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Anomalous quantum critical spin dynamics in YFe2Al10
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We report results of a muon spin relaxation (μSR) study of YFe2Al10, a quasi-two-dimensional (2D) nearly
ferromagnetic metal in which unconventional quantum critical behavior is observed. No static Fe2+ magnetism,
with or without long-range order, is found down to 19 mK. The dynamic muon spin relaxation rate λ exhibits
power-law divergences in temperature and magnetic field, the latter for fields that are too weak to affect the
electronic spin dynamics directly. We attribute this to the proportionality of λ(ωμ,T ) to the dynamic structure factor
S(ωμ,T ), where ωμ ≈ 105−107 s−1 is the muon Zeeman frequency. These results suggest critical divergences of
S(ωμ,T ) in both temperature and frequency. Power-law scaling and a 2D dissipative quantum XY model both yield
forms for S(ω,T ) that agree with neutron scattering data (ω ≈ 1012 s−1). Extrapolation to μSR frequencies agrees
semiquantitatively with the observed temperature dependence of λ(ωμ,T ), but predicts frequency independence
for ωμ � T , in extreme disagreement with experiment. We conclude that the quantum critical spin dynamics of
YFe2Al10 is not well understood at low frequencies.
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I. INTRODUCTION

Quantum phase transitions (QPTs) occur at absolute zero
temperature, and are fundamentally different phenomena than
thermally driven transitions. Ferromagnetic QPTs in metals,
in particular, exhibit a broad spectrum of properties [1]. Theo-
retical work suggests that clean quantum critical ferromagnets
should exhibit a discontinuous first-order phase transition, but
it has been argued that inclusion of disorder [2,3] or strong
quantum fluctuations in low-dimensional systems [2] can de-
stroy the first-order character [4], resulting in a quantum critical
point. Thus investigating ferromagnetic quantum critical points
(QCPs) in clean systems is crucial but difficult, as genuine re-
duced dimensionality and elimination of disorder are both hard
to achieve. Furthermore, many measurement techniques (e.g.,
conventional magnetization, NMR) require applied magnetic
fields that can tune the system away from criticality.

First reported in 1998 [5], the layered compound YFe2Al10

is a rare example of a quasi-two-dimensional (2D) material that
is on the threshold of ferromagnetism. Magnetic susceptibility
and specific heat measurements reveal unusual divergences at
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low temperatures [4,6–9], differing significantly from conven-
tional Fermi-liquid metals. The divergences are quenched by a
magnetic field [8], which is characteristic of a ferromagnet.
Such divergent or non-Fermi-liquid behavior is thought to
be due to quantum fluctuations associated with a QCP [10].
YFe2Al10 is a clean [8] stoichiometric compound, and is close
to quantum criticality without tuning by chemical substitution,
pressure, or magnetic field [4,8].

Recent neutron scattering experiments [11] revealed no
long-range order in YFe2Al10 (i.e., no divergence of the spatial
correlation length), but indicated a divergence of the fluctuation
time scale. This contrasts strongly with the usual paradigm
for critical phenomena, in which both spatial and temporal
correlation scales diverge at the transition. It agrees, however,
with the separability of these correlations found in the 2D
dissipative quantum XY (2D-DQXY) model proposed by
Varma and collaborators [12–14]. The momentum-integrated
magnetic dynamic structure factor S(ω,T ) was observed to
be essentially temperature independent, and over the range
of energies in the experiment (0.35–0.7 meV, ω ≈ 5–10 ×
1011 s−1) its frequency dependence could be fit equally well
by either by power-law scaling suggested by earlier work [4]
or the 2D-DQXY functional form [15]. The absolute value of
S(ω,T ) was determined in this study.

