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We study the dynamic response of a two-dimensional system of itinerant fermions in the vicinity of a uniform
(Q = 0) Ising nematic quantum critical point of d-wave symmetry. The nematic order parameter is not a conserved
quantity, and this permits a nonzero value of the fermionic polarization in the d-wave channel even for vanishing
momentum and finite frequency: Il(q = 0,%2,,) # 0. For weak coupling between the fermions and the nematic
order parameter (i.e., the coupling is small compared to the Fermi energy), we perturbatively compute I1(q =
0,€2,,) # 0 over a parametrically broad range of frequencies where the fermionic self-energy ¥(w) is irrelevant,
and use Eliashberg theory to compute I1(q = 0,2,,) in the non-Fermi-liquid regime at smaller frequencies, where
Y(w) > w. We find that [1(q = 0,2) is a constant, plus a frequency-dependent correction that goes as |€2| at high
frequencies, crossing over to ||'/? at lower frequencies. The |Q2|'/? scaling holds also in a non-Fermi-liquid
regime. The nonvanishing of [1(g = 0,€2) gives rise to additional structure in the imaginary part of the nematic
susceptibility x"(g,€2) at > vpq, in marked contrast to the behavior of the susceptibility for a conserved order
parameter. This additional structure may be detected in Raman scattering experiments in the d-wave geometry.
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I. INTRODUCTION

The behavior of strongly correlated fermions in the vicinity
of a quantum critical point (QCP) is one of the most fascinating
problems in many-body physics. A complex interplay of
dynamics, correlations, and geometry leads to a wide array of
phenomena, such as superconductivity beyond the Bardeen-
Cooper-Schrieffer paradigm, non-Fermi-liquid (NFL) behav-
ior, competing and interwined order parameters, among other
effects. Today, it is widely believed that many complex ma-
terials, most prominently the cuprate and iron-based high-T7,
superconductors, are examples of such critical systems.

A traditional way to treat the physics near a QCP is to study
an effective low-energy model of itinerant fermions coupled to
near-critical order parameter fluctuations. Within this model,
one can study how soft bosons affect fermionic properties, like
the quasiparticle residue and lifetime. At the same time, one
can also study how gapless fermionic degrees of freedom affect
the bosonic properties of a system, such as critical temperatures
and scaling dimensions of order-parameter fields.

The subject of this paper is the bosonic dynamics that
appears as a result of the coupling to fermions. Specifically, we
study a system of fermions in two spatial dimensions coupled
to fluctuations of a d-wave nematic order parameter ¢ near
a critical point, at which ¢ orders. Our goal is to understand
fermion-induced dynamics of the ¢ field near such a transition.
This dynamics is encoded in the d-wave fermionic polarization
I1(g,<2). In the bulk of the paper we study I1(g,€2) as a function
of Matsubara frequency €2,, = 2amT. We also discuss the
imaginary part of the nematic susceptibility in real frequencies
towards the end of the paper.

At high temperatures, thermal fluctuations dominate, and
the largest term in I1(q, €2,,) is the one with 2,, = 0, so that the
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dynamical properties are frozen. As the temperature is lowered,
quantum fluctuations become important and eventually, at 7 =
0, €2,, becomes a continuous variable. Then, it is necessary to
describe response functions in their full momentum-frequency
space. We address the question of what is the magnitude and
the frequency dependence of [1(g = 0,£2,,) at low temperature,
T — 0.

The limit of ¢ =0 and finite €2, has attracted far less
attention than the opposite limit 2,, < vpg (see,e.g., Ref. [1]).
There are several reasons for this. First, most theories of
quantum critical phenomena in metals predict a dynamical
exponentz > 1,so thatthe scaling regime is accessed for 2, ~
q* <K vpq. Second, if the order parameter is conjugate to a
conserved quantity (e.g., it couples to total fermionic density
or spin), the fermionic polarization I1(g = 0,€2,,) vanishes
identically by the conservation law and, by continuity, must
be small for €2,, > vpq.

However, recent years have seen an increasing interest in
anisotropic transitions, such as long-wavelength nematic QCPs
with a d-wave order parameter, which we study in this work.
This order parameter couples to the d-wave component of
fermionic density, for which the polarization is not constrained
by the conservation law, so nontrivial dynamics in the regime
Q,, > vpq are indeed possible. The regime €2, > vrg can
be probed in numerical simulations and is also accessible in
Raman scattering experiments. Nonzero dynamic response at
vanishing ¢ has also been detected in neutron scattering near
ferromagnetic QCPs in several uranium compounds [2-4],
although we do not explicitly discuss this case here.

In this paper, we compute I1(¢ = 0,€2,) at a nematic
QCP. We work at weak coupling and with a large number
of fermionic flavors N. We present results appropriate to
several parametrically broad regimes of frequency. There are
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FIG. 1. An illustration of the susceptibilities for a conserved
vs nonconserved order parameter. The figure is a sketch of the
imaginary part of the susceptibility x”(q,€2) of collective excitations
of a system of itinerant fermions near an isotropic QCP (dashed
line), such as a ferromagnetic QCP, vs a nematic QCP (solid line).
In the low-frequency regime 2 < vg|q| both susceptibilities are
roughly identical, with a sharp peak at Q2 ~ vr|q| due to Landau
damping of the excitations. At higher frequencies Q2 > vr|q|, the
isotropic response vanishes due to the conservation law (e.g., spin
conservation). The nematic susceptibility flattens and then rises as
Q!/3, then switches to €2, before finally beginning to decay at Q ~ &p
(not shown). The dotted blue line is a reference line for Q'/3.

two relevant frequency scales in the problem (expressions for
which will appear in the next section), both much smaller
than the Fermi energy er. The first w; is the frequency below
which the Landau damping of the bosonic degrees of freedom
by the fermions becomes important. The second scale wy <
w; is the one below which the self-energy of the fermions
becomes important and the system develops NFL behavior.
Schematically, our results are

const + [2,,], w1 L |Qn| K eF
const + 2,113, wy K || K o
const + 2,3, Q] <K wo.

I(q = 0,2) =

We emphasize that the frequency dependence of I[1(q = 0,£2,,)
does not change around $2,, = wy, i.e., it is not modified when
the system enters the NFL regime below wy.

In each of the three regimes, the frequency dependence is a
small correction to the constant part. However, this frequency
dependence determines the imaginary part of the nematic
susceptibility in real frequencies, x”(¢q,S2), which scales as
|2|'/3 for || « w; andas |Q|forer > |Q| > w; (seeFig. 1).
This frequency dependence can be probed, for example, by
Raman scattering [5].

The rest of this paper is organized as follows. In Sec. I we
introduce our model for a nematic QCP, give some motivation
fortheideathat [1(q = 0,%2,,) # 0inthis model, and derive the
energy scales wp and w;. In Secs. III, IV, and V we present
the calculations of Il(g = 0,€2,), appropriate to the three
regimes described above. We follow in Sec. VI with the
analysis of nematic susceptibility and qualitative predictions
for Raman scattering experiments, and present our conclusions

in Sec. VII. Technical details of the calculations are discussed
in the Appendices.

II. MODEL, GENERAL REASONING, AND ENERGY
SCALES

In this section we introduce the model, present general
reasoning why Il(g = 0,€2,,) should remain nonzero, and
introduce relevant energy scales.

A. Model

We consider a two-dimensional system with a scalar boson
¢(q), which undergoes a continuous transition towards d-wave
charge nematic order. The bare susceptibility of the ¢ field is
regular and can be approximated by

X
DO(q’Qm) = 0

S0 +laP + Q3 /e
where & is the bare correlation length, which increases as the
system approaches the QCP. The dynamic 22, /c? term is often
neglected (though not always [6]), but we keep it.

We assume that there is a Yukawa coupling between ¢(q)
and d-wave fermionic density

ey

N
Hi=g) Y fR¢@vk+q/20ynk—q/2). (2)

n=1 k,q

Here, g is a coupling constant, n sums over the fermion flavors,
and f(k) is a momentum-dependent vertex with d-wave
symmetry, e.g., f(K) = cos k, — cos k,. Because our analysis
is not too specific to d-wave symmetry of the nematic order,
throughout the text we will keep f(k) as some function of
momentum, without specifying its form. We will use the
d-wave form only at the end of calculations.

We assume that the fermions have a (not necessarily
circular) Fermi surface (FS), dictated by band structure. Below,
we will only need f(k) for momenta near the FS, so we
approximate f(k) by an angular function

f&)~ f(k =krk) = f(0), 3)

where for a noncircular FS, k¢ by itself depends on 6.

The effective fermion-boson model near a nematic QCP
has been discussed before, but only in the regime where the
characteristic frequencies €2, are small or, at most, comparable
to vpg. We will be interested in the properties of this model in
the opposite limit, when ,, > vrq.

The full susceptibility of the ¢ field differs from Dy due to
the fermion-induced bosonic self-energy Il(q,<2,,):

X0
D(anm) = T3 ) 2 2 _ s
E() + |q| +Qm/c +gn(anm)

where g = g%xo. The quantity g has dimensions of energy
and can be viewed as the effective boson-fermion coupling
constant. We work at weak coupling, meaning g < er. The
I1(q,<2,,) in Eq. (4) is the fully renormalized particle-hole
polarization bubble. The static part I1(q,0) contains a constant
piece, which renormalizes &, into the true correlation length
£2=¢"+gll(q— 0,9, =0), and a regular q* term,
which we just incorporate into the existing q° term in (4).
The dynamic part of I1(q,$2,,) contains Landau damping of

“

155115-2



DYNAMICAL SUSCEPTIBILITY NEAR A LONG- ...

PHYSICAL REVIEW B 97, 155115 (2018)

the form |Q2|/(vrlq|) at |2,| < vrlq|, which is a relevant
perturbation near the QCP. Then, at 2 < vr|q|,

X0

D(q. 2 2 /.2
E2+1qP2 + Q3 /ct +y

Qm) =

o Q)
vrlql

where y will be explicitly defined below [see Eq. (34)]. It has
been demonstrated (see, e.g., [1,7,8]) that the characteristic
Q,, and q, relevant for the computation of the fermionic
self-energy, do satisfy |2,,| < vr|q|, i.e., in self-energy cal-
culations one should use D(q,$2,,) given by (5).

Our goal is to obtain the fermionic polarization and the
nematic susceptibility in the opposite regime of vanishing g
and finite €2,,, at the low-temperature limit 7 — 0. We argue
that IT(q = 0,€2,,) is nonzero because there is no conservation
law for d-wave fermionic polarization. We directly compute
IT(q = 0,9,,) using a diagrammatic technique, starting from
a particle-hole bubble of free fermions, and adding self-
energy and vertex corrections to the bubble. We show that
characteristic internal bosonic momenta €’ and q’ still obey
Q' <« vr|q'|, even when external q vanishes and external €2,,
stays finite. This will allow us to use Eq. (4) for propagators of
bosons which dress particle-hole polarization bubble. By the
same reasoning, we will use self-energy for fermions in the
bubble, which we obtain using the same Eq. (5).

