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Z3 topological order in the face-centered-cubic quantum plaquette model
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We examine the topological order in the resonating singlet valence plaquette (RSVP) phase of the hard-core
quantum plaquette model (QPM) on the face centered cubic (FCC) lattice. To do this, we construct a Rohksar-
Kivelson type Hamiltonian of local plaquette resonances. This model is shown to exhibit a Z3 topological order,
which we show by identifying a Z3 topological constant (which leads to a 33-fold topological ground state
degeneracy on the 3-torus) and topological pointlike charge and looplike magnetic excitations which obey Z3

statistics. We also consider an exactly solvable generalization of this model, which makes the geometrical origin
of the Z3 order explicitly clear. For other models and lattices, such generalizations produce a wide variety of
topological phases, some of which are novel fracton phases.
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I. INTRODUCTION

Quantum spin liquid phases are characterized by exotic
behavior including emergent gauge fields and quasiparticle
excitations which exhibit properties such as symmetry frac-
tionalization and spin-charge separation [1]. Such phases
are prime examples of topological order [2], which can be
characterized by their topological ground state degeneracy
[3,4], nontrivial quasiparticle statistics [5], edge excitations
[6], and topological entanglement entropy [7–9].

As the classic example of a gapped quantum spin liquid,
we have short-ranged resonating valence bond (RVB) states
originally introduced by Anderson [10–13], where pairs of
electrons form singlet bonds and the state is a superposition
of such configurations. Rather than independently fluctuating
spins, we can instead simply consider the dynamics of such
valence bonds. The low energy physics are well captured by
quantum dimer models [14] (QDM) originally introduced by
Rohksar and Kivelson [15], where the presence or absence of
a dimer is indicated by an Ising degree of freedom living on
the links between two sites. The key difference between the
dimer and valence bond representation being that the states
corresponding to two different dimer configurations in the
QDM are orthogonal by definition but have nonzero overlap in
the valence bond representation [15]. These models have the
nice feature that at a special point, called the Rohksar-Kivelson
(RK) point, the ground state can be solved for exactly and is an
equal amplitude superposition of all possible dimer configura-
tions, allowing expectation values of diagonal observables to
be computed from the classical equal probability ensemble.
The ability to describe such phases by bond variables in
conjunction with a site constraint hints at a connection between
such models and gauge theories. Indeed, at the microscopic
level they can be formulated as hybrid lattice gauge theories
with a local U (1) gauge invariance [16] due to the fixed number
constraint at each site but with Ising valued electric fields [17]
which reflect the binary character of dimer occupations. The
challenge in this language is to show that the gauge theory
exhibits a deconfined phase which can be identified with the
RVB phase. As it turns out, the QDM on the square (or any

bipartite) lattice in d = 2 is gapless with power law decaying
dimer-dimer correlations at the RK point, which sits at the
boundary between a resonating plaquette [18] and a staggered
phase, and so does not host an RVB phase (upon general
perturbation, one can have more complex phenomena such
as Cantor deconfinement [19]). This lack of an RVB phase
is due to the fact that the square lattice QDM maps onto a
U (1) gauge theory at long wavelengths [16], which is only
gapless at one particular point (the RK point) in 2D (while
there exists an extended gapless U (1) RVB Coulomb phase
in 3D [20–22]). The triangular lattice QDM, however, does
exhibit exponentially decaying correlations at the RK point
and hosts a fully fledged Z2 topologically ordered RVB liquid
phase [23] characterized by a long wavelength Z2 gauge field.
It is also useful to note that one can also deform QDMs
by loosening the fixed dimer number constraint to variable
numbers. Specifically we can loosen the constraint to allow
for all odd or even numbers of dimers per site—the latter now
yields a microscopic Ising gauge theory (IGT) and the former
its “odd” cousin [17]. In this limit one can find a deconfined
phase on any lattice although the connection to the original
RVB picture is less clear. (Notice that loosening the constraints
of the square lattice model allows for the existence of other
interesting deconfined liquid phases [24–26].)

As a natural extension of the RVB idea, the resonating
singlet valence plaquette [27,28] (RSVP) generalizes from the
two spin-1/2 SU (2) singlet to SU (n) singlets formed by n

spins in the fundamental representation of SU (n) (note that
the plaquette structure is not necessary, we could form SU (n)
singlets of n spins from simplices of any form). Following the
RVB discussion, it is natural to ask whether one can find a
liquid phase in these models, and if so, what is the character
of this liquid? In Ref. [27], this idea was investigated first for
n = 4 on the simple cubic lattice, where spins formed tetramers
along the square plaquettes, with a hard-core constraint (each
site was only allowed to be included in one tetramer), but
was shown to exhibit a weak crystalline order (which would
lead to a confining phase) at the RK point, rather than a
gapped liquid [27,28]. In fact, this current investigation was
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FIG. 1. A unit cell of the face centered cubic lattice. Nearest
neighbor pairs are connected by gray lines. Triangles on which trimers
may occupy are formed by three mutually nearest neighbor sites.
Regular polyhedra formed by the triangular faces include octahedra
(one shown in red) and tetrahedra (one shown in green).

motivated by the observation that had the hard-core constraint
been “loosened” to an even or odd constraint (that each site
had to be a part of an even or odd number of tetramers), one
exactly obtains the Ising “plaquette gauge theory” [29–31]
in the X-cube [29] limit: a prominent example of fracton
topological order [29,32–36]—novel states of matter which
exhibit quasiparticle excitations constrained to move within
lower dimensional subspaces including the fracton which is a
completely immobile quasiparticle. In this context, the crys-
talline order at the RK point can be explained as an instability
of the U (1) X-cube phase to crystalline order [28]. Notice how
the connection between this model and the plaquette gauge
theory [31] parallels that of the QDM and the IGT.

This suggests that there is potentially much of interest to be
found in RSVP candidates. In this paper, we investigate another
model looked at in Ref. [27], for which Monte Carlo results
show, in contrast to the cubic model, exponentially decaying
correlations at the RK point indicative of a gapped RSVP phase
whose character was left undetermined. The model is inspired
from an SU (3) version of the above on the face centered cubic
(FCC) lattice, where three mutually nearest neighbor spins
(which sit at the corners of equilateral triangular plaquettes as
can be seen in Fig. 1) form an SU (3) singlet. Consequently, we
may examine the quantum plaquette model (QPM) whereby
each plaquette is associated with an Ising degree of freedom
representing the presence or absence of such a singlet (a trimer)
in combination with a hard-core constraint on each site. We
describe such models in more detail in Sec. II.