Magnetic resonance techniques such as NMR and muon
spin rotation/relaxation (μSR) [16–19] are local probes of
magnetic behavior, and are therefore complementary to bulk
measurements and reciprocal-space (scattering) probes. In
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magnetic resonance the dynamic or “spin-lattice” relaxation
rate λ(ω,T ) of the spin probe (nucleus or muon) also measures
S(ω,T ) [20,21], but at much lower frequencies (105−107 s−1)
than neutron scattering. Absolute values of S(ω,T ) can thus
be determined at both neutron and μSR frequencies. An
advantage of μSR compared to NMR is that no external
magnetic field is needed, since the muons in the incident beam
are 100% spin polarized [16–19]. A field of any magnitude can
be applied if desired.

This paper reports μSR measurements of λ(ω,T ) in single
crystals of YFe2Al10. No evidence of magnetic order was found
down to 19 mK. In contrast to a previous study [22], signifi-
cantly enhanced dynamic muon relaxation was observed at low
temperatures and magnetic fields. This strongly suggests the
presence of quantum critical spin fluctuations. The temperature
dependence of λ(ω,T ) agrees with that from extrapolation to
low frequencies of S(ω,T ) from either a power-law scaling
description or the 2D-DQXY model, although the divergence
of λ in temperature is cut off below ∼0.1 K; YFe2Al10 is close
to but perhaps not exactly at quantum criticality. However,
both of these approaches predict the frequency independence of
S(ω,T ) at low frequencies, whereas a strong divergence (λ ∝
1/H at 25 mK) is observed. This rather extreme disagreement
leads us to conclude that the low-frequency quantum critical
dynamics in this compound is not well understood, and that
more work is required.

II. EXPERIMENT

Single crystals of YFe2Al10 were grown in an aluminum
flux as described previously [8]. Separate samples were
prepared with b and c axes normal to the large faces. Oriented
single crystals were mounted on silver sample holders using
dilute GE varnish. Zero-field and longitudinal-field (applied
field HL parallel to the initial muon spin polarization Pμ)
μSR experiments (ZF-μSR and LF-μSR, respectively) were
carried out at the M15 and M20 beam lines at TRIUMF,
Vancouver, Canada, and at the LTF beam line at the Paul
Scherrer Institute, Villigen, Switzerland. The time-differential
μSR technique [18,19] was used, in which the evolution
of the ensemble muon spin polarization is monitored via
measurements of the decay positron count-rate asymmetry
A(t) versus time t after muon implantation.

A. Zero-field μSR

ZF-μSR experiments were performed over the temperature
range 19 mK–10 K. ZF-μSR asymmetry spectra are roughly
temperature independent for T ∼ 1−10 K, but exhibit a strong
temperature dependence at lower temperatures. Representative
spectra are shown in Fig. 1 for Pμ parallel to the b and c crystal
axes [Figs. 1(a) and 1(b), respectively]. A constant background
signal from muons that stop in the silver sample holder has been
subtracted.

The ZF spectra are well described by the functional form

A(t) = A0 exp(−λZFt)G
KT
ZF (�,t), (1)

where A0 is the initial count-rate asymmetry, and

GKT
ZF (�,t) = 1

3 + 2
3 (1 − �2t2) exp

(− 1
2�2t2) (2)
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FIG. 1. Zero-field (ZF) μSR asymmetry spectra (time evolution
of decay positron count-rate asymmetry) from single crystals of
YFe2Al10. A constant background signal from muons that stop in
the silver sample holder has been subtracted. (a) Initial muon spin
polarization Pμ parallel to the b crystal axis, data taken at TRIUMF.
(b) Pμ ‖ c, data taken at PSI. Curves: Fits of exponentially damped
ZF static Gaussian Kubo-Toyabe functions to the data (see text). No
asymmetry loss or oscillations are observed, evidence that there is no
static Fe2+ magnetism down to 19 mK.

is the ZF Kubo-Toyabe (KT) form expected [23] from an
isotropic Gaussian distribution of randomly oriented static
or quasistatic local fields at muon sites. In Eqs. (1) and
(2), �/γμ is the rms width of this distribution (γμ = 2π ×
135.53 MHz/T is the muon gyromagnetic ratio), and λZF in
Eq. (1) is the rate of exponential damping due to dynamic
fluctuations of the local muon fields.

