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We explore the effects of disordered charged defects on the electronic excitations observed in the photoemission
spectra of doped transition metal oxides in the Mott insulating regime by the example of the R1−xCaxVO3

perovskites, where R = La, . . . , Lu. A fundamental characteristic of these vanadium d2 compounds with partly
filled t2g valence orbitals is the persistence of spin and orbital order up to high doping, in contrast to the loss of
magnetic order in high-Tc cuprates at low defect concentration. We study the disordered electronic structure of
such doped Mott-Hubbard insulators within the unrestricted Hartree-Fock approximation and, as a result, manage
to explain the spectral features that occur in photoemission and inverse photoemission. In particular, (i) the atomic
multiplet excitations in the inverse photoemission spectra and the various defect-related states and satellites are
qualitatively well reproduced, (ii) a robust Mott gap survives up to large doping, and (iii) we show that the defect
states inside the Mott gap develop a soft gap at the Fermi energy. The soft defect-states gap, which separates
the highest occupied from the lowest unoccupied states, can be characterized by a shape and a scale parameter
extracted from a Weibull statistical sampling of the density of states near the chemical potential. These parameters
provide a criterion and a comprehensive schematization for the insulator-metal transition in disordered systems.
Our results provide clear indications that doped holes are bound to charged defects and form small spin-orbital
polarons whose internal kinetic energy is responsible for the opening of the soft defect-states gap. We show
that this kinetic gap survives disorder fluctuations of defects and is amplified by the long-range electron-electron
interactions, whereas we observe a Coulomb singularity in the atomic limit. The small size of spin-orbital polarons
is inferred by an analysis of the inverse participation ratio and by means of a complementary many-body polaron
theory, which yields a similar robust spin and orbital order as the Hartree-Fock approximation. Using realistic
parameters for the vanadium perovskite La1−xCaxVO3, we show that its soft gap is reproduced as well as the
marginal doping dependence of the position of the chemical potential relative to the center of the lower Hubbard
band. The present theory uncovers also the reasons why the d1 → d0 satellite excitations, which directly probe
the effect of the random defect fields on the polaron state, are not well resolved in the available experimental
photoemission spectra for La1−xCaxVO3.
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I. INTRODUCTION

In this work, we deal with transition metal oxides that
are in their intrinsic state Mott insulators as a result of
strong electron-electron (e-e) repulsion and not band insulators
as semiconductors [1,2]. Mott insulating materials typically
display different realizations of quantum magnetism and some
of them realize rare quantum spin-liquid states [3–6]. Doping
Mott insulators can have striking consequences. For example,
doping the two-dimensional (2D) antiferromagnetic (AF) Mott
insulator La2CuO4 with Sr, Ba, or Ca gives rise to high-Tc

superconductivity [7–10], with an insulator to superconductor
transition and the disappearance of AF order at very low doping
[11–13]. Manganites are paradigmatic examples of systems
characterized by spin, orbital, and charge degrees of freedom
that are controlled by spin-orbital superexchange interactions
[14–19]. Doping the Mott insulator LaMnO3, for instance,
leads to a variety of insulating spin-, orbital-, and charge-

ordered phases [20–26], as well as to a metallic regime that
displays a colossal magnetoresistance [27–29].

A very interesting class of materials where the orbital degree
of freedom plays an important role are the 3d-electron systems
with active t2g degrees of freedom that favor orbital fluctuations
[17,30]. In the titanium perovskites, they play a prominent
role in the spin-orbital ordered states or may even trigger a
disordered state [31–36], while superconductivity was discov-
ered at SrTiO3 interfaces [37–40]. We shall focus here on the
vanadium perovskites RVO3, where R = La, . . . , Lu, which
reveal temperature-induced magnetization reversals [41] as a
result of the coupling of spin and orbital degrees of freedom of
the t2g valence electrons [42–47]. This class of compounds
has interesting phase diagrams with two complementary
spin-orbital ordered phases and a pure orbital-ordered phase
[48–54]. Remarkably, the C-type spin and G-type orbital or-
dered phase in La1−xSrxVO3, Pr1−xCaxVO3 and Y1−xCaxVO3
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is robust up to high-doping concentrations and also the metal-
insulator transition takes place only at quite substantial doping
[55–58]. This striking robustness of the spin-orbital ordered
state against doping as compared to the fragile AF state in the
cuprates is one of the motivations for this work.

The combination of spin and orbital degrees of freedom
triggers spin-orbital (SO) polarons [59–62]. We shall discuss
in this work why small SO polarons in the insulating regime
of cubic vanadates [58,63] are much more strongly bound to
charged defects than spin polarons in high-Tc materials [64,65].
The reduced mobility of doped holes or electrons inside the SO
polarons implies a weaker screening of defect potentials by the
doped charge carriers and thus provides an explanation for the
shift of the insulator to metal transition towards high doping
concentrations in the vanadates. Here, we shall support these
conclusions by a careful analysis of the doping dependence of
the density of states, i.e., of photoemission (PES) and inverse
photoemission (IPES) spectra. We explore the localization of
defect-states wave functions, the defect-states gap inside the
Mott-Hubbard (MH) gap, and finally the reduction of spin and
orbital order and its relation to the many-body SO polaron wave
function and the binding to defects.

The cubic vanadates represent a class of compounds with
quantum fluctuating orbitals and spins, even in the absence
of doping. In contrast to the manganites, the cubic vanadates
have very small Jahn-Teller interactions due to the t2g nature
of their valence electrons. Therefore, orbital occupations are
not rigid even in the ordered phases, but fluctuate [43,44,66].
Several peculiar features can be traced back to orbital quantum
fluctuations, such as ferromagnetism driven by orbital singlet
fluctuations [43] and orbital Peierls dimerization [44–47].
Indeed, the joint spin and orbital fluctuations are particularly
strong in the ordered C-type AF and G-type alternating orbital
(AO) phase, i.e., C-AF/G-AO phase, realized in these com-
pounds when they are doped [67]. Furthermore, it was shown
that charged defects tend to enhance orbital Peierls dimeriza-
tion [67]. An important motivation for the investigation of
cubic vanadates is a large experimental data base for these
systems, which includes the phase diagrams of many undoped
compounds [48–50] and their pressure dependence [68], as
well as the doping dependence of the optical conductivity for
several systems [57]. In this work, our focus is on the doping
dependence of the PES spectra of the vanadium perovskites
[69–71].

Solving this problem involves answering questions like:
(i) what is the nature of defect states in a strongly correlated
system, i.e., to what extent are such defect states different
from those in usual semiconductors or band insulators [72,73]?
(ii) What happens to the MH gap in the presence of defects?
(iii) Which are the different features of defect states in MH
insulators with t2g orbital degeneracy as compared to those in
doped high-Tc superconductors? (iv) Which methods, among
those capable to yield reliable results for MH insulators, can be
efficiently extended to take into account defects and disorder?
To answer these questions is a formidable challenge, as defects
greatly influence the subtle interplay of spin, orbital, lattice and
charge degrees of freedom.

The calculation of the electronic structure of a disordered
system with charged defects and long-range e-e interactions is
a difficult optimization problem even for the simplest models

for the defect states in the gap of semiconductors, e.g., the
Coulomb glass (CG) model [72]. The effect of disorder and
the resulting localization of electron states has a long history
[74,75]. The reason for the calculational complexity of the
insulating phase is the absence of metallic screening, and
therefore the energy and occupation of a defect state depends
on that of far distant random defects because of the long-
range Coulomb interaction [75]. In contrast, in the metallic
state, because of the presence of a Fermi surface, perturbative
diagrammatic techniques can be applied to deal with multiple
scattering corrections leading to a Coulomb anomaly in the
density of states (DOS) N (ω) [76]. For the insulating phase,
it was argued by Pollak [77] that e-e interactions should
lead to a depletion of N (ω) at the chemical potential in
systems with disorder. For the CG model, Efros et al. [78–80]
could show, using some simplifying criteria, that the Coulomb
interaction generates a soft gap at the chemical potential in
N (ω) ∝ |ω|ν , with an exponent ν = d − 1 determined by the
spatial dimension d. This is called the Coulomb gap [78]. Re-
cently, Shinoaka and Imada [81,82] reported unconventional
soft gaps for models with only short-range interactions. Fur-
thermore, a disorder-induced Coulomb or zero-bias anomaly
was observed by Epperlein et al. [83] for the quantum CG
model and by Yun Song et al. [84] for an extended Anderson-
Hubbard model.

We base our study on a generic spinful three-band model
for the t2g electrons on the vanadium ions [63] that provides
a complete description of the magnetic and orbital ordered
phases. The model includes the local Hubbard-Hund interac-
tions and thereby describes the atomic multiplet structure of
the V ions. Moreover, the model contains the long-range e-e
interactions, and thereby it includes the dielectric screening of
the t2g electrons, and the Coulomb potentials of the random
defects. Finally, there is the flavor conserving kinetic energy
of t2g electrons, and moreover crystal field and Jahn-Teller
interactions. All these interactions together yield spin-orbital
superexchange and pure orbital interactions that determine the
different spin and orbital ordered phases [43,66]. This model
can be simplified by the elimination of degrees of freedom
and by the removal of terms, such as the kinetic energy or the
Hubbard interaction, for instance, to obtain simpler models that
have been used in the study of disorder. For instance, one may
arrive at the CG [78] or at the quantum CG [77,83] models after
elimination of spin and orbital degrees of freedom, or at the
Anderson-Hubbard model [81] after elimination of the orbital
degrees of freedom, see Fig. 1.

To analyze systems with defects and disorder, one needs
to use a computationally efficient approach as averaging over
several defect realizations and dealing with large inhomoge-
neous systems is necessary. Examples of such approaches are
Hartree and the Hartree-Fock approximations [65,67,85–87],
and the density functional theory [88–90]. Besides disorder, the
calculations of the electronic structure and excitations of the
spinful multiband models with charged defects are complicated
by the fact that these systems are Mott insulators. We have
pointed out before that the Hartree-Fock method is also capable
to describe faithfully the high-spin excitations in the spin-
orbital degenerate case provided the system has a broken spin
and/or orbital symmetry [67,91]. However, low spin excitations
are only qualitatively correct in Hartree-Fock and require
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FIG. 1. Schematic hierarchy of typical models for systems with
disorder. On the lowest level, generic models with a single orbital per
site and no spin are shown. These models are further distinguished
depending on whether they involve long-range e-e interactions
(η scale) and/or kinetic energy (t scale). By adding spin to charge
carriers, one finds single-orbital Hubbard-type models shown on the
second level. On the third top level, reside models with spin and
orbital degrees of freedom of interest for this paper, designed for
doped spin-orbital systems. The labels A, B, C, and D refer to models
explained and investigated in the following sections.

quantitative corrections by Hund’s exchange element JH . In
presence of local off-diagonal terms, the Hubbard-Hund inter-
action has to be expressed in a rotational invariant form in spin
and orbital space. The unrestricted Hartree-Fock (uHF) method
[92–94] is known to be reliable for systems with spontaneously
broken symmetries as, for instance, multiband models for man-
ganites [85,95], or the iron-based superconductors [96–99] or
clusters of transition metals with magnetic ground states [86].
The uHF method designed and used in this paper is capable
to treat simultaneously phenomena that arise at distinct energy
scales: the high energy scale of ∼1 eV related to the (on-site
and intersite) Coulomb interactions in proximity of the defects
and the low energy scale of ∼0.1 eV that is characteristic of the
orbital physics and controls the electronic transport in doped
materials. Accordingly, the method is able to address the onset
of the spin and orbital orders and their remarkable robustness
in doped La1−xSrxVO3 and Y1−xCaxVO3.

Figure 2 displays PES and IPES data of Maiti and Sarma
[70] for the undoped reference compound LaVO3. The data
provide evidence that the system is a Mott insulator. One
recognizes the lower Hubbard band (LHB) in PES and one also
sees the upper Hubbard band (UHB) in IPES, where the theo-
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FIG. 2. Photoemission (PES) and inverse photoemission (IPES)
spectra for undoped LaVO3 in the vicinity of the chemical potential,
which is located at ω = 0. Experimental data (black hollow circles)
were obtained by Maiti and Sarma [70]; the solid (red) curve was
obtained from the theory reported in Sec. IV, with the three peaks of
the UHB marked as HS, LS1, and LS2 standing for the high-spin and
the two low-spin excitations, respectively.

retically expected multiplet bands have some correspondence
with features in the experiment. The fact that the Hubbard gap
in the vicinity of ω = 0 appears as a soft gap suggests that the
sample contained possibly some defects at the surface [65].
The experimental data are compared with the uHF calculation,
where the DOS N (ω) is broadened with an extra linewidth of
γ = 0.5 eV. This has the consequence that the multiplets of
the UHB are no longer resolved in the theoretical DOS N (ω).

A surprising feature of the electronic structure of cubic
vanadates is the persistence of the MH gap up to high doping
concentrations [67]. This has been demonstrated most clearly
by optical conductivity experiments [57] in La1−xSrxVO3 and
Y1−xCaxVO3 for doping concentrations up to x = 0.1 and
0.17, respectively. Our uHF calculations of the statistically
averaged DOS N (ω) reproduce this robustness of the MH
bands beyond doping concentrations of 50%, despite the fact
that substantial spectral weight is transferred from the Hubbard
bands to defect states. The latter appear as satellites and as
states inside the MH gap. We shall discuss the energetics of
these states, the sum rules, and the spectral weight transfers.

Our main focus is on the defect states that appear in the
MH gap and that themselves form a defect-states (DS) gap
at the chemical potential. The DS gap depends both on the
kinetic energy parameter t and the e-e interaction strength,
which we can tune with a coupling constant η ∈ [0,1], where
η = 0 corresponds to the absence of e-e interactions and η = 1
to the estimated typical strength for these interactions in
vanadates. We perform a statistical analysis of the power law
behavior of the DS gap in the DOS N (ω) ∝ |ω|ν in the vicinity
of the chemical potential. The exponent ν is nonuniversal and
depends on t and η. It is shown that the kinetic energy of the
t2g electrons plays a fundamental role for the formation of
the DS gap in the cubic vanadates [63]. This mechanism is
distinct from the Coulomb gap mechanism. We furthermore
show that, with increasing η, e-e interactions of Coulomb type
do increase the DS gap. Yet in the atomic limit, that is without
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kinetic energy (t = 0), we found that e-e interactions alone are
not strong enough in the cubic vanadates to open a Coulomb
gap.

We investigate the localization of defect states by means
of the inverse participation number (IPN) [100–102]. We
have generalized this concept here to the case with spin- and
orbital- degeneracy. We find that, at moderate doping, all wave
functions are well localized. The states in the Hubbard bands
are less localized than the defect states inside the Mott gap that
contribute to the soft gap. These states are typically localized on
1–2 sites with tiny admixtures from further neighbors. Interest-
ingly, we observe a discontinuity in the localization of the wave
functions below and above the chemical potential when e-e
interactions are switched on. The small participation number
(<2) for the doped hole states can be taken as an unambiguous
sign that holes are in small spin-orbital polaron states that
are strongly bound to the charged defects, i.e., basically on a
single bond. This leads to a reduction of spatial symmetry [63].
The strong localization of wave functions appears consistent
with experiments by Nguyen and Goodenough [103], who
analyzed the magnetic properties of the La1−xCaxVO3 system
and concluded that carriers reside in trapped small-polaron
states. Moreover, in a recent combined x-ray and neutron
diffraction study of Pr1−xCaxVO3, Reehuis et. al. [58] found
signatures of spin-orbital polarons from the change of spin
and orbital correlations close to the insulator-metal transition
at x � 0.23.

In PES experiments of gapped systems, the position of the
chemical potential μ is a subtle issue as it is determined by
defects [104,105]. For the doped cubic vanadates, we find that
μ lies in the center of the DS gap that forms inside the MH
gap. We find that the distance of μ from the center of the LHB
scales with the binding strength of the Ca defect and is basically
unchanged by doping up to 50%, consistent with the PES study
of Maiti and Sarma [69,70] for La1−xCaxVO3. We interpret
this as manifestation of small polaron physics. Furthermore,
we show that d1 → d0 satellites in PES spectra can provide a
precise fingerprint of the state of spin-orbital polarons and the
strength and variance of the random defect fields acting on it.

