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Standard plane-wave pseudopotential (PWPP) calculations for slabs such as graphene become extremely
demanding, as soon as the exact exchange (EXX) of density functional theory is applied. Even if the Krieger-Li-
Iafrate (KLI) approximation for the EXX potential is utilized, such EXX-PWPP calculations suffer from the fact
that an accurate representation of the occupied states throughout the complete vacuum between the replicas of the
slab is required. In this contribution, a robust and efficient extension scheme for the PWPP states is introduced,
which ensures the correct exponential decay of the slab states in the vacuum for standard cutoff energies and
therefore facilitates EXX-PWPP calculations for very wide vacua and rather thick slabs. Using this scheme, it is
explicitly verified that the Slater component of the EXX/KLI potential decays as −1/z over an extended region
sufficiently far from the surface (assumed to be perpendicular to the z direction) and from the middle of the
vacuum, thus reproducing the asymptotic behavior of the exact EXX potential of a single slab. The calculations
also reveal that the orbital-shift component of the EXX/KLI potential is quite sizable in the asymptotic region.
In spite of the long-range exchange potential, the replicas of the slab decouple rather quickly with increasing
width of the vacuum. Relying on the identity of the work function with the Fermi energy obtained with a suitably
normalized total potential, the present EXX/KLI calculations predict work functions for both graphene and the
Si(111) surface which are substantially larger than the corresponding experimental data. Together with the size
of the orbital-shift potential in the asymptotic region, the very large EXX/KLI work functions indicate a failure
of the KLI approximation for nonmetallic slabs.
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I. INTRODUCTION

The exchange-correlation (xc) potential vxc at the surface of
a solid is the most important quantity when calculating its work
function or ionization potential using density functional theory
(DFT). Renewed interest in the xc potential at surfaces [1–20]
has been triggered by the observation that the exact exchange
(EXX) potential vx of DFT often differs qualitatively from the
potentials produced by conventional density functionals, such
as the local density approximation (LDA) or the generalized
gradient approximation (GGA). Most importantly, the exact vx

of finite systems falls off as −e2/r for large distance r from
the system [21], in contrast to the exponential decay of the
corresponding LDA/GGA potentials. In addition, EXX-based
approaches often yield clear improvements over LDA/GGA
functionals [22–45].

In DFT calculations, surfaces are often modeled in terms
of slabs. If sufficiently many atomic layers are included in the
slab, its surface provides a rather realistic account of the surface
of the corresponding bulk material. If necessary, quantities like
the work function can be extrapolated to infinite thickness
on the basis of several slab calculations for different slab
thicknesses. However, slabs are also of interest in themselves,
the most prominent example being single-layer graphene.

The exact vx and the corresponding EXX energy density
ex have been studied for both jellium slabs and semi-infinite
jellium by Sahni and collaborators [1–5] as well as Horowitz
and collaborators [6–9,11]. They showed [5,6] that the exact vx

of jellium slabs behaves as −e2/z far outside the surface, if the

electrons are confined to the region −L < z < L. Consistent
with the physical origin of this result, the self-interaction
correction terms in the EXX functional, the exact ex falls
off as −e2n/(2z), where n denotes the electron density [7].
As demonstrated later [12,13], both results also apply to
nonjellium slabs, for which one has a Bravais lattice in the
xy directions, rather than full translational symmetry,

ex(r)
z�L−−→ −e2n(r)

2z
, (1)

vx(r)
z�L−−→ −e2

z
(2)

(irrespective of the band structure of the slabs).
DFT calculations for slabs are often performed with

the plane-wave pseudopotential (PWPP) approach (see, e.g.,
Ref. [46]), which implies that the slab under consideration is
periodically repeated along the z direction [47]. The width
d̄ of the vacuum between the replicas of the slab and thus
the width d of the 3D unit cell (referred to as supercell) has
to be chosen sufficiently large, so that the replicas do not
interact with each other. The width required for a decoupling
depends on the range of the states and the Kohn-Sham (KS)
potential outside the surface of the slab. Since in this region
the states decay exponentially into the vacuum, local and
semilocal xc functionals, such as the LDA or GGA, lead to
an exponential decay of the xc potential. At the same time,
the ionic potential and the Hartree potential of the electrons
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cancel each other outside the surface region, as long as there is
no net macroscopic surface charge. For this reason often quite
moderate d̄ are sufficient for LDA/GGA calculations.

In practice, the plane-wave representation reproduces the
exponential decay of the KS states into the vacuum only over
a limited range. In the rest of the vacuum the PWPP states
oscillate around zero, with amplitudes whose size depends
on how far out the plane-wave expansion can follow the
exponential decay for given cutoff energy. While this numerical
noise is irrelevant for LDA/GGA calculations, the same is
not true for the EXX approach. This is most obvious if the
Krieger-Li-Iafrate (KLI) approximation [48] is employed for
determining the EXX potential [21,49–52]. Its main compo-
nent, the Slater potential, is the ratio of the local exchange
energy density and the density, vSlater(r) = 2ex(r)/n(r), which
is extremely sensitive to numerical noise in the states. For
this reason only quite limited d̄ could be realized in the first
EXX-PWPP calculations for slabs in Ref. [12], in spite of the
excessive cutoff energies utilized in this work.

Due to the limited d̄, the EXX-PWPP results of Ref. [12]
did not allow to draw definitive conclusions on the properties
of the EXX approach. Even for the simplest slab, graphene,
only the onset of the −1/z behavior of vSlater far outside the
slab, predicted by (1), could be observed. Moreover, while the
results for graphene indicated that a decoupling of the replicas
might be reached for values of d̄ not much larger than those
used for LDA/GGA calculations, this early decoupling needs
to be substantiated by calculations for larger d̄ and slabs of
nonzero thickness.

In this contribution, an extension scheme for the KS
states in the vacuum is introduced which allows EXX-PWPP
calculations for very large d̄ and standard cutoff energies,
thereby resolving the limitations of Ref. [12]. The extension
scheme is based on the analytical form of the states of a
single slab in the vacuum. These states are matched to the
numerical PWPP states at a suitable matching point sufficiently
far outside the surface. The resulting real-space states are
then used to calculate ex(r), n(r), and all other components
of the EXX potential in the KLI approximation. Due to the
clean asymptotic behavior of all components, the KLI potential
can be reliably calculated for d̄ as large as 500 Bohr. The
computational efficiency of the approach is demonstrated by
EXX/KLI calculations for graphene and several Si(111) slabs,
including an 18-layer Si(111) slab.

The paper is organized as follows. In Sec. II, the behavior
of the states of an isolated slab far outside the surface is
analyzed in detail, extending the discussion of Refs. [12,13]
to the next-to-leading order. The asymptotic behavior of
the states of an isolated slab is then used to correct the
numerical PWPP states for repeated slabs in the vacuum
region (Sec. III). Section IV summarizes the KLI approx-
imation for an isolated slab. Section V addresses the nu-
merical implementation of the extension scheme, introducing
several variants, which differ in accuracy and computational
efficiency. All numerical results are provided in Sec. VI. In
Secs. VI A and VI B, the quality of the extension scheme is
investigated, comparing the different variants. On this basis,
Secs. VI C–VI E then deal with the properties of the EXX/KLI
potential. Finally, Sec. VII summarizes the results and offers
some conclusions.

Since d̄ and d only differ by the fixed thickness of the slab,
the width of the vacuum will often be addressed in terms of d

in the following. Atomic units are used throughout this work,
unless explicitly stated otherwise.

II. ASYMPTOTIC BEHAVIOR OF STATES
OF SINGLE SLAB

Consider a total KS potential vs, which is periodic in the
xy directions, while it confines the electrons to the finite range
−L < z < L in z direction,

vs(r) =
∑

G

eiG·r‖ v(G,z). (3)

Here, r‖ = (x,y) and G is a vector of the 2D reciprocal lattice
in the xy directions. The corresponding KS states have the
form

φkα(r) = eik·r‖
√

A

∑
G

eiG·r‖ ckα(G,z), (4)

where k is the 2D crystal momentum. The normalization is
chosen so that ckα integrates up to 1 for a single 2D unit cell
of area A,

δα,α′ =
∫ ∞

−∞
dz

∑
G

c∗
kα(G,z) ckα′ (G,z). (5)

The coefficients ckα satisfy the KS equations on the reciprocal
lattice,

(G + k)2 − ∂2
z

2
ckα(G,z) +

∑
G′

v(G − G′,z) ckα(G′,z)

= εkα ckα(G,z). (6)

In Ref. [13], it has been shown that for the slab geometry
under consideration the exact exchange potential vx behaves as
−1/z for z → ∞. The same applies to the Slater component of
the KLI approximation for the EXX potential [12]. In addition,
one finds [53] that, in general, the next-to-leading order in the
Slater potential has the form −w/z2. In the following, vs(r) is
therefore assumed to have the asymptotic form

vs(r)
z→∞−−−→ −u

z
+ δv(z) + . . . . (7)

δv(z) could represent the potential −w/z2, but also other
correction terms to −u/z. On the reciprocal lattice, one then
has

v(G,z)
z→∞−−−→ δG,0

[
−u

z
+ δv(z)

]
. (8)

All components of v(G,z) with nonvanishing G decay faster
than 1/z.

