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Magnetic properties of type-I and type-II Weyl semimetals in the superconducting state
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Superconductivity was observed in certain range of pressure and chemical composition in Weyl semimetals of
both type I and type II (when the Dirac cone tilt parameter κ > 1). Magnetic properties of these superconductors
are studied on the basis of microscopic phonon-mediated pairing model. The Ginzburg-Landau effective theory
for the order parameter is derived using the Gorkov approach and used to determine anisotropic coherence length,
the penetration depth determining the Abrikosov parameter for a layered material and applied to recent extensive
experiments on MoTe2. It is found that superconductivity is of second kind near the topological transition at
κ = 1. For a larger tilt parameter, superconductivity becomes first kind. For κ < 1, the Abrikosov parameter
also tends to be reduced, often crossing over to the first kind. For the superconductors of the second kind, the
dependence of critical fields Hc2 and Hc1 on the tilt parameter κ (governed by pressure) is compared with the
experiments. Strength of thermal fluctuations is estimated and it is found that they are strong enough to cause
Abrikosov vortex lattice melting near Hc2. The melting line is calculated and is consistent with experiments
provided the fluctuations are three dimensional in the type-I phase (large pressure) and two dimensional in the
type-II phase (small pressure).
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I. INTRODUCTION

Dispersion relation near Fermi surface in recently synthe-
sized two- and three-dimensional Weyl (Dirac) semimetals [1–
3] is qualitatively distinct from conventional metals, semimet-
als, or semiconductors, in which all the bands are parabolic. In
type-I Weyl semimetals (WSM), the band inversion results in
Weyl points in low-energy excitations being anisotropic mass-
less “relativistic” fermions. They exhibit several remarkable
properties like the chiral magnetic effect [4] related to the chiral
anomaly in particle physics. More recently, type-II WSMs,
layered transition-metal dichalcogenides, were discovered [5].
Here, the Weyl cone exhibits such a strong tilt, so that they can
be characterized by a nearly flat band at Fermi surface. The
type-II WSM also exhibit exotic properties different from the
type-I ones, such as antichiral effect of the chiral Landau level
[6] and novel quantum oscillations [7].

Graphene is a prime example of the type-I WSM, while
materials like layered organic compound α-(BEDT-TTF)2I3,
were long suspected [8] to be a two-dimensional (2D) type-II
Dirac fermion. Several materials were observed to undergo
the I to II transition while doping or pressure is changed
[9]. Theoretically, physics of the topological (Lifshitz) phase
transitions between the type-I to type-II Weyl semimetals was
considered in the context of superfluid phase [10] A of He3,
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layered organic materials in 2D [11], and three-dimensionl
(3D) Weyl semimetals [12]. The pressure modifies the spin-
orbit coupling that in turn determines the topology of the Fermi
surface of these novel materials [13].

Many Weyl materials are known to be superconducting.
A detailed study of superconductivity in WSM under hy-
drostatic pressure revealed a curious dependence of critical
temperature of the superconducting transition on pressure. The
critical temperature Tc in some of these systems like HfTe5

show [14] a sharp maximum as a function of pressure. This
contrasts with generally smooth dependence on pressure in
other superconductors (not suspected to be Weyl materials)
like a high-Tc cuprate [15] YBCO. Since superconductivity is
especially affected by the type-I to -II topological transition, it
might serve as such an indicator [16,17].

Various mechanisms of superconductivity in WSM turned
superconductors have been considered theoretically [18–20],
however, evidence points towards the conventional phonon-
mediated one. If the Fermi level is not situated too close to
the Dirac point, the BCS-type pairing occurs, otherwise, a
more delicate formalism should be employed [21]. A theory
predicting possibility of superconductivity in the type-II Weyl
semimetals was developed recently in the framework of the
Eliashberg model [16,17].

In this paper, we extend the study of superconductivity in
Weyl semimetals of both types to magnetic properties and
thermal fluctuations. The phenomenological Ginzburg-Landau
(GL) theory for superconducting WSM of the arbitrary type
is microscopically derived and used to establish magnetic
phase diagram. In particular, the Abrikosov parameter used to
distinguish between the superconductivity of the first from the
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second kind is determined. It turns out that superconductivity
is of second kind near the critical value of the tilt parameter
κ = 1, marking the topological transition, but becomes first
kind away from it on both the type-I and type-II sides.
The critical fields, coherence length magnetic penetration
depths, and the Ginzburg number characterizing the strength
of fluctuations are found. In the strongly layered material like
[22] MoTe2 the fluctuations are strong enough to qualitatively
affect the Abrikosov vortex phase diagram: the lattice “melts”
into the vortex liquid [23] . This is reminiscent of a well-
known (possibly non-Weyl semimetal) layered dichalcogenide
superconductor NbSe2 that is perhaps the only low-Tc material
with fluctuations strong enough to exhibit vortex lattice melting
[24]. The Ginzburg number for these single crystals is of order
of Gi = 10−4 with similar Tc and upper critical field Hc2(0) of
several Tesla.

The focus generally is on the dependence of the properties
in the cone tilt parameter κ and consequently on the transition
from type-I to type-II WSM variations. This is experimentally
measured in experiments on the pressure (determining κ)
dependence of WSM superconductors. These days, there are
already quite a variety of WSM turned superconductors and
it is impossible to model all of them in a single paper.
Therefore, one of the best-studied materials MoTe2 is chosen
as a representative example. A major reason is that magnetic
properties of this superconductor were investigated in a wide
range of pressures [23] from ambient to 30 GPa (controlling
the tilt parameter κ of the WSM, see below). An additional
advantage of this choice is that the strongly layered material
MoTe2 in many aspects behaves as a simpler two-dimensional
WSM (weak van der Waals coupling between the layers is
easily accounted for).

The paper is organized as follows. The next section contains
the formulation of a sufficiently general phonon-mediated
BCS-type model of anisotropic type-I and -II WSM. Gor’kov
equations are written with details relegated to appendices.
Section III is devoted to derivation from the Gor’kov equations
in the inhomogeneous case of the coefficients of the Ginzburg-
Landau equations including the gradient term. Magnetic prop-
erties are derived from the GL model in Sec. IV, while thermal
fluctuations are subject of Sec. V. In particular, vortex lattice
melting line is considered. Section VI contains conclusions
and discussion of the experimental data on MoTe2.