At 1.2 K the ZF-μSR spectra (Fig. 1) are nearly of the KT
form; the exponential damping is weak. This indicates that
the relaxation is dominated by muon precession in quasistatic
nuclear dipolar fields. Fits of Eq. (1) to the 1.2-K data yield
� = 0.32(1) and 0.27(2) μs−1 for Pμ ‖ b and c, respectively.
These values are typical of static nuclear dipolar field distribu-
tions, indicating the absence of motional narrowing; implanted
muons are immobile. At low temperatures, the relaxation is
considerably faster and more nearly exponential than at 1.2 K
(Fig. 1); λZF increases with decreasing temperature, whereas
� is essentially unchanged (data not shown).

Figure 2 gives the temperature dependence of λZF. From
values ∼0.05−0.1 μs−1 above 1 K, λZF increases by an order
of magnitude with decreasing temperature and then saturates
below ∼0.1 K. Below ∼0.5 K the relaxation is isotropic. At
higher temperatures, where the spin dynamics is presumably
dominated by a mechanism or mechanisms other than quantum
criticality, the relaxation becomes anisotropic.

The temperature dependence of the bulk magnetic suscep-
tibility with field in the ac plane exhibits a T −1.4 power-law
divergence [4]. The dotted line in Fig. 2 is a power-law
fit to the data for Pμ ‖ b, 0.1 K < T ≤ 1 K; this yields an

155110-2



ANOMALOUS QUANTUM CRITICAL SPIN DYNAMICS IN … PHYSICAL REVIEW B 97, 155110 (2018)

0.01 0.1 1
Temperature T (K)

0.01

0.1

1

10
λ Z

F
(μ

s−1
)

Pμ || b

Pμ || c

T
−1.2(1)

 fit

T
−1.4

2D-DQXY

0.01 0.1 1
T (K)

0.20

0.25

A
to

t

YFe2Al10 H = 0

FIG. 2. Temperature dependence of zero-field muon spin relax-
ation rate λZF. Circles: Pμ ‖ b, data taken at TRIUMF. Triangles:
Pμ ‖ c, data taken at PSI. Dotted line: Power-law fit to the data for
Pμ ‖ b, 0.1 K < T ≤ 1 K. Dashed line: T −1.4 power law. Solid curve:
2D-DQXY functional form [15]. The latter two curves are normalized
to neutron scattering data (see text). Inset: Temperature dependence
of total zero-field initial asymmetry Atot (sample+silver background).

exponent −1.2(1), not far from the susceptibility value. The
dashed line in Fig. 2 is from a T −1.4 power-law scaling scenario
[11], and the solid curve is from from the 2D-DQXY model
[15]. The magnitudes of both predictions are normalized using
neutron scattering data, as discussed in detail in Sec. III. In
this temperature range the predictions are nearly the same, and
quite comparable to the observed data, particularly for Pμ ‖ b
(although the absolute magnitudes are a factor 3–4 too small).

In a number of quantum ferromagnetic materials the tem-
perature dependence of the muon spin relaxation rate also
obeys a power law (above the Curie temperature if there is
ferromagnetic ordering). Experimental values of the exponent
are −0.8 in CePd0.15Rh0.85 [24], −0.33 in YbCu4.4Au0.6

[25], −0.4 to −0.5 in YNi4P2 [26], and −0.01 to −0.13 in
YbNi4(P1xAsx)2 [27]. In YFe2Al10 the exponent magnitude is
considerably larger than in these materials.

The inset in Fig. 2 shows the temperature dependence of
the total initial asymmetry Atot (sample+silver background).
Its temperature independence and the absence of oscillations
in the spectra due to precession in an internal field (Fig. 1) are
evidence against static Fe2+ magnetism, ordered or disordered,
down to 19 mK.

