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Orbitally limited pair-density-wave phase of multilayer superconductors
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We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed
pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In
multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer
layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered
layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave
phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question
in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave
phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for
the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply
the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0

and a Maki parameter αM . We find that when the spin-orbit Rashba interaction compares to the superconducting
condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM > 10.
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I. INTRODUCTION

Magnetic fields applied to superconductors with Cooper
pairing in the spin-singlet channel are in two ways detrimental
for the superconducting phase. The first is through the coupling
to the charge which confines electrons into cyclotron orbits
leading to “orbital depairing.” The second originates from
the Zeeman coupling to the spin by breaking up the spin
singlet configuration of the Cooper pair, called “paramagnetic
limiting.” The corresponding orbital and paramagnetic upper
critical fields are denoted by Hc2 and Hp, respectively. In most
superconductors the latter is irrelevant because superconduc-
tivity disappears at Hc2, much smaller than Hp. However, in
the opposite limit remarkable features may appear such as
the famous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in
high magnetic fields if Hc2 sufficiently exceeds Hp, quantified
by the Maki parameter αM = √

2Hc2(0)/Hp(0) [1–4]. Among
the materials where the realization of such an FFLO state
is suspected to exist is the heavy fermion superconductor
CeCoIn5 [5]. However, it turned out that this superconductor
is more complex, because the new phase that appears at low
temperatures and high magnetic fields has also spin magnetic
order, the so-called Q phase that renders it more difficult to
verify the existence of the FFLO phase experimentally [6].
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Recently, Shishido et al. produced artificial superlattices
consisting of regular stacks of several layers of CeCoIn5 alter-
nating with several layers of YbCoIn5, in this way separating
the layers of the heavy Fermion material by a normal metal
[7,8]. For superlattices where the stacks of CeCoIn5 contain
three or more layers, the system remained superconducting.
It was found that these systems are unusually robust against
magnetic fields [7,9–11]. It has been suggested that this feature
might be connected with reduced symmetry in the superlattice,
so-called local noncentrosymmetricity [12]. A particularly
simple but highly interesting example for this is the trilayer
system (see Fig. 1), where the middle layer has inversion
symmetry, as it constitutes a mirror plane for the system,
while the outer layers have a different environment above and
below. This lack of local mirror symmetry leads to Rashba-type
spin-orbit coupling which induces parity mixing for the Cooper
pairing states and at the same time reduces the effect of param-
agnetic limiting for fields perpendicular to the layers [13]. Soon
it was recognized that this structure could give rise to various
intriguing properties in a magnetic field, such as a complex
stripes phase related to the FFLO state, crystalline topological
superconductivity and pair density wave phases among other
features [12,14–20]. The important ingredient for this is local
noncentrosymmetricity and a large Maki parameter.

Among these exotic phases, we will focus here on the field-
induced pair density wave (PDW) phase, characterized below,
which is supposed to appear at low temperature for sufficiently
high magnetic fields perpendicular to the layers. This proposal

2469-9950/2018/97(14)/144508(11) 144508-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.144508&domain=pdf&date_stamp=2018-04-12
https://doi.org/10.1103/PhysRevB.97.144508


DAVID MÖCKLI, YOUICHI YANASE, AND MANFRED SIGRIST PHYSICAL REVIEW B 97, 144508 (2018)

FIG. 1. Superconducting trilayer system motivated from artificial
Kondo superlattices. Inversion symmetry is locally broken at the outer
layers, whereas the inner layer remains inversion symmetric, both
globally and locally. Inversion symmetry breaking induces Rashba
effects at the outer layers with opposite directions. The PDW and
BCS are the two order parameter solutions allowed by symmetry.
The PDW state is favorable at high magnetic fields.

is substantiated by a microscopic model calculation on the
level of a Bogolyubov-de Gennes formulation for a trilayer
system (see Fig. 1), where the electrons only couple through
their spin to the magnetic field, such that only paramagnetic
limiting destroys Cooper pairs [12]. In our study we would
like to extend the approach to include the mixed phase with
the vortex lattice and the effects of orbital depairing. For this
purpose we formulate the equivalent Ginzburg-Landau (GL)
theory for the trilayer system and analyze it approximating the
Abrikosov vortex lattice by generalizing the so-called circular
cell method invented and frequently used in the context of
vortex matter [21–24]. In this way we are able to probe the
influence of different depairing mechanisms on the stability of
the PDW phase and eventually provide some semiquantitative
assessment of the situation in CeCoIn5/YbCoIn5 superlattices.

In this paper we start with the formulation of the GL
functional for a monolayer spin-singlet superconductor in
order to examine the effect of paramagnetic limiting on the
mixed phase, where we treat the vortex lattice with the circular
cell method. This system is centrosymmetric such that parity
mixing does not occur. After this test case we turn to the
trilayer stack, which requires a more involved multicomponent
order parameter in both spin channels for every layer which
is necessary to capture both the ordinary BCS and the PDW
phase. An important quantity in this context is the Maki
parameter αM that is needed to exceed a certain threshold to
allow for the PDW phase. The derivation of our free energy
functional and related discussions will be supported by the
three sections in the appendix.

II. GINZBURG-LANDAU THEORY

A. Free energy of a monolayer superconductor

In this section we develop a Ginzburg-Landau-type model
for an ideal vortex lattice of a high-κ type-II superconductor,
where paramagnetic depairing is included. In order to treat
the vortex lattice, we employ the Wigner-Seitz approximation
which uses a circular vortex unit cell, neglecting effects due
to a specific vortex lattice geometry [24]. This allows us to
provide analytical calculations to a large extent.