In the following, the differential equation (6) is analyzed
for large z. The solution of this equation is complicated by
the fact that the amplitudes for different G are coupled by the
potential. In order to clarify their asymptotic behavior, we first
assume that for large z all amplitudes have exactly the same z

dependence,

c(G,z)
z→∞−−−→ a(G) b(z)
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(in the rest of this section the dependence of all quantities on
kα is omitted for brevity—only a single state is considered).
Under this assumption, all terms in the sum over G′ on the
right-hand side of (6) with G′ 	= G are suppressed by the factor
v(G − G′,z)/v(0,z), so that (6) reduces to the homogeneous
differential equation

∂2
z ch(G,z) = [(G + k)2 − 2ε + 2v(0,z)]ch(G,z). (9)

To leading order, the solutions of this equation with the
asymptotic potential (8) have the form

ch(G,z) = f0(G) c̄h(G,z), (10)

c̄h(G,z)
z→∞−−−→ zu/γ (G) e−γ (G)z, (11)

with

γ (G) = [(G + k)2 − 2ε]1/2. (12)

One thus ends up with a contradiction, since the z dependence
of the solutions (10) obviously varies with G.

In the second step, we analyze whether one can have a
finite number of c(G,z) which decay in exactly the same
way, while all other amplitudes fall off faster. The differential
equation for the set of asymptotically dominant amplitudes
is identical with (9), since the terms in (6) with G′ 	= G are
again at least suppressed by the factor v(G − G′,z)/v(0,z).
The asymptotically dominant amplitudes therefore have the
form (10). In order for them to show the same z dependence,
all γ (G) of this set have to be identical. This is obviously only
possible for k-points on the boundary of the first Brillouin zone
(BZ): for these k, one finds one G-vector with (G + k)2 = k2.
As soon as k belongs to the interior of the first BZ, the condition
(G + k)2 = k2 can no longer be satisfied. Consequently, there
is one amplitude that decays more slowly than all others. From
Eqs. (10)–(12), this asymptotically leading amplitude is easily
identified as c(0,z).

As soon as one wants to determine the z dependence of
c(G,z) beyond the asymptotically leading term, the coupling
of different G can no longer be neglected. Quite generally, the
solution of (6) can be expressed as [54]

c(G,z) = ch(G,z) + 2
∑

G′ 	=G

∫ z2

z1

dz′ G(G,z,z′)

× v(G − G′,z′) c(G′,z′), (13)

where G(G,z,z′) is the Green’s function corresponding to (9).
Equation (13) is valid in the range z1 < z < z2. However, the
boundaries can be chosen freely, as long as the z′ integral in (13)
exists and c(G,z) remains normalizable. If qh(G,z) denotes the
second, non-normalizable solution of (9), G can be written as

G(G,z,z′) = �(z − z′) c̄h(G,z) qh(G,z′)

+�(z′ − z) qh(G,z) c̄h(G,z′), (14)

with the normalization of qh(G,z) determined by

qh(G,z) ∂zc̄h(G,z) − c̄h(G,z) ∂zqh(G,z) = 1. (15)

For large z, the leading contribution to qh(G,z) is easily
specified,

qh(G,z)
z→∞−−−→ −1

2γ (G)
z−u/γ (G) eγ (G)z, (16)

so that G is known in the asymptotic region.
Now consider the solution (13) for the most weakly decay-

ing amplitude(s), so that γ (G) � γ (G′). If both z and z1 are
sufficiently large, all contributions to the second term on the
right-hand side of (13) can be rewritten as

2
∫ ∞

z1

dz′ G(G,z,z′) v(G − G′,z′) c(G′,z′)

z→∞−−−→ − 1

γ (G)

∫ z

z1

dz′ c̄h(G,z)
c(G′,z′)
c̄h(G,z′)

v(G − G′,z′)

− 1

γ (G)

∫ ∞

z

dz′ c̄h(G,z′)
c̄h(G,z)

c(G′,z′) v(G − G′,z′)

= − 1

γ (G)
c̄h(G,z)

∫ ∞

z1

dz′ c(G′,z′)
c̄h(G,z′)

v(G − G′,z′)

+ 1

γ (G)
c̄h(G,z)

∫ ∞

z

dz′ c(G′,z′)
c̄h(G,z′)

v(G − G′,z′)

− 1

γ (G)

∫ ∞

z

dz′ c̄h(G,z′)
c̄h(G,z)

c(G′,z′) v(G − G′,z′) ,

since (i) all c(G′,z′) decay at least as fast as c̄h(G,z′) and (ii)
v(G − G′,z′) falls off faster than 1/z. The first term on the
right-hand side of this equation, however, is simply a constant
times the solution of the homogeneous equation and can be
absorbed into the first term on the right-hand side of Eq. (13).
The remaining terms fall off as

c̄h(G,z)
∫ ∞

z

dz′ v(G − G′,z′),

if c(G′,z′) decays as fast as c̄h(G,z′) (which is only possible for
k on the boundary of the first BZ), or even faster for all other
G′. Consequently, Eq. (13) allows for iteration in the case of
the most weakly decaying amplitudes. In practice, only the
first-order corrections to ch(G,z) are relevant, so that one can
replace c(G,z) on the right-hand side of (13) by f0(G)c̄h(G,z).

In the case of all other amplitudes, there exist c(G′,z′),
which decay more slowly than c̄h(G,z′). For large z, the
right-hand side of (13) is dominated by the contribution(s) of
the most weakly decaying amplitude(s) to the sum over G′. If
G′ corresponds to the most weakly decaying amplitude(s), one
finds to leading order∫ z

z1

dz′ c̄h(G,z)
c(G′,z′)
c̄h(G,z′)

v(G − G′,z′)

z→∞−−−→ f0(G′) c̄h(G,z)
∫ z

z1

dz′ c̄h(G′,z′)
c̄h(G,z′)

v(G − G′,z′)

z→∞−−−→ ch(G′,z) v(G − G′,z)

γ (G) − γ (G′)
+ const × c̄h(G,z)

155112-3



EBERHARD ENGEL PHYSICAL REVIEW B 97, 155112 (2018)

and∫ ∞

z

dz′ c̄h(G,z′)
c̄h(G,z)

c(G′,z′) v(G − G′,z′)

z→∞−−−→ f0(G′)
∫ ∞

z

dz′ c̄h(G,z′)
c̄h(G,z)

c̄h(G′,z′) v(G − G′,z′)

z→∞−−−→ ch(G′,z) v(G − G′,z)

γ (G) + γ (G′)
.

Consequently, the leading contribution to c(G,z) is suppressed
by the factor v(G − G′,z) compared to c(G′,z). As a result,
iteration of (13) is again legitimate and can be restricted to
first order (see Supplemental Material [55]).

The asymptotically dominant contributions to all c(G,z) are
thus obtained from

c(G,z) = f0(G)c̄h(G,z) +
∑

G′ 	=G

f0(G′)c̄i(G,G′,z), (17)

with

c̄i(G,G′,z) = − 1

γ (G)

∫ z

z1

dz′ c̄h(G,z)

c̄h(G,z′)
c̄h(G′,z′)

× v(G − G′,z′)

− 1

γ (G)

∫ ∞

z

dz′ c̄h(G,z′)
c̄h(G,z)

c̄h(G′,z′)

× v(G − G′,z′) . (18)

If the amplitudes c(G,z) are known at some point z0, Eq. (17)
represents a set of linear equations for the coefficients f0(G).

In the case of the asymptotically leading amplitude(s), the
corrections c̄i(G,G′,z) decay faster than the dominant term
c̄h(G,z) by at least a factor of 1/z, resulting from

∫ ∞
z

dz′v(G −
G′,z′). Inclusion of the corrections in the asymptotic state is
only meaningful if also ch(G,z) is handled correctly to this
order. In order to determine ch(G,z) more completely, one has
to consider the homogeneous asymptotic differential equation
with δv taken into account,

∂2
z ch(G,z) =

[
γ 2(G) − 2u

z
+ 2δv(z)

]
ch(G,z). (19)

If the ultimately dominant behavior (11) is factorized out of
the solutions of (19),

ch(G,z) = f (G,z) zu/γ (G) e−γ (G)z, (20)

one arrives at the differential equation

0 = ∂2
z f (G,z) + 2

[
u

γ (G)z
− γ (G)

]
∂zf (G,z)

+
[

u

γ (G)

(
u

γ (G)
− 1

)
1

z2
− 2δv(z)

]
f (G,z). (21)

A rigorous solution of (21) requires a numerical inward
integration of f (G,z), starting with f (G,z∞) = 1 at some
suitable (large) point z∞ and fixing the normalization by
solution of (17) at the end point z0 of the inward integration.

