
PHYSICAL REVIEW B 97, 155122 (2018)

Robustness of the semimetal state of Na3Bi and Cd3As2 against Coulomb interactions
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We study the excitonic semimetal-insulator quantum phase transition in a three-dimensional Dirac semimetal
in which the fermion dispersion is strongly anisotropic. After solving the Dyson-Schwinger equation for the
excitonic gap, we obtain a global phase diagram in the plane spanned by the parameter for Coulomb interaction
strength and the parameter for fermion velocity anisotropy. We find that excitonic gap generation is promoted
as the interaction becomes stronger but is suppressed if the anisotropy increases. Applying our results to two
realistic three-dimensional Dirac semimetals Na3Bi and Cd3As2, we establish that their exact zero-temperature
ground state is gapless semimetal rather than excitonic insulator. Moreover, these two materials are far from the
excitonic quantum critical point, and thus there should not be any observable evidence for excitonic insulating
behavior. This conclusion is in general agreement with the existing experiments of Na3Bi and Cd3As2.
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I. INTRODUCTION

There has been increasing research interest in the physical
properties of three-dimensional Dirac semimetal (3D DSM)
that contains massless Dirac fermions at low energies [1–3].
Such a DSM state could emerge at the quantum critical point
(QCP) between the normal insulator and 3D topological insula-
tor. Interestingly, 3D DSM has been observed in TiBiSe2−xSx

[4,5] and Bi2−xInxSe3 [6,7] by fine tuning the doping level.
Theoretical studies [8,9] predicted that a crystal-symmetry-
protected stable 3D DSM might be realized in such materials
as A3Bi (A = Na, K, Rb) and Cd3As2. Recent angle-resolved
photoemission spectroscopy (ARPES) and quantum transport
measurements reported evidence for the existence of a 3D
DSM state in Na3Bi and Cd3As2 [10–14].

Similar to 2D DSM [1,2,15,16] and other semimetals
[3,17–21], 3D DSM contains a number of discrete band-
touching points, which means that the density of states (DOS)
vanishes at the Fermi level. As a result, the Coulomb interaction
between massless fermions is poorly screened and remains
long ranged [22–30]. Extensive theoretical studies on 2D DSM,
with graphene being a prominent example, have revealed that a
sufficiently strong long-range Coulomb interaction can induce
excitonic-type pairing and as such opens a dynamical gap
at the Fermi level [16,31–65]. The particle-hole condensate
breaks the chiral symmetry of the system [32,33], which is
a condensed-matter realization of the nonperturbative phe-
nomenon of dynamical chiral symmetry breaking that plays an
essential role in hadron physics [66]. Once a finite dynamical
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gap is generated, the semimetal state becomes unstable and the
system is converted into an insulator [16,31]. A nature question
is whether a similar excitonic insulating transition also occurs
in a 3D DSM.

The possible semimetal-insulator transition in 3D DSM
has been studied by several groups [26–30]. In Na3Bi and
Cd3As2, the z component of the fermion velocity is con-
siderably smaller than the other two components within the
x-y plane [10–12]. Additionally, the magnitude of fermion
velocity in these two materials is quite small. This implies
that the Coulomb interaction may play a significant role at low
energies. After performing Monte Carlo simulations, Braguta
et al. [29,30] claimed that both Na3Bi and Cd3As2 lie deep in
the excitonic insulating phase. This conclusion is somewhat
surprising, because experiments did not find any evidence for
the insulating behavior in these two materials [10–13]. It is
necessary to examine whether the gapless semimetal state is
robust against the long-range Coulomb interaction in Na3Bi,
Cd3As2, and other candidate 3D DSM materials.

In order to determine the true ground state of 3D DSM, we
need to calculate the critical value of the Coulomb interaction
strength that separates the semimetallic and insulating phases.
For Na3Bi and Cd3As2, the energy dispersion of 3D Dirac
fermions can be written as

E = ±
√

v2
‖k

2
‖ + v2

z k
2
z , (1)

where k2
‖ = k2

x + k2
y . Here, v‖ is the component of fermion

velocity within the basal x-y plane, and vz is the component
along the z direction. The effective strength of the Coulomb
interaction is represented by the parameter [16]

α = e2

v‖ε0εr

, (2)
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where e is the electron charge, ε0 the vacuum dielectric
constant, and εr the relative dielectric constant. The value of εr

is strongly material dependent. It is known [33–37,42,55–57]
that an excitonic gap is generated only when α is larger than a
certain critical value αc. If α > αc, the system has an insulating
ground state, which can be detected by probing the transport
properties at ultralow temperatures [67,68]. If α is slightly
smaller than αc, the exact zero-temperature ground state is
semimetal. However, since the system is close to the excitonic
insulating QCP, the quantum fluctuation of the excitonic order
parameter could be important at small distances, which may
still have observable effects [69]. If α � αc, the system is deep
in the semimetal phase and does not exhibit any observable
effects of insulating behavior.

