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In two-dimensional crystals that lack symmetry under reflections on the horizontal plane of the lattice (non-σh-
symmetric), electrons can couple to flexural modes (ZA phonons) at first order. We show that in materials of this
type that also exhibit a Dirac-like electron dispersion, the strong coupling can result in electron pairing mediated
by these phonons, as long as the flexural modes are not damped or suppressed by additional interactions with a
supporting substrate or gate insulator. We consider several models: The weak-coupling limit, which is applicable
only in the case of gapped and parabolic materials, like stanene and HfSe2, thanks to the weak coupling; the
full gap-equation, solved using the constant-gap approximation and considering statically screened interactions;
its extensions to energy-dependent gap and to dynamic screening. We argue that in the case of silicene and
germanene superconductivity mediated by this process can exhibit a critical temperature of a few degrees K,
or even a few tens of degrees K when accounting for the effect of a high-dielectric-constant environment. We
conclude that the electron/flexural-modes coupling should be included in studies of possible superconductivity
in non-σh-symmetric two-dimensional crystals, even if alternative forms of coupling are considered.
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I. INTRODUCTION

Flexural modes (or “ZA phonons”) have always been of
great interest in the context of two-dimensional (2D) materials.
Their role in undermining the thermodynamic stability of 2D
crystals is the basis of the Mermin-Wagner theorem [1–5].
Their effect on electronic transport has been investigated both
in the case of 2D crystals that are symmetric under reflections
on the horizontal plane of the lattice (σh-symmetric crystals)
that permit only their weak coupling to electrons at second
order (such as graphene [6–10]), as well as in “buckled”
non-σh-symmetric crystals in which a stronger coupling is
allowed at first order (such as silicene or germanene, for
example [10,11]). The reason for such interest stems from
the parabolic dispersion of the ZA phonons, a peculiarity
that results in divergent equilibrium occupation numbers and
electron-phonon matrix elements. Recent work has shown
how this parabolic dispersion is actually renormalized by their
anharmonic coupling with in-plane acoustic modes, resulting
in a frequency-wave-vector relation ω(ZA)(q) proportional to
qη (where q is the magnitude of the phonon wave vector),
with a “renormalized” exponent η approximately equal to 3/2.
This is sufficient to guarantee the thermodynamic stability
of the crystals and to weaken significantly the second-order
(two-phonon) coupling to electrons in σh-symmetric crystals.
On the other hand, one of us (M.V.F.) has argued that in
non-σh-symmetric 2D crystals that exhibit a Dirac-like electron
dispersion the renormalized coupling is still strong enough to
affect severely the carrier mobility [11].
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If, on the one hand, a strong electron/ZA-phonon coupling
is unwelcome from an electron-transport perspective, on the
other hand such a strong coupling may suggest the possibility
of electron pairing and the emergence of superconductivity.
The purpose of this paper is to show that, indeed, flexural
modes may lead to the formation of Cooper pairs in Dirac-like,
non-σh-symmetric crystals. Obviously we assume that the
flexural modes are not damped or suppressed by interactions
with a supporting substrate or a gate insulator, as discussed in
Ref. [11]. Therefore, our discussion applies to free-standing
monolayers or layers interacting only weakly (such as via van
der Waals interactions) with the environment.

We organize our discussion as follows: Keeping in mind
the cases of silicene and germanene as significant examples,
in Sec. II we consider the consequences of the significantly
different wavelength dependence of the phonon frequency and
of the electron-phonon interactions considered by the “con-
ventional” Bardeen-Cooper-Schrieffer (BCS) theory [12,13]
and those of interest here. We emphasize the role played by
Migdal’s theorem [14], the failure of the weak-coupling limit
[15,16] in our case, and the need to consider numerically the
full gap equation, even going beyond McMillan’s empirical
“strong-coupling” formula [17,18] towards the Eliashberg’s
formulation of the problem[19–21]. In Sec. III A we briefly
review the experimental [22] and theoretical status regarding
the emergence of superconductivity in silicene (and also
germanene [23,24])—both phonon mediated [25,26] and non-
phonon mediated [27,28]. We then present our results using
the constant-gap approximation, assuming static screening.
We later extend them to the solution of the energy-dependent
gap also in the case of dynamic screening and in the presence
of monolayers embedded in a dielectric. Our conclusions are
presented in Sec. IV and can be summarized by saying that,
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while not excluding alternative mechanisms that may lead to an
efficient electron pairing [29–32,34,35], flexural modes should
be considered in any study that deals with superconductivity
in Dirac-like, non-σh-symmetric 2D crystals.

II. THE ELECTRON/ZA-PHONON COUPLING

A. Electron-phonon interaction

The potential energy associated with the phonon-mediated
electron-electron interaction we consider here has the form

V (ep)(q) = h̄ω(q)M(q)2

[E(k) − E(k + q)]2 − h̄2ω(q)2
, (1)

where k is the two-dimensional electron wave vector, E(k)
is the electron dispersion, and ω(q) is the frequency of
ZA phonons of wave vector q. (We omit for simplicity the
superscript ZA.) In the case of nonsymmetric 2D materials, the
electron-phonon term originates from the first-order coupling
of electrons with out-of-plane acoustic phonons and has the
form

M(q)2 = h̄[DK(k,k + q)]2

2ρ ω(q) [ε(q,ω)/εs]2
, (2)

where ρ is the (2D) mass density of the crystal. The inter-
action is assumed to be statically or dynamically screened,
thanks to the factor [εs/ε(q,ω)]2, where ε(q,ω) and εs are the
dielectric function and static dielectric constant of the crystal,
respectively. The “deformation potential” DK(k,k + q) is
proportional to �ZAq for “gapped” nonsymmetric 2D ma-
terials (�ZA being usually called the “acoustic deformation
potential”), whereas it is independent of energy in Dirac-
like 2D materials, although with an important dependence
sin(φ/2) on the scattering angle φ, as shown in Ref. [11].
At the low temperatures of interest here, the Bose-Einstein
phonon-occupation term N (q) has been ignored in Eq. (1).