The paper is organized as follows. In Sec. II, we introduce
the triply degenerate Hubbard model for t2g electrons in
the doped perovskite vanadates, such as La1−xCaxVO3 with
Ca2+ charged defects replacing randomly some La3+ ions.
The model includes local (on-site) and long-range Coulomb
interactions, as well as the Coulomb potentials induced by
Ca defects, which increase the energies of the t2g electrons
located close to the defects taking also into account the
contributions of more distant defects at random positions.
We treat the e-e interactions in the uHF approximation and
consider two parameter sets for La1−xCaxVO3 motivated
by the experimental data in Sec. III. Using this approach
and performing self-consistent calculations for realistic t2g

hopping integral, t = 0.2 eV, we obtained the one-particle
DOSs presented in Sec. IV A. They are interpreted using the
generic structure of the PES and IPES spectra in a doped
system with orbital degeneracy derived from the atomic limit in
Sec. IV B. We analyze the multiplet structure and comment on
the PES and IPES data obtained for the undoped LaVO3 [70].
The numerical spectral weights near the atomic limit confirm
the exact calculations, as shown in Sec. IV C. Furthermore,

using the results simulating the atomic limit (i.e., for a very
low value of the hopping integral t = 0.01 eV) we extract the
effects that arise due to finite kinetic energy and emphasize the
role played by active bonds in Sec. IV D. While the excitations
related to the active bonds can be resolved from the spectra, we
also analyze the sum rules obeyed by the structures seen in the
PES. In Sec. V, we elucidate the kinetic mechanism behind the
DS gap in the present system and perform the Weibull analysis
[63]. The electronic states that contribute to the spectral
functions have various degrees of localization, which are
universal for various defect realizations, as we show in detail
in Sec. VI. Actually, more localized states appear at the edges
of Hubbard bands. In Sec. VII, we explain the gradual changes
of spin-orbital order with increasing doping within the polaron
picture. Finally, in Sec. VIII, we address the experimental
results for PES and IPES in doped systems and suggest that the
large defect potential is responsible for the overall scenario,
which is consistent with the experiments for La1−xCaxVO3.
The final discussion and summary are presented in Sec. IX.
The technical details of the present calculations are reported
in two appendices; in Appendix A, one finds a general
discussion of the algorithm for a system with random defects,
while in Appendix B, it is explained what one can learn by a
perturbative analysis in terms of spin-orbital polarons.

II. MOTT INSULATOR WITH CHARGED DEFECTS

We shall describe the doped R1−xCaxVO3 compounds (here
R stands either for yttrium Y or for lanthanum La) by means
of a multiband Hubbard model describing the subspace of t2g

states at vanadium ions. Previous studies [17,18,43,44,106]
have shown that t2g orbitals are crucial for the description of
the perovskite vanadates as Mott insulators. Each dopant—
calcium Ca2+ ions randomly replacing Y3+ or La3+ions in
this specific case—is equivalent to an effective charged defect
sourcing a long-range Coulomb potential. The degree of
randomness of the dopants’ locations is controlled, in principle,
by the annealing procedure used (or not used: full randomness
as in the case we analyze here) during the fabrication of the
samples and leads to a quite general disorder problem in the
Mott insulating regime. The sequence of terms in the following
Hamiltonian is selected to highlight the crucial role played by
the charged defects and the long-range e-e interaction in the
present system [63],

Ht2g
=

∑
i

hini + 1

2

∑
i �=j

Vijninj

+ Hkin + Hint + HCF + HJT, (2.1)

where ni = ∑
ασ niασ and niασ = d

†
iασ diασ are the electron

density operator and the partial electron density operator for
orbital α and spin σ = ↑,↓, respectively, at site i of a cubic
Bravais lattice.

If we would restrict the Hamiltonian (2.1) to the single-
orbital case, the first two terms would represent the CG model
[78] with randomly distributed local levels {hi} and long-range
e-e interactions of Coulomb type. A very important difference
though between the model we propose and those usually
encountered in the literature resides in the realization of the
disorder: we use a fully random distribution of charged defects
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FIG. 3. Cubic vanadium lattice of the doped perovskite vanadate
compound R1−xCaxVO3 with random Ca2+ defects replacing Y3+

ions (O-ions are not shown). Doped holes occupy V4+ ions in the
cubic V3+ lattice and are attracted by the Ca2+ ions on the cubes
surrounding the defects.

leading to a realistic distribution of energy levels that depends
on the analyzed crystal structure and on the level of doping, and
is very structured, that is, very far from the uniform or Gaus-
sian distributions usually used [see Fig. 14]. The additional
inclusion of a nearest-neighbor hopping term would lead to the
quantum CG [77,83]. Without long-range e-e interactions, but
with a finite nearest-neighbor hopping term between random
levels, one would instead get the Anderson model, see Fig. 1.
The strongly correlated cousins of these models involve in
addition the local Hubbard interaction between electrons with
opposite spins that could lead to the opening of a Mott gap. One
representative model of this class is the Anderson-Hubbard
model [81] that belongs to the next level of sophistication in
the hierarchy of models with disorder, see Fig. 1.

As we shall see below in greater detail than what already
announced above, crucial to our analysis are the random fields,

hi =
∑
m

V D
im, (2.2)

due to the electron-defect interaction V D
im, where m runs

over the random defect sites that are located in the center
of the vanadium cubes, see Fig. 3, and the e-e interaction Vij .
These interactions are screened by the dielectric constant εc

of the core electrons and depend on the distance r through the
function,

v(r) = e2

εc r
≡ VD

d

r
. (2.3)

The contribution of the t2g states to the screening of the
interactions is not considered in the determination of εc, but it
is included explicitly in the Hamiltonian (2.1). A typical value
for the core dielectric constant of the perovskite vanadates is
εc � 5 [107]. In the following, we shall consider the potential

FIG. 4. Occupied vanadium t2g orbitals of a V cube surrounding
a Ca defect (red ball) display G-type orbital order with alternating
{a,b} orbitals in all three directions (the occupied c orbitals at the V
ions are not shown). Spins S = 1 (red/black arrows) reflect C-type AF
order and the strong Hund’s coupling between {a,b} and c electrons
at V ions. Due to the kinetic energy (∝t), the doped hole (blue circle)
at site A2, where the spin s = 1/2 of the c electron is marked, and the
a electron at site A1 strongly fluctuate on the FM active bond (A1-A2)
along the c direction.

energy VD ≡ e2/εc d as an independent parameter, instead of
εc. Here, d = (

√
3/2)a is the distance between the defect ion

and its closest vanadium neighbors and a is the vanadium cubic
lattice constant, i.e., the distance between the closest vanadium
ions, see Fig. 3.

The screened interaction v(r) (2.3) defines both the e-e
interaction and the defect potential in case of defects with a
net charge of one as in the present case, i.e.,

V D
im = v(rim), Vij = ηv(rij ), (2.4)

where rim and rij represent the distances between a V ion at
site i and a Ca defect at site m (rim) or another V ion at site j

(rij ), respectively, see Fig. 4. We have introduced the parameter
η ∈ [0,1] in Vij in Eq. (2.4) in order to explore the impor-
tance of e-e interactions and the resulting dielectric screening
through the t2g electrons. In the physical case η = 1, the system
is charge neutral and, as a result, the negatively charged defect
and the positively charged bound hole act overall as a dipole.
In the case of an insulator to metal transition, the screening
due to t2g electrons will switch from that of a semiconductor
to that of a metal, where defect charges are perfectly screened.
For η = 0 instead, the monopolar potential of the negatively
charged defects is unscreened as the polarization processes
coming from the t2g electrons (and holes) are not active.

For the t2g electrons of the vanadium perovskites, the kinetic
energy is defined as

Hkin = −t
∑

α

∑
〈ij〉⊥α

∑
σ

(d†
iασ djασ + H.c.), (2.5)

where we adopt a simplified notation for the t2g orbital basis
states [31]:

|a〉 ≡ |yz〉, |b〉 ≡ |zx〉, |c〉 ≡ |xy〉. (2.6)

The orbital with flavor α ∈ {a,b,c} lies in the plane perpen-
dicular to the cubic crystal axis α. In order to fully understand
the implications of the actual expression for the kinetic energy
(2.5), one has to take into account that the hopping between
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two V ions occurs along σ bonds via oxygen p orbitals. Due
to the spatial symmetry of the V t2g and the O p orbitals, the
hopping: (i) conserves the orbital flavor α and (ii) is finite only
between α orbitals along bonds 〈ij 〉||γ perpendicular to the
direction α: t

αβ

ij = t(1 − δαγ )δαβ and t > 0. Thus the hopping
of t2g electrons is effectively 2D [43,108–110].

The most relevant Hamiltonian terms to the charge, spin,
and orbital site occupations are the on-site Hubbard (U )
and Hund’s exchange (JH ) interactions (Hint) for the triply
degenerate t2g orbitals [111,112],

Hint =U
∑
iα

niα↑niα↓ − JH

∑
i

∑
α �=β

Siα · Siβ

+ 1

2

(
U − 5

2
JH

) ∑
i

∑
α �=β

niαniβ

+ JH

∑
i

∑
α �=β

d
†
iα↑d

†
iα↓diβ↓diβ↑. (2.7)

It is the predominance of the Hubbard and of Hund’s on-
site interactions over the kinetic energy that establishes the
Mott insulating ground state and the characteristic multiplet
structure of states (see Sec. IV), which is determined by the
hierarchy of the charge excitations. The multiplet structure
can be considered as the fingerprint of the strong correlations
characterizing these systems, and determines ultimately the
magnetic properties via the spin-orbital superexchange inter-
actions [16].

Finally, there are additional small but nevertheless relevant
terms that control the spin-orbital states in these compounds,
that is, they determine the anisotropy in the orbital or spin
sector, respectively. The last two terms in Eq. (2.1) reflect small
deviations from the cubic symmetry of the cubic vanadates
[18,43,44], where

HCF = −�c

∑
iσ

niσc (2.8)

is the crystal field that splits the t2g orbitals favoring the c

orbital at each site (�c > 0) [42]. The remaining electron can
then occupy either one of the degenerate a and b orbitals. The
small Jahn-Teller (JT) interaction acting in the orbital space,

HJT = 1

4
Vab

∑
〈ij〉‖ab

(nia − nib)(nja − njb)

− 1

4
Vc

∑
〈ij〉‖c

(nia − nib)(nja − njb), (2.9)

favors alternating {a,b} orbitals and AO order in the ab plane
(Vab > 0) and the ferro {a,b} orbital order along the c crystal
axis (Vc > 0) [43].

So far, the three-band t2g Hamiltonian includes the in-
teractions with charged defects, e-e interactions, i.e., short-
and long-range, and it provides a faithful description of the
magnetic and orbital interactions. The latter is an immediate
consequence of the proper description of the atomic multiplet
structure. Hence this model can describe the generic magnetic
and orbital ordered phases appearing in the RVO3 perovskites
[50], namely two complementary spin-orbital structures: the
C-AF spin with G-AO order and the G-type AF spin with
C-type AO order, as well as a pure AO ordered phase [50].

In the above Hamiltonian, for the sake of simplicity and
clarity of our multiband model, we have omitted certain
terms. Among the neglected terms one finds: (i) the relativistic
spin-orbit interaction, although small in 3d transition metals
like vanadium, provides additional orbital fluctuations and
contributes to orbital moment formation [44,66]; (ii) the orbital
polarization leads to the rotation of orbitals in the proximity
of defects and to flavor mixing [67,91]. Both terms influence
the spin-orbital order and the metal-insulator transition, and
would be relevant for a quantitative study of the phase diagram
of doped vanadates, which is, however, not our intention here.

III. HARTREE-FOCK APPROXIMATION

The main aim of this paper is to analyze the evolution of the
spectral weights in the PES and the IPES of strongly correlated
spin-orbital system with random charged defects. This is
very challenging as it is necessary to treat simultaneously
and on equal footing: (i) the strong correlation problem in a
multiorbital system emerging from the Hubbard interaction,
the off-diagonal terms introduced by the Hund coupling and the
constrained hopping – all this in presence of a strong coupling
to the lattice (Jahn-Teller terms) and of strong fluctuations
of all such degrees of freedom–, (ii) the local perturbations
introduced by the defects into the electronic structure and the
long-range nature of their Coulomb potentials, which can lead
to an energy landscape that can be tuned by switching on
e-e interactions from the monopolar to the dipolar regime,
and (iii) the randomness of the locations of the defects that
necessarily requires a statistical treatment. We shall see that
the uHF approach provides an efficient calculation scheme
that is able to reproduce the essence of the variations in the
spectral weights of the Hubbard bands in systems with broken
symmetry as the vanadates in the spin-orbital sector, which we
study here.

Given the above prescriptions, the derivation of the uHF
equations is standard and we do not present it here in extenso;
more details can be found, for instance, in Refs. [86,91–93].
The essence of the derivation is that the e-e interactions
are replaced by terms containing mean fields acting on the
single-particle electron densities. Following this procedure,
one arrives at an effective single-electron Hamiltonian,

HHF =
∑
iασ

εα
iσ niασ +

∑
i

∑
αβσ

γ
αβ

iσ d
†
iασ diβσ ,

+
∑
ij

∑
αβσ

t
αβ

ij d
†
iασ djβσ . (3.1)

This Hamiltonian can be diagonalized numerically and the
mean fields appearing in the parameters (see below) and the HF
states can be determined self-consistently within an iterative
procedure. More details on the actual calculation scheme can
be found in Appendix A, together with the treatment of the
randomness in the present problem.

Following Ref. [91], we emphasize that Fock terms become
active only if their off-diagonal mean fields are finite. This hap-
pens only if a single-particle term in the original Hamiltonian
(a source for the specific off-diagonal mean fields) induces a
finite value for them. Consequently, we adopt here only those
Fock terms that couple the same orbitals at neighboring sites
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(as in the kinetic energy). The terms which couple different
orbitals at the same site are inactive in the present study (2.1)
as such terms do not appear in the Hamiltonian Eq. (2.1) [91].

Apart from the single-particle tight-binding terms that are
treated rigorously, the Hamiltonian (2.1) includes the JT terms,
e-e intersite interactions ∝Vij , and on-site terms ∝U and ∝JH

in Eq. (2.7). Note that the JT terms inHJT are effective density-
density interactions generated by the JT distortions and, as
such, they should be treated in the Hartree approximation. As
these and other terms obtained in the Hartree approximation
are rather straightforward to evaluate, they will not be listed
here and we address below only the Fock terms. The latter
terms originate from the e-e interactions ∝Vij and contribute
effectively to the nearest-neighbor hopping terms,

−
∑
〈ij〉

∑
ασ

Vij 〈d†
iασ djασ 〉(d†

iασ djασ + d
†
jασ diασ ). (3.2)

Formally, such terms appear also for pairs of more distant vana-
dium ions, but the hopping is limited to nearest neighbors in
the model Hamiltonian (2.1), so they will vanish automatically
in the self-consistent solution. Finally, the on-site Coulomb
interaction Hint (2.7) generates both Hartree and Fock terms,
and one finds

niασ niβσ

� 〈niασ 〉 niβσ + niασ 〈niβσ 〉 − 〈niασ 〉 〈niβσ 〉
− 〈d†

iασ diβσ 〉 d
†
iβσ diασ − d

†
iασ diβσ 〈d†

iβσ diασ 〉
+ 〈d†

iασ diβσ 〉 〈d†
iβσ diασ 〉, (3.3)

S+
iαS−

iβ

= d
†
iα↑diα↓d

†
iβ↓diβ↑

� −〈d†
iα↑diβ↑〉 d

†
iβ↓diα↓ − d

†
iα↑diβ↑ 〈d†

iβ↓diα↓〉
+ 〈d†

iα↑diβ↑〉 〈d†
iβ↓diα↓〉, (3.4)

d
†
iα↑d

†
iα↓diβ↓diβ↑

� 〈d†
iα↑diβ↑〉 d

†
iα↓diβ↓ + d

†
iα↑diβ↑ 〈d†

iα↓diβ↓〉
− 〈d†

iα↑diβ↑〉 〈d†
iα↓diβ↓〉. (3.5)

Note, however, that these latter Fock terms, mixing the orbitals,
are included here only to exhaust the approximate treatment
of Hint (2.7). They would be active, for instance, if the
orbitals were optimized locally by a finite orbital polarization
interaction [91], that is not considered here though. Therefore
we do not include them in our analysis as it suffices to decouple
the individual terms in Eq. (2.7) using Hartree approximation.