In this paper, we calculate the value of αc in 3D DSM
by using the nonperturbative Dyson-Schwinger (DS) equa-
tion method [32–45,47,48,70–79]. In some 3D DSMs, such
as Na3Bi and Cd3As2, the fermion dispersion is strongly
anisotropic, and the z component of fermion velocity is much
smaller than that of the x-y plane, namely, vz � v‖. We need
to define a velocity ratio and study how the ratio affects αc. A
commonly used definition [26,29,30] is

η = vz

v‖
. (3)

After solving the DS gap equation numerically, we obtain
a global phase diagram of 3D DSM in the parameter space
spanned by α and η. It is found that αc exhibits a nonmonotonic
dependence on the velocity anisotropy, analogous to what hap-
pens in 2D DSM [48]. We demonstrate that such nonmonotonic
dependence results from the improper definitions of α and
η utilized in previous works. We then introduce a physically
more appropriate definition for these parameters and show that
the velocity anisotropy is indeed detrimental to the formation
of excitonic pairing. As a direct application of our result,
we establish that Na3Bi and Cd3As2 are actually both deep
in the semimetal phase, which is very consistent with recent
experiments [10–13].

The complete set of DS equations cannot be exactly solved
without employing a certain truncation scheme. Here, we
first solve the DS equation for a dynamical gap by entirely
ignoring both fermion velocity renormalization and wave-
function renormalization. The critical value αc obtained by
employing this truncation is larger than the physical value
of α in Na3Bi and Cd3As2. We then move to examine the
influence of higher-order corrections. In particular, we include
the dynamical screening of Coulomb interaction, the fermion
velocity renormalization, the wave-function renormalization,
and also the vertex correction into the DS equations. Our
calculations reveal that, although αc is more or less altered
by higher-order corrections, the conclusion that Na3Bi and
Cd3As2 are both deep in the semimetal phase remains intact.

The rest of the paper is structured as follows. In Sec. II, we
present the DS equation for the dynamical gap by employing
a number of different approximations. In Sec. III, we solve
the DS equations and discuss the physical implication of our
results. In this section, we also introduce a more suitable
definition for α and η, which allows us to examine the impact
of Coulomb interaction and velocity anisotropy separately. The

influence of higher-order corrections is analyzed in Sec. III D.
A brief summary of our results is given in Sec. IV.

II. MODEL AND GAP EQUATION

The free Hamiltonian of 3D Dirac fermions is

H0 =
∫

d3r�̄a(r)(vxγ1∇x + vyγ2∇y + vzγ3∇z)�a(r),

(4)

where �a is a four-component spinor and �̄a = �†γ0. The in-
dex a = 1,2,..,N , with N being the fermion flavor. For Na3Bi
and Cd3As2, the physical flavor is N = 2, corresponding to the
two Dirac cones in the Brillouin zone [29,30]. We will consider
a general large flavor N in order to perform 1/N expansion.
The γ matrices γμ, with μ = 0,1,2,3, are defined in the stan-
dard way, satisfying the Clifford algebra {γμ,γν} = 2δμν . For
3D DSM materials Na3Bi and Cd3As2, vx = vy , but vz takes
an obviously different value. In the following, we assume that
vx = vy = v‖. The long-range Coulomb interaction between
Dirac fermions is described by

Hee = 1

4π

∫
d3rd3r′�̄a(r)γ0�a(r)

e2

ε0εr |r − r′|
×�̄a(r′)γ0�a(r′). (5)

The total Hamiltonian H0 + Hee preserves a continuous chiral
symmetry �a → eiθγ5�a , where θ is an arbitrary constant and
γ5 = γ0γ1γ2γ3, which will be broken once a finite excitonic
gap m ∝ 〈�̄a�a〉 is dynamically generated by the Coulomb
interaction.

The bare fermion propagator has the form

G0(ε,p) = 1

εγ0 + v‖(γ1px + γ2py) + vzγ3pz

. (6)

The dressed Coulomb interaction can be expressed as

V (�,q‖,qz) = 1

V0(q) + (�,q‖,qz)
, (7)

where the bare Coulomb interaction is

V0(q) = q2

4παv‖
, (8)

and (�,q‖,qz) is the polarization function.
Due to the Coulomb interaction, the free fermion propagator

is strongly renormalized to become

G(ε,p) = 1

G−1
0 (ε,p) − �(ε,p)

, (9)

where G(ε,p) is the full fermion propagator. The fermion self-
energy �(ε,p) is given by

�(ε,p) =
∫

dω

2π

d3k
(2π )2

�(ε,p; ω,k)γ0G(ω,k)γ0

× V (ε − ω,p − k), (10)

where �(ε,p; ω,k) is the vertex function. Generically, the self-
energy can be formally expressed as

�(ε,p) = (1 − A0)γ0ε + (1 − A1)(γ1px + γ2py)v‖
+ (1 − A2)γ3pzvz + m, (11)
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which then leads to

G(ε,p) = 1

A0γ0ε + A1v‖(γ1px + γ2py) + A2vzγ3pz + m
.