The PDW phase we would like to address is expected
to be realized at high magnetic fields and low temperatures.
Therefore, it is advantageous to use a dimensionless form of
the Ginzburg-Landau functional for our discussion [25], where

temperature does not appear explicitly and which leads to
a simple relation between the normal state susceptibility χn

and the Maki parameter αM . This also allows us eventually to
give a good qualitative description over the whole temperature
range, since temperature can be reintroduced as we show in
Appendix A. The functional for the Wigner-Seitz cell can be
written as [24,26]

F = 1

Acell

∫
◦

d2ρ

(
−f 2(ρ) + f 4(ρ)

2
+ [∇f (ρ)]2

κ2
0

)

+ 1

Acell

∫
◦

d2ρ

[
f 2(ρ)

(∇ϕ

κ0
− A(ρ)

)2

+ B2(ρ)

1 + χn

]

+ 1

Acell

∫
◦

d2ρ χnB2(ρ)f 2(ρ), (1)

or F = Fc + Fm + Fp for the three terms, where Fc, Fm,
and Fp refer to the vortex core energy, the orbital magnetic
coupling, and the paramagnetic limiting term, respectively.
Here f (ρ) is the renormalized superconducting order param-
eter that due to circular symmetry only depends on the radial
coordinate ρ of the vortex cell, where Acell = 2π/(κ0B̄) is the
cell area with B̄ as the mean magnetic induction. The magnetic
induction can be written in terms of a vector potential B =
∇ × A, and κ0 is the standard Ginzburg-Landau parameter
ignoring correction due to the paramagnetic depairing. The
normal state susceptibility χn determines the strength of the
paramagnetic effect via χn = (αM/κ0)2/2 involving the Maki
parameter αM [see equation (B6)]. In dimensionless units the
flux quantum threading a unit cell reads φ0 = 2π/κ0, and the
vortex unit cell radius is ρ2

B = 2/(κ0B̄). The dimensionless
magnetic field H and magnetic induction B are related by

H = 1

2

∂F
∂B̄

, (2)

from which we extract the magnetization M = B − H and
magnetic susceptibility χ = M/H.

B. Variational circular cell procedure

The usual Ginzburg-Landau scheme follows a variational
minimization of the free energy functional (1) with respect
to f (ρ) and A. Here, for the sake of analytical insights and
simplicity, we employ a procedure proposed by Clem [21],
which uses the variational ansatz

f 2(ρ) = f 2
∞

ρ2

ρ2 + ξ 2
c

(3)

to model the vortex core, where f∞ and ξc are variational
parameters for the bulk magnitude of the order parameter and
vortex core size, respectively. This ansatz eliminates one of the
two Ginzburg-Landau equations and provides one remaining
differential equation that can be solved analytically. Substi-
tuting the ansatz (3) into the free energy (1) the variational
derivative with respect to A leads to

∇2A
1 + χn

+ f 2
p

ρ2

ρ2 + ξ 2
p

(∇ϕ

κ0
− A

)
= 0, (4)
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where

f 2
p = f 2

∞
1 + χnf 2∞

, and ξ 2
p = ξ 2

c

1 + χnf 2∞
. (5)

After the gauge transformation A → A + ∇ϕ/κ0, we take
the curl of equation (4) and use it to eliminate A to obtain [25]

1

1 + χn

1

ρ

d

dρ

[
1

f 2
p

ρ2 + ξ 2
p

ρ

dB
dρ

]
= B. (6)

This is a modified Bessel differential equation whose solution
determines the spatial distribution of the magnetic induction
B. A general solution of equation (6) is [24]

(1 + χn)B(ρ) = c1K0
(
fp

√
ρ2 + ξ 2

p

) + c2I0
(
fp

√
ρ2 + ξ 2

p

)
,

(7)

where In(x) and Kn(x) are nth-order modified Bessel functions
of the first and second kind, respectively. The coefficients c1

and c2 are determined by the conditions that the flux threading a
unit cell (for the αM = χn = 0 case) is a flux quantum and that
the current density is zero at the cell boundary. Defining P2 =
2/(κ0B̄) + ξ 2

p , these coefficients can be expressed analyti-
cally as

c1 = f∞
κ0ξc

I1(fpP)

K1(fpξp)I1(fpP) − I1(fpξp)K1(fpP)
, (8)

c2 = f∞
κ0ξc

K1(fpP)

K1(fpξp)I1(fpP) − I1(fpξp)K1(fpP)
. (9)

Inserting f (ρ) and B(ρ) in Eq. (1) we perform the integrals
over ρ to obtain

Fc = +1

2
(1 − f 2

∞)2 + f 4
∞
2

+1

2
B̄κ0ξ

2
c f 2

∞(1 − f 2
∞) ln

(
1 + 2

B̄κ0ξ 2
c

)

+ B̄f 2
∞

(
1 + B̄κ0ξ

2
c

)
κ0

(
2 + B̄κ0ξ 2

c

)2 − f 4
∞

2 + B̄κ0ξ 2
c

. (10)

Note that B̄κ0ξ
2
c /2 = (ξc/ρB)2. To calculate Fm we use the

result by Hao-Clem [23] that states Fm = B̄B(0) leading to

Fm = B̄
1 + χn

f∞
κ0ξc

K0(fpξp)I1(fpP) + I0(fpξp)K1(fpP)

K1(fpξp)I1(fpP) − I1(fpξp)K1(fpP)
.

(11)

If the order parameter is very small, f∞ � 1, one can ap-
proximate Eq. (11) simply by the lowest order term, F (0)

m =
B̄2/(1 + χn).

To evaluate the last term Fp we use the mean value of the
magnetic induction B̄

Fp = B̄2f 2
∞Q(0)

[
1 + B̄κ0ξ

2
c

2
ln

(
1 − 2

2 + B̄κ0ξ 2
c

)]
, (12)

where Q(T ) is defined in Appendix A and Q(0)=χn/(1+χn).
The resulting free energy summing up all three terms,

F[f∞,ξc], is an analytic free energy density for a vortex lattice
subject to paramagnetic limiting. The minima with respect to

FIG. 2. (a) Magnetization curves starting from a κ0 = 100 su-
perconductor for different Maki parameters. The magnetic field and
the magnetization are given in units of the orbital upper critical field
Bc2 = κ0. (b) Dependence of f∞ on the H field for different Maki
parameters. (c) Dependence of the variational parameter ξc (modeling
the vortex core size) on the H field for different Maki parameters. ξBc2

is the upper critical core size for αM = 0.

the variational parameters (f∞,ξc) for some values of B̄ can be
obtained by simultaneous numerical minimization of the free
energy density. Here we use a Nelder-Mead procedure to find
(f∞,ξc)min. We include the expressions for the magnetic field
H and the lower critical field Hc1 in Appendix C.