B. Polarization bubble, general reasoning

For free fermions and at small momentum ¢, the polariza-
tion M¥(q,L,,) is given by
kF

n%4q,Q,) = f 2O)0(q,Q.0),

(2 )
, ©)
19(q,2,,.0) = ZQ”’_U—FqCOSQ
vpq cos 6
where vy is the Fermi velocity, which for a noncircular FS
also depends on 6. This form is nonanalytic, i.e., the value of
n9q,2,) at 2,,,vrg — 0 depends on the order in which
the two variables go to zero. At R, < vrq, T9(q,Q,,) ~
(8kr/vr)|Q2m|/(vrq), up to a constant. In real frequencies, this
accounts for Landau damping. In the opposite limit, [1V(q =
0,€2,,) vanishes no matter what f(6) is. This vanishing can
be understood by noticing that at ¢ = 0 and small but finite
Q. [19(0,9,,,0) coincides with the correlator of the total
number of fermions along a particular direction in coordinate
space, taken at different times. For free fermions, the number of
fermions along any direction in space is separately conserved
(because free particles do not scatter), hence, the integrand for
1©(0,,,) vanishes even before integration over 6.

This vanishing, however, does not hold once we include
interactions. To see why this is so, consider a model of spinless
fermions, define a quadrupolar density n (q) = >, ¥(k +
q/2)v(k — q/2) f(k), and take a local interaction between
these quadrupolar densities:

H =Y le(k) — uly Ry k) + Hi, )
k

Hy =g np@ns(—q. ®)
q

Let us compute the Heisenberg equation of motion forn £(0) =
Dk ¥ 1(k)y (k) f (k). For free fermions, g = 0, and we trivially
obtain

AW Py (p) f(p))/dt =0, )

i.e., the number density of each p state is separately conserved.
Once we turn on the interaction term, separate p states will no
longer be conserved. For a generic f(p) we find

iny(q = 0) = [n£(0), Hi]
o« Y yitk+q/2vi(p — q/2¥k —q/2)

k.p.q

x Y(p+4q/2)f &) f(p)

x [f(k+4q/2)— f(k—q/2) - f(p+4/2)
+ f(p—4q/2)] (10)

Thus, generically, only for f(q) = 1, f(q) = q is the right-
hand side equal to zero, as expected for density and momentum
conservation [9]. For any other form factor, we can expect
some time-dependent behavior. Because the full I1(q = 0,€2,,)
is related to the correlator of n (q = 0), the time dependence
of ny(q = 0) will induce dynamics of I1(q = 0,£2,,). These
dynamics are precisely the topic of our work.

C. Energy scales

As discussed in the Introduction, the model has three
parametrically broad regimes of frequency at weak coupling
(see, e.g., [1,10,11]. All three regimes can be identified right
at a QCP where the dressed correlation length £ diverges.

The scale w;, where Landau damping effects become impor-
tant, can be deduced by comparing the Landau damping term
in [T with D, taken near the mass shell, i.e., at lq| ~ @, /c.
Using

_q 2+ QY Q2

D;! -
X0 ¢~ Xo
Ve 12 ck

no ~ ke Sl =, (11)
UF UF|(1| Vg

and setting xoD, ' ~ gI1*, we obtain

Cng c \*"*?
w1 Ng <—) V2Ngep, (12)
U VF

F

where we defined e = vrkp/2. For frequencies well above
w; we can approximate D(q,$2,) by the bare susceptibility
Dy(g,<2,,). For frequencies below w;, we must incorporate
I into the boson propagator, i.e., replace Dy with

X0
@+ Q3 /e + 200
X0 Ngkp

Qr e VT '
qQ +v vrlql vF
For frequencies below wy, it is appropriate to carry out the
diagrammatic calculation of polarization using D for internal
boson lines. The internal fermion lines can be taken as free-

fermion propagators G down to a still lower frequency wy, at
which the dressing of fermions by bosonic fluctuations can no

D(qum) =

~

13)
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longer be neglected. To estimate wgy, we compare the inverse
of the bare fermion propagator to the one-loop fermion self-
energy

d*>q dQ
1k, wp) = & / (;’T)gG()(k + Q.o + 2,)D(A. D)

g2 1/3
~(N—w> w73, (14)

where we have included only the most singular part of the self-
energy. Since the bare inverse propagator goes as wj,, setting
Gy' ~ %, gives

g2
Ne F '

For frequencies below wy, the dressing of fermion prop-
agators must be accounted for. We will also show that in
this regime, vertex corrections play an important role in the
calculation of IT(q = 0,£2,,), as will be discussed in Sec. V.

For g « ¢, the hierarchy of energy scales is wy <K w1 K
er. This condition sets three distinct low-energy regimes for
II(q = 0,2,,): w; < || < eF (regime 1), wy < |2 < w1
(regime II), and |2,,| < wp (regime III). Below, we present
calculations for each energy regime in turn.

5)

wy ™~

III. PERTURBATIVE EVALUATION OF THE
POLARIZATION II(q — 0,£2,,) IN REGIME I

To shorten formulas, in this and the following sections we
will use three-vector notations for momentum and frequency:
q = (q0.9), k = (ko,K).

We recall that for free fermions

n%gq = 0,90) =0, (16)

even for f(k)=£ 1. As noted earlier, this is because free
fermions cannot exchange momentum, so the partial density
of fermions for each direction of momentum is separately
conserved. However, as we discussed in the previous section,
there is no reason to expect that I'l1(q = 0,q9) = 0 will hold
once we allow fermions to interact. We begin by evaluating the
first nonzero contribution to I1(q = 0,gy) within perturbation
theory in the coupling g, represented by the diagrams of Fig. 2.
(See Appendix A for details.)

Let us consider the diagrams of Fig. 2. Each diagram
contains four propagators of free fermions and one bosonic
propagator. For a constant form factor, these three diagrams

k+q

cancel exactly, and the cancellation can be traced to the Ward
identity for number conservation [12]. We show that for a
nonconserved order parameter, the three diagrams do not
cancel. In explicit form we have

nYg) =1, +1_+1, (17)

where the diagrams with self-energy insertions are

N3
L=—5_ /d3k d*p GA(k)Go(k + p)Golk £ q)
Xo(2m)
x Do(p)f2(k £ q/2) f*(k +p/2), (18)
while the diagram with a vertex correction is
__Ng 3, 13
v = 5 | kd”pGok)Go(k +q)Go(k + p)
Xo(27)

x Go(k +q + p)Do(p) f(k + q/2)
X f(k+p+4q/2)f(k+p/2)f(k+q+Pp/2).
(19)

Here, and henceforth, we replace the frequency sum by an in-
tegral, i.e., we assume 7 — 0. We can recast these expressions
into a more illuminating form by repeated application of the
following identity of free-fermion Green’s functions:

Go(k + p)Go(k) =Kk + p,k)[Go(k)
— Go(k + p)], where (20)

K(k + p.k) = [ipo — e(k + p) + e(k)] '

~ [ipy — vrk - p]™". @1
Some straightforward algebra then yields
N (q = 0,90)
__ N3

 Xxo@m)°

x Go(k +q + p)Do(p) f (&) f*(k + p/2)
x [f(k+p) — fK)] (22)

We immediately see that for a constant f, nYq= 0,90) =0,
as it should, while for a momentum-dependent f(k), the two
terms in the last brackets in (22) do not cancel each other.

To estimate the value of the integral, we note that bosonic
momentum p is naturally constrained by &k, otherwise Eq. (13)

/ &’k d® p Go(k)Go(k + q)Go(k + p)

k+p+q

k+p

(c)

FIG. 2. The contributions to the polarization with one bosonic propagator inserted into a particle-hole bubble. The first two diagrams are
self-energy corrections and the last is the vertex correction. For a constant form factor these three diagrams cancel exactly, as required by the

Ward identity for number conservation.
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k+q kK +q

p
(b)

FIG. 3. The leading contributions to the polarization with two
bosonic propagators inserted into a particle-hole bubble (Aslamazov-
Larkin diagrams). At frequencies €2,, < w;, these diagrams con-
tribute to IT at the same order as the diagrams of Fig. 2. For a constant
form factor, the two diagrams cancel exactly. For a nonconstant form
factor, calculating them mirrors the procedure for calculating the
diagrams of Fig. 2 (see Appendix E for details).

would not be valid. Approximating f(k + p) — f(k) by |p|?
and restricting integrations over k and p by kg, we obtain by
power counting that TI!V(q = 0,g¢) at gy < &F is a constant
plus a subleading piece proportional to |go|:

- 2
gV(q = 0,q0) = N(i) k2 (A + B'j—i') (23)

where A, B are dimensionless constants of order one, computed
in the Appendix. The constant term is nonuniversal in the
sense that it depends on the behavior of the system at bosonic
momenta comparable to kr. By contrast, the |go| term is
universal in the sense that it depends only on the form of the
bosonic propagator at small momentum and small frequency.

IV. EVALUATION OF II(q = 0,90) IN REGIME II

To evaluate the polarization at frequencies comparable to or
below w;, the Landau damping of the boson must be explicitly
incorporated. We now treat the parametrically broad regime
wy K qo < wi, in which the damping of fermions can be
neglected, but Landau damping of bosons plays a dominant
role. In this regime, we can neglect the bare g3 /c* piece of
the boson propagator in comparison with the Landau damping
term. We again work perturbatively in the small parameter
g/er, but use D(q) given by (13) instead of D, for the
bosonic susceptibility. In addition to the two-loop diagrams
of Fig. 2, the Aslamazov-Larkin diagrams of Fig. 3 now yield
contributions of the same order (the extra overall factor of g
in these diagrams is compensated by a 1/g coming from the
Landau damping). However, they do not alter the qualitative
result, and their treatment mirrors [13,14] that of the diagrams
of Fig. 2. We defer their evaluation to Appendix E.

The power-counting analysis of the integrals in Eq. (22)
is similar to that of the previous section, yielding the same
constant part coming from momenta comparable to kr. The
frequency dependence, however, is altered by the new kine-
matics introduced by Landau damping, changing the exponent
to % instead of 1. Explicitly,

zy\ Nglgol\"?
gﬂ(l)(q:O,qo):N<;) k%[AJrc( - > ]

€F

(24)

where C is a dimensionless constant of order one, computed in
Appendix A. Similar to the result at gy > w;, the frequency-
dependent piece is universal in the sense that it depends only on
the form of the propagator at small frequency and momentum.