(12)

Here, A0,1,2 ≡ A0,1,2(ε,p‖,pz) are three wave-function renor-
malization factors and m ≡ m(ε,p‖,pz) denotes the dynamical
excitonic gap. The Landau damping of fermions is embodied
in the function A0, whereas the renormalization of fermion
velocities can be obtained from A1 and A2. The model can be
treated by means of 1/N expansion [70,71].

We will first solve the DS equations by retaining the leading
order of 1/N expansion and then examine the influence of
higher-order corrections. To the leading order, one can set
A0,1,2 ≡ 1. Accordingly, the vertex function can be taken as
� ≡ 1, as required by the Ward identity. Combining the above
several equations, we derive the following DS gap equation

m(ε,p‖,pz) =
∫

dω

2π

d3k
(2π )3

m(ω,k‖,kz)

ω2 + v2
‖k

2
‖ + v2

z k
2
z + m2(ω,k‖,kz)

×V (ε − ω,(p − k)‖,pz − kz). (13)

If this equation has only a vanishing solution, namely, m ≡ 0,
the zero-temperature ground state is strictly gapless and the
semimetal phase is robust against Coulomb interaction. If
a nonzero solution for m is obtained, a finite fermion gap
is dynamically generated, leading to an excitonic insulating
transition. To solve the gap equation, we still need to know
the detailed expression of dressed Coulomb interaction. As
shown in Appendix, to the leading order of 1/N expansion,
the polarization function can be well approximated by

(�,q‖,qz) = N
(
v2

‖q
2
‖ + v2

z q
2
z

)
6π2v2

‖vz

× ln

⎛
⎝ (v2

‖vz)1/3� +
√

�2 + v2
‖q

2
‖ + v2

z q
2
z√

�2 + v2
‖q

2
‖ + v2

z q
2
z

⎞
⎠,

(14)

where � is the momentum cutoff. The derivation of
(�,q‖,qz) is given in Appendix. Making use of Eqs. (7),
(13), and (14), we obtain the following gap equation:

m(ε,p‖,pz) =
∫

dω

2π

d3k
(2π )3

m(ω,k‖,kz)

ω2 + k2
‖ + η2k2

z + m2(ω,k‖,kz)

× 1

|q|2
4πα

+ N
(
q2

‖ +η2q2
z

)
6π2η

ln

(
η1/3+

√
�2+q2

‖ +η2q2
z√

�2+q2
‖ +η2q2

z

) ,

(15)

where � = ε − ω and q = p − k. To derive this equation, we
have made the following rescaling transformations:

p‖
�

→ p‖,
k‖
�

→ k‖,
q‖
�

→ q‖,
pz

�
→ pz,

kz

�
→ kz,

qz

�
→ qz,

ε

v‖�
→ ε,

ω

v‖�
→ ω,

�

v‖�
→ �,

m

v‖�
→ m. (16)

The dynamical gap is a function of three variables, namely,
ε, p‖, and pz. Given the nonlinear nature of Eq. (15), it is
extremely difficult to solve the equation numerically without
making further approximations. Here, we will adopt two
widely used approximations. The first one is the instantaneous
approximation, which neglects the energy dependence of
Coulomb interaction,

m(ε,p‖,pz) → m(p‖,pz), (17)

V (�,q) → V (0,q). (18)

Accordingly, the gap function becomes energy independent,
i.e.,

m(ε,p‖,pz) → m(p‖,pz). (19)

Under this approximation, it is straightforward to integrate
over ω, which yields a simplified gap equation:

m(p‖,pz) = 1

2

∫
d3k

(2π )3

m(k‖,kz)√
k2
‖ + η2k2

z + m2(k‖,kz)

× 1

q2

4πα
+ N

(
q2

‖ +η2q2
z

)
6π2η

ln
(

η1/3+
√

q2
‖ +η2q2

z√
q2

‖ +η2q2
z

) . (20)

The dynamical screening is ignored in this equation.
To incorporate the dynamical screening effect,

Khveshchenko [36] proposed a different approximation
which assumes that the energy dependence of dynamical
screening is assumed to be equivalent to the momenta
dependence. Under the Khveshchenko approximation, the gap
equation takes the form

m(p‖,pz) = 1

2

∫
d3k

(2π )3

m(k‖,kz)√
k2
‖ + η2k2

z + m2(k‖,kz)

× 1

q2

4πα
+ N

(
q2

‖ +η2q2
z

)
6π2η

ln

(
η1/3+

√
2(q2

‖ +η2q2
z )√

2(q2
‖ +η2q2

z )

) .