C. Results of a numerical evaluation

We consider now the behavior of the mixed phase for differ-
ent values of the Maki parameter, αM = {0,1,2,3}, providing
the results for the magnetization, the order parameter, and the
vortex core size as a function of the applied magnetic field in
Fig. 2. The Ginzburg-Landau parameter is κ0 = 100 such that
the lower critical field is very small and will be ignored here.
Figure 2(a) shows the magnetization curves where the upper
critical field, defined by the vanishing of f∞, shrinks with
increasing αM . The normal state magnetization extrapolates
to zero and is enhanced for increasing αM together with the
spin contribution through χn, as explained in Eq. (B6) of
Appendix B. The qualitative features of the magnetization
curves agree with the experimental results observed in CeCoIn5

[27,28] or KFe2As2 [29]. A similar behavior can also be derived
from a microscopic approach (see for example Ref. [30]). Note
that the rather singular response of M in the limit of H = 0
appears because we ignore the lower critical field which would
truncate this behavior.

Figure 2(b) displays the field dependence of the order
parameter f∞. The feature of the initial rise of f∞ exceeding
1 is an artifact of our circular cell approach [24]. The same
spurious increase is also observed in Fig. 2(c) for the vortex
core radius ξc which we renormalize with ξBc2 = 1/κ0, the core
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radius at Bc2 for αM = 0. Thus, the more reliable behavior is
found rather for higher magnetic fields where f∞ is gradually
suppressed. It is interesting to note that the core radius
increases for finite αM relative to αM = 0 indicating that the
paramagnetic depairing acts detrimental to the order parameter
within the vortex core, where the magnetic field is also largest
and the order parameter weakest.

III. PAIR-DENSITY WAVE PHASE
IN THE TRILAYER SYSTEM

We now turn to the trilayer system as introduced at
the beginning. The properties of this system under various
conditions have been investigated using a Bogolyubov-de
Gennes (BdG) formulation restricting to paramagnetic de-
pairing [12,14,17,19]. In this section we introduce the GL
formulation in order to include orbital depairing as we did
for the monolayer case above.

A. Local inversion symmetry breaking

In a system with time reversal symmetry and inversion sym-
metry, we categorize superconducting phases by the Cooper
pair symmetry into even-parity spin-singlet and odd-parity
spin-triplet pairing states [31]. In noncentrosymmetric systems
the lack of inversion deprives Cooper pairs of having a definite
parity, which, hence, can be considered as parity-mixed states
[32,33].

A superconducting system composed of a stack of three
identical layers can be regarded as a locally noncentrosym-
metric system (see Fig. 1). Globally the trilayer system is
centrosymmetric as there are inversion centers in the middle
layer which is also a mirror plane. This middle layer consti-
tutes, therefore, also a centrosymmetric subsystem where the
standard classification of order parameter symmetries applies.
This is different for the outer layers that do have different
environments above and below which we consider as non-
centrosymmetric subsystems whose superconducting order
parameters are subject to parity mixing. The superconducting
order parameters of the outer layers are related by symmetry.

Parity mixing is induced by spin-orbit coupling that is of
Rashba type for these outer layers with opposite sign for the
upper and lower one (see Fig. 1). The dominant order parameter
is in our case even-parity spin-singlet in character and for
the three layers shall be represented by ψi = {ψout,ψin,ψout}
(i = 1,2,3 where 1 and 3 denote the outer and 2 the middle
layer). The admixed odd-parity component only appears in
the outer layers with opposite sign, ηi = {ηout,0, − ηout}. It
is important to note that this spin-triplet component has a
spin configuration corresponding to equal-spin pairing with
spin orientation perpendicular to the plane, making it robust
against spin polarization along this direction. This combination
of these two order parameters we will call in the following BCS
phase following the nomenclature of Ref. [12]. In this reference
it was shown that in high magnetic fields (perpendicular to the
layers) a phase dubbed pair density wave (PDW) is stabilized
with the order parameter configuration ψi = {ψout,0, − ψout}
and ηi = {ηout,ηin,ηout}, where the spin-singlet component
changes sign between the two outer layers. In the following we

will formulate a GL theory which incorporates the ingredients
to reproduce this phenomenology.

B. Free energy of the trilayer system

We now extend the GL theory developed in the preceding
section II for a single superconducting layer to the case of
three layers in order to describe the occurrence of a PDW
state in a magnetic field and to estimate the necessary Maki
parameter αM . In order to integrate the parity-mixing effect
we need six order parameters, three spin-singlet compo-
nents, i(r,αi) = ψi(r) exp iαi , and three triplet components,
�i(r,βi) = ηi(r) exp iβi . Again, we write the free energy in
terms of dimensionless quantities that will be indicated by
the argument ψi(r) → ψi(ρ) within the single-vortex cell,
whereby we renormalize in the same way as above and
explained in Appendix A. We write the dimensionless free
energy density as the sum of five terms

F = Fc + Fε + FJ + Fm + Fp, (13)

which refer, respectively, to the core, order parameter mixing,
Josephson interlayer coupling, magnetic orbital part, and
paramagnetic term. Each one of the terms will be introduced
and discussed now.

The core free energy density including all order parameter
components is given by

Fc = 1

Acell

∫
◦

d2ρ
∑

i

(
−ψ2

i (ρ) + ψ4
i (ρ)

2
+ [∇ψi(ρ)]2

κ2
0

+ η4
i (ρ)

2
+ [∇ηi(ρ)]2

κ2
0

)
, (14)

where Acell = πρ2
B is the vortex cross section unit cell area.

We assume that the threading vortex line is vertically aligned
throughout the three superconducting layers. Both ψi(ρ) and
ηi(ρ) are the dimensionless superconducting order parameters,
renormalized with respect to the maximum layer values. In
order to be able to perform to a large extent analytical cal-
culations, we impose several simplifications here. The fourth-
order mixed terms are neglected. The spin-triplet square term
η2

i (ρ) has been omitted for simplicity fixing the bare critical
temperature of this pairing channel to zero in all layers. A
finite Tc for ηi would not alter our conclusions qualitatively.
We also fixed the GL parameter κ0 to be the same for both
the spin-singlet and triplet components which implies that the
orbital depairing is equally detrimental to both.