One can check that terms with larger number of bosonic
propagators are progressively small in g/¢r and hence irrel-
evant. As a result, the full I1(q = 0,qo) is well approximated
by Eq. (24).

The scaling forms in the regimes [ and II, Egs. (24) and (24),
can be viewed as the limiting cases of a single scaling function
of go/w;. We present this function in Eq. (A13) in Appendix A.

V. EVALUATION OF THE POLARIZATION IN REGIME III:
ELIASHBERG THEORY

We now move to frequencies go < wp. Here, we must
account for both Landau damping and the large fermionic
self-energy. Seemingly, we should proceed in this case the
same way that we did in the previous section, by incorporating
the self-energy ~w?/? into the fermionic propagator G~ (k) =
i[ko + 21(k)] — e(k). Such an approach brings up the issue of
potential double counting in diagrams 2(a) and 2(b) in Fig. 2,
but let us ignore this for a moment.

The calculation of TI"V(q = 0,¢¢) with the full G(k) pro-
ceeds in the same way as for free fermions, however, now
K(k 4+ p,k) in Eq. (20) takes the form

Kk + p,k) =[iE(k + p) — i £(k) — e(k + p) + e(k)] '
~ [iZ(ko + po) — iS(ko) — vk -pI~!, (25
where
S(k) = ko + T(k). (26)
The expression for TV (q = 0,¢,) becomes
(g = 0,q0)

_ _Ng
© xo(2m)°
x Gk + p)Gk +q + p)D(p) f(K) f2(k + p/2)

x [fk+p)— Kk +q.)K " (k+q + p.k+ p)fK)].
(27)

/ dkd®p GGk + q)

Analyzing this expression at gy < wp, we see that the self-
energy gives rise to two effects. First, the term, which was
a constant without self-energy, now becomes of order qg/ 3,
It still comes from bosonic momentum |p| of order kr, but
now the integral over the two fermionic dispersions and the
two frequencies yields [go/%(q0)]2 ~ ¢¢’>. Second, the low-
energy contribution remains of order qé/ 3 because the extra
qg/ 3 from fermions is compensated by an additional 1/|p|> ~
1/4:" since the term f(k + p) — KK~ £ (k) in (27) is now of
order of one rather than of order |p|>.

We will see below that the frequency dependence of
IT(q = 0,g0) remains of order q(i/ 3 both above and below .
However, the statement that the constant term gets replaced
by qé/ ? will not survive once we include vertex corrections.
To see that vertex corrections must be included along with
dressing of fermionic lines by the self-energy, we note that
H(l)(q = 0,q90) in Eq. (27) is nonzero even when the form
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factor f(K) is a constant. This is obviously incorrect because
an isotropic charge order parameter (the total density) is a
conserved quantity. A survey of the s-wave problem [15] shows
that at a QCP, vertex corrections are of order one at any
order of perturbation theory, if one uses full propagators for
fermions. The extension to large N eliminates crossed vertex
correction diagrams, but ladder vertex corrections still remain
of order one.! To verify that the full IT(q = 0,go) vanishes for
f =1, one has to sum up an infinite ladder series of vertex
corrections, so that an account of vertex corrections is crucial
to yield sensible physics in the regime gy < wy. Naturally,
similar corrections must also be accounted for in our case of
nonconstant f (k).

To analyze the vertex corrections, we adopt a conserving
approximation [12], meaning a choice of diagrams such that
I1(q = 0,g0) vanishes for f(k = 1). This approximation en-
tails keeping the ladder series of vertex corrections pictured
in Fig. 5, but neglecting vertex corrections involving cross-
ings. The kinematics of Landau damping will be of central
importance to the calculations. The Landau damping term in
the boson propagator means that the effective “velocity” of
a collective boson is parametrically smaller than the Fermi
velocity vg. Thus, in any diagram which involves a fermion
and a boson, depending on the same running momentum, one
can factorize the momentum integration. One integrates over
the momentum component transverse to the FS in a fermionic
propagator, and over the momentum component along the FS
in the bosonic propagator, neglecting there the momentum
component along the FS. This is essentially the same physics
that is incorporated in Eliashberg theories of quantum critical
metals [1,8,15,16].

We emphasize that the conserving approximation is not
a controlled approximation in the usual sense of the word.
Although leading-order corrections to ladder series of vertex
renormalizations are small in 1/N, large N does not in fact
fully control the theory because some higher-order non-ladder
vertex correction diagrams are not suppressed by 1/N [17,18].
Furthermore, the computation of certain four-loop diagrams
for bosonic susceptibility [19] has cast doubt on the validity
of z = 3 scaling for the bosonic propagator. Modifications of
the problem [20-22] to achieve mathematical control have
been performed, as well as extensive Monte Carlo simula-
tions [23,24], but no clear consensus has emerged [25,26].

With this caveat, we proceed with the conserving approx-
imation. The perturbative series for the fully renormalized
polarization bubble can be cast into the diagram shown in
Fig. 4, which expresses I1(g) in terms of two dressed Green’s
functions and one dressed vertex. Each diagram in the per-
turbation series is counted only once, i.e., there is no double
counting. In explicit form we have

Ak
I(g) = N/ 20y Lk;q)G(k)G(k +q) f(k+q/2). (28)
The dressed fermion-boson vertex I'(k,q) is normalized such
that for free fermions it reduces to f(k 4+ q/2). The ladder

'The extension to large N also does not eliminate other planar
nonladder diagrams [17-19], that are of leading order in 1/N. We
comment on this later in this section.

k+q

FIG. 4. The fully dressed polarization bubble. For a boson cou-
pled to a conserved quantity, the fully dressed polarization at p =
(po,p = 0) must be exactly zero due to the Ward identity. The bubble
is dressed with the vertex depicted in Fig. 5.

diagrams for the vertex I'(k; g) are shown in Fig. 5. We have
verified that internal momenta and frequencies, which mostly
contribute to these diagrams at ¢ = (0,qp), are the same as
in Eq. (39). Accordingly, we will be using Eliashberg forms
of bosonic and fermionic propagators: Landau overdamped
D(q) from Eq. (13) and dressed G(k) with the self-energy
given by Eq. (36). We first demonstrate that [1(g = 0,qo)
indeed vanishes for a constant form factor due to particular
cancellations between self-energy and vertex corrections, as
specified by a Ward identity. Then, we show that such a
cancellation no longer holds for a nonconstant form factor, and,
as a result, find a nonzero I1(g = 0,qo). Finally, we derive the
same nonzero result in an alternative way, by analyzing the
contribution given by each rung of a ladder diagram.

A. Eliashberg theory

Before delving into the full calculation involving vertex cor-
rections, we present some explicit results from the Eliashberg
theory for gy < vr|q| (see Appendix B for details). In this
theory, the fermionic self-energy X (k) depends on k¢ and on
the position on the Fermi surface, but not on the momentum
component transverse to the Fermi surface. The theory is based
on a set of self-consistent equations for the polarization bubble
(the bosonic self-energy):

d’k
(g) = N/ WG(/C —q/2Gk+q/2) k), (29)

k+q/2

k—q/2

FIG. 5. The coupling vertex. The leftmost panel depicts the fully
renormalized vertex I'(k; p), where k,p are 241 vectors. The two
right-hand panels are, respectively, the bare vertex in the fermion-
boson model we define in Sec. II, and the vertex correction. The
Green’s functions and susceptibilities are full ones. In this work, we
adopt a ladder approximation for the vertex: we neglect crossing dia-
grams, and include self-consistent self-energy corrections in internal
propagators. See Sec. V.
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and the fermionic self-energy

. d’p p
_ 2 2 r
iXtk)=g /(2n)3G(k+p)D(p)f (k+ 2). 30)

In these equations, G (k £ g /2) is the fermionic Green’s func-

tion with self-energy included:
1
G(k) = - . ) (€29
iko+iXk)—eK) +pn

and D(q) is the bosonic susceptibility with the bosonic self-
energy included:

D(q) =

X0
&+ +45/c2 + 3T(g)
Evaluating the momentum integrals in Eq. (29), we obtain that

I1(q) does not depend on the self-energy and has the same form
as for free fermions (Ref. [27]):

(32)

and k depends on the angle 6 along the FS. Also, % is a unit
vector in the direction perpendicular to the 2D plane, and ' =
Z X q,1.e.,q’ is orthogonal to §. The dependence on §’ emerges
because the momenta k in Eq. (29), which mostly contribute
to Landau damping term, are orthogonal to q (Ref. [28]). The
full bosonic susceptibility at q, < vr|q| then becomes

X0

E2 4 +y @05y + /et

D(q) = (35)

Atfrequencies well below wy, the regular g3 /c? term is smaller
than the Landau damping term and can be safely neglected.

Substituting Eq. (35) into (30) and factorizing the momen-
tum integration, we obtain

iS(k) = iw) | FR)K” + ikogi,\(lé,ko). (36)
F

Nok Here,
gH(q)—)/(f @)—— 190l —<f2>), — D8 (33
vrlq| 2w vr g 3 1 g .
o= ()
do ~
(F2(0)) = / & P = ke 34)  and
|
Ao+ 2)1ol 2P0l
)L(kk()) _/ / K ollx - 2(i)lkoly1x
|¢|3 2f2 (9(¢>¢ ))V\k [lx+1] |¢|3 4 2f (4)3&%1/\ +1]

1/3

R g | k n
= hol) + S22 A

EF | o

Here, ¢p{cos 0(¢r,p), cos O(¢r,p)} parametrizes the position of
k + p on the FS. *o(k) and A, (k) are some angle-dependent
parameters of order one. Note that, in accordance with Eq. (33),
wehave = 2 X p ~ 2 x 2 x k = —k. The variation of 6 + k
just modifies the form of A; somewhat. In Eq. (38) we also
assumed f2(k) = f2(—k). Henceforth, for simplicity we drop
the variation of 6 and simply replace § — —k — k. Finally,
note that when f = 1,)\(l€,ko)vanishes identically [at the level
of the integrand in Eq. (38) above].

The validity of the factorization of momentum integration
in Eq (30) is verified a posteriori. Typical internal momenta
and frequencies in the integrals are

w~awy, k—kp~qL~X~awo/vF,

N
a1 ~ (ywo/vp) P ~ cu(%)- (39)

We see that, as long as Ner/g > 1, typical g are much larger
than typical ¢, and k — kp. This is the justification for the
factorization of the momentum integration. One can also check
that at these w and ¢, vertex corrections are small in §/(Nep)
(Ref. [29]). [To be exact, the A; term has a contribution of order
one from momenta of order ¢ ~ g, ~ X, which is formally
beyond the justification of the momentum factorization (see
Appendix B). However, because we are not interested in the
exact form of A, we can safely neglect this contribution.]