Notice that had a liquid phase existed in the cubic QPM,
that phase would have been characterized by fracton order.
One might then consider the possibility that the liquid phase in
the FCC QPM might also be a realization of fracton order. Alas,
this is not the case, and we show that it instead has (somewhat
surprisingly)Z3 topological order in its liquid phase. This order
emerges naturally from the geometry of the FCC lattice (de-
spite the trimer degrees of freedom still being Ising), as detailed
in Sec. III. Inspired by the connection between the IGT and

the QDM, we examine in Sec. IV a ZN commuting-projector
generalization of this model. This model exhibits Z3 order
when N is divisible by 3, and is trivial otherwise—making
explicitly clear the origin of the Z3 order in the hard-core
limit. In the Appendix, we consider similar generalizations for
plaquette models on other lattices (some of which show ZN

fracton order). In a sense, we make a connection between the
classic ideas of RVB and RSVP and more modern concepts of
topological order. Models with plaquette degrees of freedom
have the potential to describe fracton phases (as in the simple
cubic or corner-sharing octahedra lattices discussed in the
appendix), or they may alternatively describe a conventional
nonfracton topologically ordered phases (of which the FCC
model to be discussed is an example of).

Before continuing with the discussion of the FCC QPM,
we first review the key features of ZN topological order in
3 + 1D [1]. The theory hosts two fundamental types of excita-
tions: a pointlike quasiparticle (called the charge or “electric”
excitation) and looplike excitations with a finite energy per
length (which we call vortex loops [37] or “magnetic” flux
excitations). The charge quasiparticles are self-bosons (the
wave function does not pick up a sign upon interchanging two),
but picks up a nontrivial phase when brought around a path that
links with one vortex loop. More generally, bringing n charge
particles around a loop linked with m vortex loops results in
an e2πinm/N phase factor. The main identifying feature of such
a phase is the topological ground-state degeneracy: A system
defined on a manifold with genus g has an Ng-fold degenerate
ground state that cannot be broken by local perturbations. The
different states in the ground-state manifold can be connected
by the nonlocal action of creating a charge-anticharge pair,
bringing one around the system along a noncontractible loop,
and finally annihilating the pair. We verify all these features in
our model system.

II. FCC PLAQUETTE MODEL

We begin by defining a generalized plaquette model (GPM).
To clarify our nomenclature, we use “generalized” in the
parlance of Ref. [38] to mean that we have not yet specified a
site constraint. The quantum plaquette model (QPM) will refer
specifically to the GPM with the hard-core site constraint. The
ZN generalized plaquette model examined in Sec. IV and the
Appendix will be referred to as N -GPM.

The model of interest is defined on the FCC lattice, a unit
cell of which is shown in Fig. 1, with sites at each of the
lattice points. We will take the system defined on the 3-torus
(periodic in all three directions) for simplicity. A trimer is
defined as some bound state of three mutually nearest neighbor
sites, which form equilateral triangles on the FCC lattice. We
assign an Ising (Z2) variable σx to each triangle, and define
σx = 1(−1) as the presence (absence) of a trimer on that
triangle, and take directly the set of all trimer configurations
as an orthonormal basis for our Hilbert space.

We may now begin to discuss Hamiltonians on this Hilbert
space. These will consist generically of three parts: a site
constraint, a kinetic term, and a potential term. The site
constraint is a local constraint diagonal in the trimer basis,
which is defined for each site and must be satisfied, thus
permitting only a subset of the Hilbert space. This constraint
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may be enforced externally, or energetically on the ground
state by attaching a large energy penalty to violating states.
For example, the QPM will be obtained by enforcing that each
site is only allowed to be a part of exactly one trimer, but one
can also write down a theory where each site is only allowed to
be a part of an odd (even) number of trimers (thus producing a
kind of Ising “plaquette gauge theory”). The kinetic term is a
sum of purely off-diagonal local terms that transition between
trimer configurations respecting by the site constraint. Finally,
the potential term is a sum of diagonal local terms, which may
be used to tune the Hamiltonian to the RK point—where the
ground state can be solved for exactly!

Before jumping straight to the hard-core QPM, one might
expect that there may be something to learn first from the GPM
with the odd/even constraint. This expectation turns out to
be wrong: The exactly solvable even/odd models are actually
nontopologically ordered liquids. First, note that the even and
odd models are unitarily related, thus it is only necessary to
examine the even case. Let us write this down explicitly for the
even model. The Hamiltonian is given by [39]

Heven = −
∑
Ce

∏
t∈Ce

σ z
t −

∑
s

∏
t∈s

σ x
t , (1)

where t refers to triangles, and σ
z,x
t are Pauli matrices acting on

the trimer degree of freedom on each triangle. The second sum
is over sites s, and t ∈ s corresponds to the triangles containing
the site s (of which there are 24 of). The set Ce refers to a set
of triangles for which each site on the lattice is shared by an
even number of triangles in Ce (thus guaranteeing the term
commutes with the site constraint), and Ce does not consist of
multiple disjoint sets of triangles (the subscript e stands for
even). The first sum is over all such sets Ce up to a certain size
|Ce|max, which we will assume is large enough for ergodicity
(within a topological sector, should they exist). We will return
to the discussion of what these terms look like in more detail
in the context of the (hard-core) QPM in Sec. III. The first term
is the kinetic term, and the second term enforces the constraint
that every site must have an even number of trimers connected
to it (there is no potential term needed here). By construction,
this Hamiltonian consists of mutually commuting terms and
one can deduce that an equal amplitude superposition of all
constraint-satisfying configurations within a topological sector
(should they exist) is the exact ground state.