The uHF calculations in this work are performed for three
different sets {A,B,C} of fundamental interaction parameters
U, JH and VD listed in Table I for convenience. They have been
motivated by different experimental results and/or considera-
tions as parameters relevant for RVO3. Set A is deduced in this
work from PES data for the undoped LaVO3 compound [70]
and gives the positions of the LHB and the UHB multiplet
structure in qualitative agreement with the PES and IPES
spectra of Maiti and Sarma [70], see Fig. 2. Set B was deduced
from the optical spectroscopy and the magnetic properties of
YVO3 [106] and was used before to (i) analyze the magnetic

TABLE I. The three parameter sets for the interactions in Hamil-
tonian (2.1) used in the numerical uHF calculations; all parameters
are given in eV. The set A refers to LaVO3 and was used to obtain
the theoretical spectrum in Fig. 2; the remaining sets are for doped
systems and include a finite defect potential VD (2.3).

Set �c U JH Vab Vc VD

A 0.1 4.1 0.45 0.03 0.05 —
B 0.1 4.0 0.6 0.03 0.05 1.0
C 0.1 4.5 0.5 0.03 0.05 2.0

transition from G-AF to C-AF phase in YVO3 [67], and
(ii) study the defects in Y1−xCaxVO3 [63,91]. Set C is dictated
by a simplified analysis of the PES and IPES data in Ref. [69],
as explained in more detail in Sec. IV B. If not stated differently,
we consider η = 1 in Eq. (2.4) and vary the doping in the range
x ∈ (0,0.5].

Sets A and C are rather similar concerning the most im-
portant feature, namely the distance of the centers of LHB and
UHB given by (U − 3JH ) = 2.75 and 3.0 eV, respectively. Set
B instead was determined from a model Hamiltonian with only
local Hubbard-Hund type interactions, the missing excitonic
corrections [113,114] to the optical gap require in this case a
significantly smaller value (U − 3JH ) = 2.2 eV. An analysis
of the parameter VD that defines the defect potential strength as
well as the e-e interaction will be given in Sec. VIII. Although
our work focuses on the role played by e-e interactions, we
present in the following calculations both for the realistic set
C and for the set B, because set B displays features that are
somewhat hidden in the spectra calculated using set C.

IV. DOPING DEPENDENCE OF THE DENSITY OF STATES

A. Multiplet structure and sum rules

In this section, we begin our study of the doped Mott
insulator with the DOS N (ω) of the multiband model in
the phase with C-type spin and G-type orbital order (i.e.,
C-AF/G-AO phase). Within the uHF method, N (ω) describes
processes that correspond to the addition of an electron for
ω > μ and to the removal of an electron for ω < μ, where
μ is the chemical potential. Thus N (ω) provides information
relevant for the interpretation of PES and IPES or tunneling
experiments [104,105]. The numerical results presented in this
paper are obtained for a cluster of Na = 8 × 8 × 8 vanadium
ions with periodic boundary conditions, after averaging over
M = 100 randomly chosen different Ca defect realizations {s}
(i.e., sets of randomly chosen Ca defect locations) at a given
doping x ∈ (0,0.5]. We use as standard parameters set B of
Table I and t = 0.2 eV [43]. For each defect realization s, we
determine the 6 × Na eigenvalues {εs,l} and the value of the
Fermi energy μs . Next, we calculate the final averaged DOS
N (ω), representative for the whole system with Na sites and
xNa randomly distributed defects, as an average over the M

defect realizations,

N (ω) ≡ 1

M

M∑
s=1

[
1

Na

6Na∑
l=1

δ(ω + μs − εs,l)

]
. (4.1)
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FIG. 5. Statistical average of t2g DOS N (ω) (4.1) (thick solid
black line) as obtained fromM = 100 random defect realizations (thin
solid green-to-red lines) for t = 0.2 eV and including e-e interactions
(η = 1) at doping concentration x = 0.1. Other parameters as in set
B of Table I. Inset shows the zoom of the DOS near the Fermi energy
at ω = 0.

The shapes of the structures arising in the LHB and the UHB
are somewhat different in each of the defect realizations s, but
all of them show the characteristic maxima to be discussed
below, see Fig. 5.

Each charged defect adds a hole to the system, thus the
averaging over the different defect realizations is performed
for an electron density n = N0/Na = 2 − x per V ion, and the
chemical potential is determined as μs = (εs,N0 + εs,N0+1)/2.
The obtained DOS satisfies the sum rule:∫ ∞

−∞
dω N(ω) = 6, (4.2)

and determines the total number of t2g electrons per site,∫ 0

−∞
dω N(ω) = n, (4.3)

where the overall chemical potential is at ω = 0. To control the
gradual change of the spectral weights found for the particular
structures observed in the DOS, it is convenient to introduce
the integrated DOS n(ω) defined as follows:

n(ω) ≡
∫ ω

−∞
dω′ N (ω′). (4.4)

Undoped YVO3 (or LaVO3) is a Mott insulator and its DOS
consists of a LHB and a UHB, separated by a wide MH gap,
shown in Fig. 6. The reference here are the data obtained at the
lowest value of doping x = 0.02. The LHB is given by a single
maximum with total spectral weight wLHB = 2 in the undoped
system, which corresponds to possible one-electron excitations
in the PES, see Fig. 2. In contrast, the UHB has three distinct
maxima, which reflect the multiplet structure of the excitations
accessible in the IPES for the undoped system, as discussed for
the two-flavor model in Ref. [67]. We observe that the full width
W (at half maximum) of all these structures and of the LHB
is W � 0.5 eV at low and moderate doping. One could argue

ω

ω

η

FIG. 6. Doping dependence of t2g DOS N (ω) (4.1) as obtained
from M = 100 random defect realizations for t = 0.2 eV and includ-
ing e-e interactions (η = 1) for increasing doping x ∈ [0.02,0.50].
Other parameters as in set B of Table I. Inset shows the zoom of the
DOS near the Fermi energy at ω = 0.

that this broadening originates from the incoherence expected
for hole (electron) polaron motion in a system with broken
symmetry. However, one would expect for a free polaron a
width Winc = 4

√
z − 1 t [115], where the number of neighbors

for the effective 2D hopping of t2g electrons is z = 4. This
would suggest a much larger value Winc ≈ 1.4 eV. We take this
as an indication that the doped holes or polarons are immobile
and bound to defects. Hence the broadening is predominantly
due to the distribution of the local energies due to the random
defect potentials (see Sec. IV D). We have shown before that the
width of the LHB is ∼1.0 eV in the absence of e-e interactions,
and is reduced to ∼0.5 eV in the presence of long-range
Coulomb interactions [63], due to the screening of the defect
potentials resulting from t2g electrons.

A particularly exciting feature is the persistence of a soft
gap right at the chemical potential ω = 0 in Fig. 6. Although
many defect states fill into the MH gap with increasing doping
x, it appears that there is a mechanism at work resulting in
the highest occupied states and the lowest unoccupied states
repelling each other. This is reminiscent of the Peierls effect,
but also of the Coulomb gap mechanism. The detailed analysis
of the origin of the DS gap in our model is a central issue in
this and the following sections.

The DOS obtained for doped R1−xCaxVO3 systems pre-
serves the main features seen at x = 0: the LHB and the UHB
are separated by the MH gap, see Fig. 6. With increasing doping
x > 0, the spectral weights below (above) the Fermi energy
change in a systematic way. In particular, the fundamental
splitting of the MH gap (U − 3JH ) persists up to surprisingly
high doping. There arise also new features due to defect states
with intensities growing with doping x—one finds a second
structure in the LHB at low energy, see Fig. 6. A similar
structure with a faster increase of the spectral weight as a
function of doping x is observed inside the MH gap at the
low-energy edge of the first maximum in the UHB. At the same
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η

ω

ω

FIG. 7. Integrated density of states n(ω) (4.4) for different doping
concentration x ∈ [0.02,0.50] obtained for the spectra presented in
Fig. 6 for t = 0.2 eV and including e-e interactions (η = 1). Other
parameters as in set B of Table I. Inset shows the zoom of the n(ω)
near the Fermi energy at ω = 0.

time, the Hubbard subbands found at x = 0 persist, but show
decreasing spectral intensities with increasing x. We analyze
these changes in the next section.

It is insightful to analyze the evolution of the spectra in Fig. 6
by considering the integrated DOS n(ω) (4.4). At small doping
x = 0.02, n(ω) is characterized by several steps that reflect the
wide MH gap (wide plateau around ω = 0) and the minima
of N (ω) that separate three different states in the UHB (two
narrow plateaus), see Fig. 7. With increasing x, the plateaus
shrink due to the appearance of more and more defect states
inside the different gaps. The DOS integrated up to the Fermi
energy ω = 0 gives the total electron density, n(0) = n. That is,
the weight of the LHB including the low energy satellite of the
LHB is (2 − x). A minute increase just above ω = 0 indicates
that the MH gap is accompanied by a small maximum, arising
at finite doping, just above the Fermi energy. For increasing x,
the maximum above the Fermi energy extends over a broader
range, 0.2 < ω < 2.0, suggesting that all structures arising at
finite doping are all absorbed within this broader and broader
maximum. We turn back to this discussion below in Sec. IV D.

B. Atomic limit: Exact solution

It is convenient to recall first the main features of the
one-particle spectra for the nondegenerate Hubbard model.
One of its main successes was to elucidate the variation of the
electronic structure in a strongly correlated electronic system
with increasing/decreasing electron density and to provide
its explanation. It captures the evolution of spectral weights
within the individual Hubbard bands [116–122]. Indeed, in
a Mott insulator described by the nondegenerate Hubbard
model, the DOS consists of two Hubbard bands, the LHB
and the UHB, with equal spectral weights at half filling.
These weights, however, change rather fast in a hole-doped
insulator when the number of unoccupied states at energies

just above the Fermi energy increases—these states belong
to the LHB in a system without charged defects [116–119].
A similar behavior is found for electron doping by applying
the particle-hole symmetry. The evolution of spectral weights
with increasing doping has been explained within a systematic
expansion in (t/U ) in the Hubbard model [121], but frequently
it is sufficient to use only the leading terms of this expansion,
which stem from the atomic limit and are written in terms of
the electron density. For the nondegenerate Hubbard model
at hole doping x this approximation predicts that the LHB
has altogether (1 + x) states, with (1 − x) states below and
2x (unoccupied) states above the Fermi energy. Below, we
generalize this result to a degenerate Hubbard model following
the early ideas on this subject [123] and more recent treatment
of the doped perovskite vanadates, where it was demonstrated
that the excitations that contribute to the UHB correspond to
the multiplet structure of V2+ ions [67].

In the following, we adopt the atomic perspective and
analyze the C-AF/G-AO states with broken symmetry, ad-
dressing also possible deviations resulting from the finite
kinetic energy ∝t and from the uHF. For a vanadium perovskite
with charged defects the holes added to vanadium ions generate
local t1

2g configurations with probability x, while the t2
2g states

occur with probability (1 − x) in a doped system. This is
schematically represented by the ground state wave function
|〉 for a vanadium ion in Fig. 8(a). In the case depicted in Fig. 8
doping has removed an |a↑〉 electron which has a higher energy
than the |c↑〉 electron due to the small crystal field�c = 0.1 eV,
see also Fig. 4. We start from these states to explain the possible
PES and IPES excitations, that result from electron removal
and addition processes, and lead to final states in the LHB and
the UHB, respectively, but also to various defect states.

In IPES, one electron is added in the dn → dn+1 process,
either to the |c↑a↑〉 initial configuration of V3+ ion (n = 2),
see Fig. 8(b), or at a V4+ ion (n = 1), with a hole in place of
|a↑〉 electron initial state, see Fig. 8(c). As the doped sites are
typically direct neighbors of a charged defects, the electron
energies at these sites are increased by VD (2.3). Thus the HS
states generated by d1 → d2 IPES transitions appear as in-gap
states above the Fermi energy. Thereby, the multiplet structure
of d2 final states overlaps partially with the t3

2g multiplet states
of the UHB as can be inferred from Fig. 8. Altogether, the
states excited in IPES are quite numerous, four and five for
the two cases listed above, and their zth spin component Sz is
either increased by 1/2 or decreased by 1/2. The exact energies
of the atomic S = 3/2 (S = 1) HS and S = 1/2 (S = 0) LS
states accessible in the IPES excitations at vanadium ions in
d2 (d1) configurations are given in Table II and compared with
the energies found in the uHF approximation.

Taking all the states generated in IPES one finds their
total weight of (4 + x), which is a generalization of the
(1 + x) found in the nondegenerate Hubbard model [117]
and the (3 + x) for the two-flavor model in Ref. [67]. The
UHB obtained for d2 → d3 excitations has three subbands
corresponding to the atomic multiplet structure with energies
(U − 3JH ), U , and (U + 2JH ) as given in Table II. They are
found from the exact solution treating rigorously the Coulomb
interactions for t3

2g excited states in the atomic limit. In a doped
system, the initial t2

2g state occurs in the wave function |〉 with
the probability (1 − x), see Fig. 8(a). Therefore the weights
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(b)

(a)

(c)

a b

(d) (e)

c

HS

LS

+x
1/2

|    > = (1−x)Φ
1/2

IPES

PES

FIG. 8. Artist’s view of possible PES (electron removal, bottom)
and IPES (electron addition, top) excitations in doped R1−xCaxVO3

compounds, as obtained in the HF approximation. In (a), we show a
representative (on the ↑-spin sublattice) ground state |〉 with electron
spins shown by red arrows—it includes both |c↑a↑〉 and |c↑〉 local
states in a doped system with amplitudes

√
1 − x and

√
x. Adding

an electron in IPES (UHB) (blue arrows) generates in this ground
state either: (b) four possible t3

2g final states with probabilities (1 − x)
each or (c) five possible t2

2g final states with probabilities x each (with
some modifications, see the main text). The states excited in IPES are
either HS or LS, with their energies listed in Table II. Removing an
electron (replacing an arrow by a hole) in PES reduces the spin by
1/2 and gives (d) either the two t1

2g excited states with probabilities
(1 − x) in the LHB, or (e) an empty t0

2g final state with probability x.
In each panel, three t2g orbitals are labeled as {a,b,c} (2.6), with the
convention shown in (e).

of these excitations are: (1 − x), 2(1 − x), and (1 − x). This
weight distribution is modified when quantum fluctuations are
neglected, see below.

Let us compare first the results obtained for the PES
and IPES spectra with the experimental results for undoped
LaVO3 shown in Fig. 2. The spectrum consists of two distinct
structures, the LHB and the UHB separated by a broad
MH gap. From the experimental spectra, one learns that the
distance that separates the LHB and the HS excitation in the
UHB is 3.0 eV. This gives the first experimental constraint
on the on-site Coulomb interaction parameters {U,JH }—this
energy difference obtained in the theory is (U − 3JH ), see
Table II. Furthermore, for the undoped LaVO3, the HF theory
predicts three peaks in the UHB, with the HF energies of
(U − 3JH ), (U − JH ), and (U + JH ) for the HS, LS1, and LS2

excitations, see Table II. The energetic separation of the LS2

and the HS states is thus 4JH that determines the lower bound
for the width of the UHB. Note that the same result would be

TABLE II. Spectral weights wn and atomic excitation energies εn

in IPES and PES processes available in doped R1−xCaxVO3, leading
to final state configurations shown in Fig. 8, as found in the uHF
approximation (HF). The energies that involve a doped ion (d1) “close
to a defect” are increased by the energy VD. The energies found in uHF
(HF) are compared with those of a free ion (exact), where quantum
fluctuations are also included. The HF approach reproduces exact
energies of a free ion for PES and for HS IPES states, where only a
single energy is shown. For convenience, the PES excitation energy for
the host is taken as a reference, εLHB = 0 (here, the small crystal-field
splitting �c is ignored).

εn

IPES Final state Spin wn HF Exact

d2 → d3 |c↑a↑b↑〉 HS 1 − x U − 3JH

|c↑a↑b↓〉 LS 1 − x U − JH U

|c↑a↑c↓〉 LS 1 − x U + JH U

|c↑a↑a↓〉 LS 1 − x U + JH U + 2JH

d1 → d2 |c↑a↑〉 HS x VD

|c↑b↑〉 HS x VD

|c↑b↓〉 LS x VD + JH VD + 2JH

|c↑a↓〉 LS x VD + JH VD + 2JH

|c↑c↓〉 LS x VD + 3JH VD + 5JH

PES Final state - wn εn

d2 → d1 |c↑〉 - 1 − x 0
|a↑〉 - 1 − x 0

d1 → d0 |0〉 - x VD − (U − 3JH )

obtained in the electronic structure calculations implementing
the leading part of local Coulomb interactions [124]. The
overall width of the UHB is expected to be enhanced by the
quantum fluctuations beyond the uHF by ∼JH and by the
experimental broadening.