(38)

B. The vanishing of II for a constant form factor

The ladder series of vertex renormalizations for f = 1 have
been analyzed in Ref. [15]. The full vertex I'(k,q) ~ I'(ko,q0),
evaluated at ¢ = 0 and general k, obeys an integral equation,
whose solution is

iqoT (kos g0) = G~ (k + q) — G (k)
= iZ(ko + qo) — i (ko). (40)

This coincides with the Ward identity for the density ver-
tex [30]. Equation (40) is equivalent to

L(k;q)G(K)G(k + q)
G — Gk +9)
B iqo .
Plugging this into Eq. (28) we find

(41)

T(q = 0,90) x g ' / kG +q)— GK)].  (42)

We recall that the integral [ d>k is

27t
[ ] o] 5 @

where A is the upper-energy cutoff of the low-energy model.
One can immediately check that f d*k G(k) is ultraviolet
convergent.
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The second term in (42) can be transformed into the first
term by shifting integration variable k by external g. In general,
such a shift has to be taken with care because one also has to
shift the upper limit of integration over €, . In our case, however,
the momentum component of g is zero, and the shift only
involves the frequency component, over which the integration
holds in infinite limits. As a result,

/ PhkGk+q) = / &’k G(k) (44)

and, hence, I1(q = 0,q¢) = 0, as long as g is finite.
Another way to obtain the same result is to write G(k +
q) — G(k) = i[X(ko) — X(ko + g0)IG(k + g)G (k) such that

(g = 0,0) g5 / dko / de; / o,

x [(E(ko) — (ko + q0))G(k + q)G(k)],
(45)

and integrate in (45) first over fermionic dispersion and then
over frequency. The integral has two contributions: one comes
from the range €, ~ ko ~ qo, where the poles in G(k + ¢) and
in G (k) are in different half-planes of €, once we extend f deg
onto a complex plane. The second contribution comes from
high energies €, ~ ko ~ A. Atsuchenergies, . (kg) < ko, i.e.,
Y (ko) ~ ko. Evaluating the two contributions, we find that they
exactly cancel each other:

1 1

(g = 0,900 10w = v& » Il(g = 0,q90)high = —v& -

(46)

Thus, the IT = 0 result comes from an exact cancellation
between low- and high-frequency terms. We may expect that
for f # 1 the high-frequency piece will remain essentially un-
changed. However, the low-frequency piece will get additional
contributions from the variation of f(k) along the FS, leading
to a nonzero IT.

C. Calculating T for f # 1

We now perform the same calculation for angle dependent
f (k). We express the vertex function I'(k,q) at ¢ = (0,q0) as

T(k;q) = f(O[1 + 8T (k; q)]. (47)
The ladder equation for 5T°(k; g) is

8
x0(27)?

FERST ks q) = / &£ p DI+ 8T ()]

k
x G(p + q)G(p)f2<¥> D(p — k).

(43)
To get an insight how 6I'(k; ¢) should look like, consider first

a simpler problem, namely, the renormalization of the density
vertex I'g(k,q) = 1 + 8Tg(k,q), still keeping angle dependent

f in the interaction vertices. The density vertex correction
6T (k,q) obeys

x0(27)?
k+p

x G(p+ q>G<p>f2<T)D<p —k). 49

8To(k; q) = / d®p[1 + 8To(p; )]

We factorize the momentum integral and again employ Eq. (20)
to simplify the equation for §T'y(k; q) = 6To(k,ko; q = 0,q0)
to

A g 0 1+ 6To(P, po.q0)
8Tk, ko, go) = Lz/ dpy e "L PO A0
Qr)vp Jogy 2@+ p)— X(p)

A(52)1py]

d = .
* / P + 720 po — kol /vr
(50)

To solve this equation, we note that the difference Sk+q)—
2 (k) (which s a function of k and k) is expressed via the same
integral as in the right-hand side of (50), namely,

Sk +q) — (k)

8 3
=qo+ &plG(p+q9)—G
40 (Zn)zx()/ rlG(p +q) — G(p)]
X f2<—k;p>D(p—k)

g (50 1pyl
S P f d > .
q°< @nor PV v ®lpo — kol/vr
(51)

We then argue that

Sk+q)—EKk _ Eth+q) - Sk .
q0 B q0

8To(k; q) =

(52)
is a solution of Eq. (50). One can verify this by just substituting
Eq. (52) for 6Ty into the right-hand side of (50) and relating
the integral over p; in (50) to 8I'yg(k; g) using Eq. (51). The
form of Eq. (52) is just that of a Ward identity for the density
vertex, similarly to what was obtained for f = 1, Eq. (40). See
Appendix C for details.

The Ward identity (52) is the expected result: it shows
that the density-density polarization bubble vanishes at zero
incoming momentum and finite frequency, even for a system
with fermion-fermion interaction in the nematic channel. To
see this explicitly, we plug (52) into the formula for density-
density polarization

d’k
7(q) = Ng/ Wro(k;q)G(k)G(k + ), (33)

approximate [ dk/(2r)* by [ dko fA de; using Eq. (43), and
integrate first over €; and then over kj. As we discussed earlier,
the integral has high-energy and low-energy contributions. For
the high-energy contribution, the self-energy and vertex cor-
rection can be neglected, while for the low-energy contribution
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both are relevant. Evaluating the integrals, we obtain
M1°(q = 0,go)ow = 72~ (/)

1°(q = 0,qo)hicn = —v& ' (f7).

We recall that

(54)

do
(f20) = / Zfz(é’).

The two contributions then cancel out for any f(k), i.e., the
density-density polarization bubble I1°(q = 0,g9) vanishes,
as it should, for arbitrary interaction between fermions that
conserves the total number of particles.

We now use this result to analyze the integral equation (48)
for the correction to the full vertex 8I'(k,q). The leading
contribution to the renormalization of 6I"(k,q) at each order
comes from small momentum transfer k — p. It is therefore
tempting to just replace f(p) in the right-hand side of (48) with
f (k). However, in that case we would obtain the same equation
as for 6"y (k, p), i.e., within this approximation, 6I"(k,q) would
be equal to 61"y (k,q), and the effects of nonconservation of the
order parameter would not show up in the polarization operator.
To detect the effects due to nonconservation, we need to go
beyond approximating f(p) by f(k), i.e., we need to include
subleading terms, which account for the fact that f(p) is not
identical to f (k). It is this difference that makes IT(q = 0,90)
finite, as we will see.

To single out the contribution which is sensitive to the
variation between f at internal and external momentum in the
vertex correction diagrams, we make an ansatz

Sk +q)—Ek) _ 1+8To(k,q)
go(l+w) 14 ulk.ko.qo)

14 8T (k,q) = (55)

where M(l%,ko,qo) is the term that accounts for the difference
in f that we are interested in. Plugging the ansatz into Eq. (47)
we obtain

1 + 8T(k,ko,q0)
1+ pu(k,ko.qo)

We assume and then verify that p is small and expand in wu.
By direct comparison with Eq. (48) we then find

u(k,ko,qo) f (k)

_ 0 A
- m/ %/ kedpLf (= F(P)1f*
—40

T(k,ko,q0) = f(k) (56)

k
x (?)D(p — 1)+ 0D 57)
_ R _ 1/3 &
=5 |:Mo(k) + &R0, (k,—())], (58)
EF EF |wo qo

where /LQ(];) and ,ul(lg,';—g) are dimensionless functions with

O(1) dependence on parameters. Substituting this w(k ko,qo)
into Eq. (56) for I'(k,ko.qo), plugging the vertex into the
expression for Il(q = 0,gp), and evaluating the integral by
integrating over dispersion first and then over frequency, we

obtain
) © dky [ do 2@
I = 0’ = - 7
gll(q qo0) Vfo 9 27 1+ (é,q0.ko/q0)
-y

q0 dk
=—y f —(uf?) + 0(u?)
0o 4o

2\’ glaol\"’
:Nk%(—) A+C(N > ) , (59)
EF GF

A=—{(uof?), C=—(mlf*?), (60)

and fi,(k) = fol dx py(k,x). This TI(q = 0,go) has the same
form as Eq. (24) that we obtained in the leading order in the
expansion in bosonic propagators. Moreover, the prefactors
A and C in (24) and in (59) are exactly the same (see
Appendices A and C for more detail).

We now see that the functional form of the full Il(q =
0,g90) does not change between gy > wy and gy < wg. The
reason for this is that wq is the scale where NFL behavior
sets in, leading to nonanalytic self-energy and singular vertex
corrections. However, these corrections are local in space, and
so for small momentum transfer vr|q| < e the leading-order
dependence of IT on vertex corrections is the same as for the
density-density polarization. The small nonzero polarization
comes from virtual processes with large momentum transfer
that are subleading to the nonanalytic part and do not depend
on it.

where

D. Deriving Eq. (59) by analyzing ladder contributions
rung by rung

In the derivation of Eq. (59) we explored the fact that the
nematic vertex has momentum-dependent form factor f(k),
which varies a bit between external and internal momenta
once we include vertex renormalizations. We now derive
the same result in a different manner. Namely, we write
the full polarization bubble, consisting of a sum of ladder
contributions, as Il = Zn I1,,, where

I, o / &l f k)G + )G k)

x O(ky) ... Oy f(K,) (61)

ow = [onr(*57)

x D(k; —k; )Gk; +q)G(k)).  (62)

and

Each O(kj) represents a “rung,” which consists of two
fermionic propagators, and the effective interaction

Ulkj ki) = f2(k; +kj—)/2)D; —kjm). (63)

The fermionic propagator also contains U(k;,k;_;) via the
self-energy, hence, in each rung there are three “sources” for
the dependence on f(k). We assume and then verify that the
correction to the polarization, coming from variation of the
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k+q

k+q K +q

FIG. 6. The contributions to the polarization with vertex corrections taken into account. In order to obtain the low-energy behavior, it is
necessary to compute the full bubble (Fig. 4) within a ladder approximation. For a constant form factor, the total polarization is zero. In order
to compute the correction coming from the form factor, we insert bosonic propagators with form-factor vertices in each cross section of each
bubble diagram (red wiggly lines). On all other cross sections, we treat the form factor as constant. The result is a set of diagrams with density
vertices I'y on the sides. The expression for their sum is given in Eq. (66).

form factor, is small. In this situation, we may obtain IT by
separately calculating the contribution from each term (in each
segment). Furthermore, within each rung we select one of its
three U’s, where we allow f (k) to vary, and hold f(k) in all
other U’s constant. We then repeat the procedure for the other
two U’s in O(k;). Finally, we sum up contributions from all j
in all IT,,.