(21)

The gap equations (20) and (21) can be numerically solved
by using the iteration method. There are two tuning parameters:
flavor N and interaction strength α. Theoretically, for an
excitonic gap to be dynamically generated,N should be smaller
than Nc and α should be larger than αc. Once Nc is greater
than the physical value, here N = 2, one can fix N = 2 and
determine the critical value αc by varying η. In other cases it
is necessary to calculate Nc accordingly for different η.

The above two gap equations are derived by retaining
the leading-order contribution of the 1/N expansion. The
functions A0,1,2 are simply set to unity. This amounts to entirely
neglecting the wave-function renormalization and also the
fermion velocity renormalization. According to the extensive
DS equation studies carried out in the context of 2D DSM
[42,43,45,65,79], including these effects might change the
value of αc. It is also interesting to examine how these effects
alter the leading-order result of αc in 3D DSM.

We now incorporate higher-order contributions to the DS
equations. After substituting Eqs. (10) and (12) into Eq. (9), we
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obtain four self-consistently coupled equations for A0,1,2(ε,p) and m(ε,p):

A0(ε,p) = 1 − 1

ε

∫
dω

2π

d3k
(2π )3

�(ε,p; ω,k)
A0(ω,k)ω

A2
0(ω,k)ω2 + A2

1(ω,k)k2
‖ + A2

2(ω,k)η2k2
z + m2(ω,k)

V (�,q), (22)

A1(ε,p) = 1 + 1

p2
‖

∫
dω

2π

d3k
(2π )3

�(ε,p; ω,k)
A1(ω,k) �p‖ · �k‖

A2
0(ω,k)ω2 + A2

1(ω,k)k2
‖ + A2

2(ω,k)η2k2
z + m2(ω,k)

V (�,q), (23)

A2(ε,p) = 1 + 1

pz

∫
dω

2π

d3k
(2π )3

�(ε,p; ω,k)
A2(ω,k)kz

A2
0(ω,k)ω2 + A2

1(ω,k)k2
‖ + A2

2(ω,k)η2k2
z + m2(ω,k)

V (�,q), (24)

m(ε,p) =
∫

dω

2π

d3k
(2π )3

�(ε,p; ω,k)
m(ω,k)

A2
0(ω,k)ω2 + A2

1(ω,k)k2
‖ + A2

2(ω,k)η2k2
z + m2(ω,k)

V (�,q), (25)

where � = ε − ω, and q = p − k. To determine the impact of fermion velocity renormalization, we temporarily ignore the energy
dependence of the dynamical gap, which leads to

A0(ε,p) = 1, �(ε,p; ω,k) = 1. (26)

Now the above coupled equations can be simplified to

A1(p‖,pz) = 1 + 1

p2
‖

1

2

∫
d3k

(2π )3

A1(k‖,kz) �p‖ · �k‖√
A2

1(k‖,kz)k2
‖ + A2

2(k‖,kz)η2k2
z + m2(k‖,kz)

V (q), (27)

A2(p‖,pz) = 1 + 1

pz

1

2

∫
d3k

(2π )3

A2(k‖,kz)kz√
A2

1(k‖,kz)k2
‖ + A2

2(k‖,kz)η2k2
z + m2(k‖,kz)

V (q), (28)

m(p‖,pz) = 1

2

∫
d3k

(2π )3

m(k‖,kz)√
A2

1(k‖,kz)k2
‖ + A2

2(k‖,kz)η2k2
z + m2(k‖,kz)

V (q). (29)

In these equations, the renormalization of fermion velocity is encoded in A1(p‖,pz) and A2(p‖,pz), and the Coulomb interaction
function is written as

V (q) = 1

q2

4πα
+ N

(
q2

‖ +η2q2
z

)
6π2η

ln

(
η1/3+

√
2(q2

‖ +η2q2
z )√

2(q2
‖ +η2q2

z )

) . (30)

We then consider the impact of fermion damping. For this purpose, the energy dependence of Coulomb interaction should be
explicitly included. For simplicity, we only study the isotropic limit, which amounts to taking η = 1.0, v|| = vz, and A1 = A2.
The coupled DS equations are given by

A0(ε,p) = 1 − 1

ε

∫
dω

2π

d3k
(2π )3

�(ε,p; ω,k)
A0(ω,k)ω

A2
0(ω,k)ω2 + A2

1(ω,k)v2
‖k2 + m2(ω,k)

V (�,q), (31)

A1(ε,p) = 1 + 1

p2

∫
dω

2π

d3k
(2π )3

�(ε,p; ω,k)
A1(ω,k)p · k

A2
0(ω,k)ω2 + A2

1(ω,k)v2
‖k2 + m2(ω,k)

