in the original BZ, we also need to apply
the RBZ introduced in the Appendix C. We use the 5 × 6
matrix representation of the order parameter [�̂(k,qj )]�,νm =
�

dp

�,νm(k,qj ), the five-dimensional vector representation of the

annihilation (creation) operators of the Ti d orbitals [d(†)
k ]� =

d
(†)
k,�, and the six-dimensional vector representation of the two

Se(ν) p orbitals [ p(†)
k ]νm = p

(†)
k,νm. In this matrix and vector

representation, the mean-field Hamiltonian Hex
cdw in the RBZ

is written as

Hex
cdw =

∑
k∈RBZ

3∑
i=0

3∑
j=1

d†
k−qi

�̂(k − qi ,qj ) pk−qi−qj
+ H.c.

(D7)

When we define the eleven-dimensional vector c†ki
= (d†

ki
p†

ki
)

in c̄†k = ( c†k c†k1
c†k2

c†k3
), the Hamiltonian of Eq. (D7) is sum-

marized as

Hex
cdw =

∑
k∈RBZ

c̄†kĤex
k c̄k (D8)

with the 44 × 44 matrix

Ĥex
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0̂ 0̂ 0̂ �̂(k,q1) 0̂ �̂(k,q2) 0̂ �̂(k,q3)
0̂ 0̂ �̂†(k1,q1) 0̂ �̂†(k2,q2) 0̂ �̂†(k3,q3) 0̂
0̂ �̂(k1,q1) 0̂ 0̂ 0̂ �̂(k1,q3) 0̂ �̂(k1,q2)

�̂†(k,q1) 0̂ 0̂ 0̂ �̂†(k2,q3) 0̂ �̂†(k3,q2) 0̂
0̂ �̂(k2,q2) 0̂ �̂(k2,q3) 0̂ 0̂ 0̂ �̂(k2,q1)

�̂†(k,q2) 0̂ �̂†(k1,q3) 0̂ 0̂ 0̂ �̂†(k3,q1) 0̂
0̂ �̂(k3,q3) 0̂ �̂(k3,q2) 0̂ �̂(k3,q1) 0̂ 0̂

�̂†(k,q3) 0̂ �̂†(k1,q2) 0̂ �̂†(k2,q1) 0̂ 0̂ 0̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D9)

In the same way, we need to introduce the RBZ for the
order parameter �

dp

�,νm(k,qj ) in Eq. (D3). In the RBZ, the order

parameter �
dp

�,νm(ki ,qj ) in Ĥex
k is given by

�
dp

�,νm(ki ,qj ) = − 1

N

∑
k′∈RBZ

3∑
i ′=0

V
dp

�,νm(ki − k′
i ′ )

× 〈
p
†
k′−qi′ −qj ,νm

dk′−qi′ ,�
〉
. (D10)

Once Ĥex
k is diagonalized in the RBZ, the annihilation (cre-

ation) operator of the μ� atomic orbital is given by the unitary
transformation

c
(†)
k−qj ,μ� =

∑
a

u
(∗)
qj μ�,a(k)γ (†)

k,a, (D11)

where γ
(†)
k,a is the annihilation (creation) operator of the electron

in the band εk,a , and u
(∗)
qj μ�,a(k) is the matrix element in the

transformation matrix Û (Û †) between the atomic orbital μ�

with qj and band index a. Using this transformation, the order
parameter in Eq. (D10) becomes

�
dp

�,νm(ki ,qj ) = − 1

N

∑
k′∈RBZ

3∑
i ′=0

∑
a

V
dp

�,νm(ki − k′
i ′ )

×u∗
qi′+qj p(ν)m,a(k′)uqi′ d�,a(k′)f (εk′,a), (D12)

where we write Ti atom as d and Se(ν) atom as p(ν) in
uqj μ�,a(k), and f (εk,a) = 〈γ †

k,aγk,a〉 is the Fermi distribution
function. Equation (D12) corresponds to the gap equation of
the excitonic order. The order parameter �̂(ki ,qj ) is optimized
self-consistently. Finally, the energy term Eex

0 in the RBZ is
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given by

Eex
0 = −2

∑
k∈RBZ

3∑
i=0

3∑
j=1

∑
�,νm

∑
a

�
dp

�,νm(ki ,qj )

× u∗
qi d�,a(k)uqi+qj p(ν)m,a(k)f (εk,a). (D13)

Note that the prefactor 2 in Eq. (D13) is for the spin degrees
of freedom.

APPENDIX E: SINGLE-PARTICLE SPECTRUM

Here, we introduce the single-particle excitation spectrum
A(k,ω) in the triple-q CDW state. The single-particle spectrum
A(k,ω) is given by the sum of the spectra over the atomic
orbitals μ� as

A(k,ω) = − 1

π

∑
μ�

Im Gμ�(k,ω) (E1)

with the μ� component given as

Gμ�(k,ω) = −i

∫ ∞

0
dtei(ω+iη)t 〈{ck,μ�(t),c†k,μ�}〉, (E2)

where ck,μ�(t) is the Heisenberg representation of ck,μ�,
{A,B} = AB + BA, and η → 0+. The finite η value corre-
sponds to the broadening factor of the spectrum.

When the Hamiltonian is diagonalized in the RBZ for the
triple-q CDW state, the annihilation (creation) operators of the
component μ� are given by c

(†)
k,μ� = ∑

a u
(∗)
q0μ�,a(k)γ (†)

k,a . Note
that the wave-vector k in A(k,ω) is defined in the unfolded

original BZ and hence we only consider the q0 components in
the uqj μ�,a . By the transformation of the operators, the single-
particle Green’s function Gμ�(k,ω) becomes

Gμ�(k,ω) = −i
∑

a

|uq0μ�,a(k)|2

×
∫ ∞

0
dtei(ω+iη)t 〈{γk,a(t),γ †

k,a}〉. (E3)

In the one-body approximation, the integral part in the Green’s
function of Eq. (E3) is given by

−i

∫ ∞

0
dtei(ω+iη)t 〈{γk,a(t),γ †

k,a}〉 = 1

ω − εk,a + iη
(E4)

and the Green’s function Gμ�(k,ω) is

Gμ�(k,ω) =
∑

a

|uq0μ�,a(k)|2
ω − εk,a + iη

. (E5)

From Eqs. (E1) and (E5), the single-particle spectrum A(k,ω)
is given by

A(k,ω) = − 1

π

∑
μ�

∑
a

Im

[ ∣∣uq0μ�,a(k)
∣∣2

ω − εk,a + iη

]

=
∑
μ�

∑
a

∣∣uq0μ�,a(k)
∣∣2

δ(ω − εk,a), (E6)

where we use Im[1/(ω − εk,a + iη)] = −πδ(ω − εk,a) in the
limit of η → 0+ in the second equation. In Fig. 16, we assume
a finite broadening parameter η in the first equation of Eq. (E6).
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