This procedure is, however, not really necessary to obtain
accurate wave functions. As long as |δv| 
 γ 2 and |∂zδv| 

γ |δv|, the solution of (21) is, to leading order in the correction,

given by

f (G,z) = f0(G)

(
1 + u[γ (G) − u]

2γ 3(G)z

)

× exp

[
1

γ (G)

∫ z∞

z

dz′ δv(z′)
]
. (22)

One finds that the condition |∂zδv| 
 γ |δv| is well satisfied
for the slabs considered in this contribution.

To summarize, the asymptotic solutions of the coupled KS
equations (6) are given by Eqs. (17) and (18). Equation (17)
accounts in particular for (i) the coupling of all amplitudes with
G 	= 0 to the asymptotically dominant amplitude with G = 0
in the case of all states well inside the first BZ, and (ii) the
coupling of the two asymptotically dominant amplitudes in the
case of states on the boundary of the first BZ (or very close to
it). If the core element of these equations, the non-normalized
solution c̄h of the homogeneous differential equation (9) is
calculated from Eqs. (20) and (22), the result of (17) also
includes the leading corrections to the ultimate asymptotic
form (11) of the amplitudes.

III. EXTENSION OF 3D BLOCH STATES INTO VACUUM

In supercell calculations with repeated slabs, the Bloch
states are represented as

φkkzα(r) = eik·r‖+ikzz

√
	

∑
G,Gz

eiG·r‖+iGzz ckkzα(G,Gz), (23)

where 	 denotes the volume of the supercell. In the following,
the supercell is assumed to have the extension d in z direction
(	 = Ad) and to have its center at the center of the slab. If
d and therefore the width of the vacuum is sufficiently wide,
the states (23) are identical to the single slab states (4) over a
substantial range of z values (and essentially independent of
kz). In this range, the Fourier coefficients of the expansion (4)
are related to their 3D counterparts in (23) by

ckα(G,z) =
√

A

	
eikzz

∑
Gz

eiGzz ckkzα(G,Gz). (24)

The coefficients f0 of the asymptotic states (20),(22) can thus
be obtained from the supercell states at some suitably chosen
transition point z0 by solution of (17) or, if the coupling
of different c(G,z) is neglected in favor of computational
efficiency, directly from

f (G,z0) =
√

A

	

e(γ+ikz)z0

z
u/γ

0

∑
Gz

eiGzz0 ckkzα(G,Gz). (25)

Both approaches allow to extend the Bloch states within a
single supercell via

φkα(r) =
{

φkkzα(r) for 0 � z � z0

φ
asym
kα (r) for z0 < z < d/2

, (26)

φ
asym
kα (r) = eik·r‖

√
A

∑
G

eiG·r‖ f (G,z) zu/γ (G)e−γ (G)z, (27)
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with f determined by (22) in combination with either (17) or
(25). The range −d/2 < z < 0 has to be extended analogously.
Depending on the symmetry of the slab, the corresponding
extension point may have to be chosen different from −z0.

The extension (26) is specified explicitly for the supercell
centered at z = 0. The states in all other supercells are obtained
by periodic repetition (taking care of the phase eikzz). In
practice, only the lowest nonvanishing G need to be included
in the expansion (27), since the higher Fourier components
decay rapidly due to Eq. (20). Of course, only exponentially
decaying states can be extended using (27), i.e., the occupied
(and the lowest unoccupied) states.

IV. KLI APPROXIMATION TO THE EXACT
EXCHANGE POTENTIAL

The KLI exchange potential [48] consists of two contribu-
tions, the Slater term and the orbital-shift term,

vKLI
x (r) = vSlater(r) + vshift(r). (28)

The Slater term features the exact exchange energy density
ex(r),

vSlater(r) = 2
ex(r)

n(r)
. (29)

In the case of spin-saturated slabs, ex(r) and n(r) are given by

ex(r) = A

∫
1BZ

d2k

(2π )2

∑
α

�kα ex,kα(r), (30)

ex,kα(r) = −A

∫
1BZ

d2k′

(2π )2

∑
α′

�k′α′

∫
d3r ′

×φ
†
kα(r)φk′α′(r)φ†

k′α′ (r ′)φkα(r ′)
|r − r ′| , (31)

n(r) = 2A

∫
1BZ

d2k

(2π )2

∑
α

�kα|φkα(r)|2, (32)

where �kα denotes the occupation of the state kα and the k
integrations extend over the first BZ.

In Ref. [12], it has been demonstrated that vSlater decays as
the exact EXX potential,

vSlater(r)
z�L−−→ −1

z
+ . . . , (33)

since the EXX energy density satisfies Eq. (1).
The orbital-shift potential for slabs has the form

vshift(r) = 2 A

n(r)

∫
1BZ

d2k

(2π )2

∑
α

�kα�kα|φkα(r)|2, (34)

with

�kα =
∫

A

d2r‖
∫ ∞

−∞
dz

[|φkα(r)|2vKLI
x (r) − ex,kα(r)

]
. (35)

The asymptotic behavior of vshift has been investigated in
Ref. [56]. To leading order, the asymptotic behavior of both
the numerator and the denominator on the right-hand side of
Eq. (34) is controlled by the vicinity of the k-point(s) for which
the exponent γkα(G = 0) of Eq. (10) assumes its minimum
value in the integration region. Depending on the shape of

γkα(G = 0), one arrives at different results for the individual
BZ integrals in Eq. (34). However, proper normalization of the
total KS potential, i.e., Eq. (7), requires

vshift(r)
z→∞−−−→ 0. (36)

This normalization can be ensured by choosing

�qα = 0 (37)

for the k-point(s) q and band(s) α, which yield the lowest value
of γkα(G = 0) under the constraint �kα > 0. As a consequence
of (37), one obtains

vshift(r)
z�L−−→ us

z
(38)

for many types of band structures [56]. In practice, the
asymptotic behavior (38) is assumed only very far outside the
surface (compare Ref. [56] and Sec. VI C).

V. COMPUTATIONAL DETAILS: IMPLEMENTATION OF
KLI APPROXIMATION FOR SUPERCELL GEOMETRY

In PWPP calculations for slabs on the basis of supercells,
the Bloch states are represented by the 3D expansion (23),
restricted to the amplitudes with [G2 + G2

z]1/2 below some
3D cutoff momentum Gcut,

Ecut = G2
cut

2
.

Multiplications of and integrations over the states are usually
performed by suitably switching from the real-space grid to the
finite reciprocal lattice defined by Ecut and back via FFTs. If
the potential (28) is evaluated in this straightforward manner,
the limited cutoff energy of the plane-wave expansion (23)
restricts the width of the vacuum: as soon as the states fall
below a cutoff-dependent size, their exponential decay (10)
can no longer be numerically represented by (23) (compare
Fig. 5 of Ref. [12]). This limitation can not be overcome
by simply increasing Ecut. On the one hand, the compu-
tational cost becomes prohibitive with increasing Ecut. On
the other hand, there is some Ecut beyond which the finite
numerical representation of numbers limits the accuracy of
the leading Fourier amplitudes in (23), so that adding in yet
higher amplitudes does no longer improve the result. Thus
straightforward EXX-PWPP calculations can not be performed
for large vacuum width, even if one utilizes extremely high
cutoff energies.

However, at any stage of the evaluation of the KLI potential
(28), the 3D real-space states can be extended beyond the
stability regime of (23) by use of (26) and (27). This implies
that both ex,kα(r), Eq. (31), and the numerator of vshift(r),
Eq. (34), are evaluated in real space, before they are divided
by the real-space density (32). In this way, all components of
the KLI potential are numerically well-defined in the middle
of the vacuum, even if d becomes large. It turns out that only
quite moderate cutoff energies are required to obtain accurate
states and thus accurate KLI potentials in the vacuum. In fact,
the extension (27) is particularly insensitive to Ecut, if only the
asymptotically leading term is employed,

f (G,z) = f0(G). (39)
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A similar insensitivity is found, if the deviation of the asymp-
totic exchange potential from the leading term is modeled by
a δv of the form −w/z2. Compared to the complete neglect
of δv, this approach has the advantage that it ensures the
continuity of the total potential at the transition point (which is a
necessary requirement for obtaining smooth wave functions).
In the implementation of this extension scheme, u = 1 has
been employed, thus simulating the asymptotic behavior of
both vSlater and the exact vx of a single slab. δv then accounts
for both the deviation of vSlater from −1/z and the complete
vshift . In this case, (22) simplifies to1

f (G,z) = f0(G)

(
1 + γ (G) − 1

2γ (G)3z

)
exp

(
− w

γ (G)z

)
, (40)

w = −z0
[
z0v̄

KLI
x (z0) + 1

]
[v̄KLI

x (z) denotes the average value of the potential (28) in the
2D unit cell]. The stability of both (39) and (40) stems from the
fact that the coefficients f0 and w are determined completely
by the band energies and the potential at the point z0, but do
not require knowledge of δv for z > z0 (compare Sec. VI B).