II. PAIRING IN WEYL SEMIMETAL

A. Model

Considering layered WSM as alternating superconducting
2D layers separated by dielectric streaks, we assume that
3D electrons with strongly anisotropic dispersion relation are
paired inside the 2D layers only. We start to study the effect
of the topological transition on superconductivity using the
simplest possible model of a single 2D WSM layer with just
two sublattices denoted by α = 1,2 and expand this model to
real 3D layered system. The band structure near the Fermi level
of a 2D Weyl semimetal is well captured by the noninteracting
massless Weyl Hamiltonian with the Fermi velocityv (assumed
to be isotropic in the x-y plane) and conventional parabolic

term on the z direction [17]:

K =
∫

r
ψs+

α (r)K̂αβψs
β(r),

K̂γ δ = −ih̄v∇iσ i
γ δ +

(
−ih̄wi∇i − μ + p2

z

2mz

)
δγ δ . (1)

Here, μ is the chemical potential, pz = −ih̄∇z, σ are Pauli
matrices in the sublattice space, and s is spin projection. The
velocity vector w defines the tilt of the (otherwise isotropic)
cone. (We use below the dimensionless ratio κ = w/v as tilt
parameter describing cone axis projection in the x direction.)
The graphenelike dispersion relation for w = 0 represents
the type-I Weyl semimetal, while for the velocity |w| = w

exceeding v, the material becomes a type-II Weyl semimetal.
Generally, there are a number of pairs of points (Weyl

cones) constituting the Fermi “surface” of such a material at
chemical potential μ = 0. We restrict ourselves to the case
of just one left-handed and one right-handed Dirac point,
typically but not always separated in the Brillouin zone.
Generalization to include the opposite chirality and several
“cones” is straightforward. We assume that different valleys are
paired independently and drop the valley indices (multiplying
the density of states by 2Nf ).

The effective electron-electron attraction due to the
electron-phonon attraction opposed by Coulomb repulsion
(pseudopotential) mechanism creates pairing below Tc. Fur-
ther, we assume the singlet s-channel interaction with essen-
tially local interaction

V = g2

2

∫
dr ψ+↑

α (r)ψ↓+
β (r)ψ↑

β (r)ψ↓
α (r), (2)

where the coupling g2 is zero between the layers. As usual,
the retarded interaction has a cutoff frequency 	, so that it is
active in an energy shell of width 2h̄	 around the Fermi level
[25]. For the phonon mechanism it is the Debye frequency. We
first remind [17] the Gor’kov equations and then derive from
them the phenomenological GL equations that allow to obtain
the basic magnetic response of the superconductors.

B. Green’s functions and Gor’kov equations

Finite-temperature properties of the condensate are de-
scribed at temperature T by the normal and the anomalous
Matsubara Green’s functions [25] (GF):

Gts
αβ(rτ,r′τ ′) = −〈Tτψ

t
α(rτ )ψs+

β (r′τ ′)〉
= δtsgαβ(r − r′,τ − τ ′),

F ts
αβ(rτ,r′τ ′) = 〈Tτψ

t
α(rτ )ψs

β(r′τ ′)〉
= −εtsfαβ(r − r′,τ − τ ′),

F+ts
αβ (rτ,r′τ ′) = 〈Tτψ

t+
α (rτ )ψs+

β (r′τ ′)〉
= εtsf +

αβ(r − r′,τ − τ ′), (3)

where t,s are the spin indices. The set of Gor’kov equations
in the time translation invariant, yet inhomogeneous, case is
[17,26],

L1
γβgβκ (r,r′ ω) = δγ κδ(r − r′) − 
αγ (r,τ = 0)f +

ακ (r,r′,ω),

L2
γβf +

βκ (r,r′,ω) = 
∗
βγ (r,τ = 0)gβκ (r,r′,ω). (4)
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Here, the two Weyl operators are (tilt vector w is assumed to
be directed along x axes)

L1
γβ = [(iω + μ′ + iw∇x)δγβ − ivσ i

γβ ∇i
r ],

L2
γβ = [(−iω + μ′ + iw∇x)δγβ − ivσ it

γβ∇i
r ]. (5)

Here, μ′ = μ − p2
z

2mz
.

The gap function is defined as


∗
βκ (r) = g2T

∑
ω

f +
βκ (r,ω). (6)

The gap function in the s-wave channel is 
αγ (r) = σx
αγ 
(r).

This is the starting point for derivation of the GL free-energy
functional of 
(r).

III. DERIVATION OF GL EQUATIONS (WITHOUT
MAGNETIC FIELD)

In this section, the Ginzburg-Landau equations in a ho-
mogeneous material (including the gradient terms) are de-
rived. Magnetic field and fluctuation effects will be dis-
cussed in the next two sections by generalizing the basic
formalism.

A. Integral form of the Gor’kov equations

To derive the GL equations including the derivative term,
one needs the integral form of the Gor’kov equations (see
Appendix A) [Eq. (4)]:

gεκ (r,r′,ω)

= g1
εκ (r − r′,ω) −

∫
r′′

g1
εθ (r − r′′,ω)
∗

θφ(r′′)f +
φκ (r′′,r′,ω),

f +
βκ (r,r′,ω)

=
∫

r′′′
g2

βα(r − r′′′,−ω)
∗
αε(r′′′)

{
g1

εκ (r′′′ − r′,ω)

−
∫

r′′
g1

εθ (r′′ − r′′′,ω)
∗
θφ(r′′)f +

φκ (r′′,r′,ω)

}
. (7)

Here, g1
βκ (r,r′) and g2

βκ (r,r′) are GF of operators L1
γβ and L2

γβ :

L1
γβg1

βκ (r,r′)=δγ κδ(r − r′), L2
γβg2

βκ (r,r′)=δγ κδ(r − r′).

(8)

This will be enough do derive the GL expansion to the third
order in the gap function 
(r) that will be used as an order
parameter [25].

B. GL expansion

Using the first and the second iterations of Eq. (7) and
specializing on the case r = r′, one rewrites the Gor’kov
equation (4) as (see details in Appendix A)


(r) = g2T

2

∑
ω

{K(r − r1)
(r1)

−Q(r,r1,r2,r3)
(r2)
(r3)
(r1)}. (9)

Here, integrations over variables r1, r2, r3 are implied. The
kernel of the linear in 
 term is

K(r) = g2
21(r)g1

21(−r) + g2
11(r)g1

22(−r) + g2
12(r)g1

12(−r)

+ g2
22(r)g1

11(−r), (10)

while the coefficient of the cubic term is

Q =

g2
21(r − r3)g1

21(r2 − r3)g2
21(r2 − r1)g1

21(r1 − r)

+g2
21(r − r3)g1

22(r2 − r3)g2
11(r2 − r1)g1

21(r1 − r)

+g2
22(r − r3)g1

11(r2 − r3)g2
22(r2 − r1)g1

11(r1 − r)

+g2
22(r − r3)g1

12(r2 − r3)g2
12(r2 − r1)g1

11(r1 − r)

+g2
11(r − r3)g1

21(r2 − r3)g2
21(r2 − r1)g1

22(r1 − r)

+g2
11(r − r3)g1

22(r2 − r3)g2
11(r2 − r1)g1

22(r1 − r)

+g2
12(r − r3)g1

11(r2 − r3)g2
22(r2 − r1)g1

12(r1 − r)

+g2
12(r − r3)g1

12(r2 − r3)g2
12(r2 − r1)g1

12(r1 − r).
(11)

Using the Fourier transformation for the GF,

g2,1
αβ (r) =

∑
p

g2,1
αβ (p)eip·r, 
(r) =

∑
q


(q)eiq·r, (12)

and substituting them into Eqs. (10) and (11), one obtains, after
expansion in momenta, the first GL equation


(r) = g2T

2

∑
ω,p

{
a(p)
(r)+Cki(p)

∂2
(r)

∂ri∂rk

− b(p)
3(r)

}
.