B. BCS-like and non-BCS-like interaction

Despite its “familiar” form, Eq. (1) hides significant differences
with respect to the “conventional” BCS theory. In this latter
case, the matrix element M(q) grows with increasing magni-
tude q of the wave vector of acoustic (or Debye) phonons, so
that large-energy phonons control the coupling. Indeed, since
their frequency grows as csq, the process is mainly controlled
by zone-edge modes of the Debye frequency ωD = csqBZ.
(Here cs is some angle-averaged acoustic velocity and qBZ =
2π/a0 is the equally angle-averaged wave vector at the edge of
the Brillouin zone expressed in terms of the lattice constant a0.)
This implies the existence of a relative large region of k space
in which |E(k) − E(k + q)| � h̄ω(q) and Eq. (1) represents
an attractive interaction. Moreover, Migdal’s theorem [14]
guarantees that the singularities in Eq. (1) [i.e., the poles
E(k) − E(k + q) = ±h̄ω(q)] give a negligible contribution,
since not only υF � cs in metals but, also, they occur in the
small-q region in which the interaction ∼|M(q)|2 is weak.
The net result is that when considering the effective phonon-
mediated electron-electron interaction, given by Eq. (1), the
effect of repulsive terms and poles can be neglected and we

can consider only the attractive part of the interaction:

V (ep)(q) ∼ −M(q)2

h̄ω(q)
. (3)

When considering the electron/ZA-phonon interaction in
gapped, parabolic, non-σh-symmetric 2D materials, the situa-
tion is very similar: Although the phonon frequency vanishes
faster than q as q → 0, the strength of the interaction grows
with increasing q. Therefore, we expect a BCS-like behavior,
although with a weak coupling. However, the picture is
completely different when considering Dirac-like materials.
In this case, the matrix element M(q) grows with decreasing
q, actually diverging in the limit q → 0 for interactions left
unscreened. Therefore, low-energy ZA phonons control the
coupling. Moreover, the singularities are not even “poles”
[since we are assuming ω(q) = bq3/2] and they may give
nonnegligible contributions, at least in principle, so that the
validity of Migdal’s theorem is not guaranteed. Of course, all
this also implies that whether or not the interaction given by
Eq. (1) can ever be attractive must be established with careful
calculations. In any event, we expect a strong interaction at
low densities, since the Fermi surface/line probes the region of
a strong interaction near the phonon � symmetry point (and,
so, small Fermi wave vectors). This is the opposite behavior
of what is seen in the conventional BCS case.

Another significant difference between our situation and
those handled by the BCS theory lies in the role played
by dielectric screening. In the BCS case, usually applied to
metals, the large plasma frequency, much larger than the Debye
frequency and the superconducting gap, justifies the use of
static screening. In our systems, considering statically screened
interactions would also be appropriate in the normal state:
Thanks to the very low frequency of the ZA phonons of interest,
the plasma frequency, even if wave vector dependent and
vanishing at long wavelength (the case of 2D systems), would
also be large enough to justify the full response of the electron
gas. However, in the superconducting state electrons exchange
an additional energy of the order of the superconducting gap
at the Fermi energy �(kF). The associated frequency �(kF)/h̄,
even if small in the weak-coupling regime, could overcome the
plasma frequency, thus rendering dynamic effects extremely
important. Therefore, we shall consider static screening at
first, but we shall consider dynamically screened interactions
in Sec. III D.

This discussion shows that the problem we are facing is
far from being trivial. Indeed, we must face problems similar
to those already discussed in the literature: The validity of
Migdal’s theorem in Dirac-like materials has been proven in
the case of graphene by Roy and co-workers [36], but only
for “conventional” interactions whose strength grows with
decreasing wavelength. In our case, it is true that the so-called
“adiabatic” limit is reached also at small carrier densities,
since υF � cs. However, the role of the singularities in Eq. (1)
remains unclear. (We note that Migdal’s theorem has been
claimed to hold even in the antiadiabatic regime in some cases
[37].) Interactions that grow as 1/q at long wavelength and
that may violate Migdal’s theorem have also been considered
extensively in the context of high-Tc superconductors [38–43].
Finally, superconducting states with symmetries significantly
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different from the BCS s-wave pairing, as reviewed by Tsuei
and Kirtley [44], may dominate the picture in our case. Indeed,
as we shall see below, such mechanisms have been proposed
in the case of silicene. Therefore, we shall now proceed in
steps, considering increasingly complicated models to gain
some insight on what role the flexural modes may play.

C. Approximations and physical models

Before proceeding, in this brief subsection we summa-
rize physical models and approximations we have embraced
throughout the paper.

First, even if/when attractive, the phonon-mediated
electron-electron interaction must overcome the Coulomb
repulsion whose potential energy is, in principle, given by

V (C)(q) = e2

2ε(q,ω)q
. (4)

This interaction presents a divergence as q → 0, easily circum-
vented by accounting for dielectric screening, and as q → ∞.
This latter divergence has been shown to be removed by
a many-body renormalization of the Fermi velocity [36] in
Dirac-like materials. More generally, it is removed either by
employing a high-q cutoff (here we shall use the zone-edge
qBZ) or the use of the Morel-Anderson pseudopotential [45].
In any event, we shall show below that the superconducting
gap �(k) vanishes at large energies, so that this issue is not
critical.