B. Longitudinal-field μSR

LF-μSR relaxation rates were measured in YFe2Al10 for
applied magnetic fields up to 200 Oe at a number of tempera-
tures. Figures 3(a) and 3(b) show LF-μSR asymmetry spectra
at base temperatures for HL ‖ b and HL ‖ c, respectively.
The LF-μSR spectra are well described by an exponentially
damped static relaxation function similar to that of Eq. (1),
except that the static Gaussian KT function GKT

LF (�,t) for a
longitudinal magnetic field [23] is used. The majority of the
field dependence seen in Fig. 3 is due to “decoupling” of the
static relaxation by the field [23], but the dynamic relaxation
also slows with increasing field.
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FIG. 3. Dependence of muon asymmetry relaxation function A(t)
on longitudinal field HL in oriented single crystals of YFe2Al10.
(a) HL ‖ b, data taken at TRIUMF. (b) HL ‖ c, data taken at PSI.
Curves: Fits of exponentially damped Gaussian static Kubo-Toyabe
functions to the data (see text). Decoupling of static relaxation and
slowing of dynamic relaxation both contribute to the field dependence.

Figure 4 shows the field dependence of λLF from LF-μSR
data for longitudinal field HL oriented along the b and c crystal
axes. The lines are power-law fits to all (HL ‖ b) or part (HL ‖ c)
of the data. There is a general tendency for the power-law
exponent to decrease with increasing temperature. For HL ‖ c
the data deviate from power laws at low fields, and the change
of λLF is small enough to cast doubt on the uniqueness of the
power-law fits. The behavior of λLF is clearly anisotropic. This
is not well understood, but may be due to the anisotropy in the
Fe2+ dipolar fields at muon sites [28].

The field dependence of λLF might suggest that it originates
from a Lorentzian contribution to the static field distribution
and is thus decoupled by the field, as in PrPt4Ge12 [29]. In
this scenario the nearly exponential relaxation at low tempera-
tures (Fig. 1) indicates dominance of the (static) Lorentzian
contribution, such that decoupling would be complete for
HL � 5λZF/γμ ≈ 20 Oe [23,30]. This scenario seems unlikely,
however. Particularly for HL ‖ b, the field dependence of λ is
accurately represented by a power law for fields above and
below 20 Oe [Fig. 4(a)].

III. DISCUSSION

As a consequence of the fluctuation-dissipation theorem, the
muon spin relaxation rate is approximately [19,20,31] related
to the imaginary component χ ′′(q,ωμ,T ) of the dynamic
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FIG. 4. Field dependence of the LF dynamic relaxation rate
λLF(H ) at low temperatures. Lines are power-law fits to the data.
(a) Longitudinal field HL parallel to crystal axis b. Solid line: T =
25 mK, slope = −1.00(5), data taken at TRIUMF. Dashed line: T =
200 mK, slope = −0.78(4). (b) HL ‖ c, data taken at PSI. Lines are
fit to data above 10 Oe. Solid line: T = 19 mK, slope = −0.39(11).
Dashed line: T = 100 mK, slope = −0.47(7). Dashed-dotted line:
T = 400 mK, slope = −0.35(8).

susceptibility,

λ(ωμ,T ) = 2h̄γ 2
μ

g2μ2
B

(
kBT

h̄ωμ

) ∑
q

AqA−qχ
′′(q,ωμ,T ), (3)

where ωμ = γμHL is the muon Zeeman frequency and Aq is
the spatial Fourier transform of the coupling magnetic field
between electronic fluctuations and probe spins. Furthermore,
the dynamic structure factor S(ω,T ) is given by [11]

S(q,ω,T ) = 2(n + 1)

πg2μ2
B

χ ′′(q,ω,T ), (4)

wheren + 1 = [1 − exp(−h̄ω/kBT )]−1 is the Bose or detailed
balance factor. In the limit ω � T , n + 1 → kBT /h̄ω, which
is the factor in parentheses in Eq. (3). Thus S and λ are closely
related.