(13)

The function appearing in an expression for the coefficient a

is

a(p) = g2
21(p)g1

21(p) + g2
11(p)g1

22(p) + g2
12(p)g1

12(p)

+ g2
22(p)g1

11(p), (14)

while the gradient term coefficients take a form

Cki(p) = 1

2

⎧⎨⎩
∂g2

21(p)
∂pk

∂g1
21(p)
∂pi

+ ∂g2
11(p)
∂pk

∂g1
22(p)
∂pi

+
∂g2

12(p)
∂pk

∂g1
12(p)
∂pi

+ ∂g2
22(p)
∂pk

∂g1
11(p)
∂pi

⎫⎬⎭. (15)

The cubic term’s coefficient is given by

b(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g2
21(p)g1

22(−p)g2
11(−p)g1

21(p) + g2
21(p)g1

21(−p)g2
21(−p)g1

21(p) +
g2

22(p)g1
11(−p)g2

22(−p)g1
11(p) + g2

22(p)g1
12(−p)g2

12(−p)g1
11(p) +

g2
11(p)g1

21(−p)g2
21(−p)g1

22(p) + g2
11(p)g1

22(−p)g2
11(−p)g1

22(p) +
g2

12(p)g1
11(−p)g2

22(−p)g1
12(p) + g2

12(p)g1
12(−p)g2

12(−p)g1
12(p)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (16)

The integrations are carried out in the following subsection.
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FIG. 1. Critical temperature as a function of the tilt parameter κ

indicates type-I and type-II phases of WSM (green dashed lines mark
Tc for two topological phases of MoTe2). Red lines mark the range
where the BCS approximation is not valid.

C. Calculation of the coefficients of the GL expansion
in a WSM layer

1. Linear homogeneous term

There are two linear in 
 terms in Eq. (13). In momentum
space the sum is

a(T ) = T

2

∑
ω,p

a(p) − 1

g2
. (17)

Substituting the normal GF, calculated in Appendix B for 2D
(meaning pz terms in propagators are ignored) is, into Eqs. (8)
and (5), one obtains the coefficient of the linear term

a(p) = 2Z−1/2{(vp)2 + ω2 + (μ − wxpx)2}, (18)

where
√

Z = (ω2 + (μ − wxpx − vp)2)(ω2 + (μ − wxpx + vp)2).

(19)

Here and later in the section p ={px,py}.
Performing summation on Matsubara frequencies and inte-

gration over the 2D momentum (within the adiabatic approx-
imation μ 	 	, see details in Appendix C and in [17]) in
Eq. (17), one obtains

a(T ) = f ln
Tc

T
≈ f

(
1 − T

Tc

)
. (20)

The critical temperature has the expression (see details in [17])
(see Fig. 1)

Tc = 1.14	 exp [−1/λ], (21)

with the effective electron-electron strength in the WSM given
by

λ = λ0f, λ0 = μg2/2πv2h̄2.

The quantity f as a function of the cone tilt parameter κ = w/v

is different on the two sides of the topological phase transition
of the WSM [17]. For the type-I WSM, κ < 1, in which the

Fermi surface is a closed ellipsoid, it is given by

f = 1

(1 − κ2)3/2
. (22)

In the type-II phase, κ > 1, the Fermi surface becomes
open, extending over the Brillouin zone, and the corresponding
expression is

f = κ2

π (κ2 − 1)3/2

{
2
√

1 + κ − 1

+ log

[
2(κ2 − 1)

κ(1 + √
1 + κ)2δ

]}
. (23)

Here, δ is an ultraviolet cutoff parameter δ = a	/wπ , where
a is an interatomic spacing. These expressions appear in all the
physical quantities calculated below expressing the topological
phase transition. Let us now turn to the gradient terms.

2. Gradient terms

Components Cxy and Cyx of the second derivative tensor
C are zero due to the reflection symmetry in the py direction,
when the cone tilt vector w is directed along the x axis (see
Appendix D for details). After integration over momenta in the
second term in Eq. (13), the gradient terms coefficients are

Cxx = v2h̄2

T 2
c

ηx, Cyy = v2h̄2

T 2
c

ηy , (24)

where dimensionless integrals ηx and ηy are given in Eqs. (D5)
and (D6) of Appendix D.

3. Cubic term

The coefficient of a term cubic in 
 in the GL equation (13)
reads as

b(p) = 2Z−1{(vp)2 + ω2 + (μ − wxpx)2}{(vp)2 + ω2

+ (μ + wxpx)2}. (25)

After integration over momentum, the GL coefficient is ob-
tained

β = η

μTc

, (26)

with η given in Appendix D, Eq. (D8). Having determined the
coefficients of the GL equations, we now turn to discussion
of the coherence lengths and the resulting in-plane anisotropy
due to the tilt of the Dirac cone.

D. In-plane coherence lengths and anisotropy

1. Coherence lengths

The first GL equation in WSM in magnetic field (required
in the following section) is standard:

−(
ξ 2
x ∂2

x + ξ 2
y ∂2

y

)

(r) − τ
(r) + β

f
|
(r)|2
(r) = 0. (27)

Here, τ = 1 − T/Tc. Comparing coefficients of linear terms
in Eq. (27), the coherence lengths are

ξ 2
x = Cxx/f, ξ 2

y = Cyy/f , (28)

and are computed numerically.
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(a) (b) (c)

FIG. 2. (a) Dependence of characteristic lengths of the Weyl superconductor on the tilt parameter κ . The topological (Lifshitz) transition
occurs at κ → 1. Coherence lengths along the x (blue) and y (green) directions are solid lines. Same for the penetration depth times

√
2 as dashed

lines. (b) In-plane anisotropy of the coherence length ξx/ξy (same as the ratio of penetration depths λy/λx) as function of the tilt parameter.
(c) Characteristic length ξz in direction perpendicular to the layers on the tilt parameter κ . Here, the thickness of single layer s = 3 nm and
interlayer distance d = 10 nm.