The parity mixing induced by the Rashba spin-orbit cou-
pling in layers 1 and 3 is implemented by a second-order mixing
term

Fε = 1

Acell

∫
◦

d2ρ
∑

i

εiγ ψi(ρ)ηi(ρ) cos(αi − βi), (15)

with εi = (1,0, − 1) reflecting that the spin-orbit coupling has
opposite sign on the two sides in accordance with the mirror
symmetry with respect to the middle layer. The parameter γ is
the coupling strength. In previous studies of the trilayer system,
neglecting the orbital depairing effect, phase differences αi −
βi were constant and either 0 or π [12,14,17]. Here we assume
that we can keep this registry of the phases even including the
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mixed phase through sufficiently strong interlayer Josephson
coupling,

FJ = J

Acell

∫
◦

d2ρ
∑
〈i,j〉

(|ψi(ρ) − ψj (ρ)|2 + |ηi(ρ) − ηj (ρ)|2),

(16)

where J is the coupling strength and 〈i,j 〉 indicates the
summation over neighboring layers, i.e., (1,2) and (2,3). In
the following we assume the coupling constants J and γ to
be comparable to the condensation energy density, Fcond =
−|ψ |2 + |ψ |4/2 which is −1/2 for the minimizing order
parameter |ψ | = 1.

Next we consider the magnetic orbital part. A dramatic
simplification occurs, if we allow the magnetic induction
Bi(ρ) to be identical in all layers, B(ρ). Together with the
constant phase differences this allows also to perform the
analog gauge transformation for the vector potential as done
for the monolayer case above (Sec. II) because αi − βi implies
∇αi = ∇βi . Then, the orbital magnetic term can be written as

Fm = 1

Acell

∫
◦

d2ρ
∑

i

([
ψ2

i (ρ) + η2
i (ρ)

]
A2 + B2(ρ)

1 + χn

)
,

(17)

where χn is the susceptibility parameter, identical for all layers.
At last, we write the paramagnetic coupling to the super-

conducting order parameter as

Fp = 1

Acell

∫
◦

d2ρ χn B̄2
∑

i

diψ
2
i (ρ), (18)

which only affects the spin-singlet component. Here we in-
troduce the layer-dependent renormalization factor di which
is d2 = 1 but d1,3 � 1. The two outer layers have a strongly
reduced renormalization factor di because Rashba spin-orbit
coupling turns the Pauli spin polarization into a van Vleck type
spin polarization which does not lead to pair breaking [14].

C. Variational circular cell procedure

Following the previous variational treatment, we take the
ansatz for the order parameter

ψ2
i (ρ) = ψ2

i∞
ρ2

ρ2 + ξ 2
c

; η2
i (ρ) = η2

i∞
ρ2

ρ2 + ξ 2
c

(19)

and minimize with respect to A obtaining an analogous
equation to (4)

∇2A
1 + χn

= �2
∞

ρ2

ρ2 + ξ 2
�

A, (20)

where

�2
∞ =

∑
i

(
ψ2

i∞ + η2
i∞

)
1 + χnψ

2
2∞

; ξ 2
� = ξ 2

c

1 + χnψ
2
2∞

(21)

is the representative variational order parameter and vortex
core size of the trilayer system. Defining the quantity

Cκ (B̄,ξc) = 1 + B̄κ0ξ
2
c

2
ln

(
1 − 2

2 + B̄κ0ξ 2
c

)
, (22)

for the sake of compactness, the integrated free energy density
for the vortex cell is then written as

F[ψi∞,ηi∞,ξc] = Fc + Fε + FJ + Fm + Fp, (23)

with

Fc = −Cκ (B̄,ξc)
∑

i

ψ2
i∞

+
[
Cκ (B̄,ξc) − 1

2 + B̄κ0ξ 2
c

] ∑
i

(
ψ4

i∞ + η4
i∞

)

+ B̄
(
1 + B̄κ0ξ

2
c

)
κ0

(
2 + B̄κ0ξ 2

c

)2

∑
i

(
ψ2

i∞ + η2
i∞

)
, (24)

Fε = Cκ (B̄,ξc)
∑

i

εi γψi∞ηi∞ sgni(0,π ), (25)

FJ = Cκ (B̄,ξc)
∑
〈i,j〉

J (|ψi∞ − ψj∞|2| + |ηi∞ − ηj∞|2),

(26)

Fm = B̄
1 + χn

√∑
i

(
ψ2

i∞ + η2
i∞

)
κ0ξc

× K0(�∞ξ�)I1(�∞P) + I0(�∞ξ�)K1(�∞P)

K1(�∞ξ�)I1(�∞P) − I1(�∞ξ�)K1(�∞P)
, (27)

Fp = χnB̄2
∑

i

diψ
2
i∞, (28)

and P2 = 2/(κ0B̄) + ξ 2
�.

The trilayer free energy density functional F[ψi∞,ηi∞,ξc]
has seven variational parameters with respect to which it has
to be simultaneously minimized. We may, however, impose
the structure of the states allowed by symmetry, that is, the
low-field BCS state as

ψBCS
i∞ = {ψout,ψin,ψout}, ηBCS

i∞ = {ηout,0, − ηout}, (29)

and the high-field PDW state as

ψPDW
i∞ = {ψout,0, − ψout}, ηPDW

i∞ = {ηout,ηin,ηout}, (30)

which simplifies the problem considerably. Thus, the free en-
ergy functionals can be written for the two states using the cor-
responding free variational parameters:FBCS[ψout,ψin,ηout,ξc]
and FPDW[ψout,ηout,ηin,ξc]. Now again we resort to numerical
minimization and compare the free energy densities to decide
which of the two states is more stable under given conditions,
i.e., the mean magnetic induction B̄. Our setup is chosen so
that all variational parameters remain real in this procedure.

Note that by imposing the PDW order parameter structure
(30) into the free energy (23), one immediately sees that the
PDW phase is predominantly limited by orbital depairing,
whereas the BCS is dominated by paramagnetic limiting, as
we will see in the following.