Regarding the electronic band structure and phonon dis-
persion, we shall adopt model dispersions assumed to be
valid throughout the Brillouin zone. Therefore, for gapped,
parabolic materials, we shall assume an isotropic dispersion
E(k) = h̄2k2/(2m∗) with an effective mass m∗, whereas for
Dirac-like 2D crystals we shall assume E(k) = h̄υFk. Since
we are interested in a region of the Brillouin zone in which
E(k) is close to the Fermi energy EF, these expressions are
valid as long as the Fermi energy (and so the carrier density) is
low enough to be in the appropriate parabolic or linear region
and, for Dirac-like materials, large enough to be left unaffected
by the opening of a gap due to the spin-orbit interaction. In
silicene, this interaction results in the opening of a very small
gap of about 1.5 meV in the buckled structure [46–48] at the
Dirac point. This should not affect significantly our results for
electron densities larger than about 6 × 108 cm−2, in practice
equivalent to an undoped/ungated case. On the contrary, for
germanene, the small gap of about 2 meV predicted to occur
in the planar (unbuckled) structure [49] grows to about 24
meV [46,47] or even 43 meV [50] in the buckled structure.
This would certainly modify the Fermi surface for densities
smaller than about 2 × 1011 cm−2. Yet, as we shall see below,
the largest values for the superconductivity gap and transition
temperature will be found at densities that are within the range
of validity of our model, around the high-1012/low-1013 cm−2.
These values are large enough to be left unaffected by the
spin-orbit interaction, yet small enough to be satisfactorily
described by a pure Dirac-like electron dispersion.

Similarly, we shall assume a ZA-phonon dispersion of the
form bq3/2—the parameter b being fixed by the condition
bq

2/3
BZ = ωD (≈ 5 meV for SnI and HfSe2, 15 meV for silicene,

and 9 meV for germanene) throughout the entire Brillouin

zone. This latter assumption should not affect the results
in any significant way, since most of the “action” happens
at low q. However, we should note that assuming a pure
Dirac-like dispersion (and also a constant electron/ZA-phonon
deformation potential) may depress the values of the calculated
superconductivity gap, since the repulsive part of the phonon-
mediated effective electron-electron interaction will not vanish
as fast as when assuming a pure Dirac dispersion. Yet, even in
this case, for densities in the range that is realistically obtained
by gating or doping, our assumptions should be approximately
satisfactory.

Regarding dielectric screening of both the electron-phonon
and the Coulomb interaction, we have used Wunsh’s [51] or
Stern’s [52] expressions for ε(q,ω) for Dirac-like and gapped
(parabolic) materials, respectively. Screening of the nonpolar
interaction between electrons and acoustic phonons has been
discussed at length in the past, with Cardona and Christensen
showing the necessity of such a screening for the dilatation
(hydrostatic) deformation potential [53]. However, Tanatar has
treated all nonpolar interactions as screened 1D structures [54]
and, more recently, such a form for dielectric screening of the
electron/acoustic-phonon interaction has been considered also
in 2D materials by Kaasbjerg et al. [55] for the normal (as
opposite to umklapp) processes we are considering here. A
“parochial” but exhaustive discussion of the history behind this
“screening problem” is given in Ref. [56], a paper that also
provides several additional references. As mentioned above,
we shall consider statically screened interactions at first, but
we shall extend our study to include dynamic-screening effects
in Sec. III D.

As mentioned before, we approximate the deformation
potential D(k,k′) appearing in Eq. (1) with �ZAq (with q =
|k − k′|) for parabolic, gapped materials; for Dirac-like crys-
tals, instead, D(k,k′) ≈ DK0 sin(φ/2). This is a satisfactory
approximation when spin-orbit interaction is ignored. How-
ever, we expect it to remain a good approximation whenever
the electron energy can be approximated by a linear Dirac-like
dispersion, as discussed above in the context of the band
structure. The different forms taken by D(k,k′) in these two
different types of materials has been discussed in Ref. [11] in
the context of electron transport. We shall see below that similar
considerations apply also in the context of superconductivity.

We shall limit ourselves to a simple s-wave pairing. In
general, in noncentrosymmetric structures and, most impor-
tant, in the presence of the spin-orbit interaction, the paring
symmetry should be a combination of s-wave and p-wave
pairing. However, we shall briefly argue below that accounting
for the spin-orbit coupling should not affect significantly
our results. Finally, all physical and material parameters are
identical to those used in Ref. [11].

D. The weak-coupling limit

As our first step, we consider the “usual” BCS-like weak-
coupling limit. This is a realistic approximation for the quasi-
conventional case of parabolic, gapped materials; on the other
hand, we shall see that it is completely inadequate in the case
of Dirac-like crystals.

We start by considering the equation for the supercon-
ducting gap. In the infinite-volume normalization, this can be
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written as

�(k) = −
∫

dk′

(2π )2
V (k−k′) I(k,k′)

�(k′)
2W (k′)

tanh

(
W (k′)
2kBT

)
,

(5)

where kB is the Boltzmann’s constant, T is the temperature,
V (q) is the total potential energy given by the sum of the
electron-phonon and Coulomb potential energies V (C)(q) +
V (ep)(q), and W (k) =

√
|E(k) − EF|2 + �(k)2 is the renor-

malized energy measured from the Fermi level. The “overlap
factor” I(k,k′) is assumed to be (1 + cos φ)/2, where φ is
the scattering angle, for Dirac-like materials, unity otherwise.
Thanks to the isotropy of the electronic dispersion and having
assumed s-wave pairing, all quantities in the expression above
depend only on the magnitude k of k, and in the following
the notation will be simplified accordingly [57]. In the weak-
coupling limit, �(kF) � EF, and at zero temperature, the
well-known approximate solutions for the gap at the Fermi
energy �(kF) is given by