In fact, no such topological sector exists. An easy way to
see this is by examining the excitation structure. In the gauge
theory language, consider creating a “charge” excitation: an
excitation of the second term in the Hamiltonian, where a site
participates in an odd number of trimers. It is in fact possible
to create a single such excitation locally at site s by applying
an operator σ z

t1
σ z

t2
σ z

t3
on the ground state, where t1,t2,t3 are

the three triangles around a tetrahedron that contain the site s.
These overlap the site s three times, and the three other sites
in the tetrahedron twice, thus it anticommutes with the site
term only on site s. We have therefore created a single charge
excitation using only local operators acting on the ground state,
thus implying that a single charge excitation does not carry
any topological charge. By topological charge, we refer to
charge that can be measured by a membranelike operator akin
to Gauss’ law in standard U (1) electromagnetism. As the action

of moving a charge excitation around a noncontractable loop
plays a key role in diagnosing topological order, and such an
action is topologically trivial in this case, we are forced to
conclude that this Hamiltonian does not possess the other key
features of topological order such as topological degeneracy
and quasiparticle/loop excitations with nontrivial statistics.
Nevertheless, as we will show in the next section, the QPM
(specified by a number site constraint) at the RK point does
exhibit the signs of topological order, more specifically, Z3

topological order. The reason the above construction fails is
that we have implicitly tried to force a Z2 order by using an
even constraint, while the geometry of the model favors a Z3

order.

III. THE HARD-CORE CONSTRAINT

We now examine the FCC QPM: the model of trimers with
the hard-core constraint that each site must participate in only
one trimer. The allowed Hilbert space now consists of the set of
hard-core trimer coverings of the FCC lattice. The set of local
trimer moves are now more restricted than in the even theory.
Any local trimer move can be represented by a nondisjoint
bipartite set of triangles C = CA ∪ CB , with the constraint that
every site in the lattice must be included in exactly one triangle
from CA and one from CB , or none at all. By nondisjoint, we
mean that one cannot express C as C = C1 ∪ C2 for C1,2 both
being valid bipartite sets as previously defined. The trimer
move then consists of taking all trimers that were originally
on all the triangles in CA and moving them to CB , or vice versa.
Let us represent the local state in which all triangles in CA are
occupied with trimers as |CA〉, and similarly |CB〉. We can then
define a RK type model as

HRK = −t
∑
C

(|CA〉〈CB | + |CB〉〈CA|)

+V
∑
C

(|CA〉〈CA| + |CB〉〈CB |), (2)

where the sum is over all C as previously described up to some
|C|max. We further have the site constraint of one trimer per site:∑

t∈s(σ
x
t + 1)/2 = 1 for every site s. This can be expressed as

enforcing the constraint Gs |ψ〉 = |ψ〉 for all s with

Gs = e−iα[1−∑
t∈s (σx

t +1)/2] (3)

for any α. Note that this Hamiltonian, written in terms of
Pauli matrices, has a U (1) symmetry σ±

t → e±iασ±
t , where

σ± = σy ± iσ z are σx raising/lowering operators. This U (1)
symmetry corresponds to the conservation of total trimer
number, as every such bipartite path satisfies |CA| = |CB |.

Exactly at t = V , the RK point, the Hamiltonian is a sum
of projectors,

Ht=V =1
RK = 2

∑
C

(|CA〉 − |CB〉)(〈CA| − 〈CB |) (4)

whose exact ground state is an equal amplitude sum of all
constraint-obeying trimer configurations that can be reached
by the local flips C. At the RK point, which will be the focus
of our discussion, expectation values of diagonal operators
are exactly that of the equal probability classical ensemble.
The trimer-trimer correlation function at the RK point was
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(a)

(b)

(c)

(d)

FIG. 2. Illustration of a few terms in the Hamiltonian, which we
describe by sets of triangles C = CA ∪ CB , where the orange and blue
triangles indicate CA and CB . All |C| = 4 terms are loop terms of the
form (a) or (b). (c) and (d) show terms involving a larger number of
triangles. The term (c) involves flipping between configurations with
local “divergence” ±3 (as described in the text), and (d) is an example
of a |C| = 8 length loop term.

calculated via Monte Carlo simulation in Ref. [27] and was
found to decay exponentially with a small correlation length.
This indicates that should a suitable RK type Hamiltonian be
defined, the RK point sits within (or at the boundary of) a
gapped RSVP phase—if the RK point were a critical point
between two phases or part of a gapless phase, one would
expect power law decaying correlations.

Let us now discuss what possible terms, denoted by the
set of flipped triangles C, arise in our model and how large
clusters |C|max one should include for ergodicity. The simplest
types of moves are loop moves, where C consists of a loop of an
even number of triangles joined in alternating orientation [each
triangle shares sites with only two other triangles, as shown in
Fig. 3(a)]. The smallest moves are |C| = 4 terms of this type,
which come in two flavors: a loop of four triangles around
an octahedron, and a loop of four triangles around two edge-
sharing tetrahedra, shown in Figs. 2(a) and 2(b). Finally, we
note that this model differs from the QPM proposed in Ref. [27]
in that larger cluster flips are included that are necessary for
ergodicity.

To more effectively visualize the action of these loop terms,
we can unambiguously assign a directionality to the loop
configurations |CA〉 and |CB〉. To set a convention, imagine the
triangles in CA as arrowheads which all point in one direction
around the loop, which we define to be the direction of the
configuration |CA〉, as shown in Fig. 3(a). Similarly, we may
look at the configuration |CB〉, which always points in the
opposite direction. Pictorially, the kinetic term then looks like
−t(|�〉〈�| + |�〉〈�|) in this language. In this description,
the loop terms are always flipping between “divergenceless”
configurations. A flip is characterized as a loop if every triangle
is only in contact with two other triangles. However, a triangle
may also be in contact with three other triangles. In our picture,
such triangles have a “divergence” of ±3, as shown in Fig. 3(b).
Terms involving such triangles first appear in the Hamiltonian
at |C| = 6; one such example is shown in Fig. 2(c).

As we will show, there exists a conserved number that
is left invariant under local trimer manipulations, modulo 3.

(a)
(b)

(c)

FIG. 3. The convention for assigning directions to trimer con-
figurations. The top row shows the configuration (for example) in
state |CA〉, and the bottom shows the flipped state |CB〉; the red arrows
indicate the direction assignment. Configurations along looplike paths
are assigned a direction as shown in (a). Terms which involve flips
along nonloop paths include triangles with local “divergence” ±3,
as shown in (b). Finally, (c) shows how a monomer (an untrimerized
site) may be moved along a path via trimer flips.