To be specific, the in-plane correlation lengths are calculated
for a MoTe2 single crystals that were extensively studied
experimentally at pressures between ambient to 30 GPa. The
coherence lengths ξx and ξy as functions of the tilt ration
κ = w/v for material parameters pertinent to MoTe2 are shown
in Fig. 1 as solid blue and green lines, respectively. We estimate
the Debye frequency from the Raman data [23], 	 = 100 K,
Fermi velocity v = 5 × 107 cm/s, and Fermi energy μ = 8	,
from ARPES [2]. An ultraviolet cutoff for Eq. (23) is taken
to be an interatomic distance a = 0.3 nm [Tc depends loga-
rithmically on it, see Eq. (23)]. The electron-electron coupling
due to phonons λ0 = g2μ/2πv2h̄2 is assumed to be linearly
dependent of κ (or pressure that presumably determines κ):
λ0 = λI

0 − ακ for λI
0 = 0.25 and α = 0.05.

One observes that the both coherence lengths are large
and roughly equal at small κ . Below κ = 0.2 the curve
flattens, reaching a value of ξx = ξy = 45 nm for graphenelike
material at κ = 0. In the topological transition region [marked
in Fig. 2(a) by red lines] they become very small. In the
type-II phase, the two coherence lengths are different and
become large again. In the critical region, the theory becomes
inapplicable.

2. In-plane anisotropy

The anisotropy parameter is defined as ε = ξx/ξy =√
Cxx/Cyy . It is plotted as a function of κ in Fig. 2(b). The

coherence length in the z direction ξz as a function of tilt
parameter κ is presented in Fig. 2(c).

The graphenelike superconductor is isotropic. At small κ ,
the anisotropy is small with ε < 1. Above the topological phase
transition line it increases rapidly with κ > 1 and becomes
much larger than 1 already at κ = 1.2. Unfortunately, there is
no known purely WSM superconducting 2D material at this
time and, therefore, we consider a 3D material with similar
properties.

IV. LAYERED WSM

Until now, a single 2D layer was considered. The stack of
these layers (see Fig. 3) forms the 3D WSM dichalcogenides
like MoTe2. In these systems, the thin superconducting layers
(thickness s) are separated by distance d and are bound by the

van der Waals interaction. In order to calculate GL expansion
coefficients in this case, we use the perturbation on the effective
mass mz procedure when the set of the 2D nonbounded
layers are considered as the zero approximation in perturbation
theory. The parabolic term of the Hamiltonian responsible for
interlayer interaction should be taken into account to calculate
the GL expansion coefficient in z direction Czz

d2

dz2 . In this case,

one has to perform 3D Fourier transformation in Eq. (12) while
2D vectors r should be replaced by 3D vector r = (x,y,z). The
3D momentum in this case is (p,pz).

The GL expansion in Eq. (13) has the same form as in 2D
case with additional gradient term in z direction Czz

d2

dz2 while

the chemical potential μ should be replaced by μ − p2
z

2mz
in all

of the GF. The 3D integration over momentum in this case
gives (see details in Appendix D)

Czz = h̄s

2π2μ

√
Tc

2mz

ηz, (29)

where ηz is the dimensionless function depending on the
chemical potential μ and the tilt parameter κ . The coherence

d
s

FIG. 3. Layered Weyl semimetal: a schematic picture.
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length for MoTe2 in the z direction ξ 2
z = Czz/f is presented in

Fig. 2(c). (We have found by direct calculation that the function
f does not change when we extend to 3D.) Calculations of
effects of magnetic field and thermal fluctuations require the
GL free energy.

Free GL energy for layered WSM superconductor

The corresponding Ginzburg-Landau functional now has a
form

F =
∫

d3r D(μ)

(
ξ 2
i |∂i
(r)|2 − τ |
(r)|2 + β

2f
|
(r)|4

)
,

(30)

where i = x,y,z. Here (see Appendix E), D(μ) is the one-
particle density of states (DOS) for WSM with arbitrary cone
slope parameter κ [Eq. (1)]:

D(μ) = D0(μ)f, (31)

where D0(μ) = √
2mzμ

3/2/3π2h̄3v2 is DOS for layered
“graphene” (κ = 0). The GL functional for layered system
consisting on 2D superconducting layered separated by the
dielectric interlayers incorporates the Josephson coupling. The
tunneling of the electrons moving between the superconduct-
ing layers via dielectric streak described by the effective
mass mz of the electrons moving along the z axis. Within
tight-binding model, the effective mass is estimated as mz =
mes

2/d2 exp [d/s], where me is the mass of free electron, d is
the distance between layers of thickness s (see Fig. 3).

Using the equilibrium value of the order parameter


2 = f

β
τ, (32)

the condensation energy density of a uniform superconductor
(required in Sec. V to describe thermal fluctuations’ impor-
tance) is

Fs =
∫

d3r D(μ)

[
−τ |
|2 + β

2f
|
|4

]
= −D0(μ)f 
2τ

2
V = −D0(μ)f 2

2β
τ 2V. (33)

Now, we are ready to describe the magnetic properties of the
superconductors.

V. GL IN MAGNETIC FIELD: COMPARISON
WITH EXPERIMENT

Effects of the external magnetic field are accounted for
by the minimal substitution ∇ → D = ∇ − 2ei

c
A in the GL

equation (27) due to gauge invariance. The GL equation in
the presence of magnetic field allows the description of the
magnetic response to homogeneous external field. We start
from the strong field that destroys superconductivity.

A. Upper critical field

The upper critical magnetic field Hc2 is as usual calculated
from the liner part of the GL equation (27), as the lowest
eigenvalue of the linear operator (including the magnetic field).

1.1 GPa

11.7 GPa

vortex liquid
vortex lattice

2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

temperature (K)

m
ag
ne
tic
fie
ld

(T
)

FIG. 4. Magnetic phase diagram of layered WSM second kind
superconductor. The experimental points are for MoTe2 at pressures
1.1 and 11.7 GPa (blue). Upper critical field Hc2(T ) (“mean field,”
dashed line) becomes a crossover due to thermal fluctuations. At
pressures 1.1 and 11.7 GPa the fitted curves are marked by the cyan
lines for 3D and the blues line for 2D.

Representing the homogeneous magnetic field in the Landau
gauge, A = H (−y,0,0), one expands near Tc as

Hc2(T ) = Hc2(0)τ, (34)

where the zero-temperature intercept magnetic field is
Hc2(0) = �0/2πξxξy . This is represented by the dashed
straight lines in Fig. 4. It is a product of the experimentally
measured slope dHc2

dT
|
T =Tc

and Tc:

Hc2(0) = h̄cf

2e
√

CyyCxx

. (35)

In practice, at very low temperature the mean field Hc2(T )
“curved down,” so that actual upper field at zero temperature
is about 60% of that value. The GL model is not applicable
that far from Tc.