�(kF) ≈ 2h̄ωD exp

(
1

νVeff

)
, (6)

where ν is the density of states per spin state at the Fermi
energy and

Veff =
∫ π

0

dφ

π
I(φ) V [2kF sin(φ/2)] (7)

is the potential energy averaged over the Fermi surface/line.
Of course Eq. (6) is valid only when νVeff is negative. From
Eq. (5), setting the gap to zero, one obtains a similar approx-
imate “weak-limit” expression for the transition temperature:

kBTc ≈ 1.13 h̄ωD exp

(
1

νVeff

)
. (8)

Whenever the electron density is large enough to render
static screening applicable (that is: whenever the 2D plasma
frequency is larger than the phonon energy), we can express
the dielectric function as

ε(q,0) = εs

(
1 + β

q

)
, (9)

where

β = e2gEF

4πh̄2υ2
Fεs

= e2

2εsh̄υF

(
gn

π

)1/2

(10)

for Dirac-like materials (g is the spin and valley degeneracy),
and

β = e2m∗

2πεsh̄
2 (11)

for gapped, parabolic materials.
For parabolic materials, let us consider the limit β � 2kF.

Sinceβ ∼ 1010 m−1 form∗ = m0 and εs = 10ε0, this condition
is met at densities n = k2

F/(2π ) � β2/(8π ) ∼ 1014 cm−2.
Therefore, taking this limit should be satisfactory in all rea-
sonable cases [58]. In this limit, β/(2kF) � 1, and recalling
that the density of states (per spin state) at Fermi surface is

1010 1011 1012 1013 1014 1015
10–2

10–1

100

101

102

103

Weak coupling limit
(BCS limit)

Silicene (εs=ε0)

Germanene (εs=ε0)
SnI
(εs=4ε0)

HfSe2 (εs=4ε0)

n (cm–2)

T c
 (

K
)

FIG. 1. Normal-superconducting transition temperature Tc calcu-
lated for parabolic, gapped materials (SnI and HfSe2) and Dirac-like
silicene and germanene using the weak-coupling limit. Note the usual
density dependence and weak effect seen for parabolic materials
in which superconductivity is expected only at unrealistically high
metallic carrier densities. On the contrary, for Dirac-like materials,
the large values obtained for Tc imply a failure of the weak-coupling
approximation.

m∗/(2πh̄2), we have

νV
(tot)

eff ∼ −4�2
ZAkFh̄2ε2

s

e4ρ b2m∗ + 1/2. (12)

We have considered the two parabolic materials studied in
Ref. [11]: Iodine-functionalized monolayer tin, SnI, and a tran-
sition metal dichalcogenide with a stable tetragonal structure
(T) at room temperature HfSe2. With the parameters listed in
that reference, Tc ≈ 4 K (� ≈ 0.3 meV) at n = 1014 cm−2, for
SnI, assuming a static dielectric constant εs = 4ε0.

For HfSe2, an attractive interaction is obtained only at
unreasonably high (metallic) densities (> 1015 cm−2). Note
that the ZA deformation potential �ZA reported in Ref. [11]
(and used here) is quite small in both materials, 1.6 and 1.8 eV
in SnI and HfSe2, respectively.

The transition temperature Tc for SnI and HfSe2 is shown
in Fig. 1 as a function of the carrier density n. Note that a high
electron density is required to boost the attractive effective
electron/ZA-phonon interaction, as seen in the kF dependence
of Eq. (12).

A final interesting observation can be made regarding the
negligible role played by in-plane modes (LA/TA phonons).
Here we consider explicitly the case of parabolic materials, but
similar considerations hold also for Dirac-like materials, con-
sidering the much weaker coupling of electrons with in-plane
modes when compared to coupling to flexural modes [11].
In the same limit β � 2kF, the electron-electron interaction
energy due to the coupling with the in-plane modes takes the
form

νV
(ep)

eff ∼ − m∗�2
LAk2

F

2πh̄2ρ c2
s β

2
. (13)

This quantity, rather than being of the order of unity or larger
(as in the case of ZA phonons), is of the order of 10−2-to-
10−1 at best, even at an unrealistically high metallic density
(1015 cm−2) and with high deformation potentials (5 eV). At
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reasonable—albeit still very high—densities, n ∼ 1014 cm−2,
one would need �LA > 25 eV to reach unity for this quantity.

The main conclusion of this discussion on gapped materials
is that it is indeed the strong electron/ZA-phonon coupling
(due to the superlinear dispersion ∼q3/2) that results in su-
perconductivity, albeit at temperatures that are not too exciting
and at unrealistically high—almost metallic—carrier densities.
Such a relatively weak coupling and the similarity with the
conventional BCS theory renders our weak-coupling estimates
reliable for these gapped, non-σh-symmetric 2D materials.

The different form that the electron-phonon matrix element
takes in Dirac-like materials results in a dramatically different
picture. Here we first consider the weak-coupling limit also
for these materials. This should be viewed as no more than an
exercise requiring more accurate solutions of the gap equation,
since the “strong coupling” results we shall find hint at a
failure of this limit. Nevertheless, this exercise will show the
qualitatively correct main trends.