To see how this works in practice, it is convenient to switch
to symmetrized variables

ki 4k
@::JJ%LJ,Kj:kf_&A (64)

so that by construction,

K — K
§9h=h+f+@+“+w- (65)

k() = ];1 —
For simplicity, let us consider the situation where we may
expand the form factors in the variables «; to second order.
Next, also for simplicity, let us consider the situation where
we hold all the U’s from the fermionic propagators constant
and expand only in the U’s which constitute vertex corrections
in some bubble diagram IT,. It is easy to see that we will
get a series of terms proportional to Kg,KZ and to k,kp, where
a # b aretwo segments in I1,,. However, «,,,k;, are independent
angular variables, and so upon integration, all cross terms
vanish, leaving only those terms that depend on a single
segment variable k, or kp, expanded to second order. Thus,
to obtain all contributions dependent on the variable «; in IT,,,
we may replace all form-factor terms fori < j with f(k;), and
all those fori > j with f(k; + ;). We repeat this process for
each segment, and add them all up. It is readily verified that
when we also consider self-energy corrections, the story does
not change. In fact, it is possible to identify precisely which
terms in the self-energy and vertex corrections cancel out. [This
can be done by properly symmetrizing Eq. (67) which appears
later in this section.]

In practice, we can do all the summations at once by
calculating the three diagrams of Fig. 6. In each diagram, the
effective interaction marked in red is allowed to vary, and all
others are held constant. This is done by replacing the side
vertices with f(k)I'y and for the fermionic self-energy using
only the first term in Eq. (36). (In the prescription we just gave
it is not immediately clear why we are getting a correction
coming from the form-factor variation. To see this it is enough
to try and calculate the three diagrams of Fig. 6 without letting
the form factor vary within the red lines. It is readily verified
that in that case, the three diagrams sum to zero.)

We carry out the procedure we just outlined, collect contri-
butions from the three diagrams, and obtain (see Appendix D
for details)

H(q = quo)
g 1 / 3 3./
=N= dkd’kK'To(k,qg)G(k
G o(k,q)G (k)
x Gk + q)D(k — K)F(k; K)G(K)G(K + ¢)To(k',q),
(66)
where
F(k;k + p)
= fRf &k +p/Dfk+p) — fK)]
A\ 2
~ k 1
= fz(k)<pkL> + cee, f2 — f2f/2 + §f3f”,
F
(67)

and in the four fermionic G the self-energy is given by the first
term in Eq. (36). Integrating over two fermionic dispersions
and one frequency, we obtain after some algebra

g \2 [ dk @ g
2Tl = 0,g0) = Nk%(ﬁ) / —O/ i
EF o 490 Jo 4o

x/d—¢ do  F(¢,d +0)|0|
27

> —.

21 103 + f (¢l};\:§) ol
Evaluating the angular integrals and the integral over kg we
indeed reproduce Eq. (59).

The derivation we just gave illuminates the different roles
played by processes with small momentum transfer and with
large momentum transfer. The scattering processes with small
momentum transfer renormalize the vertices and fermionic
self-energies, but the renormalization is the same as if the
form factor was equal to one. The presence of the form
factor only gives rise to multiplication factors with f at
the same momentum at which we, e.g., compute the self-
energy. These low-energy scattering processes do not sample
enough of the FS to be aware of the form-factor variation.
The nonvanishing polarization comes from the processes in
which a fermion scatters all along the FS, i.e., a characteristic
scattering momentum is of order kr. Note, however, that this
separation only explains the frequency-independent piece in
IT(q = 0,g0). The frequency-dependent qé/ ? term comes from

(68)
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small momentum scattering, but indeed it also originates from
the variation between f(Kk) at the beginning and the end of the
scattering process.

The consideration based on a selection of a segment,
where the contribution comes from a range of momentum
transfers, different from those in other segments, is similar
to diagrammatic derivation of the FL formula for the static
susceptibility [31,32]. It is also similar to the derivation of a
conductivity in a metallic system in terms of transport lifetime,
either due to impurity scattering [33] or due to electron-electron
interaction, particularly near a QCP [34].

A comment is in order: In our analysis we ignored the
existence of “cold spots,” the points on the Fermi surface
where the form factor has nodes (these are along the directions
/4 + nm/2 for a d-wave form factor). At the cold spots the
form factor vanishes, and hence the self-energy and Landau
damping vanish, but at different rates. It can be shown that to get
fermionic self-energy and the Landau damping near the cold
spots, one must go beyond the Eliashberg approximation [35].
However, these effects are not significant for the computation
of the polarization bubble at zero momentum and finite fre-
quency as this polarization comes from processes around the
entire FS, and the cold-spot contributions are negligible.

We can refine the estimate for IT a bit by expanding F as in
Eq. (67). Then, for f(x) = cos £x, we find

¢ e
=—-—. 69
(2) =15 (69)
Applying this result to the d-wave case, when ¢ = 2, we find
(f") = =% (70)

Because the constant term in I1(q = 0,go) is proportional to
(f5™y and the constant and the |go|'/® terms have opposite
signs [this immediately follows from (68)], in Eq. (59) A <
0 and B > 0. This is an expected result because with our
sign conventions the nematic susceptibility in real frequencies
has an imaginary part D”(q = 0,Q2) ~ —I1"(q = 0,$). Thus,
D" () ~ —BIm(—i2)'/? has the same sign as £, as it should,
by causality principle.

It is natural to ask what is the contribution from terms in
which the gradient of f(k) is kept in more than one segment.
In the diagrammatic computation of the spin susceptibility in a
Fermi liquid, the diagrams with one “special” segment (where
the integration is confined to infinitesimally small vicinity of
the FS) gives m*/m, while diagrams with two, three, etc., such
segments yield a geometric series (—1)" F}", in powers of the
Landau parameter F;. The sum of such terms gives the 1/(1 +
Fp) term in y; [31,32]. In our case, we expect that a similar
computation will yield a series of qé/ 3 terms, which likely do
not lead to any new physics.

VI. NEMATIC SUSCEPTIBILITY AND RAMAN RESPONSE

The uniform dynamic susceptibility of the nematic ¢ field
at a QCP is related to I1(q = 0,q0) by
X0

5 +qg/c>+ 8T = 0,q0)°

where &, = y(f?) ~ Nk%(g/er) (because &2 =¢g;2 —
y{f?) = 0). The functional form of D(q = 0,£,,) can be

D(q = 0,q90) =

(71)

directly probed in Monte Carlo studies. Recent studies [23,24]
have used the same model as ours: a scalar bosonic field
undergoes an Ising-nematic transition, and the susceptibility
of ¢ field gets modified by the minimal coupling to fermions.

Polarization-resolved Raman scattering experiments di-
rectly measure the imaginary part of the nematic susceptibility
in real frequencies [5,36-38], and several recent studies have
examined the impact of a QCP on the Raman response (see,
e.g., [38—41]). In a clean system (or at frequencies above the
transport scattering rate 2 > y,,) and at low temperature in the
normal state, the dominant contribution to the signal will be that
coming from nonconservation of the order parameter. To obtain
the frequency dependence of D'(q = 0,Q) we note that the
constant term in gI1(q = 0,4gp) is of order Nk%(g/gF)z, ie.,is
small relative to &, 2 The dynamic term is even smaller, but it is
nonanalytic in frequency and hence it has a nonzero imaginary
component. Converting to real frequencies (go — —i<2) and
expanding in small gIT(q = 0,€2)/&, 2, we obtain

" - X0
D (q=0.Q) ~ —gI (q= 0.8 ——2 .

O 11 — (Qbo/cPP
The frequency dependence in the denominator becomes rele-
vant at Q2 ~ c/§y ~ a)l(vp/c)l/2 ~ ;. At much smaller fre-
quencies,

(72)

_ N 1/3
y - Xo (NgQ
Nk \ €%

(73)
At much larger frequencies,

" X0 g&x (¢ !
D(q_O,Q)ocNk% o (UF> . 74)
In-between, there is a resonance at Q2 ~ c/§y ~ w1, as seen in
the peak in the first panel of Fig. 7. We note that the Raman sig-
nal will also include a response from the fermions themselves.
However, at q = 0, this signal will scale as [ID~!' ~ (g/er)?,
so it will be small.

One potential class of materials to which our results can
be applied are Fe-based systems, in particular FeSe doped by
S, for which a nematic QCP separate from a magnetic QCP
has been detected, and this QCP is only slightly masked by
superconductivity [42]. However, for applications to Fe-based
systems, our analysis likely has to be modified. One obvious
reason is the multiband structure of Fe-based systems and
the rather small value of . But, there is also another, more
fundamental reason, related to the mechanism for nematicity.
In our approach, we assumed that a scalar field ¢ acquires a
nematic order independent on fermions. For Fe-based systems,
this would imply that nematicity develops via a structural
transition, i.e., that the order-parameter field ¢ is a phonon
field. In this case, fermions do modify the susceptibility of the
¢ field, but the transition itself happens even if the coupling
g vanishes. In Fe-based systems, nematicity is most likely of
electronic origin and is either a transition to a composite spin
order, or a Pomeranchuk instability of the Fermi surface. The
order parameter for a Pomeranchuk instability couples in a
minimal way to d-wave fermionic density, like in our model.
The difference is that in a Pomeranchuk case, the primary
nematic field ¢ is by itself bilinear in fermions and describes
d-wave collective charge fluctuations in a fermionic system.
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FIG. 7. Plots of the nonzero dynamic response for a nematic order parameter (with N = 1). (a) Dynamical response D”(q = 0,2) for
independent bosons (such as phonons near a structural transition) coupled to itinerant fermions. (b) Dynamical response x”(q = 0,%2) for a
system of interacting fermions only, such as a d-wave Pomeranchuk transition. In both cases, the low-frequency response is ~!/3 (dotted
reference line), in the region Q2 <« w;. The behavior does not change across the onset frequency for NFL behavior w,. At higher frequencies
Q > w, the response becomes linear. For a transition involving independent bosons, the linear behavior is masked by a peak near Q2 = .

As a consequence, the bosonic susceptibility is actually the
d-wave charge susceptibility of interacting fermions.