Measured upper critical fields as function for parameter
of MoTe2 for two values of pressure, 1.1 and 11.7 GPa, are
given as blue points in Fig. 4. As will be discussed below,
it will be interpreted as a melting line for the vortex lattice
due to fluctuations. Vortex liquid phase in which the phase of
the order parameter 
 is random appears between the melting
line and the mean field line where order parameter disappears
altogether.

Pressure determines the tilt parameter κ , which in turn
influences Hc2(0), as shown in Fig. 5 (blue lines). In the
superconductor of the first kind it becomes the cooling
field and is depicted as dashed lines at both small and
large κ .

B. Supercurrents and penetration depths in London limit

1. Penetration depth

Density of superconducting currents can be obtained by the
variation of the free-energy functional including the magnetic
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FIG. 5. Upper critical field (Hc2, blue lines for type-I and type-II
phases) and thermodynamic critical magnetic field (Hc, green) as a
function on the tilt parameter. Brown dashed lines mark Tc for two
topological phases of MoTe2.

energy

F =
∫

d3r

{
D0(μ)

(
Cii |Di
|2 − f τ |
|2 + β

2
|
|4

)
+ (∇ × A)2

8π

}
, (36)

where i = x,y,z, with respect to components of the vector
potential:

Ji = D0(μ)
2ei

h̄
Cii
(r)Di


∗(r) + c.c. (37)

Within the London approximation, in which the order param-
eter is approximated by 
(r) = 
eiϕ , one obtains,

Ji = 4e

h̄
D0(μ)Cii


2

(
∂iϕ − 2e

ch̄
Ai

)
. (38)

Using the (in-plane) Maxwell equations, one obtains the
equation for a single Abrikosov vortex [27]:

λ2
x(T )

∂2H

∂y2
+ λ2

y(T )
∂2H

∂x2
− H = �0

2π
δ(x)δ(y). (39)

The London penetration lengths in our case of layered WSM
with parabolic dispersion relation along the z axis are

λ2
x(T ) = c2h̄2

32πe2D0(μ)Cyy
2
. (40)

From the calculated coefficient of the cubic term of the
GL equation and the Maxwell equation one obtains, after
substitution of D(μ) from Eq. (31) and 
 from Eq. (32),

λ2
x(0) = 3πh̄5v2c2β

32
√

2e2m
1/2
z μ3/2Cyyf

, λy = λx/ε. (41)

The quantities
√

2λx(0) and
√

2λy(0) are depicted in Fig. 2(a)
as dashed blue and green lines, respectively. The factor

√
2 was

introduced in order to mark the transitions from the first to sec-
ond kind of superconductivity. For material parameters used in
this paper (MoTe2) the transitions are reentrant in κ: κI = 0.53

to
p.
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kind two sc kind one sc

0.0 0.5 1.0 1.5 2.0 2.5
0

2

4

6

8

tilt parameter

A
br
ik
os
ov

FIG. 6. Abrikosov parameter of the WSM superconductor as
function of κ . The green line is the universal critical value κA

x =
1/

√
2 for the transitions between the first and the second kinds of

superconductivity.

and κII = 1.5 (intersection points with ξx or consistently
with ξy). The parameters that determine mz [see formula
below Eq. (31)], are the interlayer distance d = 1.3 nm, the
layer effective width s = 0.3 nm. The dependence is quite
nonmonotonic. At small κ , both penetration depths are a large
level off and increase slightly approaching κ = 1. In the type-II
phase penetration depth largely decreases.

2. Abrikosov parameter and transition between first and second
kinds of superconductivity

The Abrikosov parameter is isotropic despite large
anisotropies:

κA
x = λx

ξx

= vc

8e

√√√√ 3
√

2πh̄5β

m
1/2
z μ3/2CxxCyy

= κA
y . (42)

This is plotted against the tilt parameter in Fig. 6. The green
line is the universal critical value κA

x = 1/
√

2 for the above-
mentioned transitions between the first and the second kinds
of superconductivity.

The thermodynamic critical field for kind I superconductors
is given by

H 2
c (0) = 8πFs = 4πD0(μ)f 
2 = 4

√
2mzμ

3/2f 2

3πh̄3v2β
, (43)

where the condensation energy was given in Eq. (33). It is
plotted as dashed lines in Fig. 5 as dashed lines.

C. Abrikosov vortex solution and the lower critical field

In a hard type-II superconductor magnetic field of the
Abrikosov vortex obeyed Eq. (39). This equation has a well-
known anisotropic Abrikosov vortex solution [27]

H (x,y) = �0

2πλxλy

K0

⎡⎣(
y2

λ2
x

+ x2

λ2
y

)1/2
⎤⎦. (44)

Here, K0 is the modified Bessel function.
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The Abrikosov vortex in WSM appears at lower critical field

Hc1(0) = �0

2πλxλy

ln[κA]. (45)

The material parameters calculated above allow determina-
tion of the strength of thermal fluctuations that might be sig-
nificant in thin films as seen from the nonlinear concave shape
of measured [23] transition field dependence on temperature
near Tc in MoTe2 superconductor (see Fig. 4). However, the
experimental points of the magnetic Hc2 (blue dots in Fig. 4)
indicate that the mean field description breaks down near Tc.
This will be explained next as a thermal fluctuations effect.

VI. GINZBURG CRITERION FOR STRONG THERMAL
FLUCTUATIONS REGION

The thermal fluctuations were neglected so far. In this
section, they are taken into account in the framework of the
GL energy. Here, one cannot ignore the fluctuations of the
order parameter in direction perpendicular to the layer since
magnetic field couples the layers via the “pancake vortices”
interaction [28].

A. Ginzburg number in layered superconductor

The fluctuation contribution to the heat capacity (per vol-
ume) that is most singular in τ = 1 − T/Tc is [29,30]

Cfluct = π2

ξxξyξz

1√
τ

. (46)

It should be compared with the mean field heat capacity Cmf

in the superconducting phase [see Eqs. (32) and (31)]

Cmf = D0(μ)f 2

βTc

=
√

2mzμ
3/2

3π2h̄3v2

f 2

βTc

. (47)

The ratio

Cf l

Cmf

= 3π4h̄3v2√
2mzμ3f

βTc√
CxxCyyCzz

1√
τ

(48)

characterizes the fluctuation strength. Strong fluctuations ef-
fects appear in the temperature region where Cf l > Cmf .
The temperature-independent Levanyuk-Ginzburg number is
defined by

Gith = 9π8h̄6v4

2mzμ3

β2T 2
c

CxxCyyCzzf
. (49)

The Ginzburg number is plotted as function of κ in Fig. 7.
for parameters pertinent to an experiment [23] in MoTe2. In
this case, Gi ranges between relatively large values in type-I
WSM phase κ close to the topological transition line and small
Gi value in type-II WSM phase. In type-I phase there exists
a minimum. Significant thermal fluctuations lead to melting
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FIG. 7. Gi number characterizing the strength of thermal fluctu-
ations as function of the tilt parameter κ.

of the Abrikosov flux lattice to the vortex liquid. Values of Gi
for MoTe2 at pressures 1.1 and 11.7 GPa clearly exhibiting the
melting line [23] are given in Table I.