As explained above, the highest excitation energy for the
LS2 states is doubly degenerate in HF, which gives here twice
larger spectral weight than that of the other two excitations,
HS and LS1. In contrast, the LS1 state is doubly degenerate
when quantum effects are included (see Table II) and the
correct weight distribution is 1:2:1 for the HS, LS1, and LS2

states. In Fig. 2, we have adjusted the spectral weights of the
uHF spectra accordingly to achieve a better agreement with
experiment. Unfortunately, the individual excitations within
the UHB cannot be resolved in the data [70]. The whole
spectrum formed by the LHB and UHB is reproduced well
by the theory, see Fig. 2, after adjusting the two characteristic
parameters {U,JH } that define the position of the maximum
seen in the UHB at the energy (U − JH ) of the LS1 state, i.e.,
relative to the energy of the LHB. The best fit was obtained
with U = 4.1 eV and JH = 0.45 eV that defines the set A of
Table I. Apart from a somewhat decreasing overall experimen-
tal spectral weight with increasing excitation energy ω, which
cannot be reproduced without additional information about the
matrix elements, the agreement between the experiment and
the theory predictions is indeed very satisfactory and suggests
the presence of a multiplet structure within the UHB.

The analysis of the IPES excitations summarized in Table II
elucidates additional features generated in the spectra by
doping. For the |c↑〉 component of the ground-state wave
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function |〉 [Fig. 8(a)], with a hole in the initially occupied
a orbital, two HS states and three LS states may be generated
by IPES, see Fig. 8(c). Each of these states will have a spectral
weight x. In contrast to the excitations occurring in the host
shown in Fig. 8(b), the HS excitations at a doped site include
two final t2

2g states, either |c↑a↑〉 or |c↑b↑〉, with the same
local Coulomb energy (U − 3JH ) as for t2

2g host states. Thus
these excitation energies εn do not include the intraatomic
Coulomb U or exchange JH and would appear just above the
LHB in the absence of a defect potential (i.e., at VD = 0) [117].
However, in reality the d1 → d2 excitation energy is enhanced
by large VD near the charged impurity in the center of the cube
occupied by the defect (Fig. 4) and these unoccupied states
appear deep within the MH gap. The defect potential VD acts on
any local state and enhances its excitation energy, see Table II.
The two LS states with two different orbitals singly occupied
have the final energies of (U − JH ), so the excitation energies
are 2JH . The excitation involving double occupancy |c↑c↓〉 is
more subtle. This state itself is not an eigenstate of Hint (2.7)
as a double occupancy couples by the term ∝JH to |a↑a↓〉
or |b↑b↓〉 state. As a result, the highest excitation energy
(VD + 5JH ) is obtained only for one (fully symmetric with
respect to orbital permutations) eigenstate while the energy
(VD + 2JH ) for the other two. Eventually, the configuration
|c↑c↓〉 shown in Fig. 8(c) is found with the probability of
1/3 in each of these eigenstates. Hence, by performing the
corresponding projections, one finds that the final exact atomic
spectral weights for the energies (VD + 2JH ) and (VD + 5JH )
are 8x/3 and x/3.

Here again quantum fluctuations contribute and the HF
energies of two interorbital LS states, |c↑a↓〉 and |c↑b↓〉, are
lower by JH , i.e., by the same amount as found for the final
LS states in the case of d2 → d3 excitations. The other states
are given by the double occupancies that are here eigenstates
at energy U , so the excitation energy for the accessible |c↑c↓〉
state is (VD + 3JH ), see Table II. The HF spectral weights for
the LS1 and LS2 states are thus 2x and x.

The PES excitations are much simpler than the IPES ones
as just one electron is removed from either component of the
ground state wave function shown in Fig. 8(a) and the spin
is then reduced by 1/2. The d2 → d1 excitations in the host
have approximately the same excitation energy taken here as
the reference, εn = εLHB = 0 (we neglect again the crystal-
field term ∝�c). In contrast, a PES excitation at the hole site,
d1 → d0, starts from the |c↑〉 state, so the energy of the d2

reference configuration is subtracted from VD in Table II.

C. Spectral weight distribution in the atomic limit

To illustrate the above theory, we determined the individ-
ual structures in PES/IPES spectra and their evolution with
increasing doping x ∈ [0.02,0.50] for t = 0.01 eV. Here, the
kinetic energy is chosen to be very small indeed to generate
the results representative for the atomic limit. In Fig. 9, one
observes that the MH gap persists in doped systems. The LHB
is well separated from the HS excitation in the UHB by the
MH gap for the entire doping regime. The states arising within
the MH gap do not close this gap, but develop a novel kinetic
gap analyzed in more detail in the next Sec. V.
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FIG. 9. Doping dependence of t2g DOS N (ω) (4.1) as obtained
from M = 100 random defect realizations for t = 0.01 eV and includ-
ing e-e interactions (η = 1) for increasing doping x ∈ [0.02,0.50].
Other parameters as in set B in Table I. Inset shows the zoom of the
DOS near the Fermi energy at ω = 0.

PES excitations (at ω < 0) are seen in the spectra as two
structures: (i) the LHB corresponding to individual d2 → d1

transitions at V sites that are not nearest neighbors of defects;
(ii) a satellite below the LHB at energy ∼−2.0 eV, i.e.,
originating from d1 → d0 processes at sites occupied by doped
holes, see Fig. 9. When the doping x increases, the spectral
weight of the PES part is altogether∼(2 − x), which consists of
the main peak representing the LHB ∼(2 − 2x) and a satellite
generated by the excitations at the hole sites with growing
spectral weight ∼x. This agrees with the spectral weights of
the PES states listed in Table II. The satellite moves gradually
towards the LHB, reaching energy ∼−1.7 eV at x = 0.45.
Excitations from undoped sites near defects are close to the
Fermi energy and can be well resolved from the main maximum
in the LHB.

The three multiplet transitions d2 → d3 that appear in the
IPES part of the uHF spectra are surprisingly well resolved
even at high doping. The spectral weights of these UHB states
of the host compound are (1 − x), (1 − x), and 2(1 − x) for
the HS, LS1 and LS2 states, see Fig. 9. The defect related
features in the IPES part (ω > 0) due to d1 → d2 excitations
are better resolved here than in case of t = 0.2 eV (Fig. 6).
There are two distinct peaks that grow with doping within the
MH gap, at energies ∼0.6 and ∼1.2 eV. While the weight of
the lower maximum accumulates the weight ∼2x, the weight
if the second maximum appears even somewhat larger. We
recall that the weight of the satellite below the LHB is ∼x,
see Table II. The third maximum induced by doping falls near
the minimum separating the HS from the LS1 excitation in the
reference multiplet structure of the UHB (for these parameters)
and has a lower weight ∼x. In addition, a spectacular evolution
of pseudogap in N (ω) close to ω = 0 is found (see inset). The
highly asymmetric spectrum changes gradually to an almost
symmetric one with increasing x.
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FIG. 10. Integrated density of states n(ω) (4.4) for different
doping x ∈ [0.02,0.50] obtained for the spectra presented in Fig. 9 at
t = 0.01 eV and including e-e interactions (η = 1). Other parameters
as in set B in Table I. Inset shows the zoom of the n(ω) near the Fermi
energy at ω = 0.

The modifications of the DOS N (ω) with increasing doping
x shown in Fig. 9 can be even better appreciated by analyzing
the integrated DOS, see Fig. 10. First of all, one finds an almost
flat plateau in the integrated DOS at n(ω) � 1.98 at low doping
x = 0.02, and the plateau at ω = 0 persists at higher doping.
At x = 0.02, large steps of (1 − x) are found for the energies
of the HS and LS1 states in the UHB, and of 2(1 − x) at energy
of the LS2 state. Note that this latter excitation is well separated
from the structures generated by excitations at sites doped
by holes as the former energies are lower. Most importantly,
the excitation energies are constant and are not influenced by
increasing doping, reflecting the robust local character of both
d2 → d3 and d1 → d2 processes.

At the lowest doping x = 0.02, one is sufficiently close
to the reference undoped system characterized by the LHB
at ω ∼ −0.8 eV, and the weak satellite feature with low
intensity arises at ω � −2.0 eV, identified by finite n(ω) for
−2.0 < ω < −1.0 eV. By removing a single electron one gains
here the energy VD as this electron before the removal feels the
potential of the charged defect VD in the center of the cube,
see Table II. Indeed, this latter excitation energy is lower than
that at the center of the LHB, as observed in Fig. 9. Faster
increase of n(ω) follows close to ω = −0.8 eV and afterwards
the integrated weight grows again very slowly. Finally, the
spectral features that grow with increasing doping in Fig. 9
are responsible for the dramatic deformation of a distinct step
structure seen in Fig. 10 at x = 0.02 towards an almost steady
increase of n(ω) from the onset of the LHB to the top of the
UHB, except for a quite narrow plateau near the Fermi energy
shown in the inset.

We also observe a remarkable feature in Fig. 10. Indepen-
dently of actual doping x, the integrated DOS reaches the
value of two electrons per site at ω � 0.7 eV. This shows that
the spectral weight missing in the PES part is compensated
by the HS d1 → d2 excitations which have an approximately

η

FIG. 11. Doping dependence of the total spectral weight below
the Fermi energy (sum, magenta line), of the LHB (LHB, black
symbols) originating from undoped V sites and the satellite c∗ (blue
symbols) due to d1 → d0 PES annihilation processes of occupied c

orbitals at V ions in d1 states. Data is obtained near the atomic limit
for t = 0.01 eV (squares) and at the value t = 0.2 eV realistic for
Y1−xCaxVO3 (circles). Other parameters as in set B in Table I.

constant energy above the Fermi level in the entire doping
regime. A similar point is found at ω � −0.8 eV and the
filling of n(ω) = 0.8—here it falls around the maximum of the
LHB. These points are quite reminiscent of the isosbestic point
found in the specific heat of correlated systems [125,126]. Here
the two isosbestic points originate from the doping dependent
spectral weight transfers between the host Hubbard bands and
the defect states, that correspond to the final states of the
d1 → d0 and d1 → d2 transitions, respectively.

Summarizing, by analyzing the data in Figs. 6 and 9, one
concludes that the spectral weights found in the numerical
calculations both confirm those found in the atomic limit, see
Table II. The total spectral weight of the occupied part of the
DOS, 2 − x, reproduces the average electron density below
the Fermi energy. This weight consists of that of the LHB,
represented by the main peak in the spectra, which corresponds
to d2 → d1 transitions at undoped sites with the total intensity
2(1 − x), and that of the satellite growing at low energy with the
weight of x as it reflects the d1 → d0 excitations at the V ions
with doped holes in bound states near the defects. The predicted
linear behavior ∝x is indeed reproduced at t = 0.01 eV, see
Fig. 11, while only a small deviation from it is observed for
t = 0.2 eV. One finds that the spectral weight in the LHB is
somewhat enhanced at the expense of the d1 → d0 satellite.
This behavior is reminiscent of the kinetic spectral weight
transfer in the nondegenerate Hubbard model [116,117].

D. Active bond and satellite of the LHB

We emphasize that the satellite structure arising from the
d1 → d0 excitation is well separated from the remaining states
in the LHB only in a particular range of parameters and in
addition when the hopping is small, t = 0.01 eV. For such an
immobile hole the excitation energy is practically the same as
in the atomic limit, see Table II,

E(0)
m = ELHB + VD − (U − 3JH ). (4.5)
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η

FIG. 12. Excitation energies Em assigned to the LHB d2 → d1

excitations and to the satellite c∗ attributed to d1 → d0 excitations
arising from holelike small polarons, where the doped holes (or d1

configurations) are localized at V-ions close to a charged Ca defect.
Data are shown for t = 0.2 eV (circles) and for the atomic limit
t = 0.01 eV (squares). Other parameters as in set B of Table I.

Thus, to get the excitation energies in the case of t = 0.01 eV
one has to include the energy corresponding to the center of
the LHB, being ELHB = −0.7 eV in Fig. 12, and combine it
with the energy of the d1 → d0 excitation (VD − U + 3JH ),
and one arrives at the excitation energy E(0)

m = −1.9 eV shown
in Fig. 12 for the low doping x = 0.02.

Consider now a doped site i at finite and increasing t . The
hole as well as the other occupied V neighbors closest to a
given Ca2+ defect (on a cube Cm surrounding a defect at site
m) feel the potential VD [91]. The hole delocalizes partly along
the active FM bond 〈ij 〉‖c axis, and electronic configurations at
sites i and j change from (b↑)0 and (b↑)1 to (b↑)δ and (b↑)1−δ

[with δ < 0.5 and (c↑)1 electron at each site]. This results in
the modification of excitation energies at both sites and one
finds instead of Eq. (4.5):

E(i)
m = ELHB + VD − (U − 3JH ) (1 − δ), (4.6)

E(j )
m = ELHB + VD − (U − 3JH ) δ. (4.7)

This is illustrated through a calculation for well annealed,
or equivalently short-range-potential random, charged defects
in Fig. 13. In this figure, together with the reference overall
multiplet structure (panel a), the partial DOS Niγσ (ω) at three
V sites of the defect cube (see Fig. 4) are displayed. Namely,
sites A1 (panel b) and A2 (panel c) that belong to the FM
active bond that basically accommodates the doped hole, and,
for comparison, at a site with two electrons which we call
a spectator (S) site, see Fig. 4(d). In the latter case, both
electrons a and c feel the Hubbard interaction (U − 3JH ).
The remaining single a electron on the active bond forms a
bonding state, whose polarity is determined by several factors:
(i) the interplay of kinetic energy and JT-fields and (ii) in the
long-range-potential case with random defects, the random
fields of the other defects. Even in absence of random defect
potentials a hole distribution polarized along the c axis is
expected, favored by the JT potentials in the symmetry broken
G-AO state.

The energies of the occupied c levels at sites A1 and A2

in Fig. 13 are very different, as they are controlled by the

-2 -1 0 1 2 3 4 5
0

4

8

11

0

4

8

11

0

4

8

-1.5 -1.0 -0.5 0.0 0.5 1.0
0

4

8

dBN
(ω
)(
1/
eV
)

ω (eV)

dB

Total (a)

c↑ a↑
LHB

HS

N
iγσ
(ω
)(
1/
eV
)

a↑

A1 (b)

a↑ b↑
a↑

c↑ A2 (c)

LS2
LS1

HS

LHB

c↑ S (d)

ω (eV)

a↑

FIG. 13. Single-particle excitations: (a) Multiplet structure (total)
in the presence of well annealed, or equivalently short-range-potential
random, charged defects, in yellow the energy region reported in
the other panels; [(b) and (c)] partial spectral weights Niγσ (ω) for
vanadium ions A1 and A2, respectively, that belong to the active bond,
and (d) for an occupied spectator site S as defined in Fig. 4. The hole is
predominantly at A2. In (b)–(d), the thin dashed red curves represent
the total DOS [from (a)] and are given as reference. Parameters as in
set B of Table I and t = 0.2 eV.

distribution of the single a electron on the active bond 〈A1,A2〉.
In Fig. 13, the hole is mainly at site A2 and, therefore, the c

electron there is at a lower energy as it does not acquire the
Hubbard interaction (U − 3JH ) due to the smaller density of
a electrons at site A2. The position of the satellite c∗ coincides
with the occupied c level at site A2 and therefore monitors
the polarity of the active bond and, in the disordered case, the
random fields of the further distant defects.

Hole delocalization on the active bond with increasing
t reduces the energetic distance between the LHB and
the satellite state c∗, see Fig. 12. As we have explained
above, see Eq. (4.6), this δ-dependent energy shift by
[VD − (U − 3JH )(1 − δ)] is a fraction of the Coulomb en-
ergy (U − 3JH ) and is therefore much higher than t itself.
In the considered example in Fig. 12, one finds the value
E(1)

m � −1.6 eV for t = 0.2 eV which implies a hole delo-
calization on the active bond corresponding to δ ≈ 0.3. Thus
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the distance of the c∗ excitation can be used to probe the
delocalization of the doped hole on the active bond. As the
delocalization is controlled by the interplay of the kinetic
matrix element t and the random defect fields, the d1 → d0

excitation energies provide a direct measure of the strength
and the fluctuations of the random fields.