However, the loop terms with |C| = 4 leave this number
unchanged not modulo 3 and we have an extra unwanted con-
servation law that we can get rid of by including larger terms.
At |C| = 6, the term in Fig. 2(c) is sufficient to accomplish
this, and at |C| = 8, there are larger loop terms such as the one
shown in Fig. 2(d) that also accomplish this. Thus, we need at
least |C|max = 6 to achieve ergodicity. We do not investigate
this question of ergodicity further here and assume that there is
a small finite value of |C|max (which may just be 6) for which the
Hamiltonian is ergodic enough within each topological sector.

We can now proceed to discuss conserved quantities that
remain invariant under such local flips. Consider two adjacent
xy planes of sites defined by the z coordinate z0 and z0 + 1/2 of
the FCC lattice, as shown in Fig. 4 (where the linear dimension
of the cubic unit cell is taken to be 1). All the triangles with all
three sites within these two planes are oriented with either: two
sites on the lower and one on the upper, which we call “upwards
pointing” (�), or the opposite, which we call “downwards
pointing” triangles (�). We claim that the “winding number”
for this xy plane,

W (z0)
xy = N

(z0)
� − N

(z0)
� mod 3, (5)

is conserved by arbitrary local trimer moves, whereN
(z0)
� (N (z0)

� )
is the number of upwards (downwards) pointing trimers be-
tween layers z0 and z0 + 1/2.

Furthermore, knowing W (z0)
xy for one z0 determines the value

for all other xy planes. We can show this using a simple
counting argument. The number of sites on layer z0 + 1/2 that
are included in the trimers spanning z0,z0 + 1/2, is N

(z0)
� +

2N
(z0)
� . Let Nxy be the total number of sites in an xy layer. This

leaves Nxy − (N (z0)
� + 2N

(z0)
� ) free sites in layer z0 + 1/2 that
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FIG. 4. A sample trimer configuration in an xy plane specified by
z-coordinate z0, which includes triangles spanning the site layers z0

and z0 + 1/2. Upwards facing trimers are shown in orange, while
downwards facing trimers are shown in blue. The topologically
conserved “winding number” is the difference between the number
of upwards facing trimers (N�) and downwards facing trimers (N�)
modulo 3 [Eq. (5)].

must be used in the trimers spanning z0 + 1/2,z0 + 1, as there
are no untrimerized (monomer) sites. Therefore, we must have

2N
(z0+1/2)
� + N

(z0+1/2)
� = Nxy − (

N
(z0)
� + 2N

(z0)
�

)
, (6)

and taking both sides modulo 3, we find

W (z0+1/2)
xy = W (z0)

xy − Nxy mod 3. (7)

Therefore, knowing W (z0)
xy for z0 fixes its value for every z.

This alone is proof that W (z0)
xy cannot be modified by any local

trimer move: To modify one we must simultaneously change
this value for every value of z, which requires a nonlocal trimer
move. The same argument holds for the yz and zx planes,
which therefore give us access to three independent conserved
winding numbers. Measuring these winding numbers requires
counting the number of triangles within an entire plane:
a nonlocal measurement. At the RK point (and the RSVP
liquid phase), this leads to a locally indistinguishable 33-fold
degenerate ground state manifold on a 3-torus. Thus, we have
already uncovered the topological ground state degeneracy—a
key features of a Z3 topologically ordered phase.

Next, we observe that the nonlocal trimer shift needed to
change these winding numbers correspond to flips on paths
C that are equivalent to noncontractible loops. Consider the
nonlocal trimer loop move C which runs along a noncon-
tractible loop wrapping once around the z direction. Let |CA〉
be the configuration where the “direction” of the loop as
previously discussed points along the positive z direction, and
|CB〉 along the negative direction. Then, flipping |CB〉 → |CA〉
will increment W (z0)

xy by 1. Since W (z0)
xy for every slice must

be changed identically, we further see that any further local
manipulations one makes to the details of C will not change its
effect on W (z0)

xy .
To complete the picture of the Z3 topological order, we

next consider the form of the excitations. At the RK point, we
only have the ground state that can be solved for exactly—
and while we can write down variation states with localized
excitations, these will not be exact (they must be locally
“dressed” and the true eigenstates will be a definite momentum

superposition) [15]. We examine two types of excitations in this
model: pointlike monomer (“charge”) excitations and looplike
vortex (“magnetic”) excitations.

Monomer excitations are sites which do not participate in
any trimer. To include these, we must relax our constraint in
Eq. (3) to allow states with Gs |ψ〉 = eiα|ψ〉 at some energy
cost. A single monomer can be moved from site s to s ′ by
a trimer flip along a path, as shown in Fig. 3(c). Adding a
two-triangle hopping term gives monomer excitations a finite
mass and dispersion. We can now identify the nonlocal flip
that increments the winding number by one as corresponding
to the action of bringing a monomer excitation around along a
noncontractible loop in the negative z direction once.

To create vortex excitations, consider a loop L and let WL
count the winding number as previously defined in Eq. (5)
but for an open surface with boundary at L. We then define
the “vortex operator” as vL = e2πiWL/3. Our cartoon state
containing a vortex loop along L will then look like

|vL〉 ≈ |WL = 0〉 + e2πi/3|WL = 1〉 + e−2πi/3|WL = 2〉,
(8)

where |WL = k〉 is the component of the ground state wave
function with WL = k. Any term in the Hamiltonian far away
from the loop L does not change the value of WL, and so this
state remains a local eigenstate of those terms. This is not true
for terms near the loop which do change the value of WL, and so
this state will have a finite energy density along L (but will not
be an eigenstate of those terms). In this cartoon picture, one can
imagine threading n monomer excitations through m vortex
loops before returning to its original position, resulting in an
overall phase e2πinm/3 (of course, actually rigorously defining
such a process requires more care).

Thus, we have shown that the QPM in its RSVP phase
does indeed possess Z3 topological order, with all of its
important features. In the next section, we will examine a ZN

generalization of the FCC QPM in an exactly solvable limit,
which shares much of the properties of the hard-core model
just discussed, including a Z3 order for all N divisible by 3.
The properties of these models generically depend strongly on
N and the details of the lattice, and for the interested reader
we cover a few more characteristic examples in the Appendix.