In this case, it is customary to assume an in-plane dielectric
constant equal to the dielectric constant of the surrounding
environment. For free-standing layers, this assumption implies
rather large value of a = β/(2kF) = e2/(2πh̄υFε0) ≈ 8.5 for
both silicene and germanene. Thus, it is reasonable to take the
large-a limit also in this case. Since ν = kF/(2πh̄υF) (density
of states per spin and valley) and β = ge2kF/(2πh̄υF) (where
g = 4 is the typical valley and spin degeneracy of hexagonal
Dirac-like 2D crystals), we find for the total interaction energy:

νV
(tot)

eff ∼ − (DK0)2h̄υFε
2
0

12e4k2
Fρ b2

+ 1

16
. (14)

Using the parameters given in Ref. [11] for silicene and ger-
manene, we find that that νV

(tot)
eff is negative for all realistic con-

ditions. Actually, it increases with decreasing carrier density,
since in the limit of zero carrier density the electron-phonon in-
teraction becomes unscreened and diverges as 1/(kFβ) ∼ k−2

F ,
whereas the Coulomb repulsive term remains constant. With
h̄ωD = 15 meV for silicene and 9 meV for germanene, at a
density of 1012 electrons/cm2 we obtain � ≈ 11 meV and
Tc ≈ 140 K for silicene and � ≈ 0.5 meV and Tc ≈ 7 K
for germanene. The transition temperature Tc for silicene and
germanene is also shown in Fig. 1 as a function of the carrier
density n. As we have anticipated above, we see a behavior that
is exactly the opposite of what we see in the case of parabolic
materials: As we have remarked above, this is a consequence
of the fact that the electron/ZA-phonon matrix element grows
at longer wavelengths, actually diverging in the unscreened,
zero-density limit q ∼ 2kF → 0. The fact that the transition
temperature Tc saturates at some maximum value ∼h̄ωD/kB is
just an artifact of the weak-coupling expression Eq. (8). This
comes from the initial assumption that, if the gap � is small,
then the integral of the full gap equation gives a contribution
only over a shell of thickness 2h̄ωD around the Fermi surface.
Clearly, if the contributions come from a narrower region of
k space, the weak-coupling limit misses this fact altogether.
Therefore, the estimates above may be viewed as optimistic
upper bounds for the gap and transition temperature.

10–10 10–8 10–6 10–4 10–2
10–3

10–2

10–1

100

101

102

103

silicene n=1011 cm–2

1012

1013

1014

1015

ω (eV)

α2 F(
ω )

FIG. 2. Eliashberg’s electron-phonon spectral function calculated
as a function of frequency at various carrier densities for silicene.

E. McMillan’s strong-coupling formula

Given the strong coupling and large (unreasonable?) values
of Tc we find at low densities, it is necessary to consider the
expression one can obtain using Eliashberg’s theory [19,20]
in the strong-coupling limit. This theory is probably the
state-of-the-art for “conventional” superconductivity, although
the results may differ when considering the long-wavelength
coupling we have to deal with in our cases.

Deferring the task of finding a full solution of the gap
equation to the next section, here we consider a “popular”
expression used in the strong-coupling limit. In this case,
assuming a k-independent gap, the quantity of interest is the
Eliashberg’s electron-phonon spectral function [19,20] (see
also the review by Ummarino [21]):

α2F (ω) = ν

∫ π

0

dφ

π

1 + cos φ

2
ω(q) V (ep)(q) δ[ω − ω(q)],

(15)

with q = 2kF sin(φ/2). In our case this is

α2F (ω) = ν
2

3

(DK0)2

πρω2
F

(ω/ωF)4/3[1 − (ω/ωF)4/3]

[(ω/ωF)2/3 + β/(2kF)]2
, (16)

where ωF = b(2kF)3/2. Figure 2 shows this function at various
values of the (unrenormalized) density n. Note how this
function, and so the coupling, is dominated by long-wavelength
phonons, especially as n decreases.

The strength of the interaction is given by the dimensionless
coupling constant

λ = 2
∫ ωD

0
dω

α2F (ω)

ω
, (17)

which is obviously equal to −2νV
(ep)

eff .
McMillan [18] has provided an empirical estimate for the

transition temperature that, in a slightly revised form given by
Allen and Dynes [59], takes the form

kBTc = h̄ωlog

1.2
exp

[
− 1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

]
, (18)

where μ∗ is an effective repulsive Coulomb term. As men-
tioned before, this is often taken to be the Morel-Anderson
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FIG. 3. Transition temperature calculated for silicene using the
weak-coupling limit (dashed lines), the strong-coupling fit, Eq. (18)
of the text (dotted lines), and McMillan’s approximation to solve the
full gap equation within the constant-gap approximation (symbols).

potential [45]. However, here we take it as νV
(C)

eff . The fre-
quency ωlog is the logarithmic average of the phonon frequen-
cies involved in the coupling,

ωlog = exp

[
2

λ

∫ ωD

0
d log(ω)

α2F (ω)

ω

]
. (19)

The dotted line in Fig. 3 shows this limit for silicene,
compared to the weak-coupling limit. The maximum values of
the transition temperature is reduced. Moreover, the qualitative
features are significantly different, showing a reduction of the
transition temperature at lower carrier densities, as a result of
the reduced thickness of the Fermi shell.

Ummarino [21] has stressed the fact that the McMillan
formula, Eq. (18), is no more than an empirical fit to a limited
set of results that McMillan obtained solving Eliashberg’s
equations for a few metals [17,18]. Therefore, we must confirm
these results by tackling the harder problem of solving the full
gap equation.

III. SILICENE AND GERMANENE

Here and in the following we shall consider only non-σh-
symmetric 2D materials with a Dirac-like electron dispersion.
Indeed, we have argued that the weak-coupling limit describes
satisfactorily the case of parabolic, gapped materials. We
consider specifically the interesting cases of silicene and
germanene, since the possible emergence of superconductivity
in these materials has already been studied (and even possibly
experimentally observed in silicene).