So far, we have focused on the multiplet structure and
on the d1 defect state that gives rise to a satellite on the
low energy side of the LHB, and should appear as d1 → d0

transition in PES. The observation of the satellite would
yield valuable information about the defect structure and the
disorder strength. In the next section, we turn to further defect
related transitions, namely the d2 → d1 transitions in PES and
d1 → d2 transitions in IPES. The corresponding electron
removal and addition energies fall inside the fundamental
MH gap and lie below and above the chemical potential,
respectively.

V. MECHANISMS FOR DEFECT STATES GAP

The most important features triggered by the presence of
charged defects in the system are the (defect) states that appear
within the MH gap as they determine the position of the
chemical potential and the transport properties of the material.
Such states originate from the LHB and, being repelled by
effectively negative defects (for instance, Ca2+ ions substitut-
ing La3+ ones), are pushed upwards in energy into the MH
gap. The distribution N0(ω) of the bare electron energies hi , as
defined in Eq. (2.2), is determined by the Coulomb potentials
of the random Ca2+ impurities. An example is shown for
doping x = 10% in Fig. 14(a). The total distribution of electron
energies N0(ω) [see Fig. 14(a)] can be decomposed into the
distribution Nd (ω) of energies of the V sites that are direct
neighbors of at least one defect, i.e., within distanced, while the
remaining V sites contribute to the second distribution Nnd (ω)
that lies at lower energy, as shown in Figs. 14(c) and 14(d),
respectively.

Figure 14 highlights three important points: (i) as there are
eight vanadium sites close to each defect, but only a single
hole per defect, the number of defect states is much larger than
the number of doped holes; (ii) hence, the chemical potential μ
lies in the high energy tail of the defect state distribution Nd (ω)
[see Fig. 14(d)]; (iii) the defect states distribution below μ is
not well separated from the states of the original LHB. The
latter point, namely that the defect states in the Hubbard gap
below μ and the LHB states cannot be easily distinguished,
is a common feature of N0(ω) and of the total DOS N (ω) of
the system studied in the previous section (see Fig. 6). On
the contrary, above μ, that is in the IPES regime, the defect
states and the HS Hubbard band states appear well separated
in energy.

The opening of a soft DS gap at the chemical potential μ

in N (ω) is the most striking difference with respect to the bare
DOS N0(ω). Figure 6 displays the pronounced depletion of the
DOSN (ω) right at the chemical potential (i.e., within the defect
states band) for a system with long-range e-e interactions
(η = 1) and several doping concentrations. One well-known
mechanism for the opening of a soft gap is the combined action
of long range e-e interactions and disorder as pioneered by
Pollak [77] and by Efros and Shklovskii [78,79] and denoted
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FIG. 14. Distribution of the local energies hi due to the random
defect potentials. (a) The total distribution of levels N0(ω) (solid
black line) for a doping concentration x = 10% is subdivided in a
distribution Nd (ω) of energy levels of V sites that are direct neighbors
of at least one defect (dotted blue line) and a remaining distribution
Nnd (ω) of levels related to V sites that are not nearest neighbor of a
defect (dashed magenta line). (b) N0(ω), (c) Nnd (ω), and (d) Nd (ω)
for doping concentrations x from 10% to 50% (green to red lines).
The chemical potential μ (corresponding to ω = 0) lies in the high
energy tail of the level distribution Nd (ω) related to V sites that are
nearest neighbor of a defect.

as the Coulomb gap [78]. The Coulomb gap arises from a
subtle optimization of the occupation of randomly distributed
localized electron states, viz. the CG model, where the total
energy is minimized by the formation of a soft gap around the
chemical potential.

An alternative mechanism for the formation of a gap in
cubic oxides in the presence of charged defects was reported in
a recent study [63,91]. In these systems, the gap arises because
the doped holes: (i) are bound to the defects by the defect
potential whereas the spin-orbital order greatly reduces the
already constrained (2D) mobility; (ii) are confined to one of
the vertical bonds of the defect cube hosting them by the in-
plane AF spin order; (iii) can gain kinetic energy, leading to a
splitting of the topmost occupied states, delocalizing over that
vertical bond. That is, the system gains energy by opening a gap
at the chemical potential as in the Peierls effect. However, here
the splitting does not arise from an induced lattice distortion,
but from the formation of bonding and anti-bonding states on
the FM active bond 〈A1,A2〉 close to a defect in the presence
of a doped hole, as it is depicted in Fig. 13. The formation of
a kinetic gap between the |a↑〉 states in Fig. 13 is controlled
by an interplay of doped holes with spin and orbital degrees of
freedom, and most importantly it is controlled by the random
potentials of the defects and the e-e interaction. Furthermore,
it was found that the kinetic gap is not destroyed by disorder
if t is large enough [63].

For a general case, it was pointed out that the kinetic and
the Coulomb gap mechanisms, the latter emerging from e-e
interactions, enhance jointly the DS gap in the vanadates [91].
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FIG. 15. Variation of the density of states and of the defect states
gap for parameter set B of Table I as a function of the strength of e-e
interactions η = 0, 0.2, 0.4, 0.6, 0.8, 1.0, t = 0.2 eV, and x = 0.10.

We note that this is in contrast to the Anderson-Hubbard model
with long-range e-e interactions where the kinetic energy
suppresses the DS gap [83].

Here, we present a systematic analysis of how the e-e
interactions and the kinetic-gap mechanism jointly contribute
to the formation of the DS gap. In Fig. 15, for a system with
doping x = 10%, we investigate how the DOS N (ω) varies
when the e-e interaction is switched on while keeping the
value of the hopping integral t = 0.2 eV fixed. This is done
by changing the η parameter from zero to one; notice that this
corresponds to the line BC in Fig. 1. At η = 0, the quite large
width of the Hubbard bands is due to the effective distribution
of the levels generated by the Coulomb potentials of the random
defects (see Fig. 14). With increasing η, such monopolar
potentials (∝1/r) are more and more compensated by the
e-e interaction. In the case η = 1, i.e., in the physical case,
each single defect and the related bound hole act overall as a
dipole (∝1/r2) and, as a consequence, the effective distribution
of the random energy levels gets narrower while keeping the
defect positions unchanged. In Fig. 15, there is already a kinetic
gap even in the complete absence of e-e interactions (η = 0).
This gap is approximately linear in ω as we shall see in the
statistical analysis below. With increasing η, a pronounced
soft gap evolves, that can be attributed to the Coulomb gap
mechanism.

In Fig. 16, we study the t dependence at η = 1, i.e.,
in presence of e-e interactions, for doping x = 10%. This
corresponds to the line DC in Fig. 1. The DOS changes only
slightly as a function of t as the width of the Hubbard bands
is essentially determined by the disorder. The evolution of the
DS gap is amplified in the inset of Fig. 16. Surprisingly, we see
here that, at small values of t , the Coulomb gap mechanism in
these systems is not strong enough to create a soft gap. In a
certain range t � t∗, the data in the inset suggest that the DOS
at μ is finite. As there is nevertheless a strong suppression
of the DOS we call this a pseudogap. With increasing t , the
pseudogap changes into a soft gap with N (μ) = 0. We shall see

ηω

ω

FIG. 16. Variation of the density of states and of the defect states
gap for parameter set B of Table I for t = 0.01, 0.05, 0.10, 0.15, and
0.20 eV, η = 1, and x = 0.10. Inset shows the zoom of the DOS near
the Fermi energy at ω = 0.

below by a rigorous statistical analysis that for small t values
there is in fact a weak singularity with N (0) = 0 hidden in
these data. As a side remark, we note that, with increasing t ,
the satellite c∗ gradually moves upward. The upward shift is
connected with the increasing delocalization of the hole on the
active bond, as discussed above.

To analyze the behavior of the soft gap in N (ω) without
suffering from the unavoidable broadening of delta functions,
we consider the averaged integrated DOS n(ω), Eq. (4.4),
that can be studied without artificial broadening. It is worth
noting the following key features of n(ω) in the vicinity of the
Fermi energy: (i) at the chemical potential there is an evident
gap/plateau for t = 0.2 eV and η = 1 (see Fig. 7), but not for
t = 0.01 eV, and (ii) on decreasing the screening η → 0, the
gap/plateau disappears even for t = 0.2 eV.

In order to establish the statistical behavior of N (ω) at low
energy in the limit of an infinite number of defect realizations
M → ∞, we use that N (ω) is proportional to the probability
distribution function P ∗(ω) that the topmost occupied state
(the lowest unoccupied state) in a generic defect realization s

has energy ω = �s(−�s) relative to its Fermi energy μs . This
is equivalent to the distribution of the nearest neighbor level
spacings 2�s across the chemical potential. In Ref. [63], it has
been shown that a generic defect realization features a gap of
size E with a probability governed by a Weibull probability
distribution function,

PW (E) = θ(E − ζ )
k

λ

(
E − ζ

λ

)k−1

e−( E−ζ

λ
)k , (5.1)

with shape parameter k, scale parameter λ, and location pa-
rameter ζ . Accordingly, if ζ = 0, we have P ∗(ω) = k

λk |ω|k−1

and N (ω) ∝ |ω|k−1 both for |ω| � λ. The exponent k allows
to distinguish the following cases: a soft gap for k > 2, a
linear gap for k = 2, a pseudogap (or singular gap) regime
for 1 < k < 2, and no gap for k = 1.
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FIG. 17. Shape k (top) and scale λ (bottom) parameters of the
Weibull distribution (5.1) that characterizes the soft gap at μ as
a function of e-e-interaction strength η for t = 0.2 eV (BC) and
t = 0.01 eV (DA), and as a function of t for η = 0 (AB) and η = 1
(CD), respectively, at x = 0.10. For labels A–D see Fig. 1.

Moreover, if ζ > 0, the Weibull probability distribution
describes a real gap, that is, in this case we have N (ω) = 0
for |ω| � ζ and N (ω) ∝ (|ω| − ζ )k−1 for ζ < |ω| � λ. Thus
PW (E) results in a robust scheme to determine the behavior
of N (ω) close to the Fermi energy, that is, the presence and
type of the overall gap in the system (through k and ζ ) as well
as the typical scale of the microscopic gap developing locally
in the system because of all microscopic mechanisms at work
(through λ).

The numerical data for the exponent k and the scale
parameter λ obtained from the statistical analysis of
M = 100 defect realizations are summarized in Fig. 17, top and
bottom, respectively. The odd panels show the t dependence
for η = 0 (panel AB) and 1 (panel CD), respectively, and the
even panels show the η dependence for t = 0.2 eV (panel BC)
and t = 0.01 eV (panel DA), respectively. The parameters
k and λ are determined by a statistical least-squares fit to
PW (E) of the actual distribution of gaps (2�s) among 100
defect realizations and yield for all cases a vanishing real gap,
i.e., ζ = 0. In the top panel of Fig. 17, we recognize a strong
variation of the exponent ν = k − 1, which determines the low
frequency (ω � λ) behavior of the DOS: N (ω) ∝ ων , with
the increasing/decreasing hopping or e-e interactions, t and η.
This is in striking contrast to the CG model studied by Efros
and Shklovskii [78,79], where ν = d − 1 is determined by the
spatial dimension d alone.

The size of the pseudogap is controlled by the scale
parameter λ in Fig. 17 (bottom panel). In the absence of e-e
interactions η = 0 (interval AB), the disorder is very strong
indeed leading to a complete suppression of the soft gap in the
entire range of t and to the vanishing of λ scale in the limit
t → 0. In panel BC, that is on increasing e-e interactions,
we see an increase of k from 2 at B, which corresponds to

a gap linear in |ω|, as seen in the DOS in Fig. 15, to a soft
gap with k ≈ 3 at C. The increase of λ from D to C, that is
on increasing t , displays the kinetic gap mechanism. Panel DA
(t = 0.01 eV) shows that e-e interactions (in the realistic range)
are not strong enough to open a soft gap when approaching the
atomic limit. When approaching the point A (at η = 0) ν tends
to zero, although our result for t = 0.01 eV is not exactly zero.

Yet as the scale parameter λ → 0, we conclude that in the
absence of e-e interactions there is a constant DOS at μ in the
atomic limit. It is worth noting that, for a range of η values
and t values at η = 1 around the D point (panels CD and
DA), we find a pseudogap with an exponent ν � 0.5−0.6. This
Coulomb anomaly for a 3D system is a feature distinct from
the soft gap in the Efros-Shklovskii theory for the Coulomb
glass and reminiscent of the Coulomb anomalies discussed for
the electron gas by Altshuler and Aronov [76].

In this section, we have seen that even in the absence of e-e
interactions a sufficiently large hopping t can open a gap in the
defect states that survives the disorder fluctuations. However,
we also found that e-e interaction alone may not be strong
enough in the vanadium perovskites for the emergence of a soft
DS gap with a vanishing DOS at μ. The Weibull exponent k is
the largest when both mechanisms, i.e., kinetic gap formation
and e-e interactions, act together. In contrast to the Efros and
Sklovskii theory, we found here that the soft gap exponent
ν = k − 1 of the DOS at the chemical potential is nonuniversal
but depends both on t and η. Next, we shall explore in detail
the localization of electron states in the presence of charged
defects and, in particular, the role of e-e interactions.

VI. INVERSE PARTICIPATION NUMBER
AND LOCALIZATION

In this section, we determine the degree of localization of
the electronic wave functions quantitatively. As useful measure
of the localization of a single-particle wave function ψ(r),
the inverse participation number (IPN), P −1 = ∑

i |〈ψ |i〉|4,
has been introduced for models with one orbital and one spin
per site i, where the wave function ψ(r) is assumed to be
normalized. The participation number P provides a measure of
the number of sites over which the single particle wave function
ψ(r) roughly extends [127]. The IPN was first considered
by Bell and Dean [100] in the context of the localization
of lattice vibrations and subsequently explored by Thouless
[101], Wegner [102] and others [83,128,129] in the context
of the Anderson localization of electronic states. The IPN has
also been employed in studies related to quantum spin chains
[130] and many-body localization [131].

For systems with spin and orbital degeneracy, which are of
interest here, we shall define the IPN as

P −1 =
∑

i

(∑
α,σ

|〈ψ |i,α,σ 〉|2
)2

, (6.1)

where the internal sums in α and σ are over local orbital and
spin degrees of freedom, respectively, while the remaining
sum in i is over all N sites in the system. The wave function
is assumed to be normalized, i.e.,

∑
i,α,σ |〈ψ |i,α,σ 〉|2 = 1.

For a localized state ψ(r) that extends over few sites, the
participation number P is a small number slightly larger than
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FIG. 18. Spectral function of the inverse participation number
P −1(ω) (6.2) for parameter set B of Table I and t = 0.2 eV at
x = 10%. The thick red curve stands for the fully screened case
η = 1 and reveals a discontinuity at μ, whereas, in the absence of
e-e interactions (η = 0, thick green curve), the states directly below
and above μ have the same spatial extension. Thin lines stand for the
average P −1

n (ω) vs ω = 〈ωn〉.

1, whereas for an (almost) completely delocalized state (e.g., a
Bloch state), it is of order N , the number of sites in the system.

Here, we are interested in the localization of the n-th HF
eigenstate ψn,s(r) corresponding to the nth HF eigenenergy
ωn,s both computed for the defect realization s. Therefore we
shall explore the spectral function representing the statistically
averaged IPN,

P −1(ω) = 1

M

M∑
s=1

[
1

Ns(ω)

∑
n

P −1
n,s δ(ω − ωn,s)

]
, (6.2)

where P −1
n,s is the IPN computed for ψn,s(r) and Ns(ω) is the

DOS of the s defect realization. It is worth noting that the
division by Ns(ω) is problematic in regions with small DOS,
which are of particular interest to us. Therefore we analyze the
essentially equivalent quantity,

P −1
n (ω = 〈ωn〉) = 1

M

M∑
s=1

P −1
n,s , (6.3)

where 〈ωn〉 = 1
M

∑M
s=1 ωn,s . This quantity has the great advan-

tage to avoid the pathological division by the DOS Ns(ω) and
displays in addition the fluctuations due to the many defect
realizations in {P −1

n,s } and in {ωn,s}.
The fluctuations of the inverse participation number P −1

n

turn out surprisingly small as can be seen in Fig. 18, which
displays two data sets, one without (η = 0) and another with
(η = 1) e-e-interactions. At first glance, it is clear that both
sets represent well localized wave functions over the whole
spectrum. Note that a value P −1 ≈ 0.5 corresponds to a wave
function delocalized over two sites. It is important to note
here that the localization is entirely due to the disorder, as
a calculation without any defects yields P −1 ≈ 1/L2 (not
shown), where L is the linear dimension of our cluster. The
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FIG. 19. Spectral function of the inverse participation number
P −1(ω) (6.2) for parameter set B of Table I, t = 0.01, 0.05, 0.10,
0.15, and 0.20 eV (green to red) and η = 1 at x = 10% (thick lines).
Thin lines stand for the average P −1

n (ω) vs ω = 〈ωn〉.