IV. ZN GENERALIZATION

To motivate the study of the ZN generalization, we observe
that by doing a simple operator substitution on the hard-
core Hamiltonian, one can get a Hamiltonian of mutually
commuting projectors which can be solved exactly. The first
step is to enlarge the Z2 degree of freedom on each plaquette
to a ZN degree of freedom. Acting on each of these degrees of
freedom, we have the operators X,Z, for each bond obeying
algebra

ZN = XN = 1

XZ = ωZX, (9)

where ω = e2πi/N . Thus, the eigenvalues of X are ωn for n =
1 . . . N , and Z acts as a raising operator in the X eigenbasis.
Interpreting the X eigenvalue ωn as the presence of n trimers
on a bond, we can then enforce a site constraint that the sum of
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trimers connected to a site always be zero mod N . For large N ,
these can be interpreted as bosonic or quantum rotor degrees of
freedom, as in Refs. [40,41]. Note that we could have equally
chosen the site constraint to be any number without changing
the physics, as the resulting Hamiltonians can be shown to be
unitarily related to each other. Quantum dynamics that respect
this constraint can then be represented by substituting σ+ →
Z,σ− → Z† in the kinetic term of the RK Hamiltonian Eq. (4)
when expressed in terms of raising/lowering operators. Since
the kinetic term does not annihilate any state, the potential term
is not needed.

Thus, we have

HN = −
∑
C

⎛
⎝∏

t∈CA

Zt

∏
t∈CB

Z
†
t + H.c.

⎞
⎠

−
∑

s

(∏
t∈s

Xt + H.c.

)
, (10)

where the first sum is over all bipartite connected sets of
triangles C = CA ∪ CB such that every site contains an equal
number of triangles from CA and CB . Note that this is a looser
constraint than in the hard-core case (where each site had to
have one from each, or none).

We can motivate that this model will have Z3 order only if
N is a multiple of 3, and trivial otherwise, by just looking at
the quasiparticle structure. We may define the charge as Qs =∏

t∈s Xt , where the product is over the 24 triangles touching
a site. However, acting with Zt creates a set of three charges
ω each, and so we are therefore forced to conclude that three
charges combined carries no topological charge (note that if
the lattice were tripartite, then a different charge definition
could be used on each sublattice and this conclusion would
not hold—some examples of this happening are discussed in
the Appendix). If N is not a multiple of three, then one can
create a single ω charge via local operations, and we are left
with a trivial liquid. On the other hand, if N is a multiple of
three, there is the possibility for a Z3 topological order. In
this situation, the correct definition of the topological charge
operator should be

Qtop
s = QN/3

s . (11)

We assume that N is a multiple of three moving forwards.
First, note that there may be nontopological degeneracies

that exist due to commuting terms which are not included in the
Hamiltonian because they cannot be expressed as products of
terms on bipartite C. The product (Zt1Zt2Zt3Zt4 )N/3 around the
four faces of a tetrahedron is such an example, which leads to
an extra threefold nontopological degeneracy. We will ignore
nontopological degeneracies as they can be broken by local
perturbations.

To count the topological degeneracy, consider the operator
that counts N

(z0)
� − N

(z0)
� for an xy plane of triangles (as

considered earlier for QPM),

e2πi(N
(z0)
� −N

(z0)
� )/N =

∏
t∈�

Xt

∏
t∈�

X
†
t , (12)

where the product t ∈ � (t ∈ �) is over all upwards (down-
wards) pointing triangles in the xy plane spanning z0,z0 + 1/2.

While this commutes with all |C| = 4 terms in the Hamiltonian,
it fails to do so with some |C| = 6 terms, (such as the one shown
in Fig. 2 for the QPM), and general local perturbations. Instead,
like in the QPM, this number is only conserved mod 3 under
local operations, and so the correct operator is

Wxy =
⎛
⎝∏

t∈�
Xt

∏
t∈�

X
†
t

⎞
⎠

N/3

(13)

which does commute with every term in the Hamiltonian. We
have suppressed the z0 label, as it is possible to relate W (z0)

xy

for different z by terms present in the Hamiltonian. To see this,

observe that multiplying W (z0)
xy by (Qtop

s )
†

on every site s in the

z0 + 1/2 layer results in W
(z0+1/2)
xy , and so therefore W (z0)

xy =
W

(z0+1/2)
xy in the ground state where Q

top
s = 1. We have W 3

xy =
1 and so Wxy can take on one of three values, and since there are
three independent planes one could have defined this for, this
leads to a 33 topological degeneracy. Notice the remarkable
similarity to the QPM discussion in Sec. III.

The advantage of this model over the QPM at the RK
point is that the excitations are static and can be solved for
exactly. A monomer excitation from the QPM corresponds to
a Qs = ω charge sitting on a site s, which carries topological
charge Q

top
s = e2πi/3. By application of a chain operator

Z
†
t1Zt2 . . . Z

†
tL−1

ZtL , a monomer can be moved from one site to
another, and moving one monomer around a noncontractible
loop in the z direction will modify the value of the conserved
winding number Wxy by e±2πi/3 depending on which direction
the monomer goes around the loop.

The vortex (magnetic) excitations of this model are looplike
and are created at the boundary of a membrane operator,

WL =
⎛
⎝ ∏

t∈�L

Xt

∏
t∈�L

X
†
t

⎞
⎠

N/3

, (14)

where �L (�L) are all the upwards (downwards) oriented
triangles along an open surface with boundary along the loopL
(which we may take to be a flat loop in an xy plane, where this
operator can be thought of as a truncated version of the W (z0)

xy

operator). Acting with this operator on the ground state creates
an excited eigenstate of the Hamiltonian, which is locally the
ground state away from L, but an excited eigenstate with gap
�E = 2(1 − cos 2π/3) = 3 for each term near the loop L that
doesn’t commute with WL.

We can now also explicitly verify the statistical phase
obtained by bringing charge excitations through vortex loops.
Consider the action of bringing n charge excitations around
in a circle linking with m vortex loops, bringing us back to
the same state but with an overall phase. In the simplest case,
computing this phase involves commuting a Zn with (X†)Nm/3,
which results in a ωNnm/3 = e2πinm/3 phase factor overall, in
agreement with what one expects from a Z3 phase.