The model of interacting fermions near a d-wave Pomer-
anchuk instability is similar but not identical to the model of a
critical ¢ field coupled to fermions, and the distinction becomes
pronounced at q = 0 and finite €2,,. Indeed, the d-wave sus-
ceptibility of interacting fermions can, at least qualitatively, be
described within RPA. We label this susceptibility as x(q,$2,,)
to distinguish it from D(q,€2,,). We have

I1(q.£2)

1= Ug(q, Q) 7>

X(anm) =

where U; < 0 is an attractive fermion-fermion interac-
tion in a d-wave channel. At low frequencies, when
Qm < UF|<1|, H(q,Qm) =—a-+ VQ/(UFQ) + q2 + Qrzn/cz +

-+, where a >0, y, and ¢ are microscopic parameters.
Because the constant a term is the largest, I1(q,€2,,) in the
numerator in (75) can be approximated by a constant. In
the denominator, 1 — U,I1(0,0) is set to be proportional to
£72. Introducing xo to get x(q,0) = xo/|q|* at large enough
momentum, we obtain, at 2, < vrlq|,

X0
E24 g2+ Q2 /c + v I1Qul/(vrlg))

x(q,82) = (76)

This susceptibility has the same form as D(g,$2,,) in Eq. (13).2
However, in the opposite limit €2, > vrp|q| that we are
interested in, I1(q,€2,,) is small, and, to a good accuracy,
we just have x(q,Qy,) = —I1(g,2,). Then, x (q =0,Q) =

The presence of the £, term in the bare susceptibility in “fermion
only” is actually questionable as for a conserved order parameter
x(q = 0,2,,) must vanish for all €2,,, and for a nonconserved order
parameter we will argue that the effects due to nonconservation are
small at weak coupling. Also, it has been argued recently [34] that
the prefactor for the ¢ term in the denominator of x,(q,$2,,) may
actually be quite small, at least in some microscopic “fermion-only”
models.

—I"I”(q = 0,92). Using our results for I, we then obtain

, <g) B, 0 K QKL ep
X xN|— ~o\ 1/3
eF %C(”’if) L Q<o

&

(77)

where B, C are the dimensionless constants of order one, previ-
ously discussed in the text. Figure 1 depicts the susceptibility
over a range of frequencies, and Fig. 7 shows a comparison
between the susceptibilities of independent vs fully fermionic
nematic orders.

Strong, near-critical nematic fluctuations have been found
to be ubiquitous among Fe-based superconductors near optimal
doping [5,38,43,44], and many of these materials have a
substantially two-dimensional electronic structure. However,
the multiband electronic structure of these systems, as well as
the blurring of the Fermi surface due to thermal and disorder
effects, have been found to play an important role in the
Raman response of these materials [38—41]. We have not
taken such effects into account in this work, so our predictions
must come with additional conditions for their validity. Also,
our scaling forms apply to frequencies well above both T,
but still low enough that contributions from optical phonons,
among other excitations, can be neglected. For a review of
recent experiments and theories regarding nematicity in the
Fe-based superconductors, we refer to Refs. [38,43]. For a
further discussion of the relevance of our theory to these
systems, most especially S-doped FeSe, we refer to Ref. [45].
In this work, we also considered the form of the polarization
operator at a finite distance to a transition, when the correlation
length & is finite. We found that I17($2) oc &2 at the smallest
frequencies, i.e., the slope I1"(2)/ Q2 remains finite. At the
critical point £ = oo the slope diverges and IT"(2) o Q!/3, as
we found above. The real part of I1(€2) remains finite at the
transition, but strongly increases as the system approaches the
structural transition (see the inset for Fig. 2 in Ref. [45]).

VII. CONCLUSIONS

In this work, we computed the polarization bubble at zero
momentum and finite frequency, I1(q = 0,€2,,) for fermions
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at a QCP towards d,2.,» nematic order. The corresponding
order parameter is not a conserved quantity, hence there
is no conservation law that would require Il(q = 0,€2,,) to
vanish. We indeed found that Il(q = 0,£2,,) is nonzero, with
a constant as the leading term. The dynamic part I1(q =
0,,,) — I(q = 0,2, — 0) is proportional to |€2,,| at high
frequencies, crossing over to |$2,,|'/3 at lower frequencies.

Although our analysis relied on weak coupling to control the
calculations, we consider it plausible that similar phenomenol-
ogy may prevail in real materials, where the coupling is of order
one. In any case, proximity to a QCP with a nonconserved order
parameter must on general grounds lead to nontrivial dynamics
at zero momentum transfer. This regime is readily detectable
in experiments such as Raman scattering, but has not been
thoroughly explored in the theoretical literature. We hope our
work provides motivation for its further study.
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/ &Sk d®p Gk)G(k + p)K(k £ q,k)[G (k) — Gk + @)1D(p) f*(k + q/2) f2(k + p/2).

APPENDIX A: COMPUTATIONAL DETAILS OF THE
PERTURBATIVE EVALUATION OF ITV(q)

In this Appendix, we derive the results of Sec. III and the
first part of Sec. V. Namely, we calculate the diagrams of
Fig. 2, and show that incorporating the w*/? self-energy in the
fermionic propagator gives a response even for a constant form
factor. Our starting point is Eq. (17) for the three contributions
from the diagrams of Fig. 2. The calculation has three steps:
First, we identify contributions that contribute to the static
part I1(q,g0 = 0) and the dynamic part I1(q = 0,gp). Next,
we evaluate these contributions, including the Landau damping
term in the bosonic propagator, but take the free propagator for
fermions. We obtain Eq. (24). Then, we reevaluate the dynamic
part, taking into account the self-energy w?/? term, and show
that the polarization is nonzero even for f = 1. For simplicity,
in the Appendices, detailed calculations are performed for a
circular FS.

1. Perturbative evaluation of II for gy > wy

We start by splitting the two self-energy contributions using
the identity (20):

/ d’kd’ p G*(k)G(k + p)G(k £ q)D(p) f*(k = q/2) f*(k + p/2)

(AD)

The double Green’s function G(k) has no counterpart in the vertex correction and should be unrelated to the Ward identity since
it cannot be canceled out by the vertex part. It provides a static term oc|q|:

Nz
b= (zi 7 f d*kd’p G* (k)G (k + p)D(p) f>(k + p/IK Kk + q.k) f>(k + q/2) + Kk — .k) f*(k — q/2)].
0
(A2)
Evaluating for free fermions using Eq. (21) for K we get
g 2(k 2)— f2(k —q/2
o= B [ @k p GG+ D) e py2) B IE LA
Xo(2m) igo —vrk - q
gkr / ipodpo p*dpd¢ 2 : [0 +qsinb/2) — f( — gsin6/2)
= do (% 2 , (A3
Q) vp (ipo — vFp cos ¢)? P3+J/f2(¢)|Po|/va @+ psing/2) igo — vpq cos O (A3)

where cos§ = § - k, cos¢ =k - p, and we neglect the p3/c* term in D out of anticipation that its contribution can be neglected.
The contribution from the region cos ¢ ~ 0 is zero because of the double pole. Thus, the static part comes from processes beyond
the Eliashberg regime, i.e., by taking go — 0 in the first denominator of Eq. (A3). Taking the go — 0 limit we get

8

~

_ &8 %
721" (yu})

4/3

2/3 (f3>q21 (A4’)

where (f3) = (f2(f?)”). This correction is small in 1/y and can be safely neglected.
The leftovers from Eq. (A1) along with the vertex correction yield the dynamic part. Adding up the SE contributions we find

[SE _ Ng
d — 6
Xo(2)

/ &Pk d®p GR)G(k + p)D(p) f2(K + p/2)

x Ktk + .Gk +q) f2(k +4/2) + K(k — ¢,k)Gk — q) f*(k — q/2)]
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_ Ng
T xen)
+ Gk + @Gk + p + @)D(p) f2(k + p/2 + QK (k.k + )G k) f*(k + q/2)]
SAL - f d*kd’ p D(p)G(k)G(k + @)Kk + q) f*(k + q/2)
Xx0(27)
x [Gk+ p)fP(k+p/2)— Gk +p+q) fk+p/2+ql (A5)

For q — 0 we get

/ d*kd*p D(p) x [G(k)G(k + p)D(p) f*(k + p/2)K(k + ¢.k)G(k + q) f*(k + q/2)

x0(27)°

f &’k d’p GGk + )Gk + p)G(k + p + Kk + ;K (k + p + g: k + p)D(p) 2 (k) f2(k + p/2).
(A6)

Summing up the two terms gives Eq. (27), which does not assume anything about /C, i.e., is correct also for fermions with
self-energy included.
When using the dispersion for free fermions, we have

Ktk +q: )K"k + p+q.k+p)=ligo — ek + @) + eK)ligo — ek +p+q) + ek +p)]~' = 1. (A7)

The last equality is exact for any fermionic dispersion at q = 0. When using the bare theory, the XXC~! term disappears and we
can just expand the remaining angular function to second order in g /k sin ¢, where cos ¢ = k - §. Within Eliashberg theory,
after shifting p + k — k', the momentum integrations split into three sectors, two “fermionic” (transverse to the FS) and one
“bosonic” (parallel to the FS). Each fermionic sector is of the form

kr 1
I = | dkod*k G(k)G(k =—/dkdd
! / ok GG K +q) = | dhoderdd r 0 ik + q0) — oK)
_ 0
~ QnYike vr / iy 2E0 90 = O®0) _ o s / cal) (A8)
Lqo —q0 q0

Note that since q = 0, the residue of the integration over the momentum transverse to the FS has no dependence on the momentum
parallel to the FS. Finally, we are left with

0 0 /
dk dk F(Pr;
Idcxf _Of O/dd) — () (¢k/¢k+¢) . - . (A9)
—q0 90 J—go 90 p(@) + [2(O0(d.d)y ko — kyl/vF + ¢ (ko — k)* p(9)
Here, as in Eqgs. (38) and (B8), p,0 trace out the length and position of the bosonic momentum on the FS. F was defined in

Eq. (67). As usual, we split the integral into a static and dynamic part. In anticipation of the end result, we write these parts as
Mo, from Eq. (57), with the appropriate prefactors. The static part gives

2 2 _
s f2 = fd¢ F @) f (i + ¢/ )[fid)k) S (@ +¢>)]' (A10)
p(9)
For a circular FS we get
wo f2 ~ 2151 cos? )2 cos 4y — 1), (o f?) ~ 1.69. (Al1)
Next, we add and subtract the static part from Eq. (A9) to get the dynamic contribution
- %) 20(gx. ks—l '+ (krc) 2 pl2
kP =f2(¢/<)/ do 2O0(Pe.9))(vrky) 3)/_|f7o| (krc)“po ¢ . (A12)
er —oo ¢P + 209 (vrky) yIpgl + (kre) 2 pgd

where p, = ko — k. Here, we used the convergence of the momentum integration to expand F to second order and approximate
p(¢) = kr|¢|. Equation (A12) can be rescaled to give

/

VP
UFk%

13 /°° do F20) + |py/an [P
oo 1P+ F20) + ph 1|

B 5= fldo)
EF

7 11/3

Y40
Upk;

13
F(@) fill ol /1)

(A13)

Po
4o

Here, a)f = yc®/vp and f; is an interpolating function with the following limits:

20) A~ 2x2%
A= | TG e = 55T W< (Al4)
T+12/3
X2, x> 1.
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2. Perturbative evaluation of IIV) for gy « w, with self-energy
insertion and f =1

; s ; Supposing we introduce ¥ into the Green’s functions,
05 so now KK ! is no longer unity. Consider the case f = 1.
Lo Evaluating again in the Eliashberg approximation we find

0 0
’ ? ﬂ I; x / dko]C_l(ko + qo,ko)/ dk(/)’C_l(k(,) + 6]0,k6)
-0.5 -0.25 0.25 0.57 w0 / P
’C(ko + q07k(/)) - K(kO + CIO,ko) ko — k! —1/3
FIG. 8. f; foracircular FS. The thickline s f; /(2 x 237 /3+/3), x K (ko + qo.ko) X ko — kol
calculated numerically for f(¢) = cos2¢;. The dashed line is (A15)

| f(é)|?3, included for comparison.
Here, the KC~! factors have replaced the qy !factors in Eq. (A8).
Since the indices are arbitrary, we can symmetrize this expres-
sion and obtain

90 90 K' — K)?
See Fig. 8 for a depiction of f; in the low-frequency limit 1; x / dko/ dkéw x |ko — k|13, (A16)
Po KL 1. poand py = i)qo ft1dk(/qo are just the o, 11 given 0 0
in Eqs. (A10) and (A12). These in turn give the constants B,C  Thus, I, is by necessity nonzero. For £ ~ w??, we find that

in Egs. (23) and (24) [see Eq. (60)]. 1, scales as q(;/ .