Use of (22) with the actual δv, on the other hand, requires
slightly larger cutoff energies for given z0 than the simpler
approaches (or, alternatively, smaller z0 for given Ecut), since
the complete shape of δv enters. Equation (22) can be imple-
mented in two different ways. The first version simulates the
correct asymptotics of a single slab potential,

f (G,z) = f0(G)

(
1 + γ (G) − 1

2γ (G)3z

)
exp

(
− w

γ (G)z

)

× exp

[
1

γ (G)

∫ d/2

z

dz′ v̄shift(z
′)
]
, (41)

w = −z0[z0v̄Slater(z0) + 1],

where v̄shift(z) and v̄Slater(z) are the xy averages of the orbital-
shift potential (32) and the Slater potential (29), respectively.
Equation (41) accounts for the fact that vshift might decay as
us/z in the vacuum, in accordance with Eq. (38). If v̄shift(z) =
us/z, one has

exp

[
1

γ

∫ d/2

z

dz′ v̄shift(z
′)
]

=
(

d

2z

)us/γ

.

This factor restores the additional power-law contribution
z−us/γ required by v̄shift(z) = us/z in the asymptotic solution
[(d/2)us/γ just represents a renormalization of f0, since d is
fixed]. On the other hand, Eq. (41) implies a minor discontinu-
ity in the derivative of the potential, if the actual Slater potential
does not behave as −1/z − w/z2 in the transition region.

The second variant accordingly ensures consistence with
the true supercell potential,

f (G,z) = f0(G)

(
1 + γ (G) − 1

2γ (G)3z

)

× exp

[
1

γ (G)

∫ d/2

z

dz′
(

v̄KLI
x (z′) + 1

z′

)]
. (42)

1If w 
 γ z the exponential function can, of course, be expanded,
(1 + γ−1

2γ 3z
) exp (− w

γz
) ≈ (1 + γ−1

2γ 3z
− w

γz
).

As a result, this variant is particularly accurate in the transition
region. However, this comes at the price that the states do
no longer experience a −1/z potential in the middle of the
vacuum, where the supercell Slater potential differs from
−1/z. In this region, one would thus expect the extension (41)
to be closer to the single-slab situation than (42). It turns out
that the differences between (41) and (42) are quite limited
in practice. The more rigorous approaches (41) and (42) are
primarily used to verify the accuracy of the simpler schemes.

In principle, the extensions (39)–(42) can be combined
with either the solution of (17) or the uncoupled approach
(25). In the case of the lowest-order approach (39), however,
the inclusion of corrections resulting from coupling would be
inconsistent. Equation (39) is therefore always used together
with (25). This combination will be called leading-order only
(LO) scheme in the following. Similarly, the approximation
(40) is always combined with (25), with the intention to
establish a computationally efficient and robust, yet reason-
ably accurate approach. This scheme will be called simple
extension (SE). In the case of (41), results from combination
with (17), referred to as coupled isolated-slab (CI) scheme,
and (25), the uncoupled isolated-slab (UI) scheme, will be
compared. Finally, Eq. (42) is always combined with (17). This
approach is termed coupled repeated-slab (CR) extension in
the following.

Throughout this work, the Monkhorst-Pack scheme [57]
is used for k-point sampling, with a single sampling point
covering the z direction (and without any overall shift, i.e.,
the offset k0 of Ref. [58] is chosen to be zero). The normal-
ization condition (37) is then implemented for the k-point,
which yields the lowest exponent γkα(G = 0) on the discrete
Monkhorst-Pack grid (the accuracy of this normalization is
discussed in Sec. VI C; k-point grids are specified in terms of
the Monkhorst-Pack parameters, rather than in terms of the
actual number of grid points).

All calculations are based on the experimental lattice con-
stants (a = 4.65 Bohr for graphene, a = 10.26 Bohr for Si)
and the ideal crystal structure. The width of the supercell d is
always expressed as a multiple of the lattice constant a. The
correlation potential is omitted in all EXX/KLI calculations,
in order to extract the behavior of the EXX/KLI potential as
cleanly as possible.

VI. RESULTS

A. Extension of Bloch states

The obvious first question to be addressed is the accuracy
of the extension (27) of the Bloch states and, in particular,
the dependence of this scheme on the transition point z0. As
discussed in detail in Ref. [12], there is an intermediate range
of z values for which the states and potentials of supercell
calculations are close to the corresponding quantities of a single
slab. Consequently, z0 must neither be too small (otherwise
the asymptotic form of the states has not yet been reached)
nor too large, since in the middle of the vacuum between two
neighboring slabs the states (23) no longer experience a KS
potential decaying like 1/z. In addition, the magnitude of the
states at z0 has to be sufficiently far above the numerical noise
level to ensure an accurate evaluation of the Gz sum in (24).
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FIG. 1. Densities |φkα(r)|2 of occupied states of graphene as
functions of z for x = 9a

128 and y =
√

3a

32 : (a) k = ka, Eq. (45); (b)
k = kb, Eq. (46). Both the original numerical state (23) and its
extension by the SE approach are shown. z0 is defined by (44) with
s = 10−8 Bohr−3 (d = 10a ≈ 46.5 Bohr, Ecut = 1880 Ry).

An appropriate means for handling the transition point z0

is the average density of a Bloch state for given z,

nkα(z) = 1

A

∫
A

d2r‖ |φkα(r)|2, (43)

i.e., z0 is determined by the (outermost) point for which nkα(z)
falls below a predefined threshold s,

z0 = max {z|nkα(z) � s}. (44)

Figure 1 shows the occupied states of graphene for two
prototype k-points,

ka = 2π

a

(
−1

8
, − 1√

3

)
, (45)

kb = 2π

a

(
0, − 1

8
√

3

)
. (46)

For each state, the original numerical result (23), visible by
the fact that its decay is limited by the numerical noise level,
is compared to the extension (27), with f (G,z) resulting from
the SE scheme and s = 10−8 Bohr−3 (for further details see

α

|φ
kα

|

z

original

FIG. 2. Density |φkα(r)|2 of state α = 3 at k = kb, Eq. (46),
for different transition points from the numerical Fourier expanded
state (23) to the analytical asymptotic form (27), using the SE
scheme: comparison of transition points 4.02, 5.42, 6.89, and 9.04
Bohr resulting from s = 10−n Bohr−3 with n = 6, 8, 10, and 12,
respectively (x, y, d , and Ecut as in Fig. 1).

figure caption, all computational details are as in Ref. [12]; the
corresponding information on a 6-layer Si(111) slab is given
in Appendix A). In the case of Fig. 1(a), the transition points
are 6.46, 6.46, 5.92, and 8.72 Bohr for α = 1, 2, 3, and 4,
respectively; for Fig. 1(b), the corresponding z0 are 6.82,
9.51, 5.42, and 5.31 Bohr. As both figures demonstrate, the
extensions are indistinguishable from the original states over a
substantial range of z values. Differences only set in when the
original states reach the noise floor.

This observation is confirmed by variation of the transition
point. A particularly illustrative case to consider is the state
α = 3 at k = kb [see Fig. 1(b)]. The Fourier representation
(27) of this state is dominated by the components of the
lowest nonvanishing G-vectors. For small z, this state therefore
decays much more rapidly than the more deeply bound states
α = 1 and 2, for which the Fourier component with G = 0
dominates. However, ckα(G = 0,z) is nonzero also for the
state α = 3, which becomes visible beyond z = 8 Bohr and
ultimately lets this state decay more slowly than the lower-lying
states. By contrast, ckα(G = 0,z) vanishes completely for the
highest occupied state (α = 4), which therefore decays faster
than all others (at this k-point).

Figure 2 provides the variation of the SE result for the most
critical state with the transition point. Four different density
thresholds (10−n Bohr−3 with n = 6,8,10,12) are compared.
On the logarithmic scale of the figure the four variants are
essentially indistinguishable, which is quite remarkable in view
of the transition point z0 = 4.02 Bohr for the highest s.

Given the agreement observed, it is obvious that the more
accurate extension schemes cannot be distinguished from the
SE approach on plots such as Figs. 1 and 2. A more sensitive
quantity for an analysis of the continuity of the states at the
transition point and the dependence of the extension on z0 is
the logarithmic derivative

∂

∂z

ln[|φkα(r)|2] = ∂z|φkα(r)|2
|φkα(r)|2 . (47)

155112-7



EBERHARD ENGEL PHYSICAL REVIEW B 97, 155112 (2018)
∂ z

|φ
kα

|⁄
|φ
kα

|

z

original

FIG. 3. Logarithmic derivative (47) of state α = 4 at k = ka,
Eq. (45), for different transition points from the numerical Fourier
expansion (23) to the analytical asymptotic form (27), using the SE
scheme: comparison of transition points 6.57, 8.72, 10.84, and 12.88
Bohr resulting from s = 10−n Bohr−3 with n = 6, 8, 10, and 12,
respectively (x, y, d , and Ecut as in Fig. 1). Also shown is the LO
extension for s = 10−8 Bohr−3.