Finally, we note that such a ZN model can in principle be
defined on any lattice and produces a wide variety of interesting
topological phases. We have examined a few characteristic
cases in the Appendix.
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V. CONCLUSION

To conclude, we have investigated in detail the topological
properties of the FCC QPM, a prime candidate for an RSVP
phase. In doing so, we discovered the presence of a Z3 topo-
logical conserved quantity that leads to a 33-fold topological
ground state degeneracy at the RK point on a 3-torus, where this
model was shown to have exponentially decaying trimer-trimer
correlations [27] indicating the presence of a gapped liquid
RSVP phase. Our result would then imply that this topological
degeneracy is a feature of the whole phase, and we show that
it also shares the features one expects of a phase that can
be described by a Z3 gauge theory, such as Z3 quasiparticle
excitations and looplike vortex excitations. This Z3 emerges
naturally from the geometry of the FCC lattice, in the same
way that a Z2 order emerges in the triangular lattice QDM.

ACKNOWLEDGMENTS

T.D. thanks Shivaji Sondhi for suggesting this model be
studied in the first place and for continued guidance and support
on this project. T.D. also thanks Roderich Moessner, Sid-
dharth Parameswaran, Daniel Arovas, Barry Bradlyn, Sanjay
Moudgalya, and Christian Jepsen for many helpful discussions.

APPENDIX: ZN GENERALIZED MODELS ON OTHER
LATTICES

We motivate the study of theseZN generalized models from
an observation that by doing a simple operator substitution on
the hard-core Hamiltonian for QDMs or QPMs, one gets a
Hamiltonian of mutually commuting projectors which can be
solved exactly. Some possible phases found in these exactly
solvable models are summarized in Table I. We will refer to
such models as N -GDM (specifically for dimer models), and
N -GPM for the plaquette models (which include trimer models
and a tetramer model which we also discuss).

To illustrate the construction for a general lattice model, we
first consider the Rohksar-Kivelson QDM on the square lattice.
Letting σx = 1(−1) on a bond signify the presence (absence)

TABLE I. Table summarizing the topological phases found for the
ZN generalized dimer models (first two rows) and ZN generalized
plaquette models (remaining rows). Zgcd(p,N) for p = 2,3 simply
means Zp order if N is a multiple of p, and trivial otherwise. The
FCC QPM is discussed in Sec. III of the main text.

ZN model Lattice Phase

Square ZNDimer Triangular Zgcd(2,N)

Triangular ZN × ZN

Corner-sharing ZN fractonTrimer octahedra (X-cube phenomenology)
Face centered cubic Zgcd(3,N)

Tetramer Simple Cubic ZN fracton (X-cube)

Z

Z†
X

(a)

(b) (c)

FIG. 5. Pictorial representation of the terms in the Hamiltonian
for (a) the square lattice N -GDM, (b) the triangular lattice N -GDM,
and (c) the triangular lattice N -GPM. Blue and orange bonds/triangles
indicate operators involved in the kinetic terms in the Hamiltonian (Z
and Z†), and red indicates those involved in the site constraint (X).
Only one of three possible rhombus orientations is shown for the
kinetic term in the triangular lattice N -GDM (b).

of a dimer, we can write the Hamiltonian as

HRK = −t
∑
�

σ+
l1

σ−
l2

σ+
l3

σ−
l4

+ H.c. − V
∑
�

Pσx
l1
Pσx

l3

+Pσx
l2
Pσx

l4
− �

∑
s

e
−iα[1−∑

l∈s Pσx
l

] + H.c., (A1)

where we have defined the projection operator PO = (1 +
O)/2 for an operator O with eigenvalues ±1, � = ∞ enforces
the hard-core constraint, and α can be any number (except for
some special choices, such as π , for example). The first sum
is over square plaquettes on the lattice, and l1...4 are the four
links going around clockwise or counterclockwise around it,
and the second sum is over all sites which touch four links in
a cross.

To arrive at the N -GDM on the square lattice, we first
enlarge the Z2 degree of freedom on each bond to a ZN degree
of freedom, with operators X,Z acting on them with algebra
given in Eq. (9). We can then substitute σ+ → Z,σ− → Z† in
the kinetic term of the RK Hamiltonian (A1). Since the kinetic
term does not annihilate any state, again the potential term is
not needed. We then have (schematically)

HSquare
N-GDM = −

∑
�

(ZZ†ZZ† + H.c.) −
∑
+

(∏
l∈+

Xl + H.c.

)
,

(A2)

where we have suppressed the l subscripts on the kinetic term
which act on the four bonds around a square as illustrated
in Fig. 5(a). The second term is the site constraint, which
is a product over all four bonds emanating from a site. This
Hamiltonian is composed to mutually commuting terms (so
we have set t = � = 1) and can be solved exactly. On the
square lattice, this model is a ZN generalization of the toric
code [42,43], which exhibits ZN topological order as we will
show.

For plaquette models, there is an additional difference
between the N -GPM and the (hard-core) QPM in which
kinetic terms are allowed. In the QPM, the allowed flips
C = CA ∪ CB may only have each site being included in zero or
two plaquettes, one from CA and one from CB . In the N -GPM,
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the constraint is instead that each site only be a part of an equal
number of triangles from CA and CB . Thus, there are terms
involving configurations where a site is included in more than
two triangles total, that were not allowed in the QPM. We shall
now examine the properties of the N -GDM and N -GPM on
a few characteristic lattices, starting with the square lattice
N -GDM we just derived.

1. N-GDM on Square Lattice

On this (bipartite) lattice, the N -GDM is equivalent to a ZN

lattice gauge theory. The Hamiltonian is given by Eq. (A2), and
we take the system on a torus which respects the bipartiteness
of the square lattice.

The ground state degeneracy can be found by noting that
for a noncontractible loop, the productW = Zl1Z

†
l2

. . . ZlL−1Z
†
lL

along that loop commutes with and is independent of any of
the terms in the Hamiltonian. Furthermore, powers of W are
also independent of terms in the Hamiltonian. Since WN = 1,
eigenstates may take on any eigenvalue ωn for n = 1 . . . N .
As there are two such independent loop operators, the ground
state sector is N2-fold degenerate.