1/L2 dependence is consistent with the 2D nature of Bloch
states of the t2g electrons in our system.

The striking difference of the two data sets in Fig. 18 reflects
the absence or presence of the screening by t2g electrons.
Without e-e interactions, the monopolar defect potentials are
not screened and hence the disorder effect is stronger; this is
already manifest in the larger width of the LHB in the DOS.
In the screened case instead, the Hubbard bands are much
narrower in the DOS, but also in the IPN distribution. The
smaller values of IPN in the center of the Hubbard bands for
η = 1 indicate that these states are definitely more delocalized
when the defect potentials are screened. In the η = 1 case, it is
worth noting that the defect states are much more localized, for
instance in the energy region of the c∗ satellite, in comparison
to the states in the center of the Hubbard bands, which are less
affected by the random defect potentials and therefore show a
smaller IPN.

The IPN of defect states inside the MH gap shows several
interesting features. In the unscreened case η = 0, the inverse
participation number is approximately constant (P −1 ≈ 0.6)
for the states close to the chemical potential. This case
corresponds to the DOS linear in ω in Fig. 15. For the screened
case η = 1, however, we observe a pronounced discontinuity
in the degree of localization of defect states right below and
above μ, as seen in Fig. 18. The discontinuity in the degree of
localization of the defect states at the chemical potential reflects
the different nature of the electron removal and addition states
in presence of e-e interactions. It is evident from Fig. 18 that
the removal states are more localized than the addition states.

In Fig. 19, we explore the t dependence of the IPN for the
case with e-e interactions (η = 1). We recognize that in the
regime of small t (close to the atomic limit) P −1 ≈ 1. That is
the electron states are perfectly localized at a single site, as one
expects for the classical case t = 0. The upper limit P −1 = 1
shows that our definition of the IPN in the spin and orbital
degenerate case is correct. The choice of a small finite hopping
t = 0.01 eV in Fig. 19 is dictated by the dependence on t of
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the computation time: the smaller t is the longer it takes to
reach convergence. We see that the defect states close to μ and
those at the bottom of the LHB are slightly more delocalized.
For these defect states, IPN is in the range P −1 ∈ (0.8,1.0).
This weak delocalization at small t is a consequence of the
motion of the holes on the active bonds and increases with
increasing t . We also see that the states in the center of the
various Hubbard subbands delocalize faster with increasing t

than the defect states in between the Hubbard multiplets. Thus
we can conclude that all states remain well localized even at the
moderate doping concentration of x = 10% and for the typical
value t = 0.2 eV of the hopping integral in these materials.

VII. SPIN-ORBITAL POLARONS AND REDUCTION
OF MAGNETIC AND ORBITAL ORDER

From the study of the IPN in the previous section, it naturally
follows that (i) the defect states must be visualized as localized
small polaron states that are tightly bound to defects and (ii) the
symmetry of each polaron state relative to the closest defect
must be strongly broken. It is important to contrast here two
distinct physical sources of localization in condensed matter
physics.

(1) Wave functions localize (i.e., their spatial extension
undergoes an extreme reduction) due to the presence of defects
or of any kind of disorder, as it happens, for instance, to the
single particle states in the Anderson localization scenario
[74,75].

(2) On the other hand, electrons localize also due to strong
(local) e-e interactions as in the half-filled Hubbard model, that
is in the absence of disorder [132].

In general, the Anderson and the Mott routes to localization,
as listed above, are expected to combine in very nontrivial
ways [133]. In the regime of strong correlations, t � U , the
ground state of the Hubbard model at half-filling is a Mott
insulator with AF spin correlations. Added holes create spin
defects while moving in the AF spin background, and form spin
polarons [134,135]. The motion of the hole inside the polaron
cloud represents the main kinetic energy. Yet, as found for
instance in the high-Tc materials, the entire polaron may in
addition perform a coherent motion on the magnetic energy
scale J ∝ t2/U [134].

In the case of orbital polarons in a state with AO order,
the holes have an even stronger tendency towards localization,
for instance in systems with t2g orbital degrees of freedom
[109,136,137]. A similar analysis of individual hopping pro-
cesses as for spin polarons [135,138] is possible and provides
a good insight both into the optical excitations [139] and
the spectral properties [23,140–142] of orbital systems. More
demanding is the theoretical description of a charge added
to a system where both spin and orbital order alternates and
excitations of both types of degrees of freedom may contribute
to the polaron cloud [62,143]. Results depend on the actual
symmetry of the spin and orbital order realized in the ground
state. Theoretical studies have shown that single SO polarons
in systems where both spins and t2g orbitals alternate, as in
the (a,b) planes of the vanadium perovskites, tend to localize
[60,61].

Experimentally, such polarons were first identified in half-
doped manganites for eg orbital degrees of freedom [144,145],

but exist also in doped cobaltates [59] and in the cubic
vanadates [58]. In the latter case, being of interest here, the
doped holes move in the spin-orbital ordered C-AF/G-AO state
and the emerging SO polarons perturb both spin and orbital
order. These polarons are bound to the charged defects: this
eliminates any coherent motion and the perturbation of the
spin-orbital order in the system can be described by means
of a detailed analysis of the nature and of the structure of the
polaron cloud, see below. Thus the polaron cloud provides a
many-body measure of the reduction of the spin- and orbital-
order parameter as a function of doping. In this section, our
aim is to define the SO polaron wave function and to explore
the spatial extension, or the IPN of the SO polaron.

In the spin- and orbital-ordered state, it is convenient to
expand the polaron wave function |ψn(i)〉 in a string basis,

|ψn(i)〉 =
∑
δ,α

an,α(δ)|i + δ; Sα(δ)〉, (7.1)

where the label n distinguishes polaron states that may differ
by their spatial symmetry and their spin. However, in the
following, we shall consider only the polaron state with the
minimal energy. The wave function of the polaron |ψn(i)〉
is centered or has its largest amplitude at the vanadium site
i. Its kinetic energy involves the neighboring sites {i + δ},
on varying δ = ∑n(α)

m=1 δm, as the hole propagates along dif-
ferent paths, Sα(δ) = {δ1,δ2, . . . ,δn(α)}, where δm = ±eν and
ν = x, y, z are the unit vectors of the cubic lattice. A string
state, |i + δ; Sα(δ)〉 in Eq. (7.1), corresponds to the state of
a hole after it has moved along a particular path Sα(δ) from
site i to site i + δ and, therefore, it automatically contains
information about the spin and orbital defects created along
that particular path. Next, we proceed as in the case of the
localization of single particle wave functions and define the
IPN for the many-body wave functions of SO polarons as

P −1
n =

∑
δ

(∑
α

|an,α(δ)|2
)2

. (7.2)

As each path Sα(δ) corresponds to a sequence of spin-flips
and/or orbital changes relatively to the underlying spin-orbital
ordered background, the energy of a string state increases with
the length of the related path and only short paths and related
string states contribute effectively as long as the system is not
close to a phase transition.

In the dilute case (i.e., small density x of doped holes), the
overall reduction of the local magnetic order parameter ms can
be calculated from the spin deviation msP , with respect to the
underlying spin-orbital ordered background associated with a
single polaron,

ms � ms
0 − xmsP , (7.3)

where ms
0 is the local magnetization in the undoped ground

state, as we can imagine that the interactions between polarons
are negligible. Then, msP can be computed by means of the
many-body wave function of the SO polaron,

msP = 〈ψ0|m̂s(Q)|ψ0〉 − 〈ψ(i)|m̂s(Q)|ψ(i)〉. (7.4)

Here, |ψ0〉 is the N -particle ground state of the underlying
spin-orbital ordered background and |ψ(i)〉 is a single-polaron
wave function in the space of (N − 1) particles.
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FIG. 20. Self-consistent uHF results for the spin-order param-
eters ms

c and ms
ab and the orbital-order parameter mo

ab for the
C-AF/G-AO ordered phase resulting from electrons in a/b and c

orbitals, respectively, as functions of the hopping parameter t and for
different doping concentrations x = 0.05, 0.10, 0.15.

In this section, we analyze the localization from the strong
correlation perspective. It is evident from the uHF results for
the IPN in Fig. 19 that all states of the system are perfectly
localized in the limit t → 0. With increasing t the states
become gradually more extended. Accordingly, an important
probe for the delocalization is the decrease of spin and orbital
order parameters ms and mo, respectively. The staggered spin
order of the C-AF structure, for example, is measured by

m̂s
ν( Q) ≡

∑
j

m̂z
j ,νe

i Q· j , (7.5)

where j and ν = a, b, c are site and orbital flavor indices,
respectively. In the following, we use the convention m̂z = 2Ŝz,
where Ŝz is the z component of a spin-1/2 operator. The
staggered orders of C and G states are measured by modula-
tion vectors QC = (π,π,0) and QG = (π,π,π ), respectively.
Furthermore, within the uHF approach, it is straightforward to
distinguish the contributions from ab and c electrons to the
order parameters, respectively. Thus

ms = ms
ab + ms

c, (7.6)

where ms
ν = 〈m̂s

ν( QC)〉 for C-type spin order. Similar con-
struction applies for the G-type orbital order parameter,
mo

ν = 〈m̂o
ν(QG)〉.

In Fig. 20, the t dependence of the spin-order parameters
ms

ab and ms
c and of the orbital-order parameter mo

ab are shown.
As we already explained above, hole doping concerns the {a,b}
orbital doublet and the magnetic moment component ms

ab is
thus reduced byx at t = 0, whereasms

c = 1 remains unchanged
as there is no doping into c orbitals. On increasing t , holes move
and the spin and orbital order are further reduced. This effect
is particularly small for c orbitals, as their motion involves
only doubly occupied c2 configurations and, therefore, costs
the intraorbital Hubbard repulsion U . The contribution of such
processes is small in comparison to that of the virtual processes
involving a and b electrons. In Fig. 20, one recognizes a strong
reduction of the orbital order mo

ab, both as a function of x and
t . In fact, the kinetic processes have a stronger effect on the

G-type orbital order parameter mo
ab than on the C-type spin

orderms
ab. This may be seen as a precursor of the trend observed

in the experiments performed on La1−xSrxVO3 [55] where the
G-AO order melts at a lower doping than the C-AF spin order.

Next, we shall use the order parameter expressions, derived
in Appendix B by assuming noninteracting small SO polarons,
for the interpretation of the uHF results. The central assumption
is the linearity in x of the order parameter corrections, which
is confirmed by the present uHF results in a wide doping
range, see Appendix B. It is important to recognize that in the
insulating regime that we are considering, each small polaron is
bound to and strongly deformed by the central charged defect.
Thus the number of relevant paths for the doped holes are
significatively reduced in comparison to those available for a
polaron not attached to a defect. Furthermore, the polaron state
is strongly influenced by the random fields resulting from the
other more-distant defects.

The expressions for the spin and orbital deviations asso-
ciated with a single polaron are derived by considering the
polaron cloud of a hole located on an active bond close to
a defect. It is the FM correlations along the c direction in
C-AF structure in combination with the defect potential, which
defines the direction of the active bond, that yield the dominant
gain of kinetic energy for the hole. The virtual motion of holes
in a or b direction is instead quenched by AF correlations. Thus
the polaron wave function is characterized by two physical
parameters, namely: (i) the polarity parameter of the active
bond δc, where δc = 0 describes a hole localized on a single
site, as for t = 0, and δc = 1/2 an equal partition between
the two sites of the active bond, as in the case of large t and
screened far-defect potentials (η = 1); (ii) the activation energy
e0 of the virtual string excitations. We focus here on the spin-
and orbital-order parameter due to a/b orbitals that show the
strongest dependence on doping:

ms
ab

∼= 1 − x

[
1 + 2(t/e0)2

1 + (t/e0)2

]
,

mo
ab

∼= 1 − x

[
1 + 2δc + 2(t/e0)2

1 + (t/e0)2

]
. (7.7)

For an isolated single defect, the activation energy e0

is given by Hund’s coupling JH , whereas δc is controlled
primarily by t and the Jahn-Teller coupling. In the presence
of disorder, the potentials due to the random far defects affect
quite strongly both the activation energy e0 and the polarity
parameter δc. Accordingly, these parameters are taken here as
natural variational parameters. When we apply these relations
to the uHF results, obtained as a statistical average over many
defect realizations, we obtain for δc and e0 the values of a
typical bound small polaron.

Figure 21 shows the typical polaron parameters obtained
by fitting the uHF results shown in Fig. 20 for the spin and
orbital order parameters, ms

ab and mo
ab, see Eqs. (7.7) (see also

Appendix B). We find a significant increase of the activation
energy e0 from 0.33 eV at x = 5% to 0.82 eV at x = 25%.
This increase can be attributed to the increase of the overall
random potential strength on the single defect cube when the
concentration of defects becomes larger and larger. We note
that Hund’s exchange, which is the energy scale e0 for an
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FIG. 21. Doping dependence of the polaron superexchange en-
ergy scale e0 and of the polarity parameter δc of a typical active bond
for different values of t (in eV) and parameter set B of Table I. The
lines are guides to the eye.

isolated defect as already mentioned above, is JH = 0.6 eV
for parameter set B of Table I.

The interpretation of the data for the polarity parameter δc

is more subtle. Here we determine δc directly from the data in
Fig. 20 via the difference of mo

ab and ms
ab using Eqs. (7.7). The

parameter δc naturally depends on x and on t ; large t favors an
equal distribution on the active bond, that is δc = 0.5. At small
doping, this is almost realized for t = 0.1 in Fig. 21 since the
random polarization fields (i.e., the far-defect potentials) are
quite small in this case. It is worth noting that, in the low doping
regime, the small Jahn-Teller potentials, which naturally lead
to an imbalance, become also relevant.

By means of the same small-polaron wave function for a
hole on an active bond, we obtain for the IPN, with the help of
the definition in Eq. (7.2),

P −1
a

∼= (
1 − 2δc + 2δ2

c

)[
1 − 2(t/e0)2

1 + (t/e0)2

]
. (7.8)

The finite polarity parameter δc explains the deviation of the
IPN from 1 in the small t case for the states in the soft gap
close to the chemical potential (see Fig. 19). The overall t

dependence of the IPN close to μ is determined both by the t

dependence of the polarity parameter δc(x,t) and by the virtual-
string contributions in the polaron wave function. Interestingly,
the nonlinear corrections driven by the random polarization
fields via the x dependence of e0 and δc are particularly
pronounced at small x values (see also Appendix B).

In this section, we have focused on the microscopic char-
acter of the defect states that are responsible for the formation
of the soft gap and the reduction of spin and orbital order. We
have shown that the SO polaron states inside the MH gap have
a reduced spatial symmetry and are more strongly localized
than the states in the center of the Hubbard bands. The polaron
states in the soft gap are controlled by the randomness of the
defect locations and by the interplay of kinetic energy and e-e
interactions.

VIII. RELATION TO THE PES OF La1−xCaxVO3

Now, we turn to the questions how the structure of the
DS gap is affected by the strength of the defect potential
VD and whether we can identify characteristic defect-related
features in the doping dependence of existing PES data. We
shall explore here the PES spectra of La1−xCaxVO3 since for
this system Maiti and Sarma [69] have measured the doping
dependence up to x = 0.5, and moreover both PES and IPES
spectra exist for the parent compound LaVO3 [70]. The latter
yields clear evidence of the multiplet structure and provides
an estimate for Hund’s exchange JH (see Fig. 2). Moreover,
these spectra give us a measure for the principal parameter for
the Mott gap U − 3JH ≈ 2.7–3.0 eV between the centers of
the LHB and the HS multiplet of the UHB. In the following
study, we shall use U − 3JH = 3.0 eV as determined by Maiti
and Sarma [70] (set C of Table I). Another important energy
scale that follows from PES experiments is the distance of
the chemical potential from the center of the LHB, μ − ELHB.
Surprisingly, over the whole doping range in La1−xCaxVO3,
up to x = 0.5, this scale is approximately constant,
μ − ELHB ≈ 1.5 eV. Since it is the repulsive defect potential
that pulls the d2 defect states upward out of the LHB, we expect
also an upward shift of the chemical potential. Therefore the
distance of the chemical potential from the LHB center is
expected to scale with the parameter VD in the Hamiltonian
Eq. (2.1).