V (�,q), (32)

m(ε,p) =
∫

dω

2π

d3k
(2π )3

�(ε,p; ω,k)
m(ω,k)

A2
0(ω,k)ω2 + A2

1(ω,k)v2
‖k2 + m2(ω,k)

V (�,q). (33)

Following Ref. [71], we assume that the vertex function takes the form

�(ε,p; ω,k) = 1
2 [A0(ε,p) + A0(ω,k)]. (34)

This vertex function is widely used in the studies of dynamical chiral symmetry breaking in QED3 [71] and 2D DSM [42,79].
The Coulomb interaction function is

V (�,q) = 1

q2

4πα
+ Nq2

6π2η
ln

(
1+

√
�2+q2√

�2+q2

) . (35)

All the above DS equations can be numerically solved. The solutions will be analyzed in the next section.
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FIG. 1. (a) The α dependence of m0 at different values of η; (b) the
η dependence of m0 at different values of α. Results are obtained under
the instantaneous approximation.

III. NUMERICAL RESULTS

In this section, we present the numerical solutions of the DS
equations obtained under various approximations. As α grows
from a very small value, the excitonic gap is always zero. The
gap develops a nonzero value continuously as α exceeds a
critical value αc, which is identified as the QCP of excitonic
insulating transition. By solving the gap equation at different
values of η, one can determine how αc depends on η. Moreover,
we will introduce a different definition of α and η.

A. Instantaneous approximation

From the solutions of Eq. (20), we get the zero-energy
excitonic gap m0 as a function of α and η. Though Nc is not
accurately determined here, it is easy to infer that Nc > 2,
because the gap would always be zero if Nc < 2. In Fig. 1(a),
we present the α dependence of zero-energy gap m0 at several
fixed values of η. We can see that once α exceeds a critical
value αc, a finite excitonic gap is dynamically generated. The
gap is a monotonously increasing function of α. In Fig. 1(b),
we show the η dependence of m0 by choosing three different
representative values of α. From Fig. 1(b), we observe that

FIG. 2. Phase diagram on the α-η plane: (a) Instantaneous
approximation and (b) Khveshchenko approximation.

the gap first increases with the decrease of anisotropy in the
case of strong anisotropy but decreases with smaller anisotropy
once η is greater than some threshold ηc. For any given
α, the excitonic gap takes its maximal value at ηm, which
depends on the specific value of α. Such nonmonotonic η

dependence of the gap is caused by the competition between
the increase of Coulomb interaction strength and the increase
of velocity anisotropy. A more detailed explanation will be
given in Sec. III C.

Based on our numerical results, it is easy to plot a phase
diagram on the α-η space, as shown in Fig. 2(a). In the isotropic
limit with η = 1, the critical interaction strength is roughly
αc ≈ 1.1, which is much smaller than the value αc = 1.71
obtained previously in [29], but is close to the subsequently
updated result αc ≈ 1.14 [30].

As an application of our results, we now determine whether
the 3D DSMs Na3Bi and Cd3As2 lie in the semimetal or
excitonic insulating phase. In Tables I and II, we list the
concrete values of the fermion velocities and the relative
dielectric constants in Na3Bi and Cd3As2, respectively. The
physical value of α can be easily estimated from these data.
In previous works [29,30], it was claimed that α ≈ 7 in Na3Bi
and α ≈ 1.8 in Cd3As2. Their calculations did not properly
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TABLE I. Fermion velocities in Na3Bi and Cd3As2.

Material v‖ (m/s) vz (m/s) Reference

Na3Bi 3.74 × 105 2.89 × 104 [10]

1.5 × 106 Order 105 [11]
Cd3As2

1.29 × 106 3.27 × 105 [12]

include the influence of the dielectric constant εr . Once εr is
taken into account, the magnitude of α will be substantially
reduced. Using the data given in Tables I and II, we find that
α ≈ 1.1 in Na3Bi and α ≈ 0.06 in Cd3As2. Moreover, it is
easy to deduce that η ≈ 0.1 in Na3Bi and η ≈ 0.25 in Cd3As2.
According to the results presented in Fig. 2(a), αc ≈ 2.1 for
η = 0.1 and αc ≈ 1.1 for η = 0.25.

From the above analysis, we immediately deduce that
the effective Coulomb interaction in Na3Bi and Cd3As2 is
too weak to generate an excitonic gap and that the exact
zero-temperature ground state of these materials is semimetal,
rather than excitonic insulator. Moreover, both Na3Bi and
Cd3As2 lie deep in the gapless semimetallic phase, as shown
in Fig. 2(a). There is no detectable signature of excitonic
insulating behavior in these two materials.