We can define the charge operator on site s as

Qs =
{∏

l∈s Xl s ∈ A∏
l∈s X

†
l s ∈ B,

(A3)

where A and B correspond to the two sublattices of the square
lattice. We then see that acting on the ground state with
Zl creates the exact eigenstate with two oppositely-charged
excitations of charge ω and ω−1 on the two sites touching l.
Therefore, total charge is preserved under any local operation
modulo N . Notice crucially that this construction works only
due to the bipartite nature of the lattice. Finally, we note that
by doing a transformation Zl,Xl → Z

†
l ,X

†
l on a subset of the

links, one can recover the usual form of the ZN Toric code on
the square lattice [42].

2. N-GDM on Triangular Lattice

On nonbipartite lattices, the N -GDM describes aZ2 ordered
phase for even N and a topologically trivial liquid otherwise.
The Hamiltonian is

HTri
N-GDM = −

∑
rhombus

(ZZ†ZZ†+H.c.) −
∑

s

(∏
l∈s

Xl+H.c.

)
,

(A4)

where the first sum is now over length-4 loops on the triangular
lattice which are rhombuses, and the second term is now a
product over six links touching a site, which are illustrated in
Fig. 5(b).

We first consider the case of even N . The first thing to note is
that there is now an additional twofold nontopological ground
state degeneracy. We can write down the local operation Tt =
(Zl1Zl2Zl3 )N/2 where l1...3 are three links to go around a triangle
t , which is independent of and commutes with the Hamiltonian.
Such triangle operators on different triangles can be related to
each other via applications of terms in the Hamiltonian, and
since T 2

t = 1, there are degenerate ground states with Tt = ±1.
This is nontopological, as one can simply add a term −hTt

to the Hamiltonian for just a single triangle, which would
break the degeneracy. We will ignore this degeneracy moving
forwards.

Because the lattice is no longer bipartite, we cannot use the
definition of charge from Eq. (A3). Instead, the best we can do
is simply

Qs =
∏
l∈s

Xl. (A5)

The action of applying Zl to a link l creates two charges
ω on each of the two sites it connects. As it is possible to
locally create two charges ω2, a pair of such charges must be
topologically indistinguishable from the vacuum. In this case,
we must make a distinction from the charge in Eq. (A5) and
the topological charge operator, which should be

Qtop
s = QN/2

s , (A6)

and can only take two values. This is already an indication of
the Z2 order to come, which we show by observing the 22-fold
topological degeneracy.

As before, consider the product W = Zl1Z
†
l2

. . . ZlL−1Z
†
lL

along a noncontractible loop of length L. Again, W is in-
dependent of and commutes with the Hamiltonian, so one
might be tempted to say it can take on any of N values.
However, this turns out not to be true, as W 2 can be written
as a product of terms in the Hamiltonian. This is consistent
with our previous finding that two charges are topologically
identical to the vacuum: W can be thought of as the process of
moving a charge around the noncontractible loop, W 2 would
correspond to moving two charges along the loop, which must
therefore be trivial. Since W 2 = 1 we are left with only a choice
of W = ±1. There are two independent noncontractible loops,
and so we are left with a 22-fold topological degeneracy, for
any even N .

For odd N , even a single charge must be topologically
identical to the vacuum. To see this, observe that the local
operator (Zl1Z

†
l2
Zl3 )(N+1)/2 for l1...3 going around a triangle

creates a total charge ω on a single site, which therefore cannot
carry any topological charge.

3. N-GPM on Triangular Lattice

We next consider ZN generalized plaquette models (N -
GPM). Similar to how the properties of the N -GDM depended
heavily on the bipartiteness of the lattice, we will find that
the properties of the N -GPM with triangular plaquettes will
depend heavily on the tripartiteness of the lattice.

For this reason, we first examine the N -GPM on the triangu-
lar lattice, which has triangular plaquettes and is tripartite. On
this lattice, the N -GPM maps to a ZN bosonic ring-exchange
model on the (dual) honeycomb lattice originally studied by
Motrunich [40] the strong coupling limit, which was found to
have a fully deconfined ZN × ZN phase, which we will find
here as well.

The Hamiltonian is

HTri
N-GPM = −

∑
s

(ZZ†ZZ†ZZ† + H.c.)

−
∑

s

(XXXXXX + H.c.), (A7)
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where each term involves the product of operators over six
triangles touching a site, as illustrated in Fig. 5(c). We again
assume the system to be defined on a torus which respects the
tripartiteness of the lattice.

Again, a simple method of analysis is by examining the
quasiparticle structure. Acting with Zt on a triangle creates
three charge excitations, one on each sublattice which we label
A, B, and C. This leads to the “fusion rule” a × b × c =
1, where a,b,c are charge excitations on each of the three
sublattices. Thus, we can represent c as a bound state of an a

and b antiparticle, and define the charge operators accordingly:

Qa
s =

⎧⎪⎨
⎪⎩

∏
t∈s Xt s ∈ A∏
t∈s 1 s ∈ B∏
t∈s X

†
t s ∈ C

Qb
s =

⎧⎪⎨
⎪⎩

∏
t∈s 1 s ∈ A∏
t∈s Xt s ∈ B∏
t∈s X

†
t s ∈ C

, (A8)

both of which are conserved under local operations. Going
through a similar exercise as before, one can readily verify
the existence of four independent noncontractible loop oper-
ators, which leads to the N2 × N2 topological ground state
degeneracy. These loop operators correspond to bringing an a

or b particle around along a noncontractible loop. For a more
detailed analysis of thisZN × ZN phase, we direct the reader to
Ref. [40], which discusses the model on the dual (honeycomb)
lattice.

4. N-GPM on Corner-Sharing Octahedra Lattice

Here we highlight yet another interesting case: the N -GPM
on the lattice defined by corner-sharing octahedra (a tripartite
lattice with triangular plaquettes). The lattice can be under-
stood as an underlying simple cubic lattice where each vertex
is the center of an octahedron and the sites lie on the bonds of
the underlying simple cubic lattice. A portion of this lattice is
shown in Fig. 6(a), which also illustrates the tripartiteness of
the lattice. The N -GPM on this lattice will turn out to exhibit
ZN fracton topological order, which appears to be described
well by the ZN X-cube model [29,44]. We will show that this
model exhibits the key features of this phase: quasiparticle
excitations which exhibit restricted movement and the char-
acteristic subextensive topological ground state degeneracy.
Fundamental quasiparticle excitations of this (and the X-cube)
model are the one-dimensionally mobile quasiparticle (which
we call lineons [31]) and zero-dimensional immobile fractons,
which are created at the corners of membrane operators.