IV. RESULTS AND DISCUSSION

For the sake of clarity we extract the role of the differ-
ent depairing effects by analyzing different limiting cases
in sequence. First, we discuss the emergence of the PDW
phase in the trilayer system purely based on paramagnetic
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limiting (neglecting orbital depairing), which corresponds to
the αM → ∞ limit. As mentioned above this case was already
investigated by previous works within a BdG approach to
a microscopic model [12,14–19]. We show that the features
obtained previously can easily be observed also within a
Ginzburg-Landau approach on a qualitative level. Second, we
discuss the αM = 0 case, which corresponds to pure orbital
depairing (neglecting the paramagnetic limiting). Although
there is no PDW without paramagnetic limiting, this is an
instructive example to see crucial differences of the trilayer
system compared to the monolayer case. Even though there
is no paramagnetic effect with αM = 0, the outer layers admit
an admixed triplet order parameter that is insensitive to the
paramagnetic effect to the dominant singlet component. The
presence of a triplet component introduces some important
differences in the behavior of the overall susceptibility of the
superconductor. Third, we analyze the PDW phase taking both
depairing mechanism simultaneously into account, whereby
the relative relevance of the paramagnetic effect with respect
to the orbital effect can be tuned by the Maki parameter
αM = √

2Hc2/Hp (Hc2 is the purely orbital upper critical field,
and Hp is the paramagnetic critical field). In Appendix B we
show that the Maki parameter can be estimated within the GL
approach via αM = κ0

√
2χn. From this concise formula for

αM we conclude that strongly type-II superconductors, large
κ0, as well as enhanced susceptibility χn are most favorable
for the occurrence of the PDW phase.

A. Trilayers subjected to paramagnetic limiting

We first consider the simplest case with paramagnetic
limiting only. Since orbital depairing is neglected we can do
without the gradient terms in the free energy density and the
spatially modulated order parameter,

F =
∑

i

[
−ψ2

i + ψ4
i

2
+ η4

i

2
+ εiγψiηi

]
+ χnB2

∑
i

diψ
2
i

+J
∑
〈i,j〉

[(ψi − ψj )2 + (ηi − ηj )2] + B2

1 + χn

. (31)

In order to understand the basic mechanisms at work
we consider first the case with d1,3 = 0 such that only the
middle layer is subject to paramagnetic limiting. For a BCS
solution with ψi = {ψout,ψin,ψout}, ηi = {ηout,0, − ηout}, only
ψin couples to the B field. Nevertheless, through the inter-
layer coupling all order parameters decrease when the field
is increased, although weaker for the outer layer than the
middle layer. On the other hand, the PDW solution with
ψi = {ψout,0, − ψout}, ηi = {ηout,ηin,ηout} does not have any
order parameter coupling to the B field, because ψ2 = 0. For
this reason the PDW solution is the favored state for high
magnetic fields if χn is sufficiently large.

Now we turn to a more general situation, where also the
outer layers suffer paramagnetic limiting, by setting d1 = d3 =
0.01. Moreover, to be concrete, we choose χn = 0.001 and γ =
J = 1. In Fig. 3(a) we show the phase diagram temperature
versus magnetic induction for these parameters in the trilayer
system. Note that the onset of superconductivity is higher
than the bare Tc of the spin-singlet component in each layer

FIG. 3. (a) Typical temperature—magnetic induction phase di-
agram for a trilayer system with infinite Maki parameter obtained
within Ginzburg-Landau theory. Here Tc denotes the critical tempera-
ture of the spin-singlet monolayer superconductor. T/Tc closes at 1.2,
which shows a slight increase of the effective critical temperature due
to the order parameter mixing even at B = 0. (b) Cut at T/Tc = 0.27
showing the magnetic induction dependence of the order parameters.
Bp is the monolayer Pauli critical field.

due to the support by the parity mixing. The high-magnetic
field PDW phase is separated from the BCS phase by a first
order phase boundary. This first order transition is also clearly
visible in Fig. 3(b) for T = 0.27Tc depicted. Here all order
parameter components show a discontinuity at B/Bp ≈ 2.2.
In the low-field BCS phase ψin decreases faster than ψout as
expect from the dominance of paramagnetic limiting in the
middle layer. In the PDW phase the spin-triplet component
takes a leading role and also appears in the middle layer (ηin in
exchange with ψin which has completely disappeared). All or-
der parameters remaining at these high fields turn to zero at the
same magnetic field. Note that ψin survives to higher fields than
the nominal paramagnetic limiting field Bp because of the sup-
port of the other layers through the interlayer coupling. To
obtain the temperature dependencies, we have reversed the
change to dimensionless units, as explained in Appendix A.

B. Trilayers subjected to orbital limiting

We now address the opposite limit of a trilayer system
with orbital depairing only (αM = 0), and compare it to the
monolayer case of Sec. II. Because there is no paramagnetic
limiting in the middle layer, a PDW phase is out of competition.
Still, the outer layers in the trilayer system will have an induced
spin-triplet order parameter, whereas in the monolayer system
there is only one singlet component f∞. In Fig. 4 we compare
the results for the monolayer to the corresponding trilayer
system composed of three such identical layers, where we
choose again κ0 = 100. The dotted gray curves show the results
already obtained in Fig. 2 for the monolayer. In Fig. 4(a)
we show the magnetic field dependence of the spin singlet
order parameter components together with the induced triplet
component ηout at the outer layers due to the order parameter
mixing ψoutηout in the outer layers. Again the singlet order
parameters and the effective upper critical field are slightly
increased with respect to the monolayer. A more pronounced
distinction occurs in the magnetization curve in Fig. 4(b).
The trilayer system has now parity-mixed superconducting
vortices, with both singlet and triplet components equally
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FIG. 4. (a) Comparison of a monolayer κ0 = 100 and a trilayer
system subjected to pure orbital limiting (αM = 0). The dotted gray
curves show the monolayer case (in all panels). In the trilayer
system, the order parameter mixing causes a slight increase in the
upper critical field. Here we have assumed that both singlet and
triplet components are equally orbitally limited, which then yields
an additional magnetization due to the triplet components in the
trilayer system, which is seen in (b). (c) The suppression of the
vortex core size for increasing Maki parameter. This contrasts with
the monolayer case, where the core sizes increase. (d) The trilayer
system is less susceptible than a monolayer due to the presence of
triplet Cooper pairs.