If the electronic spin fluctuations are not spatially corre-
lated, as is the case in YFe2Al10 [11], then χ ′′(q,ωμ,T ) is
independent of q, and from Eq. (3),

λ(ωμ,T ) = 2h̄γ 2
μ|A|2

g2μ2
B

(
kBT

h̄ωμ

)
χ ′′(ωμ,T ), (5)

where |A2| = ∑
q AqA−q. Then,

S(ωμ,T ) = λ(ωμ,T )/πh̄γ 2
μ|A|2, (6)

and the field dependence of λ(HL,T ) directly probes the
frequency dependence of S(ω,T ) at the low muon frequencies.
In effect, we are sweeping the muon Zeeman frequency through
the noise power spectrum of the fluctuations [32,33].

For this analysis to be valid, the applied field must be low
enough that the fluctuating spin dynamics is not affected. This

appears to be the case in YFe2Al10 [4,11], and we attribute the
field dependence of λLF to the frequency dependence of the
dynamic structure factor.

Thus we can make a quantitative comparison between
neutron and μSR results, notwithstanding the large difference
in frequencies probed in the two experiments. In neutron
scattering h̄ω/kB is typically of the order of degrees Kelvin or
greater, whereas h̄γμ/kB ∼ 10−6 K/Oe.

We consider two models for χ ′′(ω,T ). Motivated by mag-
netic susceptibility results and scaling arguments from earlier
studies [4], Gannon et al. [11] have shown that their data can
be fit by either a temperature-independent ω−1.4 power law or
the ω/T scaling form (in units where h̄/kB = 1)

χ ′′(ω,T ) ∝ [ω2 + (πT )2]−1.4/2 tanh(ω/T ). (7)

Alternatively, a treatment of critical spin dynamics within the
2D-DQXY model [15] suggests the form

χ ′′(ω,T ) ∝ log2{[ω2 + (πT )2]1/2/ωc}
[ω2 + (πT )2]1/2

tanh(ω/T ), (8)

where ωc is a high-frequency cutoff. The combination of
temperature and frequency avoids a divergence in the Kramers-
Kronig relation betweenχ ′′ andχ ′ that would occur without the
temperature cutoff in the frequency dependence [11,15]. Over
the temperature range of the experiments, the frequency and
temperature dependencies of Eqs. (7) and (8) are essentially
indistinguishable at μSR frequencies, as is also the case at
meV neutron scattering energies as noted above.

To obtain quantitative values of S from relaxation rates and
Eq. (6), we must determine |A|2. We have calculated dipolar
fields due to Fe moments [34] in the ac plane at two candidate
muon spin sites [35] from lattice sums in the orthorhombic
YbFe2Al10 structure (space group Cmcm, No. 63). The rms
dipolar coupling field Arms = |A2|1/2 varies between 400 and
800 G/μB , depending on the site and the muon spin direction.
Then, γμArms ≈ 5 × 107 s−1/μB to within a factor of 2. As
an example, the measured value of λZF at 25 mK is about
4 × 105 s−1. With h̄ = 6.582 × 10−13 meV s, the effective
structure factor from Eq. (6) is

S ≈ 4 × 105

πh̄(5 × 107)2
≈ 80μ2

B/meV Fe, (9)

to within a factor of 4.
We next compare these model results with our data.

A. Zero-field μSR.

As noted in Sec. II A, the observed temperature dependence
of λZF(T ) is compatible with either of the above scenarios.
The absolute value of λZF is underestimated by a factor of
3–4 (Fig. 2), but this may be considered as a semiquantitative
agreement, considering the accumulated uncertainty involved
in determining the normalization factor and the effect of
noncritical relaxation mechanisms.