The Hamiltonian describing this model is

HC-S Oct
N-GPM = −

∑
Coct

(ZZ†ZZ† + H.c.)

−
∑
Ccuboct

(ZZ†ZZ†ZZ†ZZ† + H.c.)

−
∑

s

(∏
t∈s

Xt + H.c.

)
. (A9)

(a) (b)

(c)

(d)

Z

Z†

FIG. 6. The corner-sharing octahedra lattice, on which the N -
GPM shows a ZN X-cube fracton phase. (a) shows of the corner-
sharing octahedra lattice, where sites from the three sublattices are
colored red, green, and blue. The centers of the octahedra form into a
simple cubic lattice, with lattice constant taken to be 1. Sites from
each sublattice themselves also sit an offset simple cubic lattice.
(b) shows two types of octahedron flips |Coct| = 4, and (c) shows a
cuboctahedron flip |Ccuboct| = 8. (d) shows a portion of the Wz(x0,y0)
operator, which measures aZN topologically conserved quantity. Blue
triangles indicates Z operators and orange indicates Z† operators.

The first sum is over all bipartite sets of triangles Coct = CA ∪
CB that go around an octahedron, such that each site is a part of
an equal number of triangles in CA and CB , of size |Coct| = 4.
These come in two main types, as shown in Fig. 6(b) (the rest
are obtained by symmetry relations on the octahedron of these
two). The second sum is over all such sets on cuboctahedra
(the 14-faced polyhedron with eight triangular faces and six
square faces), and involve all |Ccuboct| = 8 triangles, as shown
in Fig. 6(c). Finally, the third term is the usual site constraint,
with the product going over six triangles touching a site.

Again, we may begin our analysis by examining the quasi-
particle structure. Applying a Zt to a triangle creates three
charge excitations, one on each sublattice. Let A, B, and C

correspond to the three sublattices, and a, b, and c a single
charge excitation on the respective sublattice. We can apply
the charge definition from Eq. (A8) and treat the c charge as
a bound state of an a and b anticharge. However, there is an
additional conservation law here arising from the geometry of
the lattice.

Consider what happens when we have a single a charge
sitting on a site s in the A sublattice. The simplest way it can be
moved from s to some other site s ′ is by applying the operator
Z

†
t1Zt2 , where t1 must touch the site s and share two sites with t2,

who must then touch another site s ′. The geometry of the lattice
allows only for s ′ to be one of two choices, which are both along
one axis. Thus, this a charge is confined to move along only
one axis: It is the one-dimensional lineon of the X-cube model.
The a, b, and c charges then correspond to lineons confined to
move along x, y, and z directions, respectively.

The vortex excitations can come in two forms: either as
violations of the octahedron terms or as violations of the cuboc-
tahedron terms. We first examine excitations of the cuboctahe-
dron term: Consider the operator Xt1Xt2Xt3Xt4 around the four
triangles around a square-based pyramid (which comprises
half of an octahedron). This operator commutes with every
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octahedron term but creates four cuboctahedron excitations.
Thus, cuboctahedron excitations can only be created in groups
of four, and one can confirm that by repeated applications
of this operator along a membrane, these excitations can be
moved further apart and appear at the corners of the membrane
operator. Alone, one such excitation cannot be moved without
creating additional excitations. The cuboctahedron vortex
excitations are therefore fractons. Various combinations of
octahedron excitations can then be interpreted as bound states
of fracton excitations.

Finally, we can compute the ground state degeneracy.
Consider the operator that corresponds to creating a z-moving
lineon-antilineon pair at coordinates (x0,y0), moving the lineon
around in the positive z direction, and then annihilating them
again. This is done by a ZZ† chain as shown in Fig. 6(d),
which we call Wz(x0,y0) and commutes with the Hamiltonian.
Note that the details of how the z lineon goes along each
octahedron can be related to each other by octohedron terms in
the Hamiltonian and so are not independent. We can henceforth
freely choose Wz(x0,y0) = ωn for n = 1 . . . N . Furthermore,
by application of the cuboctohedron term, we can show that in
the ground state

Wz(x0,y0)W †
z (x0+1,y0)W †

z (x0,y0+1)Wz(x0+1,y0+1) = 1,

(A10)

where we have taken the length of the cubic unit cell to
be 1, and so not all of these Wz(x,y) are independent. In
fact, there are 2L − 1 independent Wz(x,y)’s, where L is the
linear dimension of the system. To see this, let us define for
convenience

W̃z(x,y) =
{

Wz(x,y) if x + y even

W
†
z (x,y) if x + y odd

. (A11)

Then, we can specify 2L − 1 of W̃z(x,y0) and W̃z(x0,y), and
then obtain the rest via the relation

W̃z(x,y) = W̃ †
z (x,y0)W̃ †

z (x0,y)W̃ †
z (x0,y0). (A12)

Therefore, we have 2L − 1 independent choices to make
for the z direction, and similarly along x and y. This leads
to a topological ground state degeneracy of N6L−3, which
for N = 2 exactly matches with that of the X-cube model
[29], despite being microscopically very different. Thus, the
N -GPM on the corner-sharing octahedra lattice results in ZN

fracton topological order, which appears to describe the same
phase as the X-cube model.

5. N-GPM on Simple Cubic Lattice

Here, we briefly show how the N -GPM on the simple cubic
lattice maps on to the ZN X-cube model. First, notice that this
model has square plaquettes (thus describes a square tetramer
model, rather than a trimer model). The Hamiltonian is given
by

HSC
N-GPM = −

∑
matchboxes

(ZZ†ZZ† + H.c.) −
∑

s

∏
p∈s

Xp,

(A13)

where the first sum is over four plaquettes going around a cube,
which we refer to as “matchboxes.” There are three distinct
orientations per cube. To map the model on to the X-cube
model, we transform to the dual lattice: cubic volumes are
replaced by vertices, and plaquette faces are replaced by bonds.
The first sum then becomes the cross term, and the second
sum becomes the cube term. Finally, after mapping Z → Z†

and X → X† for all operators on bonds going from A to B
sublattices of the dual cubic lattice in the positive x̂,ŷ, and ẑ

directions, one obtains the ZN X-cube generalization obtained
in Ref. [44] from a layered construction.
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