B. Khveshchenko approximation

We then numerically solve Eq. (21) and present the results
in Fig. 3. The corresponding α-η phase diagram is given in
Fig. 2(b). We observe that the basic results are qualitatively the
same as those obtained under the instantaneous approximation.
In particular, for any given value of η, there is always a critical
value αc beyond which a finite gap is generated, and the gap
is a monotonously increasing function of α in the range of
α > αc. For a specific, sufficiently large α, the gap exhibits
a nonmonotonic dependence on the velocity ratio η, with its
maximum being reached at certain critical ratio ηm.

Although the conclusion is qualitatively the same, the
quantitative results obtained under the Khveshchenko approxi-
mation are different from the instantaneous approximation. For
instance, the critical value αc ≈ 1.5 for η = 0.1, and αc ≈ 0.9
for η = 0.25. In addition, αc ≈ 1.0 for η = 1. The smallest
value of αc appears at η ≈ 0.5. Comparing Figs. 2(a) and 2(b),
an apparent fact is that αc obtained under the Khveshchenko
approximation is generically slightly smaller than the one
obtained under the instantaneous approximation. Once again,
we conclude that Na3Bi and Cd3As2 are both in the gapless
semimetal phase.

C. More suitable definitions of α and η

In the above analysis, we have defined the interac-
tion strength and velocity ratio by α = e2

v‖ε0εr
and η = vz

v‖
,

TABLE II. Relative dielectric constant in Na3Bi and Cd3As2.

Material εr Reference

Na3Bi 5.9 [80]

20–40 [25,81,82]
Cd3As2

30 [83]

FIG. 3. (a) The α dependence of m0 at different values of η; (b) the
η dependence of m0 at different values of α. Results are obtained under
the Khveshchenko approximation.

respectively. These definitions were introduced and utilized in
previous works [29,30]. We would like to emphasize that these
two definitions might not be appropriate [48]. For instance, to
examine the sole impact of the velocity anisotropy, one can
fix the value of α, which means v‖ is simultaneously fixed,
and tune the ratio η by varying vz. Because v‖ is fixed and vz is
varying, the total kinetic energy of 3D Dirac fermions is altered,
and thus the effective strength of Coulomb interaction, which
is determined by the ratio between the potential energy and the
total kinetic energy, is also changed. Therefore, the Coulomb
interaction is automatically tuned by varying η, though α

remains fixed at a constant. As a consequence, the influences
of the Coulomb interaction and the velocity anisotropy are
entangled and cannot be separated. In order to figure out how
the Coulomb interaction and the velocity anisotropy separately
affects dynamical gap generation, a more suitable choice is to
define

α∗ = e2

v̄ε0εr

and η∗ = vz

v‖
, (36)
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FIG. 4. Phase diagram on the α∗-η∗ plane: (a) instantaneous
approximation and (b) Khveshchenko approximation.

where v̄ = 3
√

v2
‖vz represents a mean value of the fermion veloci-

ties. Now the two parameters α∗ and η∗ can vary independently.
Carrying out a simple transformation of the results expressed
by α and η, we obtain a new phase diagram of 3D DSM
depicted on the plane spanned by α∗ and η∗, as shown by
Fig. 4. We observe that as the velocity anisotropy increases, the
critical interaction strength grows dramatically. These results
indicate that the fermion velocity anisotropy tends to suppress
gap generation, and the nonmonotonic behavior shown in
Figs. 1(b) and 3(b) originates from the competition between
the increasing interaction strength and the growing velocity
anisotropy. The suppression of dynamical gap generation by
decreasing η should be attributed to the enhanced dynamical
screening of Coulomb interaction.

D. Impact of higher-order corrections

We have solved Eqs. (27)–(29) by setting η = 1 and N = 2.
No dynamical gap is generated even when α → ∞. It is impor-
tant to notice that the system contains two tuning parameters,
namely, N and α. Excitonic pairing occurs only when N < Nc

and α > αc. If Nc > 2, one can simply fix N = 2 and then
determine αc by solving the DS equations. However, if Nc < 2,

FIG. 5. The α dependence of m0 obtained after solving
Eqs. (31)–(33) at N = 2. The critical value αc � 3.0.

the Coulomb interaction cannot trigger excitonic pairing even
in the α → ∞ limit. Actually, we find that Nc � 1.7 in the limit
α → ∞. It turns out that fermion velocity renormalization
tends to suppress dynamical gap generation.

We emphasize here that the result Nc < 2 is obtained by
ignoring several potentially important effects, including the dy-
namical screening of Coulomb interaction, the wave-function
renormalization, and the vertex correction, as evidenced by
Eq. (26). Such a result might be changed considerably when
these effects are taken into account. To determine the influence
of these corrections, we have solved Eqs. (31)–(33) and find
that Nc � 4.2. For physical flavor N = 2, the dependence of
zero-energy gap m0 on α is presented in Fig. 5, which clearly
shows that αc � 3.0. For Na3Bi and Cd3As2, the fermion
dispersion is strongly anisotropic and η � 1. According to
the results given in Sec. III C, the value of αc will be further
increased as η decreases from η = 1, which makes excitonic
pairing more unlikely.