At this point, it is interesting to note that the pioneering work
of Mott [132] in the 1970s on the metallic and nonmetallic
states of strongly correlated matter was to some extent stimu-
lated by the experiments of Dougier and Hagenmuller [146],
who explored the electrical conductivity of LaVO3 doped with
strontium. The metal-insulator transition in this compound
at xc ≈ 0.23 was attributed to an Anderson type transition
between localized and delocalized states in an impurity band.
The option of a Mott gap in the defect band was ruled out [147].
The presence of a soft gap with N (μ) = 0 in the insulating
regime has not been considered.

So far, we have analyzed spectral functions in Secs. IV–VI
using parameter set B of Table I. They have the advantage
that satellite structures are well resolved, representing the
atomic multiplet excitations. Interestingly, we see from spectra
in Fig. 6, calculated with inclusion of e-e interactions, that
the LHB center remains at a fixed distance relative to the
chemical potential for all doping concentrations, as required
by the above experiments. However, parameter set B implies
U − 3JH = 2.2 eV and μ − ELHB � 0.8 eV being both too
small and thus not appropriate for the La1−xCaxVO3 com-
pounds.

In Fig. 22, we display the VD dependence of the DOS for
U − 3JH = 3.0 eV appropriate for La1−xCaxVO3 (set C of
Table I) atx = 10% doping. The resultingN (ω) spectra depend
strongly on the VD parameter, Eq. (2.3), which determines
both the strength of the Coulomb-like defect potentials and
the strength of e-e interactions, Eq. (2.4), guaranteeing charge
neutrality. On increasing VD from 1.0 to 2.0 eV, we recognize:
(i) the DS gap becomes wider and softer; (ii) the characteristic
energy scale μ − ELHB increases; (iii) the d1 → d0 satellite
moves closer to the LHB and gets gradually absorbed. More-
over, (iv) the defect states right above the chemical potential
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FIG. 22. Density of states for x = 10% and six different defect
potentials VD ∈ [1.0,2.0] eV. The data show that the distance between
the LHB and the chemical potential (at ω = 0) is increasing with VD

while the distance between the LHB and the HS state of the UHB
stays constant. Parameters are t = 0.2 eV and set C of Table I. The
defect potential is of Coulomb type and e-e interactions are included
(η = 1).

(μ = 0), which are well separated from the HS UHB at
VD = 1 eV, merge with this latter for VD = 2 eV; and
(v) the gaps between the multiplets of the UHB get gradually
filled with defect states as VD increases. Finally, we see that it
requires a value VD ≈ 2 eV until one reaches the experimental
value μ − ELHB ≈ 1.5 eV. One also notices in Fig. 22 that the
energy between the center of LHB and the HS state of the UHB
remains unchanged U − 3JH = 3.0 eV for the different values
of VD , as expected from Table II. That is, the intra-atomic
excitations and multiplet splittings are not affected by the
disorder.

The VD dependence of several characteristic single par-
ticle excitations ωm relative to the chemical potential
(μ = 0) are plotted in Fig. 23. The characteristic energies
ωLHB = ELHB − μ as well as the satellite energies, ωc∗ and
ωS have been determined by a fit with three Gaussians to
the spectra in Fig. 22 at negative energy. The linewidths are
indicated by shading. In order to understand the variation of
ωLHB = ELHB − μ we need an estimate for the dependence of
ELHB and μ on the defect potential VD . The center of the LHB
corresponds to a d2 → d1 transition. In uHF, this energy is
connected with the removal of the topmost occupied a (or b)
electron of a d2 configuration far away from a defect,

ELHB � εa + U − 3JH . (8.1)

The chemical potential can be approximated by a similar
excitation in the direct neighborhood of a defect, that is at
a spectator site. Hence

μ ≈ εa + U − 3JH + VD, (8.2)

and therefore

ωLHB = ELHB − μ ≈ −VD. (8.3)
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FIG. 23. Characteristic energies ωm of the spectral features re-
solved below the chemical potential μ (ω = 0) as functions of the
defect potential VD ∈ [1.0,2.0] eV: the center of gravity of the LHB
(LHB, red circles), the filled defect states (S, blue up-triangles),
and the satellite due to hole states (c∗, black down-triangles and
square). The energies and the linewidths (indicated by the shaded
areas colored according to the symbol colors) were determined by
fitting the data in Fig. 22 with three Gaussians, respectively. The c∗

data for VD = 2.0 eV (black square) have been obtained by linear
fitting the data for VD < 2.0 eV as there was no possibility to resolve
such peak within the overall LHB peak.

This simple estimate reproduces qualitatively the trend
of the full self-consistent uHF result in Fig. 23 that is
ωLHB ≈ −0.8VD . The small deviation is not unexpected since
both ELHB and μ will acquire upward shifts from the long-
range tails of the defect potentials leading to a small positive
correction proportional to VD in ELHB − μ.

The satellite c∗ corresponds to a d1 → d0 transition and is
a fingerprint of the spin-orbital polaron state. As we discussed
before the doped hole selects an active FM bond 〈i,j 〉 parallel
to c next to a defect. The random defect fields tend to localize
the hole on a single site i leading to a configuration |ci,(cjaj )〉
where the single a electron is on site j of the active bond. This
is described by the polarization parameter δc = 0. If the kinetic
energy (i.e., t) is strong enough, the a electron delocalizes on
the active bond leading to δc = 0.5. The annihilation energies
of c electrons in the two configurations relative to the chemical
potential μ are

ωc∗ � εc − εa − (U − 3JH )(1 − δc), (8.4)

ωS � εc − εa − (U − 3JH )δc. (8.5)

Most importantly, in the expression of ωc∗ , the dependence on
the polarization parameter δc contributes with a large prefactor
U − 3JH . Therefore the delocalization of the remaining a

electron in the small polaron is reflected in a large energy
shift of the c∗ satellite. That is, the state of the a electron
can be probed by annihilation of c electrons. Comparing the
expression ωc∗ with the data in Fig. 23 yields δc � 0.3(0.33) at
VD = 1(2) eV, respectively. There is no direct VD dependence
in these expressions. The origin of the small change of δc

observed above is unclear.
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FIG. 24. Density of states N (ω) as a function of increasing doping
concentration x ∈ [0.02,0.50] for set C of Table I including e-e
interactions (η = 1) and for t = 0.2 eV. Inset displays the small
variation with x of the distance of the peak of LHB from chemical
potential μ (ω = 0): experimental results of Maiti, Mahadevan, and
Sarma for La1−xCaxVO3 [69] (black squares); theoretical data for the
LHB (red circles) and the HS state of the UHB (blue pentagons). The
shaded areas colored according to the symbol colors give a measure
of the linewidths of the related multiplet structures.

As one can see in Figs. 22 and 23, the widths of both the
LHB and the UHB increase with increasing defect potential
VD. Since the corresponding spectra are calculated for fixed
doping x = 0.1 and constant kinetic energy parameter t , the
broadening can be directly attributed to the increasing random-
ness resulting from the stronger long-range disorder potentials.
Moreover, we see that, at small VD � 1.0 eV, the d1 → d0

satellite excitations with energy ωc∗ are well separated from
the d2 → d1 excitations at ωLHB that define the LHB. Due to
the VD dependence of the LHB, see Eq. (8.3), the c∗ satellite
penetrates the LHB at VD ≈ 1.6 eV. In other words, the d0 final
state on the active bond becomes unstable and changes into a
d1 state by a simultaneous d2 → d1 transition at a vanadium
host site not belonging to the defect cube. With the onset of the
delocalization of holes, we come to the borderline of the regime
of well localized spin-orbital polarons. The delocalization of
holes has severe consequences for the uHF algorithm and leads
to a slowing-down of convergence of the algorithm, that is, for
large VD when the c∗ satellite disappears in the LHB.

The doping dependence of the uHF DOS for La1−xCaxVO3

is displayed in Fig. 24. These calculations were performed
using long-range e-e interactions (η = 1) and interaction pa-
rameters, U − 3JH = 3.0 eV and VD = 2.0 eV (see parameter
set C in Table I). As most important features on the PES side
of the spectra we note: (i) the persistence of a soft DS gap
up to large doping, and (ii) the essentially doping independent
distance of the chemical potential from the center of the LHB,

as found in the experimental data of Maiti and Sarma [69].
Unfortunately, the existing experimental data do not allow to
draw a conclusion with any certainty concerning the existence
of a c∗ satellite. Thus it remains as a challenge for future
higher resolution experiments to see whether this feature can
be resolved. The inset highlights the independence on doping
of μ − ELHB ≈ 1.4 eV and of the fundamental Hubbard gap
(U − 3JH ). The decrease of the spectral weights with doping
is consistent with the sum rules discussed in Sec. IV.

We observe a pronounced shift of spectral weight in the
UHB towards lower energies as a function of doping, i.e.,
resulting in an increase of the spectral weight in the regime
of HS excited states. At large doping, the multiplet structures
of the UHB begin to merge and, as a consequence, the
UHB becomes almost featureless. The multiplet excitations
lose their distinct character as (for these parameters) these
excitation processes are degenerate with d1 → d2 excitations
at hole sites. Moreover, we note that the d1 → d2 transitions
have a narrower width of their multiplet structure compared to
that for the d2 → d3 transitions of the host.

In Fig. 24, we recognize a moderate increase of the width
of the LHB with increasing defect and doping concentration.
This one may have expected since there are two prevailing
mechanism that contribute to an additional broadening of the
LHB when the doping concentration is increased. Namely,
(i) there are the growing satellites c∗ and S that contribute
to increasing the overall width of the LHB, and (ii) due to
the increasing doping concentration, the defects get closer
and thereby the disorder fluctuations are expected to increase.
There is, however, also a counteracting effect due to an
increased screening resulting from the defect states and the
narrowing of the soft gap. We note that this screening, which
is still nonmetallic, is fully included in our calculation, due
to the finite-field method we are using. We also remark that,
in terms of an alternative random-phase many-body theory,
our treatment of e-e interactions for the t2g subsystem would
correspond to the calculation of the full dielectric matrix [148]
for an inhomogeneous and random system. The complex di-
electric matrix would then yield a quite similar or even the same
polarization charge density induced by the defect potentials as
in our uHF calculations. This perspective highlights that the
dielectric screening in systems with defect states and soft gaps
is rather involved and, to the best of our knowledge, it has not
been addressed yet by any many-body theoretical approach.

IX. DISCUSSION AND SUMMARY

This work elucidates the inherent complexity of charged
defect states in orbitally-degenerate Mott insulators. We have
studied a generic three-band model representing the t2g elec-
trons of the vanadium ions that guarantees a faithful description
of the magnetic and orbital ordered phases of the vanadium
perovskites such as LaVO3 or YVO3. The model developed
here includes the local Hubbard-Hund interactions and the
long-range e-e interactions. Therefore, it describes the dielec-
tric screening of the Coulomb potentials of the random charged
defects due to the t2g electrons explicitly in the regime of
strong electron correlations. Nevertheless, there are relevant
interactions that we have omitted, such as spin-orbit and orbital
polarization interactions, as discussed in Sec. II. We have
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neglected such terms to achieve a closer correspondence to
the generic models used in studies of disorder such as the
quantum Coulomb glass or the Anderson-Hubbard model. Our
model may be thus seen as multiflavor generalization of these
models.

The calculation of the one-particle excitation spectra of a
Mott insulator with orbital degeneracy and random defects is
a complex task that was only possible to undertake within the
unrestricted Hartree-Fock approximation. We stress that this is
the only scheme able to (i) control simultaneously the strong
correlations, the Coulomb interactions and the randomness of
defects even at high doping and (ii) reproduce the essence
of Mott physics, i.e., the atomic multiplet structure and the
variation of the spectral weights in the Hubbard bands. A more
detailed description of the algorithm used for the treatment of
disorder is given in Appendix A. There, we also display a subtle
convergency test for our algorithm and show that the gradual
switching on and off of e-e interactions leads basically to the
same statistical average for the density of states N (ω) as for
the initial state.

An important feature of the vanadium perovskites is the
robustness of the Mott-Hubbard gap and of the spin and
orbital order up to high doping concentrations. Our unrestricted
Hartree-Fock results for the single particle density of states
N (ω) reveal the persistence of the atomic multiplet structure
of V ions up to doping concentrations as large as 50% in
photoemission and inverse photoemission spectra. At the same
time, there is a strong spectral weight transfer from the Hubbard
bands into the Mott-Hubbard gap and into satellite structures
of the lower Hubbard band and the multiplets of the upper
Hubbard band. We have analyzed the energetics and the doping
dependence of spectral weights of the different excitations in
the atomic limit that provides valuable information for the
insightful interpretation of photoemission spectra.

The opening of a gap in the defect states at the chemical
potential μ inside the Mott gap is a subtle feature in doped Mott
insulators. We have presented a very detailed analysis how e-e
interactions and the kinetic gap mechanism jointly contribute
to the formation of the gap in defect states. As we have shown,
the states in the defect states gap can be understood as small
spin-orbital polaron states bound to defects. Note that, in the
presence of e-e interactions, these objects are electric dipoles
that interact effectively via dipole-dipole interactions. The
kinetic energy gain of the doped hole moving within the spin-
orbital polaron on a ferromagnetic active bond is the origin of
a level splitting at μ and thereby of the kinetic mechanism for
the defect-states gap formation. We have demonstrated that the
defect-states gap survives the disorder average and typically
yields a soft gap.

Central role for the quantitative description of the insulating
state is played here by a statistical analysis of the gap using
a Weibull distribution as introduced in Ref. [63]. Using this
tool, we have shown that the exponent ν of the soft gap in
N (ω) ∝ |ω|ν at the chemical potential is nonuniversal, that is,
it depends sensitively on: (i) the strength of e-e interactions
and (ii) on the hopping parameter t , which controls the kinetic
energy. In particular, we note here that in the atomic limit
(t = 0), e-e interactions are not strong enough to produce a
Coulomb gap in the vanadium perovskites, as one might expect
on the basis of Efros-Shklovskii theory. Instead, we find in

this regime exponents that rather correspond to a Coulomb or
zero-bias anomaly 0 < ν < 1.

We have investigated the degree of localization of the
unrestricted Hartree-Fock wave functions quantitatively. We
used here as a measure the inverse participation number, which
we have generalized for systems with spin and orbital flavors.
In particular, we have found that the defect states in the soft
gap are typically localized on one up to two sites, and they
are more strongly localized than the states inside the Hubbard
bands. This feature is surprising and the inverse participation
number provides an independent proof for small spin-orbital
polarons bound to defects. Interestingly, we observed a strong
discontinuity in the localization of states right below and above
μ in the presence of e-e interactions, whereas in their absence
no discontinuity could be found.

Using the unrestricted Hartree-Fock, we have calculated the
doping dependence of spin- and orbital-order parameters in
the C-AF/G-AO phase. Our results reveal a faster decrease
of the orbital order as compared to the spin order. The
ordered state persists beyond x = 0.5 in our calculations. This
robustness is an independent sign that doped holes form small
polarons. Starting from the atomic limit, we have constructed
the many-body wave function of a spin-orbital polaron bound
to a defect. We have then established that the reduction of
spin and orbital order obtained by unrestricted Hartree-Fock is
consistent with that calculated with the help of the many-body
spin-orbital polaron state. We note that, for a quantitative
comparison with existing experimental data for the reduction
of spin and orbital order and the insulator to metal transition
[56,58], the inclusion of spin-orbit interaction and orbital
polarization terms [91] is required.

In photoemission experiments of gapped systems, the posi-
tion of the chemical potential μ is determined by defects. For
the doped cubic vanadates, we find that μ lies in the center
of the defect-states gap that forms inside the Mott-Hubbard
gap. The defect potential VD, which basically confines doped
holes to a cube formed by the V ions being the nearest neigh-
bors of a charged defect, provides a measure of the upward
shift of the in-gap defect states relative to the lower Hubbard
band [67]. We found here that the distance of μ from the center
of the lower Hubbard band scales linearly with VD . Moreover,
we found that this distance is basically unchanged by doping
up to 50%, i.e., consistent with the photoemission study by
Maiti and Sarma [69,70] for La1−xCaxVO3. We interpret
this as a manifestation of small spin-orbital polaron physics.
Furthermore, we have shown that the intensity of the d1 → d0

satellite of the lower Hubbard band, that grows proportional
to the doping concentration x, provides a direct fingerprint of
the trapped spin-orbital polarons. The position in energy of this
satellite relative to the lower Hubbard band and its width yields
detailed information about the polarization of the SO polaron
and the strength of random defect fields. For the La1−xCaxVO3

system, we found that the satellite is not well separated from
the lower Hubbard band and thus has not been resolved in the
existing PES experiments so far. Certainly, it would be very
interesting to have high resolution photoemission or tunneling
experiments carried out on this compound.