orbitally limited. The additional triplet component in the
trilayer system generates an additional diamagnetic magne-
tization not present in the monolayer system. In Fig. 4(c) we
compare the core size of the trilayer system also with the case
of finite αM (including the paramagnetic limiting effect). While
ξc at αM = 0 is essentially identical to the monolayer case, we
see a reduction of the core size with paramagnetic limiting,
opposite to the monolayer case [see Fig. 2(c)]. This effect is
caused by the increasing importance of orbital depairing for the
outer layers which also governs the core size, that is shrinking
with higher fields. Figure 4(d) shows the field dependence of
the susceptibility which is more diamagnetic for the trilayer
than the monolayer system.

C. Trilayers subjected to both paramagnetic and orbital limiting

Discussing now the complete free energy density, we show
in Fig. 5 the situation for the trilayer system within our model,
using the Maki parameters αM = 14 and higher, κ0 = 100 and
γ = J = 1. We find that the PDW phase appears with increas-
ing field for Maki parameters exceeding 10. At μ0H/Bc2 ≈
0.26 the first-order BCS-PDW phase transition occurs, visible
in all order parameters for αM = 14, similar to Fig. 3(b). The
paramagnetic effect reduces the upper critical field to well
below Bc2 = κ0, the bare critical field [see Fig. 5(a)].

To illustrate the effect of varying Maki parameters we show
the behavior of ψout as a function of magnetic field in Fig. 5(b).

FIG. 5. (a) Magnetic field dependence of the order parameters for
a αM = 14 system. The upper critical field in this case is about 40%
of the αM = 0 case, where the upper orbital field is Bc2. The upper
critical field of the PDW phase remains robust around this value, even
for much larger αM , as shown in (b). (c) The representative trilayer
magnetization for two different Maki parameters with κ0 = 100. The
αM = 14 curve can be compared with the upper left panel. (d) The
magnetic field dependence of the representative trilayer vortex core
size, normalized with respect to the core size ξBc2 . The core suffers a
sharp increase through the first order BCS-PDW transition.

At low fields the order parameter is suppressed more strongly
with increasing αM . In this way also the critical field for the
change to the PDW phase decreases. This sensitivity to the
strength of paramagnetic limiting is lost once we are in
the PDW phase. Then ψout only depends weakly on αM and
also the upper critical field around 0.4Bc2 is clearly originating
from orbital depairing, as it also varies rather weakly with αM .
This demonstrates well that the PDW phase is a state which is
much less vulnerable to paramagnetic limiting.

Figure 5(c) displays representative magnetization curves of
the trilayer system for two different Maki parameters. Note
that a lower κ0 value would yield higher magnetization values,
because χn ≈ (αM/κ0)2/2. Due to the spin-triplet component
in the middle layer in the PDW phase, the magnetization
in the PDW state almost coincides with the normal state
magnetization (extrapolated dashed lines).

The variation of the core size is shown in Fig. 5(d) for
αM = 14 and 20. For the BCS phase the effect of paramagnetic
limiting has a strong influence on the behavior of ξc. At the
critical field the core size abruptly increases. That the two
curves then basically coincide shows again that paramagnetic
limiting is essentially irrelevant for the PDW phase. The
increase of the core size at the transition to the PDW phase
disagrees with the finding in Ref. [20] which reports an
abrupt decrease based on single-vortex model within a BdG
formulation. The discrepancy may have two reasons. First
the BdG calculation includes the Kramer-Pesch effect, the
shrinkage of the vortex core at low temperatures, which is
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FIG. 6. Phase diagram αM (γ ) for a superconducting trilayer
system. Here we assumed γ = J , because they should remain com-
parable. The dashed transition line shows the Maki parameters above
which the PDW stabilizes at high fields. The dimensionless energy
scale of γ might be compared to the superconducting condensation
energy, which in dimensionless units is 1/2. For noncentrosymmetric
systems, γ > 1/2 is usually satisfied.

not captured by the GL treatment [34]. Second, for the BdG
single-vortex model the core increases with growing magnetic
field, lacking the influence of a vortex lattice, in contrast to GL
result where the core shrinks as the field approaches Hc2. Thus,
both approaches have their shortcomings and it is difficult
to judge, comparing the two treatments, in which way the
vortex core would really change at the BCS-PDW transition.
However, they have in common that the change is abrupt.

The threshold for the occurrence of a PDW phase for γ = 1,
the case displayed in Fig. 5, is α ≈ 10. With increasing the
coupling parameter for the induced parity mixing in the outer
layers, this threshold is lowered. It is the energy gain through
the interlayer coupling of the spin-triplet component that helps
to stabilize the PDW. The stronger the admixed order parameter
ηi the more competitive the PDW phase becomes. We calculate
the threshold values for αM as a function of γ within our GL
model. The result shown in Fig. 6 confirms this trend.

In Fig. 7 we show a typical magnetic field—temperature
phase diagram of the orbitally limited trilayer system. For
the sake of presentation, we use a slightly different value for
γ . The magnetic induction axis is normalized with respect to
the purely orbital upper critical field Bc2(0) = �0/(2πξ 2(0)).
From the B/Bc2 values we conclude that a rather strong para-
magnetic limiting effect is necessary to realize the PDW phase
in competition with the orbitally limiting effect. The colors
show the amplitude of the superconducting order parameter in
the middle layer

√
ψ2

in + η2
in. The solid-black line indicates the

second order normal to superconducting phase transition, and
the black-dashed line shows the first order BCS to PDW phase
transition.