J

APPENDIX B: DERIVATION OF BOSONIC AND FERMIONIC SELF-ENERGIES WITHIN
THE ELIASHBERG FRAMEWORK

In this appendix, we detail how to obtain the angular-dependent behavior for I1(g) and X (k), in the region ¢y < vp|q|,ky K
vr|K| [Egs. (33) and (36)]. Similar expressions, except for the functions A, in Eq. (38), have been found before (see, e.g., [27]).
The expression for IT is given in Eq. (29). Shifting momentum and integrating over momentum transverse to the FS, we find

kr /0 / if?(¢n) ke qy .,
I1 =N—— dk dp— = ~N 2). Bl
D =N s L 500/ =St —a/2) —vrqeosd—n) " 2rvp vplq] TP B

Next, we compute Eq. (36). Starting from the definition of Eq. (30), we have

7 . P&+ ip|
Yky=—"— [ d d — s B2
® <2n>3/ ”“/ PiEk+p)— ek +p) 1P + 7207 ol vr B2)

where p’ = Z x p. It is convenient to split X into a part that does not have f terms varying in the integrand and a part where the
variation of f is taken explicitly into account. Adding and subtracting this part we find

Y =y+6%, (B3)
where
z ) £ Ipl
Yok) = d d — ~
o0 =y / p°/ PiSt+ py—etk+ p) 1P + 20y [pol/vr
~ 55 [ap [ ap.d 2 VPt
~ear ) P S G ) —vr(pr + k0 (2 + P22 + 12y ol for
g 12 Ipyl 2/3
= d d — d - 1+ 0(k
Qny / pO/ Prisk+p) —vere k0 ) PP+ Py ipaer O
= iwy | FR)*Pk + 0(k)). (B4)

The line before the last is the essential step of the Eliashberg approximation. In the regime where k; ~ p, ~ £, we may neglect
p. in the bosonic propagator, up to order pi / pﬁ ~ ké/ 3, leading to the final line of Eq. (B4).
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Next, we compute § X, which in explicit form is

g 2 1
= = k
SE(K) (zn)3/dp0/d Psa T e O,

where

Ak +p/2)

(B5)

(B6)

Ok,p, po) = Ipl|:

PR+ 20y Ipol/ve  IpI + f2R)y|pol/vr

£k }

The frequency integration is dominated by the region |p|> ~ py < vp|p|, so we again evaluate it in the Eliashberg
approximation, integrating out the fermionic sector first. Again, it is convenient to split § ¥ /k( into a static and dynamic part.

The static part is just

~ g 2
5shy = —2— [ dpo | d*p—
o (271)3/ po/ PSS+ p)—etk+ p)

Evaluating the fermionic part first we get

8% (k) = 8Nr kofchp

)

o +9/2) — f2(¢>k)_

2(k+p/2) — [k
X|p|{f( +p/2) f()] &7

Ipl?

p(@)* B9

Here, p(¢) traces out the length of the bosonic momentum, stretching from the FS at ¢ to the FS at ¢, + ¢, where ¢ goes around
the unit circle. Equation (B7) yields the Aq term of Eq. (38). Thus, e.g., for a circular FS, p(¢) = 2k | sin(¢/2)|, and the result

of the integral is

X |p|

Ao 22 —2.157 cos(4¢y). (B9)
Finally, we compute the part of 6 X that depends on k¢ in a nonlinear way. After some manipulations of Eq. (B5) we find
g 2 1
83 (k) =—fd /d —
T ] P Ee et p)
~ 205 2(h
(f2(k+ p/z) _ fz(k))[l _ (1 + f (I‘lel);|170|)(1 + S (T;T’}\Pd)]
2By pol 2(P)y1pol
|p|3(1 + f lpr}po )(1 + [ ‘Ppl)gpo )
2 /’% 2(p) — F2(K 2
Lt

Equation (B10) yields A; in Eq. (40). The term on the final line of the equation has a form factor part that is O(1) even for |p| ~ O.
As aresult it contributes even in the regime |p| ~ pé/ 3, which is formally not within the Eliashberg approximation that assumes

Ip| ~ pé/ 3, However, the only effect of this is some modification of the functional form of 1;.

APPENDIX C: ELIASHBERG DENSITY VERTEX AND THE
RESULTS OF SEC.VC

In this appendix, we evaluate the density vertex function
for an incoming boson of small momentum within Eliashberg
theory:

Co(k; q) = T'o(ko.K; go,q).

Here, as usual k;q, respectively, denote the fermionic and
bosonic degrees of freedom. We used these results in Sec. V
and Appendix F. Our derivation generalizes the approach of
Ref. [15].

(ChH

J

C'(p;q)

ol(k;q) =

(

In calculations done within the Eliashberg regime, one
may generally take |k| —kr to be zero. This is because
internal fermionic degrees of freedom are within a distance
gy ~ @*3/N'/3 of the FS, whereas bosonic internal degrees
of freedom are at at a larger distance g, ~ (Nw)'/?. By
dimensional analysis we expect the vertex to depend on
q»,95/9» ~ 0. When we go beyond the Eliashberg regime,
we expect gr/q, ~ 1 and should be more careful. In this
section, we will provide general expressions for the vertex, and
specialize them to the relevant regions we used in the paper.

From Fig. 5, the integral equation for the full vertex I' is
given by Egs. (47) and (48). Explicitly, it is

FE2(52)Ip - K|

8 3
d — ~ .
@)} / p[iE(Po +q0) —e(p) —vrp - qlliZ(p+ q) — e(p) —vep - ql Ip — KI* + ¥ f2(P)|po — kol /vF

(€2
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From this point on, we choose q = g%, and assume implicitly that k£ ~ %. This choice allows us to avoid issues related with FS

curvature when & - q ~ q()

. Next, we specialize to the density vertex I'y. This is equivalent to dropping the internal angular

dependence of I" with the integral. We integrate over d¢, = dp.kr/vr in the fermionic sector and find

TCo(po,0; g0,9)
X(p+q)

8lg(k; q) =

= 0

=)
dpo

Q@) Jg

= 0

5/
=—3 dpo

(27[)2 —q0

where we defined i3 = vek? /y £2(k)| po — kol, and

TCo(p0.0; 90.9)
2(p+q)— X(p)+ivrg

dii
Lk / dé Ok.p, po — ko).
Po

(C4)
Here, ¢ is an integration along the FS, and ® was defined in
Eq. (BS). The d¢ integral in Eq. (C3) defines a function with
the following asymptotics:

() = / dx
0

Within our treatment, and neglecting u, the vertex correction
depends only on the momentum transfer perpendicular to the
FS and on frequency. Note that in Eq. (C3) the internal I'y no
longer depends on q or k. The reason for this can be seen by
looking at Fig. 9. Just by placing internal integration variables
on the “rungs” of the ladder, it is easy to see that even for k >
ké/ 3, pé/ 3 the internal rungs still contribute from regions close
to the FS. Only the last rung depends strongly on the external
legs. Physically, the interpretation is that even for excitations
perpendicular to the FS, it is possible to excite a large cloud of
virtual particle-hole pairs by making a single virtual transfer
to the vicinity of the FS. In any case, we see that for any 0 <
« < 1 the bosonic sector scales as [y f2(k)|qo — kol /vr]~'/3,
up to corrections of order 1. So, for all calculations performed
henceforth (and used in the body of the paper) we take g(k) =

2 24172 L, y>>1
(® +y?) _{zy ©s)

@2+ |35 vk L

k+p

FIG. 9. Ladder form of the vertex. (Left panel) A sample diagram
in the ladder expansion for the vertex I'g(ko,K; po,p). The momentum
k only appears on the outside legs and does not penetrate into the
internal ladder rungs. This is opposed to p which shows up on every
rung. The red bosonic lines depict internal lines belonging to segments
that can be evaluated with momenta on the FS itself. Only the last rung
of the ladder is forced, by the external legs, to have weight at a distance
g1 — kr from the FS. (Right panel) The effective vertex correction.
The red vertex is evaluated for k on the FS itself.

(r2+12)"”

= ; p ~
— S(p) +iveg / (p? + k2)3/2 + yfz(k)lpo — kol /v

v f4(k) (¢ 4 1) dp
’ / ap P @
y1po — kol (@*+2¥2+1  dpo
[
g(0). Combining factors together, we end up with
Al
2 Lo(p0,0; qo.q) wo f(k)
5F0 = = dpo = £ . X
3 T E(p+9) = E(p)+iveg | po—ko
LW Lo(po,0sq0.q)  dit
Q) "S(p+q) — £(p)+ivrgdpy
(Co)

This is just a more generic form of Eq. (50). Equation (C6) can
be solved generically via the ansatz

(iqo — vik - @QTo(k;q) = i E(k + q) — iS(k) — vrk - q]
=G 'k+q)—G'k), (CT)

which is just a Ward identity. However, recall that that Eq. (C7)
assumes implicitly that & - § ~ 1. Another implication of the
Ward identity is that far away from the FS, the fermionic w?/3
self-energy is cut off by the same scale that cuts of the vertex
correction, i.e.,

Xi(k,ko) ~ 2(ko)g< (C8)

i)

Ly f2(k) kol /vF]'/3 )
so it vanishes as k! in the large-k limit.

The leading-order form of the full vertex was already

derived in the paper itself, except for an explicit form of

Mo, 1. Expressions for these appear in the previous section,
Egs. (A10) and (A12).