Figure 3 shows this quantity for the highest occupied state of
Fig. 1(a). Figure 3 confirms that the SE approach ensures al-
most continuous first logarithmic derivatives of the states. Only
a tiny spike right at the transition point indicates the extension.
This spike is primarily due to the truncation of the expansion
(27): only the star of the smallest nonvanishing G-vectors is
included in the extensions for all figures of this section (with
the exception of Fig. 4). The neglect of all higher G introduces
a minor discontinuity in the wave function, too small to be
visible in Fig. 1. Due to its origin, the magnitude of the spike in
the logarithmic derivative reduces substantially with increasing
z0, suggesting to avoid thresholds higher than 10−8 Bohr−3.
Alternatively, one can improve continuity by including larger
G-vectors in (27), as demonstrated below in Fig. 4. It seems
worthwhile to remark that even ∂2

z |φkα(r)|2/|φkα(r)|2 is more
or less continuous in the transition region, again with the
exception of a spike at z0. As a result, the derivative of (27)
remains almost identical with the derivative of the original state
until numerical noise starts to dominate the latter quantity. It
is thus no surprise that little deviation is found for different
transition thresholds.

In addition to SE results, Fig. 3 also provides the wave
function obtained with the LO scheme. The neglect of any
correction for the difference between the asymptotic EXX/KLI
potential and −1/z leads to a discontinuous derivative at the
transition point. However, ultimately the LO and SE wave
functions converge to the same asymptotic limit, so that the
simplest form re-approaches the continuous extension with
increasing z.

In order to examine the continuity of the states and their
derivatives in yet more detail, one has to display the ratio
between the extension (27) and the original numerical wave
function right after the transition point. Figure 4(a) shows
this ratio for the LO, SE, and UI extensions relying on the
uncoupled matching (25). If only the star of the lowest non-

|φ
kα

|
|φ
kα

|

z

≠
≠

≠
≠

|φ
kα

|
|φ
kα

|

z

≠
≠

≠
≠

FIG. 4. Ratio of extension (27) to numerical wave function (23)
in the vicinity of the transition point for Bloch state α = 4 at k = ka,
Eq. (45): (a) LO, SE, and UI extensions including only the star of
the lowest nonvanishing G-vectors vs SE including the stars of the
four lowest G 	= 0; (b) UI versus CI and CR extensions for differently
many G 	= 0 (z0 = 8.72 Bohr, x, y, d , and Ecut as in Fig. 1).

vanishing G is included in (27), the absolute value of the wave
function drops by 0.25% at z0 (for the present choice of s),
irrespective of whether the deviation of the potential from−1/z

is simulated by the SE form (40) or the UI variant (41). In
both cases, continuity of the states can be ensured by inclusion
of the four lowest stars of nonvanishing G. However, this
continuous extension soon approaches the restricted one, since
the additional components decay faster than the leading terms.
As a result, the neglect of higher G 	= 0 leads to inaccuracies
only close to the transition point.

Figure 4(a) reveals that a minor discontinuity remains in
the derivative of the states, even if higher G-vectors are
included. Moreover, the relevance of the higher G-vectors for
the continuity of the states points at the importance of the
coupling of different amplitudes via v(G − G′,z). Figure 4(b)
correspondingly provides results obtained with the coupled
scheme (17). Irrespective of whether the single-slab simulation
CI or the supercell implementation CR is used, only a tiny
discontinuity in the derivative is left. The reason for the
particular importance of coupling is that the state considered
in Figs. 3 and 4 corresponds to a k-point on the boundary of
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FIG. 5. Logarithmic derivative (47) of state α = 3 at k = kb,
Eq. (46) for different transition points from the numerical Fourier
expansion (23) to the analytical asymptotic wave function (27)
obtained with the SE scheme: comparison of transition points 4.02,
5.42, 6.89, and 9.04 Bohr resulting from s = 10−n Bohr−3 with
n = 6, 8, 10, and 12, respectively (x, y, d , and Ecut as in Fig. 1).
Also shown is the UI scheme for s = 10−8 Bohr−3.

the first BZ: the difference between the SE/UI schemes and
the CI/CR variants primarily originates from the coupling of
c(0,z) to the single amplitude c(G 	= 0,z) with γ (G) = γ (0).
One should note, however, that (i) the states on the boundary
of the first BZ are usually irrelevant for the asymptotics of the
potential (which is controlled by the most weakly decaying
states [56]), and (ii) the discontinuity of the SE derivative is
still of the same order of magnitude as that resulting from the
more advanced schemes.

Finally, Fig. 5 displays the logarithmic derivative of the
state considered in Fig. 2, for which k is close to the �-point.
Again, one observes an accurate reproduction of the original
state (wherever this state is meaningful) and invariance against
variation of z0. We just remark that the more advanced CI and
CR extensions can not be distinguished from the results of the
SE and UI approaches on the scale of Fig. 5.

To summarize, depending on the degree of continuity de-
sired and the transition threshold chosen, no more than a few of
the lowest nonvanishing G have to be included in the extension
(27). If only the lowest G 	= 0 is used, a minor discontinuity
of the state has to be accepted for the computationally more
attractive higher thresholds. This discontinuity leads to a small
spike in the derivative of the state. If one sets this spike aside,
the continuity of the derivative depends on the level of the
extension scheme. While complete continuity for all kinds of
states can be ensured by use of the CI and CR schemes, the
technically much simpler SE approach also leads to reasonably
continuous derivatives, in particular for states deep inside the
first BZ.

B. Extension of KLI exchange potential

The limited sensitivity of the states to the choice of both
the transition point and the extension scheme translates into
a similarly limited sensitivity of the KLI exchange potential.
In fact, the KLI potential is even somewhat less critical,

FIG. 6. Derivative of x-y-averaged vshift , Eq. (34), for graphene:
comparison of different transition points, resulting from UI scheme
and density thresholds s = 10−n Bohr−3. (a) vacuum width d = 7a,
n = 6−13; (b) vacuum width d = 10a, n = 6−12. The position of
the number indicates the associated transition point (Ecut = 1880 Ry,
8 × 8 k-point grid).

since inaccuracies in the numerator of vKLI
x , resulting from

the extension of the states, are partially compensated by the
corresponding inaccuracies in the denominator. It turns out
that the orbital-shift term (34) varies slightly more with both
z0 and the form of f (G,z) than vSlater, so that the discussion
will focus on vshift in the following.

Figure 6 shows the first derivative of vshift for graphene,
averaged over x and y, i.e., the G = 0 Fourier component.
As in the case of the states, the derivative ∂zvshift reveals any
discontinuity more clearly than the potential itself. Different
transition thresholds and two different vacuum widths are com-
pared on the basis of the UI scheme. Focusing first on Fig. 6(a)
(where d = 7a), one observes that ∂zvshift is independent of
z0 for all density thresholds above 10−12 Bohr−3. Starting
with s = 10−12 Bohr−3, one finds an obvious discontinuity
in ∂zvshift , which becomes quite large for s = 10−13 Bohr−3.
However, this is exactly the expected behavior: if the transition
points of the most weakly decaying states approach the middle
of the vacuum, a continuous extension of the states via Eq. (27)
is no longer possible. The discontinuity of ∂zvshift just signifies
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FIG. 7. Derivative of x-y-averaged vshift , Eq. (34), for graphene:
comparison of different extension schemes for (a) the transition region
(d = 10a, Ecut = 1880 Ry) and (b) very large z (d = 40a, Ecut =
520 Ry) (in all cases s = 10−8 Bohr−3, 8 × 8 k-point grid).

that the threshold is too low for the vacuum width under
consideration. Note, however, that Fig. 6 displays z2∂zvshift ,
which emphasizes differences for large z.

This interpretation is confirmed by Fig. 6(b) where d was
chosen to be 10a, just as in Figs. 1–5. Now a threshold of
10−12 Bohr−3 is unproblematic. Of course, a low threshold
requires a high cutoff energy, so that a less ambitious s is still
preferable.

Figure 7(a) shows the transition region on an enlarged scale.
The SE approach is compared to the UI and LO schemes, which
are also based on the uncoupled solution (25), as well as to the
more advanced CR scheme (the results of the CI approach
can not be distinguished from the UI data in all figures of this
section and are therefore suppressed). Figure 7(a) demonstrates
that the simple extension is very close to the more rigorous
approaches. On the other hand, the complete neglect of any
correction to the leading order leads to an obvious peak in
∂zvshift . However, even the LO extension is close to the true
result once the transition region is passed (note that the plot
shows z2∂zvshift).