V. FINAL REMARKS AND CONCLUSION

Interesting properties arise when artificial superlattices
including multilayer superconductors are exposed to external
magnetic fields. An important aspect often ignored is the
presence of a local noncentrosymmetricity in these structures
that can cause specific forms of spin-orbit coupling giving rise
to Cooper pairing with parity mixing. In such a system it was

FIG. 7. Typical magnetic induction—temperature phase diagram
for the trilayer system with αM = 14, J = 1, and γ = 3/4. The color
scale shows the amplitude of the superconducting order parameters in
the middle layer, i.e., �2 =

√
ψ2

in + η2
in. The solid black line indicates

a second-order phase transition, whereas the dashed black line shows
the first-order BCS-PDW transition.

shown that in-plane magnetic fields lead to a complex stripe
phase of the order parameter resembling a state between the
Fulde-Ferrell (FF) and the Larkin-Ovchinnikov (LO) phase
[16]. On the other hand, fields perpendicular to the layers can
generate a new state at low temperatures and high fields, which
may be characterized as a pair density wave (PDW) state.

In the present study we have addressed this latter situation,
extending previous studies using the Bogolyubov-de Gennes
formalism without orbital depairing to take into account the
penetration of flux lines. This mixed phase is treated within
a Ginzburg-Landau model of a system of three superconduct-
ing layers. For symmetry reasons these three layers behave
differently. The spin-orbit coupling makes the outer layers
more robust against paramagnetic limiting effects in contrast
to the center layer. If paramagnetic limiting is important in
this material, i.e., the Maki parameter αM is sufficiently large,
this provides a mechanism to change the configuration of
layer-dependent order parameters, from a phase (BCS) where
the spin-singlet component of the order parameter is even under
reflection at the middle layer to a phase (PDW) where it is odd.
This transition upon increasing the magnetic field is of first
order. Increasing the parity mixing in the outer layers in zero
magnetic field lowers the threshold of αM for this transition to
happen.

The heavy fermion CeCoIn5 compound has an estimated
perpendicular magnetic field Maki parameter ranging from
α⊥

M = 3 − 5 [4]. Other heavy fermion superconductors have
comparable Maki parameters. Another promising family of
superconductors are the iron-based materials. In particular
KFe2As2 has an estimated value of αM = 15 [29], which makes
it a strong candidate for the PDW phase in the appropriate
superlattice structure. Other iron-based superconductors could
also be candidates [35]. These materials might due to their

144508-8



ORBITALLY LIMITED PAIR-DENSITY-WAVE PHASE OF … PHYSICAL REVIEW B 97, 144508 (2018)

layered structure also be suitable to produce multilayer super-
lattices [36].
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APPENDIX A: DIMENSIONLESS UNITS

In this paper we perform most of the calculations in
dimensionless units to emphasize the role of the free input
parameters to the theory for the stabilization of the PDW
phase. For the plots, we back-scale to dimensionful SI units
for better clarity. The use of a Ginzburg-Landau approach in
this temperature regime will obviously only lead to qualitative
or semiquantitative results which are, nevertheless, sufficient to
understand the essential features and the necessary conditions
on materials properties.

If paramagnetic limiting is neglected, then the free energy
can be expressed in terms of a single free GL parameter κ0 [25].
Therefore, one normalizes the following quantities: ψ(r) →
f (r)

√
α(T )/b, r → λ(T )ρ, and A → A�0/(2πξ (T )), where

f , ρ, andA are the dimensionless normalized superconducting
order parameter, radial position, and vector potential, respec-
tively, and

ξ 2(T ) = h̄2

2mα(T )
and λ2(T ) = mb

μ0q2α(T )
(A1)

are the Ginzburg-Landau coherence length and penetration
depth (in the absence of Zeeman coupling to the spin) used for
normalization, with α(T ) = a(Tc − T ), where a is a positive
phenomenological parameter, and Tc is the even-parity critical
temperature. The flux quantum in SI units is � = 2πh̄/q,
where q = |2e| is the positive charge of a Cooper pair. The
sign of the charge is conventional. In dimensionless units
the flux quantum is φ0 = 2π/κ0, the vortex unit cell radius
ρ2
B = 2/(κ0B̄), where κ0 = λ(T )/ξ (T ) is the temperature in-

dependent Ginzburg-Landau parameter.
The dimensionless free energy density F is related to the

free energy density F in SI units via

F = α2(T )

b
F . (A2)

As an example we show the conversion of the term describing
paramagnetic depairing to dimensionless units. Phenomeno-
logically, this can be most simply included by the term [26,37]

Fp = 1

πR2
B

∫
◦

d2r
Q

2
B2(r)ψ2(r), (A3)

where the parameter Q regulates the strength of the para-
magnetic effect. This parameter is related to the normal

state susceptibility χn, which is explained in Appendix B.
Converting B and ψ to dimensionless units we get

Fp = α2(T )

b

Fp︷ ︸︸ ︷
1

πρ2
B

∫
◦

d2ρ Q(T )B2(ρ)f 2(ρ) , (A4)

where Q(T ) = μ0Qα(T )/b is the only temperature dependent
term in the integrand of the dimensionless free energy density
F . This leads to a temperature dependent Ginzburg-Landau
parameter as was shown by Mineev [26]. If one does finite tem-
perature calculations then one has to reintroduce the α2(T )/b
factor in front of F and back-scale to dimensionful units.

An important difference with respect to the singlet and
triplet components is that the singlets are strongly paramag-
netically limited, whereas the triplets are less or not at all,
depending on the field direction. The paramagnetic effect of
singlet superconductors has been investigated in many papers;
some of them are cited in Refs. [26,38–40].