APPENDIX D: DERIVATION OF EQ. (66) IN THE
RUNG-BY-RUNG ANALYSIS OF SEC. VD

In this appendix, we derive Eq. (66), the expression for the
polarization using fully renormalized side density vertices and
self-energies. To do so, we evaluate the diagrams of Fig. 6,
but now with fully dressed vertices and Green’s functions. The
expressions for the diagrams are

_ e 3 fd3k d*p G*(k)G(k + p)G(k £ q)D(p)
Xxo(2m)
x T3k £¢) f2 k) f2(k + p/2), (D1)
Ng

= Y / dkd®p Gk)Gk + ¢)G(k + p)

x Gk + p+q)D(p)Tolk; q) fK)To(k+p; q) f (K+p)
x f2(k+p/2). (D2)
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Here, we used the identity
Lotk —q:9) = To(k; —q) (D3)

which is a result of the Ward identity (C7), and the fact that
vertex corrections on the internal vertices are small. We also
use full Green’s functions, with the self-energy taken as the first
term in Eq. (36). The identity in Eq. (20) can now be written
in the form

Co(k; )Gk + q)G (k)
Co(k; q)

S q) - B0\ 0% — O+ a

- G- G+l
iqo —vrk - q
The static part of the polarization is computed by taking go —
0. In this limit, vertex corrections are negligible, and thus the
static part is still described by Eq. (A2). The dynamical part of
the self-energy for q = 0 is now

(D4)

Ng
x0(27)°
Totk —q:9) f(K)G(k — q) — To(k; q) f(K)G(k + q)

iqo

15 = / &k dp GG + p)D(p) 2k +p/2)

= 5 [ @rap GaoGE + D)k + B/
X0(2m)
x To(k; g)(=1)o(ko + po.kK + P; g0,.q = 0)

x Gk + p+q)Gk + p).

(D5)

Here, in the first line, we shifted the k integral of the first
termk — k + ¢, and then used Eq. (D4). By symmetrizing via
dp — dk' = d(k + p) we end up with Eq. (66). Then, as in
Appendix A 1, the integral splits into three: an integral over k|,
and integral over k', , and an integral over k| k| . Each transverse
integral limits the frequency regime to (—go,0):

/d3k Lotk )GHRIG(k + q) = ﬂﬁkw
0

The remaining integrals yield Eq. (68).

One last task is to check whether the dynamic part of IT is
ever negative, i.e., whether ( f») is ever positive. To check this,
note that we can define

1
gn(x) = f2(</>)[f/2(¢) + nTlf(qb)f”(qb)}
_ 1 4—n d2 n
= mf (¢)W (¢), (D7)
for n = 2,3,4. We then have
g3(x) = fa(x). (D8)

We will use g»,g4 which are simple to evaluate, so as to get an
expression for (g3). It is clear that

(g4) =0 (D9)

~( - -

FIG. 10. Higher-order Aslamazov-Larkin diagrams contributing
to the dynamic polarization. For coupling in the charge channel these
cancel out, and for coupling in the spin channel they contribute in the
same order as the vertex and self-energy diagrams of Fig. 6. The red
lines are the ones where form-factor variation is taken into account.

since g4 is a full derivative. In addition,
(g2) <O. (D10)

To see this, note that f(¢) is periodic, and hence so is f 2(¢),
so we may expand it in a Fourier series

LH@) =) (fne?. (D11)

Then, averaging g, yields

d¢1 20 P2\ 1 AN 2 2
/ 55U = 3 S U= @rm I b

= =272 " n?|(fl* < 0. (D12)
Finally,
(@ (@) = 2(g2(d) — ga(@)) = 3(g2).  (DI3)

Here, we subtracted the expressions in Eq. (D7) from one
another. Adding all this together we find

(fr@) = (g3) = (g2 — 317 f") = (82— 320)

= 1(g) < 0. (D14)

Therefore, ( f,) < 01isalways negative, so the nonconstant part
of the polarization is always positive for q = 0,q¢ # 0.

APPENDIX E: ASLAMAZOV-LARKIN (AL) DIAGRAMS
FOR II(q = 0,40)

In the body of the paper, we pointed out that the contribution
from the Aslamazov-Larkin diagrams, shown in Fig. 3 in the
regime go < wy, are of the same order in g and N as the self-
energy and vertex corrections of Fig. 2 (see Ref. [4]). In this
appendix, we review how this result comes about, evaluate the
diagrams, and show that they only serve to modify j,x; that
we found in Egs. (A10) and (A12).

We treat the AL contributions within the Eliashberg theory
for gy < wyp, as all results for frequencies above w, follow
directly from the Eliashberg treatment. In the same manner as
for the two-loop diagrams, the side vertices of the AL diagrams
are dressed with density vertices I'y, as depicted in Fig. 10.

The contribution from the AL diagrams is

N2 g2
s [ @k pd st pr2)

Xo@2m)

x Lo(k; q)G(K)G(k + q)G(k + p)D(p — q)D(p)

MaL(g) =
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x[G(KNGK + q)G(k' + p)f* (K +p/2)
+ Gk +)GKNGK' +q — p)f2(K —p/2)]
x To(k'; q) f(K). (E1)

Here, we shifted &’ — k’ + ¢ in the right-hand AL diagram.
The key to simplify Eq. (E1) is to note that xo D~'(p) = |p|> +
gII(p), so that the two bosonic propagators can actually be
factorized:

D(p)D(p — q) = xolg(p) — g1(p — @)1
x [D(p — q) — D(p)]. (E2)

Next, we use the Ward identity (52) to obtain

d3k
/ ST )GHG® + )G+ ) [0k -+ p/2

1
= G / (G — Gk + )]
x Gk + p) f(K) f*(k + p/2). (E3)

In what follows, we should properly symmetrize Eq. (E1) by
inserting appropriate shifts of p/2,q/2. This is because it is
necessary to track various angular expressions more accurately
than for the two-loop diagrams. To conserve space we do not
do so explicitly, and just point out where it is necessary. Now,
P is an internal integration variable so we can neglect vertex
corrections involving p. Therefore,

Vs [ @kewG + ok p/2)
)
gk n R
IRy LI / dkodp f(krk — p/2) f2ek)
2r)vr
1Ok + po/2) — iO(K) — po/2)
iS(k+ p/2)—iE(k — p/2) — vr|plcos(d, — dr)
~ y P 25 e x p - p/2)
vr|pl
v F ke x 2 —p/21)2
— 2T(p)f(p). (E4)

where in the second line we performed the symmetrization
shift. The two terms in f(p) arise from the fact that the angular
integration in Eq. (E4) has two peaks on opposite sides of the
FS. Thus, the integration over the d>k variables gives a factor
of f(p)[gI1(p) — gT1I(p — q)]. Then, we are left with

8
x0(27)°
xG(KG(K' + Gk + p)f*(K +p/2)
+G(K +q — p)f*K —p/DITo(k':q) f(K)

ﬁ / BHdp F@D(P)GK)GK + q)
0

x To(k';q) fFRWIGK + p +q)
— G + p1f>(K +p/2) + G — p)
— Gk — p+@lf* K —p/2)}. (ES)

Man(q) = —N / PR p FOID(p - q) - D(p)]

=-N

Equation (ES) shows that indeed the AL contribution is of the
same order as the two-loop contributions in both g and N.
Finally, we obtain

8
x0(27)°
GKk'+p+q)— Gk + p)

iqo
x f2(K' +p/2)8 f(p)

=N / LR d p D(p)GIHGK + q)
Xo(27)
x To(k'; )Gk + p + q)G(K' + p)F' (KK + p),

(E6)

[MaL(g) = =N

/ d*k'd*p D(p)GK )Gk + q)

x To(k'; q) fK)

where

FK:K +p)= fK) K +p/2)5f(p) (BT

and
8f(@)=F&.p)— f(-K,—p) (E8)

with
F'®) = 31f& +p/2)+ f(-K =3p/2)].  (E9)

To derive Eq. (E8), we used the relationship ¢, = ¢ + /2 +
¢ /2, and reversed the symmetrizing shift. We see that Eq. (E6)
is an analog of Eq. (66), with a somewhat different angular
component. For a purely even form factor, as for the nematic
one, the contribution is zero within our approximations.

APPENDIX F: POLARIZATION OPERATOR II(q - 0,4,)
BEYOND ELIASHBERG THEORY

In this final appendix, we compute the leading contribution
to I1(q = 0,qp) beyond Eliashberg theory. Within the Eliash-
berg treatment, we factorized the momentum integration,
namely, we integrated transverse to the FS in fermionic propa-
gators and neglected the transverse momentum component in
the bosonic susceptibility, i.e., approximated D(k) by its value
between the points on the FS. This approximation definitely
works for the leading, frequency-independent term in Eq. (59)
because it comes from parallel momenta of order kp and
transverse momenta of order qg/ 3 (this is the only option to
avoid g to a positive power in the overall factor). However, it
is not a priori guaranteed that within this approximation one
gets the leading frequency dependence of I1(q = 0,4o).

To verify whether the factorization of momentum integra-
tion is justified for the frequency-dependent part of I1(q =
0,490), we again repeat the procedure used in Sec. V D. Namely,
we select one segment from which we pick up the contribution
with the gradient of the form factor. In all other segments,
we neglect the variation of the form factor between incoming
and outgoing momenta of the interaction terms. However,
as opposed to the Eliashberg treatment, we do not factorize
the momentum integration in the segment with the gradient

of f(K).
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One may readily verify that beginning with Eq. (66), instead
of Eq. (68) we end up with

I1(q = 0,90)

dé dk
~ f = 5O) / il
(2m) T qo<lko| 40

x/dzk (ko + q0) — Z(ko)
[i £ (ko + qo) — vrk cos @][i E(ko) — vrk cos @]
k(k* sin” ¢)/ k2

X .

k3 + f20 + d)y ko + qol /vrky:
If we factorize the momentum integration into integration
over k| = k cos ¢ in the fermionic propagators and over k; =
ksing in the bosonic propagator, we reproduce Eq. (59).
If, instead, we subtract from the right-hand side of (F1) the

constant term and in the remaining part do not factorize but
rather assume that k; and k, are of the same order, i.e., that

(F1)

typical ¢ are of order one, we find that typical & in the integrand

are of order k'/3, typical ky are of order ¢y, and the frequency

dependence of Il(q = 0,qp) is in the form qé/ > In explicit

form, the qg/ 3 term, which we label a IT, is

8y wo 23
£F

gM(q = 0.90) ~ (f2)

@
wo

1/3
- (%) x [TI(q = 0,q0) — I1(q,0)], (F2)

where D ~ ¢2N?/g > A. Hence, within low-energy theory
(energies are smaller than A), the frequency dependence
coming from the integration range where internal momenta
along and transverse to the FS are of the same order, is much
weaker than the one coming from the range where momenta
transverse to the FS are much smaller than the ones along the
Fermi surface.
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