A. Superconductivity in silicene

Chen et al. [22] have reported the experimental observation
of superconductivity in silicene on (111) Ag. Superconduc-
tivity has also been predicted by Wan et al. [25] on the basis
of phonon-mediated processes in biaxially strained silicene.
A similar study has been presented also by Durajski and
co-workers [26], also for biaxially strained silicene. The exper-
imentally observed gap � is about 35 meV, but it disappears at
a temperatures of only 35–40 K, a gap/temperature ratio that is
inconsistent with the universal prediction of the conventional

BCS theory. Chen and co-workers [22] speculate that this
is either an artifact due to the fact the temperature of their
STM tip differs significantly from the sample temperature or,
instead and more intriguing, that it indicates that silicene is
not an s-wave superconductor and conventional BCS theory
does not apply. However, the experimental situation is quite
complex, since measurements were performed with STM on
silicene supported by (111) Ag and additional effects, such
as electric-field-induced interface superconductivity [60] of
Ag may also play a role. Indeed, Zhang and co-workers have
speculated about electric-field-induced superconductivity for
silicene [28] and Zhang and co-workers themselves and Liu
et al. [27] have investigated non-s-wave pairing in silicene
monolayers and bilayers, respectively. However, they have
considered non-phonon-mediated processes but, rather, an
RPA multiorbital Hubbard-model approach [29,31–35].

The ab initio calculations by Wan et al. [25] and Durajski
and co-workers [26] are for silicene under large tensile biaxial
strain and result in an estimated Tc of about 10 to 20 K at
densities exceeding 1014 cm−2. Unfortunately, the sophistica-
tion afforded by first-principles calculations often comes at the
price of a numerical complexity that forces the use of additional
approximations. For example, in Ref. [25] the very coarse mesh
used to discretize the Brillouin zone (120 × 120) makes it
impossible to capture correctly the long-wavelength behavior
of the electron/ZA-phonon matrix elements, thus missing or
underestimating the major physical effect we consider here.
Moreover, the integration over the Fermi surface is performed
by replacing the width of the shell with a Gaussian “smearing”
with a width of 0.01 Ry, an energy that is much larger than any
other energy of interest in the problem. As a result, Wan et al.
find a transition temperature that increases with increasing
density, despite the fact that they identify � phonons (optical
and ZA) as controlling the attractive effective electron-phonon
interaction. In this case (very plausible and expected, given
the divergence at long wavelengths of the electron/ZA-phonon
interaction), one would expect the role of these q = 0 phonons
to grow as the radius of the Fermi circle shrinks; that is,
at low densities. We should mention that Ezawa [23] has
also speculated about the topological-superconductor nature
of some “popular” non-σh-symmetric 2D crystals, such as
silicene, germanene, and stanene. Baskaran [24] has similarly
argued about possible room-temperature superconductivity of
silicene and germanene. Given this state of affairs, it is worth
revisiting the problem, following the same path that we have
followed so far, attempting to capture the long-wavelength
region as accurately as possible.

B. The full gap equation

It is convenient to recast the gap equation Eq. (5) in terms
of the “frequency” variables ω = υFk, ω′ = υFk

′, ωq = b q3/2.
Then, the gap equation can be written as

�(ω) = − 1

(4πυF)2

∫ ωmax

0
dω′ ω′ �(ω′)√

h̄2(ω′ − ωF)2 + �(ω′)2

×P
∫ ωq,max

ωq,min

dωq (1 + cos φ)

(
dφ

dωq

)
V (ω,ω′,ωq),

(20)
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where the interaction potential is

V (ω,ω′,ωq) = − (DK0)2

ρ

sin2(φ/2)

ω2
q − (ω′ − ω)2

ω
4/3
q(

ω
2/3
q + ω

2/3
β

)2

+ e2b2/3

εs

(
ω

2/3
q + ω

2/3
β

) . (21)

In Eq. (20),P denotes the Cauchy principal part of the integral,
and

ωmax = 2πυF/a0,

ωq,max/min = b

υ
3/2
F

|ω′ ± ω|3/2,

ωβ = b β3/2,

cos φ = ω2 + ω′2 − (
υ2

F/b4/3
)
ω

4/3
q

2 ω ω′ ,

dφ

dωq

= 4

3

υ2
F

b4/3

ω
1/3
q

2 ω ω′ sin φ
.

(22)

Of course, φ is expressed as a function of ω, ω′, and ωq , and
so are sin2(φ/2) = (1 − cos φ)/2 and sin φ =

√
1 − cos2(φ).

Equation (20), as well as Eq. (25) below, is a slightly
simplified form of the Eliashberg’s equation (see, for example,
Eq. (37b) of Ref. [19]): In addition to having ignored the
phonon Bose factors, consistently with the approximation
embraced initially, and approximated the electron self-energy,
we have also ignored corrections to the phonon self-energy.
This seems to be a common approximation in the Eliashberg’s
formalism, although, given the strength of the electron/ZA-
phonon interaction in our case, these are corrections whose
importance should be investigated. We shall ignore this issue
here. Of course, in addition to these assumptions, the specific
form of the electron-phonon interaction also differs, since
Eliashberg considered metals with an electron-phonon matrix
element growing linearly with q.

Obviously we have not resolved the problem of the nonan-
alyticity of the integrand function; we have simply transferred
the essential singularities from the denominator ω2

q − (ω′ −
ω)2 in Eq. (21) to essential singularities elsewhere, namely, the
fractional powers and absolute values in Eqs. (22). However,
having formulated the gap equation in terms of these new
variables, we can identify the poles of the effective interaction
potential, Eq. (21), and attempt a numerical approach by
considering Eq. (20) simplified, as usual, by assuming an
ω-independent gap and looking for the gap at the Fermi surface
�(ωF):

1 = − 1

(4πυF)2

∫ ωmax

0
dω′ ω′ 1√

h̄2(ω′ − ωF)2 + �(ωF)2

×P
∫ ωq,max

ωq,min

dωq(1+cos φ)

(
dφ

dωq

)
V (ωF,ω

′,ωq), (23)

considering also the equation for the transition temperature Tc:

1 = − 1

(4πυF)2

∫ ωmax

0
dω′ ω′ 1

h̄|ω′ − ωF| tanh

(
h̄|ω′ − ωF|

2kBTc

)

×P
∫ ωq,max

ωq,min

dωq (1 + cos φ)

(
dφ

dωq

)
V (ωF,ω

′,ωq). (24)
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FIG. 4. Superconducting gap at the Fermi energy (top) and
transition temperature (bottom) calculated for silicene using the
various approximations described in the text: The weak coupling
limit, the strong-coupling limit, and the solution of the gap equation
(constant-gap approximation) integrating it through the singularities
by computing the Cauchy principal part of the integral (PP, static
screening, black open circles); by regularizing the singularities ac-
counting for a finite phonon lifetime 1/η with η = 10−6ωD (ω + iη,
open triangles, cyan); and employing McMillan’s approximation, as
described in the text (McMillan, open squares, blue). The dots (red)
also show the results obtained accounting for dynamically screened
interactions and calculating the Cauchy principal part of the integral.

Extreme care must be taken in order to treat correctly
the Cauchy principal part of the integral, employing highly
nonuniform meshes to discretize the ω′ and ωq integration
interval.

Given the complexity of the numerical task at hand, we
can confirm the correctness of our results by employing two
additional strategies. The singularities can be regularized by
adding an imaginary term to the phonon energy ωq → ωq + iη.
Physically, the lifetime 1/η may be thought as caused by the
anharmonic coupling to in-plane phonons. The numerical inte-
gration can then be performed in a similar way. Alternatively,
we can adopt McMillan’s approximation: In the denominator
of Eq. (21), we retain only the term ω2

q when ω2
q � (ω′ − ω)2,

or retain only the term (ω′ − ω)2 when ω2
q < (ω′ − ω)2.

Figure 4 shows the resulting gap (top frame) and transition
temperature (bottom frame) obtained by computing the Cauchy
principal part of the ωq integral in Eq. (23) (open circles,
black), as well as the two additional approximate solutions:
The solution obtained by regularizing the singularities by
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FIG. 5. Superconductivity gap for germanene calculated using
some of the approximations described in the text and in Fig. 4.

accounting for a finite phonon lifetime with η = 10−6ωD

(open triangles, cyan) and using McMillan’s approximation
(open squares, blue). Note that the results obtained using these
three different numerical strategies are in excellent agreement.
This is a nontrivial result, since it shows—albeit indirectly—
that Migdal’s theorem is likely to hold even in our rather
unconventional case. Figure 5 shows the superconducting gap
at the Fermi energy obtained for germanene using the various
approximations we have considered also for silicene.

C. The frequency-dependent gap

An assumption we have made consistently up to this point
has been the “constant gap approximation.” Given the narrow
range of k space in which the effective electron-electron
interaction is nonzero, we expect that this is a satisfactory
approximation. More specifically, we expect that the value
of the gap (and transition temperature) obtained within this
approximation will give some sort of average of the gap in
the neighborhood of the Fermi energy. Yet, it is interesting to
confirm the correctness of our expectations by solving the full
integral equation, Eq. (20). Given the significant computational
cost, we have “spot checked” our results in the interesting range
of carrier densities that yield the highest values for the gap
in silicene. The integral equation is solved iteratively, starting
from an initial guess of a Gaussian �(ω) with peak value given
by the result of the constant-gap approximation and width
given by the Debye frequency. Using the same integration mesh
described above, convergence up to 10−6 eV is usually reached
in as few as 8-to-10 iterations. As shown in the top frame of
Fig. 6, at the indicated values the gap oscillates with a peak
positive value at the Fermi energy that is about an order of
magnitude larger than the result of the constant-gap approx-
imation. This latter result, as expected, provides an average
value. The bottom frame of Fig. 6 illustrates the renormalized
quasiparticle dispersion, showing that the minimum gap away
from the Fermi energy is approximately of the same magnitude
obtained using the constant-gap approximation.
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FIG. 6. Top: Superconducting gap as a function of frequency
calculated by solving the integral gap equation at the indicated
carrier densities. Bottom: Renormalized quasiparticle dispersion cor-
responding to the results shown in the top frame.

D. Dynamic screening

So far we have considered interactions that are statically
screened. As anticipated, we expect that dynamic screening
may modify the picture in the superconducting state.

In order to account for dynamically screened interactions,
we follow the standard procedure outlined, for example, in
Ref. [61]. We can reexpress the equation for the gap �(ω,iωn)
in terms of a sum over Matsubara frequencies ωn and screen
the interaction potential using an analytic extension of the
Wunsch’ polarizability �(RPA)(q,ω) to imaginary frequencies.
Restricting our attention to the gap calculated at ωn = 0 and
also assuming that it does not depend on iωn (an assumption
that is just an extension of the “constant gap” approximation
we have used before), the sum over the Matsubara frequencies
can be converted to an integral over the imaginary axis in the
zero-temperature limit. Rotating the integration axis to real
frequencies and ignoring the imaginary part of �(ω), we finally
obtain

�(ω) = − 1

(4πυF)2

∫ ωmax

0
dω′ ω′�(ω′)√

h̄2(ω′ − ωF)2 + �(ω′)2

×P
∫ ωq,max

ωq,min

dωq (1 + cos φ)

(
dφ

dωq

)

×Re V (RPA)(ω,ω′,ωq ; ω̃0). (25)
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In this equation, note the presence of the gap �(ω′) in the
frequency ω̃0 =

√
(ω′ − ωF)2 + �(ω′)2/h̄2 entering the RPA

dielectric function. This had been anticipated in Sec. II B in
our early discussion about dielectric screening.