Figure 7(b) provides a corresponding comparison for very
large z. Clearly, the structure of ∂zvshift resulting from the
different schemes is very similar, in spite of the fact that the

v
z

z

FIG. 8. x-y-averaged vshift , Eq. (34), for graphene: comparison
of different extension schemes (s = 10−8 Bohr−3, Ecut = 1880 Ry,
8 × 8 k-point grid).

function (40) rapidly approaches a constant with increasing
z, while the inclusion of the actual asymptotic potential in
the functions (41) and (42) leads to some variation of f (G,z)
also for large z. In fact, in the range considered, even the LO
extension is quite close to the correct result. Figure 7(b) also
demonstrates that the coupling of the c(G,z) via (17) is of
minor importance in the truly asymptotic region: the potentials
resulting from the UI, CI, and CR schemes are on top of each
other. For large z, the amplitude c(0,z) dominates over all
others for the most weakly decaying states in the vicinity of
the �-point [56]. The small differences observed in Fig. 7(b)
solely originate from the rigorous treatment of vshift in the UI,
CI, and CR schemes.

The potentials corresponding to the derivatives in Fig. 6
can not be distinguished, with the exception of the most
extreme case (d = 7a with s = 10−13 Bohr−3). The maximum
deviation between the vshift obtained for the different thresholds
is of the order of 0.1 mHa in the case of Fig. 6(b). The largest
deviation is always found close to the transition point of the
most weakly decaying state. Similarly, the differences between
the SE potentials and the results of the more accurate UI, CI,
and CR schemes are no larger than 0.1 mHa (compare Fig. 8).
Even the extension via only the leading order deviates from the
other schemes by less than 0.2 mHa. This error is accumulated
in the transition region and does not increase with z.

The variation of ∂zvSlater with the transition threshold and
the extension scheme can not be resolved on the scale used for
Fig. 6, even the second derivative of vSlater is almost continuous.
As a result, the differences between the Slater potentials from
different s are below 10 μHa even in the case of the SE
approach.

Moreover, the normalization of the KLI potential is con-
trolled by Eq. (37). The value of �qα , however, is essentially
independent of the form of vKLI

x in the extreme asymptotic
region in which the states are extended via (27). As a result, the
normalization of the potential and therefore all band energies
are highly independent of the extension scheme used: for
instance, the Fermi energy resulting from the SE approach
differs by less than 10−7 Ha from the result of the CR extension.
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TABLE I. Fermi energy of 6-layer Si(111) slab: EXX-only (in
KLI approximation) results as a function of the width of the vacuum
d̄ and k-point sampling (all energies in mHa). The last digit is only
given to demonstrate the convergence, but does not reflect the absolute
accuracy of the data.

d̄ k-point sampling
(a/

√
3) 8 × 8 16 × 16 32 × 32

4 248.33
6 247.93 247.08
8 247.81 247.05 246.94
10 247.75 247.04 246.94
20 247.58 247.01 246.93
40 247.49 246.99 246.93
80 247.43 246.98 246.93

For that reason all results for graphene in Secs. VI C–VI E
have been obtained with the SE scheme (with the exception of
Fig. 16).

Appendix A provides the counterparts of Figs. 7 and 8 for a
6-layer Si(111) slab. The variation of the asymptotic exchange
potential with the extension scheme is clearly larger than
observed for graphene, the reason being the less pronounced
minimum of the exponent γkα(G = 0) at the �-point (compare
Ref. [56]). In the case of very wide vacua, the deviation
between the various approaches becomes as large as 4 mHa
in the region about 100 Bohr outside the surface, if a high-
resolution k-point grid is employed. At the same time, the
Fermi energies resulting from the different schemes agree
within 1 μHa in the case of highly converged calculations.
For that reason all Fermi energies for Si(111) slabs reported
in Table I are based on the particularly efficient LO extension.
On the other hand, the data in Table II and the asymptotic
potentials in Fig. 17 were obtained with the CI approach.

The independence of the results from both z0 and the exten-
sion scheme even holds for extreme extrapolations, the reason
being that the ultimate asymptotic form (10) of the states only
depends on their eigenvalues, for which the proper normaliza-
tion of the potential is relevant, but not its precise asymptotic
decay. At the same time, the extension does not require very
high cutoff energies. Both properties are demonstrated in Fig. 9
for a particularly challenging situation, a 6-layer Si(111) slab

TABLE II. Work function of graphene as well as Si(111) slabs
(without relaxation): EXX-only (in KLI approximation) vs LDA
(with VWN correlation [63]) and PBEsol-GGA [64] results with and
without correlation. The experimental values for graphene [65] and
bulk Si are also listed (all energies in eV).

Si(111)
method graphene 6 layers 12 layers 18 layers

Expt. 4.6 (4.60)
LDA/VWN 4.55 5.05 4.89 4.91
PBEsol 4.23 4.68 4.54 4.56
LDA x-only 3.21 3.99 3.81 3.82
PBEsol x-only 2.89 3.66 3.51 3.52
EXX-only/KLI 8.57 6.72 6.52 6.53

v
z

z

FIG. 9. First derivative of x-y-averaged vSlater , Eq. (29), for a
6-layer Si(111) slab with d = 82a/

√
3 (32 × 32 k-point grid, LO

extension).

with the exceptional vacuum width of 480 Bohr. In analogy
to Fig. 6 the derivative of vSlater is plotted, which exhibits
numerical noise and lack of convergence more clearly than
the potential itself. Figure 9 shows that the derivative of vSlater

is fully converged for an Ecut of 40 Ry.
A similar insensitivity is observed for vshift and in the case

of other slabs. In fact, if an Ecut of only 60 Ry is used for the
calculations underlying Figs. 10 and 11, the resulting vSlater

is indistinguishable from the data plotted (provided that the
transition threshold controlling z0 is reduced accordingly).
Essentially the same applies to the derivative of vSlater, only
in the transition region for the various states differences of
1%–2% are observed, depending on the particular choice for
the threshold. Even for moderate cutoff energies and very wide
vacua, the potentials resulting from the extension procedure
are numerically stable and accurate. Many figures of this
contribution, in particular Figs. 6–8, nevertheless rely on a
rather high Ecut in order to allow use of very low density
thresholds for the transition point and to extract even minor
inaccuracies.

C. KLI exchange potential: k-point convergence

Before a discussion of the asymptotic form of the EXX/KLI
potential, the convergence of vKLI

x with the number of k-points
has to be addressed. It is instructive to analyze the components
(29) and (34) separately. We start with vSlater, using again
graphene as a prototype example. As is well known, application
of the EXX to metals requires notoriously many k-points to
integrate over the BZ, so that the presence of the Dirac points
for graphene indicates that some care might be necessary.
Figure 10 shows the dependence of vSlater on the k-point
sampling for a vacuum width of d = 10a. Both vSlater itself and
its derivative with respect to z are shown. The scaled derivative
z2∂zv(z) is a particularly sensitive quantity, which allows to
extract the deviation of v(z) from −1/z most clearly, and is
therefore included in all subsequent figures. The results of
the k-point sampling with a 24 × 24 Monkhorst-Pack grid are
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FIG. 10. Convergence of (a) x-y-averaged vSlater , Eq. (29), and (b)
its first derivative with respect to z with k-point sampling. The k-point
grids used are characterized by the Monkhorst-Pack parameters [57]
(d = 10a = 46.5 Bohr, Ecut = 520 Ry, SE scheme).

indistinguishable from those obtained with the much coarser
8 × 8 grid.

The situation is, however, different for wider vacua, as
illustrated in Fig. 11. It needs at least a 24 × 24 grid to obtain
converged results for d = 40a. The reason for this sensitivity is
the unsophisticated handling of the EXX Coulomb singularity
in the present work, which follows the scheme introduced in
Ref. [59] (with a correction term2). As soon as the cells in
the BZ covered by a single sampling point become too flat
(due to large d), the discrete sampling of the BZ starts to
fail. It remains to be seen whether any of the more advanced
approaches for handling the Coulomb singularity in the exact
exchange [27,28,36,60] improves the convergence.

Turning to vshift , Eq. (34), the convergence with the k-point
grid is investigated in Figs. 12 and 13 ford = 10a andd = 40a,
respectively. For both d, the derivatives of vshift obtained from

2The correction term for the Coulomb singularity is a reduced
version of the correction introduced in Ref. [78]: only the major
contribution to the Duchemin and Gygi correction is included, which
can be done at absolutely no computational cost.

v
z

z

v
z

z

FIG. 11. As Fig. 10 for d = 40a = 186 Bohr. For z < 10 Bohr,
the potentials of panel (a) can not be distinguished from the corre-
sponding results in Fig. 10(a).

different k-point grids are almost identical (with the exception
of the very coarse 8 × 8 sampling for d = 40a), so that the
corresponding potentials can only differ by some constants.
Convergence of the normalization of vshift , however, requires
a quite dense k-point sampling: the accuracy of the overall
normalization depends on how close the discrete k-point
grid comes to the point k = q at which γkα(G = 0) has its
minimum (for graphene this is the �-point). It needs at least a
24 × 24 Monkhorst-Pack grid to obtain fully converged results,
irrespectively of the value of d. Convergence can be improved
by shifting the standard Monkhorst-Pack grid such that one
of its k-points agrees with q (which has not been done in this
work). One has to emphasize, however, that even the 8 × 8 grid
leads to an error in normalization of no more than 2 mHa.