B. Abrikosov lattice melting line

It was shown [31] that the melting line is determined for 3D
and 2D thermal fluctuations [32] by

−a3D
T = 21/3(th)−2/3Gi−1/3(1 − t − h) = 9.5,

−a2D
T = 2−1/4(th)−1/2Gi−1/4(1 − t − h) = 13.2, (50)

respectively. Here, the scaled melting field (see Fig. 4) is h =
H/Hc2(0) and t = T/Tc. The values of Thouless parameter
[28] at the first-order melting transition were determined
by comparing energies of the vortex solid and liquid found
nonperturbatively.

In the vicinity of Tc, namely for h,1 − t � 1, the expression
for the melting field simplifies to HD

m (T ) = HD
m (1 − t)3−D/2

with values of HD
m given by

H 2
m = 1

(13.2)2√2Gi2
Hc2(0),

H 3
m =

√
2

(9.5)3/2√Gi3
Hc2(0). (51)

In our case of MoTe2 at pressures 1.1 and 11.7 GPa (see the
cyan lines for 3D and the blue lines for 2D in Fig. 4), the fitted
constants giving the best fits for HD

m are presented in Table I.
The Gi in both cases was determined from the several

experimental points close to Tc using

GiD = cD[Hc2(0)/Hm]2,

c2 = 1.64 × 10−5, c3 = 2.33 × 10−3, (52)

TABLE I. Fitting parameters for HD
m .

Pressure Tc κ Hc2(0) ξx λx H 2
m H 3

m Gi2D fit Gi3D fit Gith

1.1 GPa 5.6 1.5 1.5 T 18 nm 20 nm 3.5 T 1.85 T 3 × 10−6 1.5 × 10−3 2.7 × 10−5

11.7 GPa 8.2 K 0.53 4T 10 nm 40 nm 7.2 T 3.3 T 5 × 10−6 3.4 × 10−3 1.3 × 10−3
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while Gith is calculated in Eq. (49). The actual melting line
significantly below Tc typically bends down and cannot be
obtained within the GL expansion. The theoretical value in the
table is taken from Fig. 7.

VII. CONCLUSION AND DISCUSSION

Magnetic properties of Weyl semimetals turned supercon-
ductors at low temperatures were derived from a microscopic
phonon-mediated multiband pairing model via the Ginzburg-
Landau effective theory for the (singlet) order parameter. The
Gor’kov approach was used to determine microscopically
anisotropic coherence length, the penetration depth [Fig. 2(a)],
determining the Abrikosov parameter for a layered material.
It is shown that very strong in-plane anisotropy is caused by
the tilt of Dirac cones [see Fig. 2(b)]. It is found generally
that superconductivity is strongly of second kind (penetration
depth much larger than coherence length) near the WSM
topological transition (tilt parameter κ = 1, see Fig. 6), but
becomes first kind away from it especially in type-II WSM.
This possibility has been observed recently in similar material
[33] PaTe2.

For WSM superconductors of the second kind, the depen-
dence of the upper and lower critical fields Hc2(T ) and Hc1(T )
on the tilt parameter κ (governed by pressure, see Fig. 5) was
obtained from the GL energy not very far from Tc (where the
GL approach is valid). In WSM superconductors of the first
kind, the relevant fields are the thermodynamic field Hc(T ) and
Hc2(T ) that takes a role of the supercooling field. In strongly
layered WSM superconductors, the mean field GL approach is
not sufficient due to thermal fluctuations despite relatively low
critical temperatures.

Strength of thermal fluctuations is estimated generally and
it is found that they are strong enough in strongly layered
materials to cause Abrikosov vortex melting. Moreover, we
predict that, while for type-I WSM the fluctuations of the
layered material in magnetic field are three dimensional, they
become two dimensional in the type-II phase. Results are well
fitted (see Fig. 4) by general melting line formulas derived
within the lowest Landau level GL approach.

The main results of the paper are applied to the layered
WSM superconductor MoTe2. Magnetic properties of this
material were extensively studied [23] under pressures from
ambient to 30 GPa. In this system, the superconducting critical
temperature has maximum at the pressure about 12 GPa. While
the theory naively predicts [16,17] a sharp rise of Tc at the
topological transition between type-I and type-II phases of

WSM, the region of maximum is beyond the range of its
validity (see Fig. 1, with dashed red lines indicating the range).
We believe, however, that two values of pressure at which
magnetic properties were comprehensively measured belong to
different phases of WSM. Nonlinear shape of the transition line
to the normal state at temperatures below Tc (see Fig. 4) might
be explained either by strong fluctuations in the vortex matter
of the second kind superconductor or by spatial inhomogeneity
on the mesoscopic scale. We argue that the first option is
more likely since the line clearly has a power dependence on
temperature near Tc.

Our results support a view expressed in Ref. [23] that
magnetic properties of this dichalcogenide are reminiscent of
those of the well-studied “conventional” layered superconduc-
tor NbSe2 (perhaps this is related to the fact that the latter also
possesses a pronounced multiband electronic structure). It is
expected that similar materials exhibit phenomena described
theoretically here. In particular, it was observed very recently
[33] that in a dichalcogenide PdTe2, Tc decreases slowly with
pressure. In this material, the pair of type-II Dirac points
disappears at 6.1 GPa, while a new pair of type-I Dirac points
emerges at 4.7 GPa. Therefore, the theoretical analysis of this
material is complicated by the fact that for 4.7–6.1 GPa, the
type-II and type-I Dirac cones coexist [34]. The superconduc-
tor PdTe2 was recently classified as a type-II Dirac semimetal
with magnetic measurements confirmed that PdTe2 was a first
kind superconductor with Tc = 1.64 K and the thermodynamic
critical field of Hc(0) = 13.6 mT (intermediate state under
magnetic field is typical to a first kind superconductor, as
demonstrated by the differential paramagnetic effect [33]).
This feature is consistent with the magnetic phase diagram of
this paper, where the first kind superconductivity is predicted
in the type-II phase of the WSM (see Fig. 4).