In order to calculate αc and Nc more accurately, it will
be necessary to incorporate even more corrections, such as
the feedback of fermion velocity renormalization and wave-
function renormalization on the polarization function. Incor-
porating all these corrections is technically very involved and
will be studied in a separate work. According to the extensive
calculations carried out by employing different approxima-
tions, it appears safe to conclude that Na3Bi and Cd3As2 are
both deep in the semimetallic phase, although more extensive
calculations are needed to precisely determine αc and Nc.

IV. SUMMARY AND DISCUSSION

In summary, we have studied the stability of the semimetal
ground state of 3D DSM against the long-range Coulomb
interaction by making a DS equation analysis. To the leading
order of 1/N expansion, we have solved the gap equation
numerically and obtained a detailed phase diagram on the plane
spanned by the Coulomb interaction strength and the velocity
anisotropy parameter. Our results indicate that, while excitonic
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gap generation is promoted as the interaction becomes stronger,
it is suppressed if the velocity anisotropy is enhanced. As a
concrete application of our results, we have confirmed that
the Coulomb interaction in Na3Bi and Cd3As2 is not strong
enough to open a dynamical gap. Thus, the semimetal ground
state is very stable against Coulomb interaction. In fact, these
two 3D DSMs lie deep in the gapless semimetal phase; hence
the quantum fluctuation of excitonic pairing is ignorable and
does not lead to any detectable effect.

We also have examined the impact of several higher-order
corrections. In particular, we have incorporated the dynamical
screening of Coulomb interaction, the fermion velocity renor-
malization, the wave-function renormalization, and the vertex
correction into the DS equations. The new critical value αc is
quantitatively different from that obtained by retaining only
the leading order of 1/N expansion. Nevertheless, the new
αc is still much larger than the physical value of α in Na3Bi
and Cd3As2, implying that these two materials are both robust
gapless semimetals.

Recent Monte Carlo simulations [29,30] reached distinct
conclusions concerning the strict ground state of Na3Bi and
Cd3As2. A crucial difference between our results and those
obtained in Refs. [29] and [30] is in the chosen value of
the dielectric constant. The relative dielectric constant εr was
incorrectly missed in the calculations of Refs. [29] and [30]. In
fact, if the dielectric constants of Na3Bi and Cd3As2 are cor-
rectly chosen, the lattice simulation result could be consistent
with our conclusion and also consistent with experiments.

It is interesting to search for the possible mechanism
to promote dynamical gap generation in realistic 3D DSM
materials. Since α ∝ 1/(v̄εr ), the interaction will be made
stronger if one finds an efficient way to decrease v̄ and/or εr .
For 2D materials, the value of εr is strongly affected by the
substrate. For example, εr ≈ 2.8 in graphene placed on SiO2

substrate [31], but εr = 1 in suspended graphene. However,

this scenario does not work in 3D DSMs, because changing
the environment of a 3D material can hardly affect the value
of the bulk εr . A recent theoretical study [84] predicted that
applying a uniform strain to graphene might enhance the
Coulomb strength by reducing the Dirac fermion velocities. We
speculate that this manipulation provides a promising method
to reinforce the Coulomb interaction of Na3Bi and Cd3As2.
Another way to promote dynamical gap generation is to find
more 3D DSM materials other than Na3Bi and Cd3As2 that
have smaller values of fermion velocities and smaller εr .

The Coulomb interaction strength is α ≈ 0.06 in Cd3As2,
which provides a small parameter to carry out ordinary
perturbative expansion. Previous perturbative calculations
[22–25,85] revealed that the fermion velocity grows with
lowering energy, and that some observable quantities, includ-
ing specific heat, compressibility, optical conductivity, and
susceptibility, exhibit logarithmiclike dependence on energy
or temperature. However, it is important to emphasize that
the perturbative expansion method cannot be used to compute
the dynamical gap, because excitonic pairing is a genuine
nonperturbative phenomenon and should be studied by means
of nonperturbative tools, such as the DS equation approach and
quantum Monte Carlo simulation [29,30,86].
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APPENDIX: CALCULATION OF THE POLARIZATION

We now provide a detailed calculation of the polarization function that appears in the dressed Coulomb interaction function
Eq. (7). The free fermion propagator for a massless Dirac fermion is given by

G(ω,k) = 1

ωγ0 + v‖(γ1kx + γ2ky) + vzγ3kz

. (A1)