D. KLI exchange potential: asymptotic form

On this basis one can now examine the asymptotic behavior
of the KLI exchange potential. Its Slater component shows
exactly the expected shape in the vacuum [12]: it is close to
−1/z in the range L 
 z 
 d/2 and bends around when z

approaches d/2 (see Figs. 9–11). The convergence of vSlater

against −1/z with increasing d is displayed in Fig. 14, once
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FIG. 12. Convergence of (a) x-y-averaged vshift , Eq. (34), and (b)
its first derivative with respect to z with k-point sampling. The k-point
grids used are characterized by the Monkhorst-Pack parameters [57]
(d = 10a = 46.5 Bohr, Ecut = 520 Ry, SE scheme).

more for graphene. The potential from d = 40a can not be
distinguished from −1/z on the scale of Fig. 14(a).

The stability of vshift under variation of d is already indicated
in Figs. 12 and 13. Figure 15 explicitly confirms this invariance.
Neither the potentials from different d nor their derivatives can
be distinguished, the normalization of vshift is independent of
d. However, these figures also show that vshift remains sizable
for rather large z, quite different from its rapid decay in the
asymptotic region of atoms. On the one hand, one observes a
peak around 40 Bohr, whose amplitude of 14 mHa is of the
same order of magnitude as the 25 mHa depth of the Slater
potential. On the other hand, Fig. 13(b) illustrates the z−1

dependence of vshift for very large z, predicted by the analytical
result (38) [Fig. 13(b) indicates that us ≈ 1/4 for graphene].

An early decay of vshift is prevented by the fact that the
most weakly decaying states dominate the density only for
very large z. This is obvious from Fig. 1(b), which shows the
most weakly decaying state3 for the case of the 8 × 8 k-point
grid: the state α = 3 at k = kb ultimately vanishes more
slowly than all other states, as it has the lowest γkα of all
occupied states with f0,kα(G = 0) 	= 0 (on the 8 × 8 grid).

3Of course, this state stands as representative of the complete set of
states at equivalent k-points.

v
z

z

v
z

z

FIG. 13. As Fig. 12 for d = 40a = 186 Bohr. For z < 20 Bohr,
both the potentials and their derivatives can not be distinguished from
the corresponding results in Fig. 12.

Its amplitude f0,kα(G = 0) is, however, quite small, so that
this state starts to dominate the complete density no earlier
than beyond 50 Bohr. Since vshift is the ratio of a sum over
the Bloch state densities with weights given by �kα and the
density itself, vshift is bound to exhibit some structure until
finally the asymptotically dominating states control both the
numerator and the denominator. Unlike assumed in Ref. [12],
there is a mechanism which introduces a length scale into the
KLI exchange potential much larger than a.

The small amplitude f0,kα(G = 0) of the most weakly
decaying state is a manifestation of the fact that one has
f0,kα(G = 0) = 0 for the two degenerate highest occupied
states at the �-point, for which γkα assumes its minimum value
in the BZ (see Fig. 1 of Ref. [56]). The amplitude f0,kα(G = 0)
builds up only slowly, when one leaves the �-point. As a result,
the asymptotic behavior is approached particularly slowly in
both the numerator and the denominator of (34).

Taking Figs. 14 and 15 together then shows that the
complete EXX/KLI potential inside the slab and in the surface
region is invariant under variation of d. In fact, the well depth
is converged already for quite moderate vacua.

Figure 16 finally compares the total EXX/KLI potential
of graphene with −1/z. The deviation of vKLI

x from −1/z

in the region around 40 Bohr, resulting from the long-range
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v
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z

v
z

z

FIG. 14. Convergence of (a) x-y-averaged vSlater , Eq. (29), and
(b) its first derivative with respect to z with the width of vacuum d .
All results have been obtained with the SE scheme. For z < 5 Bohr,
the potentials of panel (a) can not be distinguished from the result in
Fig. 10(a).

structure in vshift , is obvious. On the other hand, vKLI
x is quite

close to −1/z for the largest z values displayed in Fig. 16.
This agreement is, however, produced by a fortuitous error
cancellation between vSlater and vshift . Due to the supercell
geometry vSlater has a vanishing derivative in the middle of the
vacuum [compare Fig. 11(b)] and is therefore more attractive
than −1/z in this region. At the same time, vshift has a repulsive
1/z-behavior for large z (compare Fig. 15).

An analogous comparison for a 6-layer Si(111) slab is
given in Fig. 17. Again vSlater is very close to −1/z as soon
as one is sufficiently far outside the surface (the outermost
layer of atoms is located at z ≈ 8.9 Bohr). The total EXX/KLI
potential, however, differs dramatically from −1/z in the
complete range displayed. While vshift does not show any
peak structure, its depth dominates over that of vSlater for quite
large z.

E. Work function, band energies

In view of the early convergence of vSlater and vshift with
d it is no surprise that the corresponding Fermi energy is
equally invariant (see Fig. 18). εF directly reflects the error

v
z

z

v
z

z

FIG. 15. Convergence of (a) x-y-averaged vshift , Eq. (34), and (b)
its first derivative with respect to z with the width of vacuum d . All
results have been obtained with the 24 × 24 k-point grid and the SE
scheme. For z < 10 Bohr, both the potentials and their derivatives
can not be distinguished from the corresponding results in Fig. 12.

in the normalization of vshift , resulting from application of
(37) to the discrete numerical k-point grid (the error amounts
to about 0.06 eV in the case of the 8 × 8 grid). Since the
total electrostatic potential has been normalized to zero in
the middle of the vacuum in this work, εF is identical with
the work function [61,62]. Figure 18 thus confirms the large
EXX/KLI work function for graphene reported in Ref. [12]. In
fact, the work function has even been slightly underestimated in
Ref. [12], where the normalization of the EXX/KLI potential
was based on the assumption that vshift is negligible for z �
8 Bohr.

Figure 18 also supports the reliability of the vacuum width
of d = 7a used in Ref. [12]. Even the Fermi energy emerging
from d = 5a differs by no more than 15 meV from the
converged result.

The early convergence of εF is not restricted to graphene.
Table I provides analogous data for a 6-layer Si(111) slab. The
difference of about 1 mHa between the converged Fermi energy
(obtained from a very wide vacuum and a high resolution
k-point grid) and the εF from a standard vacuum and coarse
k-point grid demonstrates that EXX/KLI calculations can be
performed in a computationally efficient way in practice.
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v

z

z

FIG. 16. x-y-averaged vKLI
x , Eq. (28), of graphene in comparison

to −1/z (32 × 32 k-point grid, CR scheme).

While the work function is sensitive to the overall normal-
ization of the potential, many other quantities are not. As an
example, Fig. 19 shows the band energies of graphene at the
�-point as functions of d, normalized to the highest valence
band energy. Similar to εF, the occupied and lowest unoccupied
bands are converged already for d = 5a. The more delocalized
higher states start to become affected as soon as their spatial
extension is of the same size as d. Moreover, the transition
energies between the bands are completely independent of
the k-point sampling: already the 8 × 8 grid gives converged
results.

The insensitivity of the band energies to the width of
the vacuum is not restricted to the �-point, as demonstrated
in Fig. 20. The occupied bands obtained with d = 40a are
indistinguishable from those resulting from the quite moderate
vacuum of d = 4a, and even the lowest unoccupied bands
are close. Note that the band energies in Fig. 20 are not
normalized to each other, but rather represent the data in
absolute normalization.

The EXX/KLI Fermi energies obtained with the extension
scheme are compared with corresponding LDA and GGA
values as well as with experimental work functions in Table II.

v
z

z

FIG. 17. x-y-averaged vKLI
x , Eq. (28), of a 6-layer Si(111) slab

with d = 82a/
√

3 in comparison to −1/z (32 × 32 k-point grid, CI
scheme).

ε

d

FIG. 18. Fermi energy εF of graphene: convergence with vacuum
width d for different k-point grids. Lines are drawn to guide the eye.

In addition to graphene, Si(111) slabs of different thickness
are included. Table II first of all demonstrates that plane-wave-
based EXX/KLI calculations can be performed for rather thick
slabs and reasonably wide vacua, if the extension scheme is
combined with moderate cutoff energies. At the same time,
the results for the Si(111) slabs are in line with the overes-
timation of the experimental work function by the EXX/KLI
approach observed for graphene. The EXX/KLI work function
of 6.53 eV obtained for the 18-layer slab should already be
close to the extrapolated value for infinite slab thickness, but is
far beyond the experimental work function of the (111) surface
of bulk Si. It seems worthwhile to emphasize that this deviation
can not be explained by the neglect of relaxation and surface
reconstruction in the present work, since both effects reduce
the work function of Si(111) by less than 0.3 eV [66].