The calculation was limited to the strongly layered case.
The usage of continuum 3D model instead of the fully layered
Lawrence-Doniach [35] model is justified in the present case.
The calculation can be extended to arbitrary tunneling strength
and is in progress.
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APPENDIX A: GOR’KOV EQUATIONS IN INTEGRAL FORM

Gor’kov equations (4) can be presented in an integral form

gεκ (r,r′ ω) = g1
εκ (r − r′,ω) −

∫
g1

εθ (r − r′′,ω)
∗
θφ(r′′)f +

φκ (r′′,r′,ω), (A1)

f +
βκ (r,r′,ω) =

∫
g2

βα(r − r′′′,−ω)
∗
αε(r′′′)

[
g1

εκ (r′′′ − r′,ω) −
∫

g1
εθ (r′′ − r′′′,ω)
∗

θφ(r′′)f +
φκ (r′′,r′,ω)

]
. (A2)
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Expanding in small order parameter 
, one obtains Eq. (9):


(r) = g2T

2

∑
ω

∫ [[
g2

21(r − r′′′)g1
21(r′′′ − r)

]
σx

12σ
x
12 + [

g2
11(r − r′′′)g1

22(r′′′ − r)
]
σx

21σ
x
12+[

g2
12(r − r′′′)g1

12(r′′′ − r)
]
σx

21σ
x
21 + [

g2
22(r − r′′′)g1

11(r′′′ − r)
]
σx

12σ
x
21

]

(r′′′)

−
∫

g2
βα(r − r′′′)g1

εθ (r′′ − r′′′)g2
φζ (r′′−r3)g1

εκ (r3 − r)
∗
θφ(r′′)
∗

αε(r′′′)
∗
ζ ε(r3). (A3)

APPENDIX B: CALCULATION OF THE NORMAL GF

Normal Green’s function obeyed Eqs. (5) and (8). The first four GF are calculated from the equation

L1
γβg1

βκ (r − r′) = δγ κδ(r − r′), (B1)

where L1
γβ = [(iω + μ + iw∇r )δγβ + (−ivσ i

γβ ∇i
r )] by performing Fourier transform for different pseudospin indices. In

particular, for γ = 1, κ = 1 it reads as in momentum representation

(iω + μ − wp)g1
11(p) + v(px − i py)g1

21(p) = 1,

(iω + μ − wp)g1
11(p) + vp(cos ϕ − i sin ϕ)g1

21(p) = 1. (B2)

The rest of the normal GF may be obtained by the same method. The second group of the normal Green’s functions obeys the
equations L2

γβg2
0βκ (r − r′) = δγ κδ(r − r′) with L2

γβ defined in Eq. (5) are obtained by the same method. The GF obtained after
solution of these equations are

g1
22(p) = z∗−1(iω + μ − wp), g1

12(p) = −z∗−1vpe−iϕ,

g1
11(p) = z∗−1(iω + μ − wp), g1

21(p) = −z∗−1vpeiϕ,

g2
11(p) = z−1 (−iω + μ − wp), g2

12(p) = −z−1vpeiϕ,

g2
22(p) = z−1(−iω + μ − wp), g2

21(p) = −z−1vpe−iϕ,

z = (−iω + μ − wp)2 − (vp)2, (B3)

where p is the 2D momentum and ϕ is the azimuthal angle in the px,py plane.

APPENDIX C: CRITICAL TEMPERATURE AND THE LINEAR TERM IN GL EXPANSION

Critical temperature for 2D case

The linear terms in the GL expansion read as

a(T ) = T
∑
ω,p

a(p) − 1

g2
, (C1)

with

a(p) = 2 Z−1/2((vp)2 + ω2 + (μ − wxpx)2). (C2)

Here, Z is defined in Eq. (19). Performing the summation over ωn, one obtains

a(T ) = 1

4(2π )2

∫ 2π

θ=0

∫
p

�(−ε + μ + 	)�(ε − μ + 	)

⎧⎨⎩p tanh
[

|p(1+w cos θ)−μ|
2T

]
|p(1 + w cos θ ) − μ| +

p tanh
[

|p(1+w cos θ)+μ|
2T

]
|p(1 + w cos θ ) + μ|

⎫⎬⎭ − 1

g2
. (C3)

Introducing new variables

ε(p,θ ) = vp + wpx = p(1 + w cos θ ), E = vp(1 + w cos θ ) − μ, (C4)

one obtains

a(T ) = μ

8πv2
f (κ)

{
2

(
log

	

2T
tanh

[
	

2T

]
−

∫ 	

ε=0
dε

log ε

cosh2
[

ε
2T

]) + 	

μ

}
− 1

g2
. (C5)

In the adiabatic approximation μ 	 	 it gives for coefficients a(T ) and the critical temperature Tc [Eqs. (20) and (21)].

APPENDIX D: GRADIENT TERMS Ci k AND CUBIC TERM

In this appendix, the gradient terms in the GL expansion are calculated.
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1. Diagonal gradient terms for 2D case

Gradient terms in the GL expansion have the form of (15). Substituting the normal GF from Eq. (B3), one obtains after a simple
calculation the diagonal gradient terms. In Cartesian coordinate (with cone vector w is directed along the x axes) the tensor Cki

is diagonal while Cxy and Cyx are zero due to the reflection symmetry in the y direction). The diagonal components are

Cxx(w,p) = 1

2Z

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v2

(
2pxwxμ − 2p2

xw
2
x − 2wxωpy + v2p2

x − ω2 + (μ − wxpx)2 − v2p2
y

)2

+v2
(
2pxwxμ − 2p2

xw
2
x + 2pywxω + 2v2p2

x − ω2 + (μ − wxpx)2 − (vp)2
)2

+4v2
(
w2

xpxpy − μwxpy − pypxv
2 − ωμ

)2 + 4v2(−wxpxpywx + pyμwx + pypxv
2 − ωμ)2

+2(−ω2wx + wx(μ − wxpx)2 + 2v2px(μ − wxpx) + wx(vp)2)2 + 8(ωwx(μ − wxpx) + v2pxω)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (D1)

Cyy(w,p) = 1

Z

{
v2

(
ω2 − 2v2p2

y − (μ − wxpx)2 + (vp)2
)2

+v2
[
4((v2pypx)2 + ω2(μ − wxpx)2)

] + 4(v2py)2(ω2 + (μ − wxpx)2)

}
. (D2)

2. Gradient terms and effective coherent lengths for 2D layer

After integration over momenta p and the azimuthal angle ϕ the second term in Eq. (13) can be performed numerically using
the dimensionless variables

E = κε cos ϕ + ε, ε = E

κ cos ϕ + 1
= (Eψ), ψ(κ,ϕ) = 1

(κ cos ϕ + 1)
, (D3)

where

x = −μ + Eε = vp

Tc

, μ = μ

Tc

,ω = ω

Tc

. (D4)