Equation (25) evaluated at the Fermi energy, and also
assuming the “usual” constant-gap approximation, becomes

1 = − 1

(4πυF)2

∫ ωmax

0
dω′ ω′√

h̄2(ω′ − ωF)2 + �(ωF)2

×P
∫ ωq,max

ωq,min

dωq (1 + cos φ)

(
dφ

dωq

)

×Re V (RPA)(ωF,ω
′,ωq ; ω̃0), (26)

where (to be explicit, just for completeness and clarity)
V (RPA)(ωF,ω

′,ωq ; ω̃0) is given by Eq. (21), but modified to
account for dynamic screening:

V (RPA)(ωF,ω
′,ωq ; ω̃0)

= − (DK0)2

ρ

sin2(φ/2)

ω2
q − (ω′ − ωF)2

ω
4/3
q[

ω
2/3
q + ωβ(ω̃0)2/3

]2

+ e2b2/3

εs

[
ω

2/3
q + ωβ(ω̃0)2/3

]
= − (DK0)2

ρ

sin2(φ/2)

b2q3 − (ω′ − ωF)2

q2

[q + β(ω̃0)]2

+ e2

εs[q + β(ω̃0)]
, (27)

with β(ω̃0) = −e2/(2ε0q) �(RPA)(q,ω̃0), ωβ(ω̃0) =
b β(ω̃0)3/2, and q = (ωq/b)2/3. Unfortunately, a similar
“simple” equation does not hold for the transition temperature,
since we have taken the zero-temperature limit to convert
the sum over Matsubara frequencies to a numerically more
convenient integral. Yet, the value for �(ωF) obtained by
solving Eq. (26) can give us a qualitative idea of how dynamic
screening may affect the normal-superconducting transition.

The results (symbols labeled PP, dynamic screening) are
shown in Figs. 4 and 5 for silicene and germanene, respectively.
The effect is significant: The maximum values of the super-
conducting gap and transition temperature are shifted at larger
carrier densities, but are also increased by almost one order
of magnitude, the “estimated” (using the BCS “universal”
gap-to-temperature ratio) critical temperature reaching a value
of about 5 K for silicene.

E. Effect of the dielectric environment

All results presented so far have been obtained in the
ideal case of free-standing layers. It is interesting to have a
qualitative idea of what effect a substrate or gate dielectric may
have on the superconducting gap. We know that the dielectric
constant of 2D crystals tends to approach the value of the
dielectric constant of the supporting substrate and/or of the
gate insulator (or passivating layer) [62]. This is the result
of the fact that the polarization of the 2D layer is strongly
affected by the polarization of the dielectric environment
itself. The dielectric response of the 2D layer will also be
different along the in-plane or out-of-plane directions [62].
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FIG. 7. Superconducting gap calculated by integrating the singu-
larities via the Cauchy principal part and with a dynamic module for
screening assuming different values for the silicene dielectric constant
εs, resulting from different substrates or gate oxides.

Let us ignore these complications and, rather than tackling
the hard problem of calculating the full dielectric response
of the system substrate/silicene/gate insulator, let us assume
that the dielectric constant of silicene takes a value similar to
the average value of the system. Therefore, we can assume
that silicene supported and passivated by hBN or by SiO2 will
have an isotropic dielectric constant εs ≈ 4ε0 or ≈ 10ε0, when
supported by hBN/SiO2 and gated by HfO2.

Figure 7 shows the superconducting gap in these two
oversimplified cases calculated using our “best” model; that
is, integration of the singularities by computing numerically
the Cauchy principal part of the integral and employing dy-
namic screening. The more efficient screening of the Coulomb
repulsive interaction and the reduced Thomas-Fermi screening
length contribute to enhancing the gap. A maximum value of
about 2–3 meV can be reached at the highest density for which
our simplified band structure remains valid (∼7 × 1013 cm−2)
and also reasonably achieved in gated layers. Extrapolating
from the “universal” ratio kBTc/�(kF) ∼ 0.56 seen in most
of the cases we have considered, we can estimate that this
will correspond to a transition temperature of about 15–20 K.
Therefore, as long as the supporting substrate or gate insulator
couple with the 2D layer via weak ban der Waals forces
that do not damp or suppress the flexural modes, a “high-k”
environment may be beneficial as far as superconductivity is
concerned.

IV. CONCLUSIONS

We have considered the strong interaction between elec-
trons and flexural models that is allowed at first in non-σh-
symmetric two-dimensional crystals and its potential to induce
superconducting electron pairing. We have argued that in
“gapped” materials that exhibit a parabolic electron dispersion,
the interaction is too weak to lead to any superconductivity
at realistic carrier densities. On the contrary, in 2D materials
that exhibit a Dirac-like electron dispersion, the interaction is
strong enough to induce superconductivity. We have shown that
this interaction is significantly different from the interactions
considered by the “conventional” BCS theory, since its strength
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increases at long wavelengths. Therefore, we have investi-
gated the strong-coupling limit using McMillan’s empirical
strong-coupling (Eliashberg) formula, by solving directly the
integral gap equation within the constant-gap approximation
and assuming statically screened interactions. We have shown
that the negligible role played by the singularities of the
phonon-mediated electron-electron interaction suggests the
validity of Migdal’s theorem in our cases. Finally, we have
extended our study to account for dynamic screening, for
the energy dependence of the superconducting gap, and for
the presence of a dielectric environment (supporting substrate
or gate insulator). We have estimated that superconductivity
in silicene can exhibit a transition temperature varying from
5 to 20 K, depending on the dielectric environment. While
not “earth shaking,” these results makes us conclude that the

electron/ZA-phonon interaction should be correctly accounted
for when studying possible mechanisms leading to supercon-
ductivity in non-σh-symmetric, Dirac-like two-dimensional
materials.
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