B. Longitudinal-field μSR.

An order-of-magnitude suppression of λLF is observed in
fields as low as 50 Oe (Fig. 4). A possible scenario for this might
involve the preasymptotic/asymptotic crossover predicted for

155110-4



ANOMALOUS QUANTUM CRITICAL SPIN DYNAMICS IN … PHYSICAL REVIEW B 97, 155110 (2018)

10
−6

10
−4

10
−2

10
0

10
2

−hω /kB (K)

10
-2

10
0

10
2

S
(ω

,T
) 

(μ
B2

/m
eV

-F
e) 0.025 K

0.2 K

1 K

T = 10 K

FIG. 5. Frequency dependence of the dynamic structure factor
S(ω,T ). Circles: S(ω) from neutron scattering [11]. Triangles: S(ω)
from μSR relaxation rates for HL ‖ b and T = 25 mK [Fig. 4(a) and
Eq. (6)]. Solid curves: S(ω,T ) from 2D-DQXY model [15] [Eq. (8),
ωc = 161 K [11]]. Dashed curves: Scaling power law [Eq. (7)]. Both
sets of curves are normalized to the neutron scattering data.

disordered quantum ferromagnets [1,36]. But Park et al. [8]
have argued that YFe2Al10 is a clean system, for which the
theory of Ref. [36] would not be appropriate. Furthermore,
the field dependence of the Fe2+ spin fluctuation spectrum
seems unlikely, since both the uniform [4] and dynamic [11]
spin susceptibilities are unaffected by fields of this magnitude.
Instead, as discussed above, we attribute the field dependence
of λLF to the frequency dependence of χ ′′ and hence of S.

Figure 5 gives the calculated frequency dependence of
S(ω,T ) from the scaling scenarios at various temperatures,
together with results from neutron scattering [11] and from
LF-μSR relaxation data and Eq. (6) (the error bars are due
to the uncertainty in the estimate of the rms coupling field
noted above, which is much greater than the statistical error
in λLF). The curves are from Eqs. (7) and (8) (ωc = 161 K
[15]), normalized to the neutron scattering data and evaluated at
various temperatures. For ω � T the scaling scenarios predict
no frequency dependence of S and hence no field dependence
of λLF for low fields, contrary to the considerable observed
power-law field dependence.

This discrepancy is not understood at present. We note that
the data seem to suggest a product form S(ω,T ) ∝ ω−�T −� at
ultralow frequencies, rather than the ω2 + (πT )2 dependence
of the power-law and 2D-DQXY model results. Such a product

preserves ω/T scaling, but the resultant divergence in χ ′′(ω)
leads to the problem with the Kramers-Kronig relation dis-
cussed above.

It should perhaps also be noted that the suppression of λLF

with field at low temperatures cannot be due to mechanisms
other than that which increases λZF at low temperatures. Such
mechanisms would increase the rate rather than decreasing it.

IV. SUMMARY

Dynamic muon spin relaxation has been studied in the
quasi-2D nearly ferromagnetic compound YFe2Al10. The re-
laxation behavior indicates that there is no static electronic
magnetism, ordered or disordered, down to 19 mK. In zero
applied field the dynamic muon spin relaxation rate λZF

is strongly enhanced below 1 K, saturating at ∼0.4 μs−1

below 0.1 K. In the temperature range 0.1–1.0 K, a power
law λZF(T ) ∝ T −1.2(1) was observed. This power and the
magnitude of λZF are in semiquantitative agreement with
extrapolations of power-law scaling or the 2D-DQXY model
for 2D ferromagnetic quantum critical fluctuations. At 25 mK,
λLF(HL ‖ b) exhibits a power-law dependence on field, with
exponent −1.00(5). This is in extreme disagreement with the
frequency independence expected from power-law scaling or
the 2D-DQXY model. We conclude that neither of these fully
captures the low-frequency spin dynamics associated with
the QCP in YFe2Al10, and that more work is necessary to
understand this elusive system.
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