To the leading order of 1/N expansion, the polarization function is defined as

(�,qx,qy,qz) = N

∫
dω

2π

d3k
(2π )3

Tr{γ0G(�,k)γ0G[i(ω + �),k + q]}, (A2)

where N is the fermion flavor. Substituting Eq. (A1) into Eq. (A2), we obtain



(
�,

qx

v‖
,
qy

v‖
,
qz

vz

)
= 4N

v2
‖vz

∫
dω

2π

d3k
(2π )3

ω(ω + �) − k · (k + q)

(ω2 + k2)[(ω + �)2 + |k + q|2]
, (A3)

where we have used the following transformations:

v‖kx → kx, v‖ky → ky, vzkz → kz, v‖qx → qx, v‖qy → qy, vzqz → qz. (A4)

Making use of the Feynman parametrization formula

1

AB
=

∫ 1

0
dx

1

[xA + (1 − x)B]2 , (A5)
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we get



(
�,

qx

v‖
,
qy

v‖
,
qz

vz

)
= 4N

v2
‖vz

∫ 1

0
dx

∫
dω

2π

d3k
(2π )3

ω(ω + �) − k · (k + q)

[(ω + x�)2 + |k + xq|2 + x(1 − x)(�2 + q2)]2
. (A6)

We then redefine ω′ = ω + x� and k′ = k + xq, and rewrite the polarization in the form



(
�,

qx

v‖
,
qy

v‖
,
qz

vz

)
= 4N

v2
‖vz

∫ 1

0
dx

∫
dω′

2π

d3k′

(2π )3

ω′2 − k′2 − x(1 − x)(�2 − q2)

[ω′2 + k′2 + x(1 − x)(�2 + q2)]2
. (A7)

After carrying out the integration over ω′ and momenta, we get



(
�,

qx

v‖
,
qy

v‖
,
qz

vz

)
= 2Nq2

v2
‖vz

∫ 1

0
dxx(1 − x)

∫
d3k′

(2π )3

1

[k′2 + x(1 − x)(�2 + q2)]3/2
= 2Nq2

π2v2
‖vz

F, (A8)

where

F =
{

1

12
ln

(
2� +

√
4�2 + (�2 + q2)√
�2 + q2

)
−

∫ 1
2

0
dxx(1 − x)

�√
�2 + x(1 − x)(�2 + q2)

− 1

12

∫ 1
2

0
dx(3x2 − 2x3)

(1 − 2x)(�2 + q2)

[� +
√

�2 + x(1 − x)(�2 + q2)]
√

�2 + x(1 − x)(�2 + q2)

+ 1

12

∫ 1
2

0
dx(3x2 − 2x3)

(1 − 2x)(�2 + q2)

x(1 − x)(�2 + q2)

}
. (A9)

In the regime
√

�2 + q2 � �, we retain only the leading term, i.e.,



(
�,

qx

v‖
,
qy

v‖
,
qz

vz

)
= Nq2

6π2v2
‖vz

ln

(
�√

�2 + q2

)
. (A10)

Introducing the redefinitions qx → v‖qx , qy → v‖qy , qz → vzqz, and � → (v2
‖vz)

1/3
�, we have

(�,q‖,qz) = N
(
v2

‖q
2
‖ + v2

z q
2
z

)
6π2v2

‖vz

ln

⎛
⎝ (v2

‖vz)1/3�√
�2 + v2

‖q
2
‖ + v2

z q
2
z

⎞
⎠. (A11)

Dynamical gap generation is a low-energy phenomenon, and the dominant contribution to the gap equation comes from the small
energy/momenta regime. Although the contribution from the high-energy/momenta regime is unimportant, the approximate
polarization should be at least well defined. We notice that the above approximate expression of (�,q‖,qz) is negative at very

high energies, i.e., � � (v2
‖vz)

1/3
�, which would lead to an unphysical pole in the dressed Coulomb interaction function. The

exact polarization is definitely always positive. Such an unphysical pole originates from an improper approximation. In order to
avoid the appearance of such a pole, we make the following replacement:

ln

⎛
⎝ (v2

‖vz)1/3�√
�2 + v2

‖q
2
‖ + v2

z q
2
z

⎞
⎠ → ln

⎛
⎝ (v2

‖vz)1/3� +
√

�2 + v2
‖q

2
‖ + v2

z q
2
z√

�2 + v2
‖q

2
‖ + v2

z q
2
z

⎞
⎠. (A12)

Now the polarization becomes

(�,q‖,qz) = N
(
v2

‖q
2
‖ + v2

z q
2
z

)
6π2v2

‖vz

ln

⎛
⎝ (v2

‖vz)1/3� +
√

�2 + v2
‖q

2
‖ + v2

z q
2
z√

�2 + v2
‖q

2
‖ + v2

z q
2
z

⎞
⎠. (A13)

This new polarization is very close to the exact polarization in the low-energy/momenta regime and meanwhile does not
yield any unphysical pole in the high-energy/momenta regime. We have used this approximate polarization in our DS equation
calculations.
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