One can explicitly verify that the depth of the exchange
potential inside the slab is responsible for this large work
function. The EXX/KLI potential inside graphene is on average
about 5.4 eV deeper than its LDA counterpart, as Fig. 21(a)

ε k
α

d

FIG. 19. EXX/KLI band energies εkα of graphene at �-point:
convergence with vacuum width d for different k-point grids. The
eigenvalues are normalized to the highest valence-band energy. Lines
are drawn to guide the eye.
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FIG. 20. EXX/KLI band structure of graphene: convergence with
vacuum width d .

shows. Similarly, one extracts a difference in well depth of
roughly 3 eV for the 6-layer Si(111) slab from Fig. 21(b). Both
numbers are in good agreement with the differences between
the corresponding work functions in Table II.

v
z

z

Si 6 layers

v
z

z

FIG. 21. xy-averaged exchange potential: EXX/KLI result versus
LDA (x-only) for (a) graphene and (b) a 6-layer Si(111) slab.

Table II also indicates the role of correlation. In the case
of LDA and GGA calculations inclusion of the correlation
potential enhances the work function of all slabs considered
by more than 1 eV and the same is true if LDA or GGA
correlation is added to the EXX/KLI exchange potential (for
instance, LDA correlation leads to an increase of 1.38 eV in
the case of graphene). This observation should, however, not be
interpreted as a proof that the correlation potential necessarily
increases the work function. As Fig. 21 shows, it is primarily
the asymptotics of the xc potential, which determines the well
depth of the total KS potential. Moreover, there are indications
[10] that a more accurate correlation potential such as the
orbital-dependent RPA will lead to a −1/(4z) behavior of the
complete xc potential in the case of metals. One can not exclude
that a reduced well depth and thus a reduced work function is
obtained by inclusion of an appropriate correlation potential
also for the present, nonmetallic slabs. However, it seems very
unlikely that the correlation potential can come up for as much
as 4 eV for graphene and 2 eV for Si(111). Consequently, the
rather large EXX/KLI work functions point at a deficiency of
the KLI approximation in the asymptotic region of nonjellium
slabs.

VII. SUMMARY AND CONCLUSIONS

In this work, it has been demonstrated that EXX-PWPP
calculations in the KLI approximation can be performed for
rather thick slabs and very wide vacua, if a real-space extension
of the Bloch states into the vacuum is applied. The extension
scheme introduced in Sec. III is robust, i.e., insensitive to
the transition point between the raw numerical states and
their analytical extension, and efficient, since (i) only few
in-plane G-vectors need to be included in the extension and
(ii) the corresponding amplitudes can be accurately determined
already for moderate plane-wave cutoff energies. The matching
procedure ensures a high degree of continuity of the states,
in particular, if the next-to-leading order contribution to the
asymptotic form of the states is properly included in the
extension. The resulting 3D periodic states mimic the states
of a single slab as much as possible. They deviate from the
exact solutions of the supercell problem only in the middle of
the vacuum, where the exact states have a vanishing derivative
with respect to z (compare Fig. 1 of Ref. [12]).

On this basis it has been verified that the Slater potential
obtained by PWPP calculations is close to −1/z in an extended
region far outside the slab and far from the middle of the
vacuum, as predicted in Ref. [12]. However, the results also
reveal that the second component of the EXX/KLI potential,
the orbital-shift term, is still sizable in this region. This effect
primarily originates from the subtle competition between the
states dominating close to the surface and those dominating
for z → ∞ in both the numerator and the denominator of
the orbital-shift term. This competition can even lead to
some structure in the orbital-shift potential far outside the
slab. The numerical results also confirm the asymptotic 1/z

behavior of the orbital-shift potential, predicted in Ref. [56].
The asymptotic behavior of the complete EXX/KLI potential
thus deviates from the −1/z decay of the exact EXX potential.

This deviation raises some doubts concerning the well depth
of the EXX/KLI potential inside the slab, since the well depth
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FIG. 22. Densities |φkα(r)|2 of valence states of a 6-layer Si(111)
slab as functions of z for x = 9a

40
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2
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√
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20 ; k = 2π

a
(1/

√
32,0).

Both the original numerical state (23) and its extension by the UI
approach are shown (s = 10−8 Bohr−3, d = 12a/

√
3 ≈ 70.9 Bohr,

and Ecut = 320 Ry).

is intimately linked to the form of the potential for large z. An
incorrect well depth would lead to an incorrect work function.
If one relies on the identity of the work function with the Fermi
energy [61,62], the present EXX/KLI calculations predict a
work function for graphene which is 4 eV higher than the
experimental value. Similarly, the EXX/KLI Fermi energy of
the 18-layer Si(111) slab is 2 eV above the work function of the
(111) surface of bulk Si (while an 18-layer slab yields a work
function quite close to the bulk value in the case of LDA/GGA
calculations).

These results are in obvious contrast to the good agreement
of the KLI approximation with the corresponding exact EXX
potential in the case of (i) a quasi-two-dimensional electron
gas [14] and (ii) EXX-PWPP calculations for graphene with
a very moderate vacuum width [12]. The latter comparison,
however, did not probe the KLI well depth inside the slab on
an absolute scale, since the narrow vacuum did not allow an
absolute normalization of the potentials. The agreement of the
KLI approximation with the exact EXX potential of nonjellium
slabs in an extended region outside the surface remains to be
investigated explicitly.

Lacking an implementation of a correlation potential suit-
able for use with the exact exchange, such as the orbital-
dependent RPA [26,29,67–77], the EXX calculations in this
work have been performed without any correlation. Clearly,
augmentation of the EXX potential by an LDA/GGA corre-
lation potential increases the well depth inside the slab even
further and thus enhances the work function. While the same
need not be the case for a more suitable correlation potential,
it is difficult to conceive that a correlation potential can lower
the work function of graphene by as much as 4 eV. The results
thus hint at a failure of the KLI approximation.

Nonetheless, the KLI results allow an examination of the
convergence of EXX calculations with respect to the width of
the vacuum. After all, the KLI exchange potential features a 1/z

behavior for very large z and seems to be even more attractive
than the exact EXX potential in an extended region outside
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FIG. 23. Derivative of x-y-averaged vshift , Eq. (34), for a 6-layer
Si(111) slab with d = 12a/

√
3: comparison of LO, SE, UI, and CR

results for s = 10−8 Bohr−3 (Ecut = 80 Ry, 8 × 8 k-point grid) with
LO potential for s = 10−12 Bohr−3 (Ecut = 640 Ry, 8 × 8 k-point
grid). The result of the CI scheme is indistinguishable from the UI
data.

the Si(111) surface. The present KLI data demonstrate that the
decoupling of neighboring slabs, required for the EXX-PWPP
approach to work, sets in for quite moderate separation of the
slabs, in spite of the long-range exchange potential. These
findings clearly support the applicability of the EXX-PWPP
approach to slabs: for moderate width of the vacuum also EXX
calculations without the KLI approximation should be feasible,
if the extension scheme introduced here is utilized.
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APPENDIX: ACCURACY OF EXTENSION SCHEMES
FOR SI(111) SLABS

In this Appendix, the information on the extension schemes
provided in Secs. VI A–VI C, which focus on graphene, is
complemented by corresponding results for Si(111) slabs.
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FIG. 24. As Fig. 23 for vshift itself.

1. Extension of Bloch states

Figure 22 demonstrates that the agreement of the extended
wave functions with their numerical counterparts is not re-
stricted to graphene (compare Fig. 1).

2. Extension of KLI exchange potential

Figures 23–25 display the orbital-shift potential resulting
from the various extensions schemes for a 6-layer Si(111)
slab, in analogy to Figs. 6–8. Figure 23 shows the derivative
of vshift , in particular in the transition region. Two versions
of the LO extension are included, differing in their transition
thresholds. The potential for s = 10−12 Bohr−3 serves as
rigorous reference result for z < 22 Bohr (due to the low s

this region is not affected by any manipulation of the states).
One can see that the UI and CR extensions (which can not be
distinguished on the scale chosen) follow this reference result
in and beyond their transition region (which is indicated by
the noise in the LO extension with s = 10−8 Bohr−3). Even
the error in the SE potential is very low. Moreover, in spite
of the substantial noise in the LO extension, the LO potential
is very close to the more accurate schemes for larger z.

The differences in ∂zvshift induce a shift in vshift itself,
as shown in Fig. 24. Once the transition region is passed,
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FIG. 25. (a) x-y-averagedvshift , Eq. (34), for a 6-layer Si(111) slab
with d = 82a/

√
3 and (b) its first derivative: comparison of LO, SE,

UI, and CR extensions (s = 10−8 Bohr−3,Ecut = 80 Ry, 8 × 8 k-point
grid). The result of the CI scheme is indistinguishable from the UI
data.

however, the corresponding potentials resume essentially the
same shape: they are just offset by the noise accumulated in
the transition region. Figure 24 demonstrates that this offset
amounts to no more than 0.5 mHa. The potentials obtained
with the various extension schemes remain close to each other
even for very large z, as illustrated in Fig. 25.
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