As a result, one obtains the gradient term coefficients which are proportional to the square of the anisotropic coherence lengths
depending on ratio κ = w/v:

ηy = 1

2πμ

∑
ω

∫
(x + μ)dx dϕ sgn[κ cos ϕ + 1]{(κ cos ϕ + 1)(ω2 + x2)(ω2 + [−x + 2(x + μ)ψ(κ,ϕ)])}−2

×
{

[ω2 + (μ − κ(x + μ)ψ(κ,ϕ) cos ϕ)2]2 − 4(x + μ)2ψ2(κ,ϕ) cos 2ϕ(μ − (x + μ)κψ(κ,ϕ) cos ϕ)2

+(x + μ)4ψ4(κ,ϕ) + 2(x + μ)2ψ2(κ,ϕ)ω2 + 2(x + μ)2ψ2(κ,ϕ)(μ − (x + μ)κψ(κ,ϕ) cos ϕ)2

}
(D5)

and

ηx = 1

4πμ

∑
ω

∫
(x + μ)dx dϕ

sgn[(κ cos ϕ + 1)](ω2 + [−x + 2(x + μ)ψ(κ,ϕ)]2)−2

(κ cos ϕ + 1)2(ω2 + x2)2

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
2κ μ(x + μ)ψ cos ϕ − 2(x + μ)2ψ2κ2 cos2 ϕ − 2κ ω(x + μ)ψ sin ϕ

+(x + μ)2ψ2 cos 2ϕ − ω2 + (μ − κ[(x + μ)ψ] cos ϕ)2

)2

+
(

2κ μ(x + μ)ψ cos ϕ − 2κ2[(x + μ)ψ]2 cos2 ϕ + 2κ(x + μ)ψω sin ϕ

+[(x + μ)ψ]2 cos2 ϕ − ω2 + [μ − κ(x + μ)ψ cos ϕ]2 − [(x + μ)ψ]2 sin2 ϕ

)2

+ 4(κ2[(x + μ)ψ]2 sin ϕ cos ϕ − κμ[(x + μ)ψ] sin ϕ − [(x + μ)ψ]2 sin ϕ cos ϕ − ωμ)2

+ 4 (−κ2[(x + μ)ψ]2 sin ϕ cos ϕ + κμ[(x + μ)ψ] sin ϕ + [(x + μ)ψ]2 sin ϕ cos ϕ − ωμ)2

+ 2(−ω2κ + κ [μ − κ(x + μ)ψ cos ϕ]2 + 2(x + μ)ψ cos ϕ[μ − κ(x + μ)ψ cos ϕ] + κ[(x + μ)ψ]2)2

+ 8 [κω (μ − κ[(x + μ)ψ] cos ϕ) + ω(x + μ)ψ cos ϕ]2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (D6)

The results are presented in Eq. (24) in the text.

3. Cubic term in GL expansion

Substituting GF into Eq. (25) in text one obtains

b(p) = 2 [(vp)2 + ω2 + (μ − wpx)2][(vp)2 + ω2 + (μ + wpx)2]

[ ω2 + (μ − wpx − vp)2][ ω2 + (μ − wpx + vp)2][ω2 + (μ + wpx − vp)2][ ω2 + (μ + wpx + vp)2]
, (D7)
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and after integration over momentum the result is Eq. (25) with

η =
∑

ω

∫ 2π

ϕ

∫ ∞

x=0
(x + μ)

sgn[κ cos ϕ + 1]

(κ cos ϕ + 1)2

×{[(x + μ)ψ]2 + ω2 + [μ − κ(x + μ)ψ cos ϕ]2}{[(x + μ)ψ]2 + ω2 + [μ + κ(x + μ)ψ cos ϕ]2}
{ω2 + [μ − κ(x + μ)ψ cos ϕ − (x + μ)ψ]2} {ω2 + [μ − κ(x + μ)ψ cos ϕ + (x + μ)ψ]2} . (D8)

This was evaluated numerically.

4. Gradient term in direction perpendicular to layers

In this case, the set of the 3D GF is transformed and has been presented in the form (B3) where μ is replaced by μ − p2
z

2mz
.

Substituting the modified 3D GF into Eq. (15) one obtains

Czz = g2T s

2(2πh̄)3

∑
ω

∫
p

p2
z

m2
z

�

(
vp + p2

z

2mz

− 	 − μ + wpx

)
�

(
vp + p2

z

2mz

+ 	 − μ + wpx

)

×
4v2p2

[
ω2 +

(
μ − p2

z

2mz
− wpx

)2
]

+
[
ω2 +

(
μ − p2

z

2mz
− wpx

)2
]2

+ 2
(
μ − p2

z

2mz
− wpx

)2
(vp)2 + (vp)4

[
ω2 +

(
μ − p2

z

2mz
− wpx − vp

)2
]2[

ω2 +
(
μ − p2

z

2mz
− wpx + vp

)2
]2 , (D9)

where �(x) is the theta function restricting the integration area in the Debye shell at the Fermi energy.
Introducing dimensionless variable by

ε = vp/T , εz = p2
z

2mzT
, pz =

√
2mzT εz, (D10)

the coefficient in Eq. (29) takes a form

ηz =
∑

ω

∫ √
εzdεzε dε dϕ �(ε + εz + 	 − μ)�(ε + εz − 	 − μ)

×4ε2 [ω2 + (μ − εz − κε cos ϕ)2] + [ω2 + (μ − εz − κε cos ϕ)2]2 + 2(μ − εz − κε cos ϕ)2ε2 + ε4

{[ ω2 + (μ − εz − κε cos ϕ − ε)2][ ω2 + (μ − εz − κε cos ϕ + ε)2]}2
. (D11)

This equation was evaluated numerically and results presented in Fig. 2(c).

APPENDIX E: DENSITY OF STATES IN WSM

In this appendix we calculate the DOS for the normal electrons described by the Hamiltonian (1). Using the dispersion relation
for a single electron,

E = ε + εz + εκ cos ϕ, (E1)

one obtains for electron density (for two sublattices and two spins)

n = 4

(2π )3h̄3

∫
p

ε dε dϕ dpz�(E[ε,p] − μ). (E2)

The DOS is

dn

dμ
= 4

(2π )3h̄3v2

√
mz

2

∫
p

ε dε dϕ
dεz√

εz

δ(μ − ε − εz − εκ cos ϕ), (E3)

where new variables were defined as εz = p2
z

2mz
. Performing integration over εz, one obtains

dn

dμ
= − 4

(2π )3h̄3v2

√
mz

2

∫
p

ε dε dϕ√
μ − ε − εκ cos ϕ

= μ3/2√2mz

3π2h̄3v2
f, (E4)

where the angle integral was calculated in Ref. [17] resulting in f .
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