APPENDIX B: THE MAKI PARAMETER WITHIN
GINZBURG-LANDAU THEORY

The parameter Q(T ) in Eq. (A4) regulating the strength
of the paramagnetic coupling is related to the normal state
susceptibility χn. To see this, we consider the particular case
of a superconductor subjected to paramagnetic limiting only,
that is, we neglect the gradients of the superconducting order
parameter. The free energy can then be written as

F = −f 2 + f 4

2
+ B2

1 + χn

+ Q(T )B2f 2. (B1)

Here f is a spatially constant dimensionless superconduct-
ing singlet order parameter. One can verify that the critical
magnetic fields at which superconductivity is destroyed is
Bp = (1 + χn)Hp = 1/

√
Q(T ). Using the relation

H = 1

2

∂Fmin(T ,B)

∂B , (B2)

together with the constitutive relations B = H + M and
χ (T ,B) = M/H, we can write the superconducting magnetic
susceptibility as

χ (T ,B) = 1 + χn

1 + (1 + χn)Q(T )(1 − Q(T )B2)
− 1. (B3)

Then, we can relate the normal state susceptibility χn to Q(0)
by the condition χ (T = 0,B = 0) = 0, which yields

Q(0) = χn

1 + χn

. (B4)

For χn � 1, Q(0) = χn, which shows that the free energy part
involving paramagnetic limiting can be written in terms of χn

as the only free parameter in dimensionless units.
A suitable parameter that measures the relative relevance

of the paramagnetic effect with respect to orbital limiting is
the Maki parameter αM , which takes into account the orbital
upper critical field Hc2(0) = κ0 corresponding to the simple
extrapolation to zero temperature and the paramagnetic critical
field Hp(0) = [(1 + χn)

√
Q(0)]−1. Therefore, we estimate the
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Maki parameter in the Ginzburg-Landau context as

αM =
√

2
Hc2(0)

Hp(0)
= κ0

√
2χn(1 + χn). (B5)

For the χn � 1 case, we arrive at a neat formula relating
the normal state susceptibility to the Maki parameter and

Ginzburg-Landau parameter:

χn = 1

2

(
αM

κ0

)2

. (B6)

Whereas for an orbital limited type-II superconductor there is
only one free input parameter κ0, an “orbital+paramagnetic”
limited superconductor has two input parameters (κ0,αM ).

APPENDIX C: EXPRESSIONS FOR THE MAGNETIC FIELD

For the sake of clarity of the main text, we include the expressions for the magnetic field H derived from the free energy
density for reference here. From equations (2), (10), (11), and (12) we obtain the expression for the applied magnetic field as a
function of the variational parameters f∞ and ξc at a given magnetic induction B̄, which also allows us to obtain an expression
for the lower critical field Hc1. The magnetic field reads:

2H = +1

2
κ0ξ

2
c f 2

∞(1 − f 2
∞) ln

(
1 + 2

B̄κ0ξ 2
c

)
− f 2

∞(1 − f 2
∞)

B̄ + 2
/(

κ0ξ 2
c

) + κ0ξ
2
c f 4

∞(
2 + B̄κ0ξ 2

c

)2 + f 2
∞

(
2 + 3B̄κ0ξ

2
c

)
κ0

(
2 + B̄κ0ξ 2

c

)3

+ 1

1 + χn

f∞
κ0ξc

K0(fpξp)I1(fpP) + I0(fpξp)K1(fpP)

K1(fpξp)I1(fpP) − I1(fpξp)K1(fpP)
+ (K1(fpξp)I1(fpP) − K1(fpP)I1(fpξp)))−2

(1 + χn)B̄κ2
0 ξ 2

c P2

+ B̄f 2
∞Q(T )

2

1

2 + B̄κ0ξ 2
c

[
8 + 6B̄κ0ξ

2
c + 3B̄κ0ξ

2
c

(
2 + B̄κ0ξ

2
c

)
ln

(
1 − 2

2 + B̄κ0ξ 2
c

)]
.

(C1)

Taking the limits f∞ → 1 and B̄ → 0 in equation (C1) allows us to obtain an expression for the lower critical field, which reads

Hc1 = κ0ξ
2
c0

8
+ 1

8κ0
+ 1

2κ0ξc0

K0(ξc0)

K1(ξc0)
, (C2)

where ξc0 is the variational vortex core parameter that minimizes the free energy for a single vortex, that is ∂Hc1/∂ξc0 = 0, from
which

κ0ξc0√
2

=
√

1 − K2
0 (ξc0)

K2
1 (ξc0)

. (C3)

For κ0 � 1 we see that κ0ξc0 ≈ √
2. Equation (C2) can also be found in the first paper by Hao-Clem [23], where, to our knowledge,

the first version of the circular cell method was proposed to our knowledge.
Similarly, we calculate the applied magnetic field H for the trilayer system using (2) and the trilayer free energy density (23).

To shorten the notation for the calculation we define

Cκ (B̄,ξc) = 1 + B̄κ0ξ
2
c

2
ln

(
1 − 2

2 + B̄κ0ξ 2
c

)
, (C4)

where it is also convenient to calculate

∂Cκ (B̄,ξc)

∂B̄
= κ0ξ

2
c

[
2

2 + B̄κ0ξ 2
c

+ ln

(
1 − 2

2 + B̄κ0ξ 2
c

)]
. (C5)

Then the magnetic field H is:

2H = −
(

∂Cκ

∂B̄

) ∑
i

ψ2
i + κ0ξ

2
c

[
5 + 2B̄κ0ξ

2
c(

2 + B̄κ0ξ 2
c

)2 + ln

(
1 − 2

2 + B̄κ0ξ 2
c

)] ∑
i

(
ψ4

i + η4
i

)

+ 2 + 3B̄κ0ξ
2
c

κ0
(
2 + B̄κ0ξ 2

c

)2

∑
i

(
ψ2

i + η2
i

) + 1

1 + χn

�i

κ0ξc

K0(�∞ξ�)I1(�∞P) + I0(�∞ξ�)K1(�∞P)

K1(�∞ξ�)I1(�∞P) − I1(�∞ξ�)K1(�∞P)

+ (K1(�∞ξ�)I1(�∞P) − K1(�∞P)I1(�∞ξ�)))−2

(1 + χn)B̄κ2
0 ξ 2

c P2
+

(
∂Cκ

∂B̄

) ∑
i

εiγψiηi sgni(0,π )

+
(

∂Cκ

∂B̄

) ∑
〈i,j〉

J (|ψi − ψj |2| + |ηi − ηj |2) + 2B̄
∑

i

Qi(T )ψ2
i , (C6)
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where here we did not consider the spatial dependence of the order parameter for the paramagnetic term for simplicity.
Once the free energy density has been minimized for the order parameters at a given B̄, the magnetic field is calculated using

the expressions above, from which the magnetization M and susceptibility χ are extracted. We do not include the analytical
expressions for M and χ here.
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