It is important to stress that our model, which includes
simultaneously the defect Coulomb potential and the e-e
interactions, is qualitatively different from the Coulomb glass
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type of models not just because it contains orbital and spin
degrees of freedom. The Coulomb glass model contains only
a random distribution of defect state energies, thus the dipole
(negative defect charge and positive bound hole) formation
cannot take place. It is just this latter feature that makes an
important difference between the results obtained by these two
types of defect modeling (ours being definitely more realistic)
and that leads to a weakening of the disorder with increasing
e-e interactions. Instead, for Coulomb glass type of models,
e-e interactions enhance localization [149].

Summarizing, we have demonstrated a systematic redis-
tribution of the spectral weights with increasing doping by
charged defects in Mott insulators using the example of
R1−xCaxVO3. Even when doping is rather high, these systems
remain insulating and the large Mott-Hubbard gap accommo-
date the spectral weight due to defect states, with the filled
and unfilled defect states separated by a kinetic gap. We have
also shown that the treatment of defects in strongly correlated
materials with orbital degrees of freedom requires important
extensions of the Hubbard-Anderson model. We designed a
well motivated model for systems with orbital degrees of
freedom to uncover the origin of the satellite structures that
appear in doped systems and to explain the corresponding
sum rules. In this way, the interpretation of photoemission and
inverse photoemission experiments on Mott insulators doped
with charged defects becomes possible. We have also explained
why the spectral features, which arise from different excitation
processes, can be energetically very close or overlap with one
another, making them unresolvable in the experimental spectra.

Finally, one may ask whether there is any fundamental
difference between doping into the vanadium perovskites and
the cuprate high-Tc transition metal oxides. In both cases,
the formal charge of the defects and the distance to the
relevant electrons to the Cu or V ions, respectively, are similar.
Nevertheless, in the cuprates, defects form shallow impurity
states, whereas in the vanadates they are deep inside the
gap. Our analysis shows that the additional orbital degree of
freedom makes an important difference. The confinement of
spin-orbital polarons in vanadates is typically on a single active
bond, and thus is much stronger than the localization of spin
polarons in cuprates. This also implies that the screening of
defect potentials at low energy due to the defect states is weaker
in vanadates, effectively leading to stronger binding of carriers
and to a shift of the insulator-to-metal transition to much higher
doping concentrations than in high-Tc materials.
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APPENDIX A: THE ALGORITHM TO DETERMINE
STABLE CONFIGURATIONS WITH RANDOM DEFECTS

As we described in Sec. IV A, we present results obtained
by averaging over 100 randomly chosen defect realizations.
Any random defect realization is a configuration of defects
defined by a set of randomly-chosen positions within the R

lattice of doped R1−xCaxVO3 that host the Ca defects. Such
positions, in terms of Cartesian coordinates, are obtained by
subsequent calls to a pseudorandom number generator. No
constraint is imposed (e.g., no minimal distance between the
defects is required) except for the obvious hard-core constraint
that any site is singly occupied, either by an R ion or by a Ca
defect ion. The number of positions/defects in the set defines
the degree of doping of the system x.

The employed Hartree-Fock self-consistency procedure is
based on recursion: the values of all single-particle correlation
functions appearing in the Hamiltonian are computed at each
iteration after diagonalizing the Hamiltonian where the values
computed at the previous iteration have been plugged in. The
first iteration obviously requires externally-provided starting
values (initialization), which are supplied on the basis of an
educated guess. The recursion stops after a finite number
of steps when all values in two subsequent iterations differ
(actually the relative difference is used: |xn−1 − xn|/|xn−1|)
at most by a chosen amount (i.e., 10−3). In order to speed
up the convergence and to avoid long cycles involving states
with almost identical energies and slightly different values of
the single-particle correlation functions characterizing them,
the actual new values at each iteration are built as a linear
combination of the old ones and the ones effectively obtained
by diagonalizing the Hamiltonian. The proportion among the
two components starts quite low in favor of the old values (0.1)
and increases steadily with the iterations up to exclude the old
values from the combination within 200 steps.

The size of the system (Na = 8 × 8 × 8), the number of
orbital and spin degrees of freedom per site (6 = 3 × 2),
and the number of random defect realizations to statistically
average upon (100) make the numerical calculations very
demanding and unavoidable to parallelize the code in order
to keep the convergence for a set of Hamiltonian parameters
within one day. In the finite system of Na sites (atoms)
considered here, we can change the defect concentration in
steps of 1/512. For instance, the low doping of x = 1/64 used
in Fig. 25 corresponds to eight random defects. Each of these
defects defines a cube of V ions around it and, at the very
beginning, one hole is doped to each cube. A priori, we have
no information about the ultimate doped holes’ configuration
for a given distribution of random defects, but the lowest
energy configuration is self-consistently chosen to minimize
the random fields acting on each hole.

The procedure developed to find this configuration is the
following one: (i) we start from a neutral configuration (homo-
geneous doping of 1/8) at each corner of any cube surrounding
a defect at η = 0; (ii) increasing e-e interactions we reach
η = 1.0 with full convergence at each value of η along the
path in the parameter space for each starting configuration
of random defects; (iii) starting from the final point of (ii)
(and, therefore, exactly for all the same random defect con-
figurations) we reach η = 0 with again full convergence at
each value of η along this path. However, in (ii) and/or in
(iii), if the convergence was lost along the way [for a value
of η ∈ (0.0 → 1.0 → 0.0) ], a new random configuration was
used. Accordingly, if one looks carefully and, in particular, in
the zoomed inset, one will see that also η = 1.0 is slightly
different between the two panels (i.e., the two pathways)
because of the last requirement.
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FIG. 25. t2g DOS N (ω) as obtained for t2g states from M = 100 random defect realizations for t = 0.2 eV at doping x = 1/64, and for (a)
increasing value of e-e interaction (2.4) in steps of 0.1 from η = 0 (thick green line) to η = 1.0 (thick red line), and (b) decreasing value of e-e
interaction (2.4) from η = 1.0 (thick red line) to η = 0 (thick green line). Insets show zooms of N (ω) near the Fermi energy at ω = 0. Other
parameters as in set B of Table I.

The rebooting procedure is necessary to stabilize the final
results: when a set of values for a given Hamiltonian parameter
is explored, if the convergence is not reached from the initial
value of the set to the final value of it, we generated another
random defect realization and reboot the search in order to get
a smooth progression per each random defect realization. This
rebooting procedure allows one to avoid taking into account
random defect realizations with extremely weird relative posi-
tions of the defects that would hinder the convergence and that
would be anyway discarded by nature.

The algorithm described above is unbiased, but rather
involved. Therefore we present here a test of convergence
carried out by performing the calculations at low doping,
x = 1/64, and t = 0.2 eV in two ways: (i) starting with the
case of absent e-e interactions (η = 0) and gradual switching
on the screening interactions up to η = 1.0, and (ii) starting
from the screened e-e interactions at η = 1.0 and reducing the
screening down to η = 0. It is worth noting that the calculation
performed starting from monopole interactions (η = 0) and
reaching the state with screened e-e interactions (η = 1.0)
leads to a physically very different state controlled effectively
by dipolar interactions between defect centers, see Fig. 25(a).
It is remarkable that the subsequent switching off of e-e
interactions leads back to essentially the same initial state, see
Fig. 25(b). For such a complex landscape, we are dealing with
here, this is indeed a great result.

In fact, one finds very similar results independently of
whether the e-e interactions are increased or reduced, see
Figs. 25(a) and 25(b). In both cases, the system is an insulator,
with distinct structures representing the LHB and UHB. If e-e
interactions are absent (η = 0), the maxima corresponding to
the LHB and the HS/LS excitations in the UHB are wide and
the states that correspond to the excitations at sites occupied

by holes cannot be resolved from these peaks. When the e-e
interactions increase towards fully screened ones (η = 1.0), the
defect states appear instead at the lower edges of both the LHB
and the HS subband in the UHB. Both figures are remarkably
similar even for the zoomed DOS near the Fermi energy, where
a broader gap is visible at η = 1.0. This test confirms that the
entire procedure, which includes the averaging over M = 100
random defect realizations, is reliable and gives well converged
and reproducible results.

APPENDIX B: BOUND SPIN-ORBITAL POLARONS

In this Appendix, we shall analyze the reduction of the
spin and orbital order parameters as functions of the doping
x and of the kinetic energy parameter t in the frame of the
spin-polaron theory. This strong coupling approach rests on
the idea that, in the dilute limit, polaron-polaron interactions
should be negligible due to the local nature of the polarons.
This implies that the overall reduction of the order parameters
can be determined in terms of the reduction induced by the
polaron cloud of a single polaron, whose size scales with the
kinetic energy parameter t . Accordingly, the overall reduction
of the orders scales linearly with x, as in Eq. (7.3). Here,
we shall first test up to which concentration x and to which
kinetic energy parameter t , the independent polaron picture
holds by inspecting the uHF results for the respective order
parameters. Next, we shall derive the wave function for a spin
polaron bound to a defect using the string basis introduced in
Sec. VII. Finally, we shall compare the t dependence of the
spin-polaron cloud with the order parameters calculated by
the uHF method including the disorder. This will provide the
basis for a qualitative and quantitative interpretation of the uHF
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results in the frame of the spin-orbital polaron theory emerging
from the strong correlation picture.

Figure 26 displays the doping dependence of spin and
orbital order parameters ms

ab and mo
ab, respectively, that are due

to the electrons in a and b orbitals. The figure highlights an
approximate linearity in x of the uHF results up to high doping
concentrations. This is a clear evidence that the small-polaron
picture applies for the values of t considered in Fig. 26 and
suggests that the interactions among polarons are of minor
importance and, therefore, negligible in first approximation.
Moreover, the uHF results show that the decrease of the spin
moments ms

ab with t is much slower as compared to that of the
orbital-order parameter mo

ab. This confirms that the spin order
in doped systems is more robust [55] as the FM polarization
along the active bonds is not affected when the orbital order is
locally disturbed. Nevertheless, in Fig. 26, one notices small
nonlinearities in ms

ab at small values of x, which we attribute
to the random far-defect potentials.

The spatial symmetry of the polaron depends on the mag-
netic and the orbital order. For instance, a hole in the AF
CuO2 planes of high-T c superconductors takes the form of
a Zhang-Rice singlet, that is, a combination of the Cu dx2−y2

orbital and of a d-wave admixture of the 2p states from the four
oxygen neighbors. The symmetry of the wave function is C2

relative to the c-axis (but C4 for the probability distribution).
A spin polaron in the C-AF/G-AO state has a C2 symmetry for
both the wave function and its probability distribution. Since
these SO polarons are bound to the defect, their symmetry is
further reduced due to the strong Coulomb attraction of the
charged defect.

Figure 27 shows the most important string states that
contribute to the bound polaron wave function for a hole
created at the V site 1 by annihilation of a b electron with
spin up in the undoped ground state |0〉:

|0〉 = |c↑,b↑; c↑,a↑; c↓,a↓; c↓,b↓〉. (B1)

The vacuum state |0〉 indicates the occupied orbitals and spin
orientations consistent with the C-AF/G-AO order for the ions
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FIG. 27. String representation of the dominant contributions to
the polaron wave function for a hole created by the annihilation of an
occupied b orbital at site 1 close to the defect D. The hole delocalizes
differently depending on the electron hopping in: (a) a or b orbitals
and (b) c orbitals. The polarity δc of the active FM bond 〈1,2〉 is mainly
controlled by an interplay of the hopping amplitude t on that bond
and the difference of random potentials between the sites 1 and 2.

sited at sites 1, 2, 3, and 4 [see Fig. 27(a)]. Due to the strong
attraction of the defect D, the relevant string states 1, 2, 3, and 4
are all on the defect cube. Moreover, the selected strings reflect
the constraints due to the spin- and orbital-order and the flavor
conserving constrained hopping processes. Figures 27(a) and
27(b) distinguish strings for electrons in a/b and c orbitals,
respectively. We shall discuss here only the contributions that
stem from a and b orbitals that have the largest effect on the
order parameters. The relevant string states are

|1〉 = |c↑,0; c↑,a↑; c↓,a↓; c↓,b↓〉,
|2〉 = |c↑,a↑; c↑,0; c↓,a↓; c↓,b↓〉,
|3〉 = |c↑,a↓; c↑,a↑; c↓,0; c↓,b↓〉,
|4〉 = |c↑,a↑; c↑,b↓; c↓,a↓; c↓,0〉. (B2)

Here, |1〉 is the original configuration arising from the
annihilation of an up-spin electron in a b orbital at the V-site
1. In state |2〉, the a electron has moved along the FM bond
from site 2 to site 1. This interchange results in an orbital
excitation at site 1. Since the Jahn-Teller energy is small,
the kinetic energy will mix these two states. However, the
active bond 1-2 is further controlled by the random far-defect
potentials. Therefore it is useful to characterize the distribution
of electrons (or holes) on the active bond by the polarity
parameter δc:

|�1(δc)〉 =
√

1 − δc|′
1〉 +

√
δc|′

2〉, (B3)

where for n = 1 and 2:

|′
n〉 = |n〉 + t

e0
|n+2〉√

1 + (
t
e0

)2
. (B4)

These states contain admixtures from strings 1 and 2, and 3
and 4, respectively, which involve low-spin excitations with
excitation energy e0 = JH . According to Eq. (B3), the polaron
state for δc = 0 corresponds to a hole at site 1 and for δc = 1
to a hole at site 2, in combination with an orbital excitation at
site 1. Increasing the kinetic energy parameter t will eventually
push δc towards 1/2.
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By means of the spin-polaron wave function |�1(δc)〉, we
can evaluate the reduction of the spin and orbital order due to
a single polaron [see Eq. (7.4)]:

msP
ab

∼= 1 + 2(t/e0)2

1 + (t/e0)2 ,

moP
ab

∼= 1 + 2δc + 2(t/e0)2

1 + (t/e0)2 . (B5)

We note that the potential of the random far defects will modify
the excitation energy e0. Moreover, the polarity parameter
δc too is determined by the interplay of the kinetic energy
parameter t and the same far-defect random potentials.

The total reduction of spin- and orbital-order associated
with a/b electrons is then [Eq. (7.3)]:

ms
ab

∼= 1 − x

[
1 + 2(t/e0)2

1 + (t/e0)2

]
,

mo
ab

∼= 1 − x

[
1 + 2δc + 2(t/e0)2

1 + (t/e0)2

]
. (B6)

In Fig. 28, we report a least-square fit of the uHF results for the
spin-order parameter ms

ab to the above polaron expression with
a single variational parameter, namely, the activation energy
e0. Since the uHF results represent a statistical average over
many defect realizations, the resulting activation energy e0(x)
characterizes a typical spin-orbital polaron bound state. It is
worth noting that ms

ab does not depend on the active bond
parameter δc. This is distinct from the orbital order since the
motion of the hole on the active bond creates an orbital defect
yet no spin defect (see discussion in Sec. VII).

0.00 0.05 0.10 0.15 0.20
0.6
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1.0

m
ab s

x = 0.05 x = 0.20
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x = 0.15 η = 1 set B

t (eV)

FIG. 28. Contributions from electrons in a/b orbitals to spin-
order parameter ms

ab as a function of t as calculated by the uHF method
(black symbols). Parameters as in Fig. 20. A fit of ms

ab to the polaron
theory Eq. (B6) for doping concentrations x = 5,10,15,20 and 25%
is marked by red crosses.

Our results show that even up to a doping concentration
of x = 25%, the reduction of both order parameters is ap-
proximately linear, this holds true even when t = 0.2 eV, i.e.,
for a typical value of the kinetic energy parameter for the
vanadate compounds. It is worth noting that the uHF is able to
describe also the interaction between polarons, which appears
however irrelevant in the data range shown in Fig. 28. That the
independent polaron ansatz works so well for such huge doping
concentrations may appear really surprising. On the other hand,
one may have expected this given the extreme localization of
the defect states we have inferred by exploring the inverse
participation number in Sec. VI.
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