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Strain and ferroelectric soft-mode induced superconductivity in strontium titanate
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We investigate the effects of strain on superconductivity with particular reference to SrTiO3. Assuming that
a ferroelectric mode that softens under tensile strain is responsible for the coupling, an increase in the critical
temperature and range of carrier densities for superconductivity is predicted, while the peak of the superconducting
dome shifts towards lower carrier densities. Using a Ginzburg-Landau approach in 2D, we find a linear dependence
of the critical temperature on strain: if the couplings between the order parameter and strains in different directions
differ while their sum is fixed, different behaviors under uniaxial and biaxial strain can be understood.
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I. INTRODUCTION

Strain is one of several mechanisms by which the incipient
ferroelectric [1–5] strontium titanate—SrTiO3 (STO)—can be
made ferroelectric [3,6–8]. The interplay between ferroelec-
tricity and superconductivity in STO has been investigated in
the context of strontium [9] and oxygen isotope [10,11] substi-
tuted STO, finding an increase in the superconducting critical
temperature (Tc) in samples moved closer to the ferroelectric
quantum critical point. Early experimental data showed that
compression generally significantly reduces Tc in STO, with
the exception of uniaxial stress at low carrier concentrations
where the critical temperature was seen to increase [12]. The
possible ferroelectric origin of the superconducting coupling
was not considered at the time.

Working within the framework of ferroelectric induced
superconductivity in STO [10], we consider the effects of
strain on the superconducting dome of STO. Based on this
model we predict (1) an increase in Tc under tensile strain,
accompanied by an increase of the range of carrier densities
with accessible critical temperatures—i.e., a broadening of
the superconducting dome, (2) a shift in the location of the
peak of the superconducting dome, and (3) a sharp peak in Tc

signaling the limit of our model which moves to higher carrier
concentrations on increasing tensile strain. Although this is at
the breakdown point of the model, we still expect this second
peak to be present and have observable consequences. Most
prominently we find that the effect of strain is substantial, the
Tc more than doubling under experimentally achievable values.

We also find that, under biaxial strain, the different fer-
roelectric modes behave differently and the changes in Tc

may indicate which ferroelectric mode is most important for
superconductivity. Using a simple Ginzburg-Landau model of
a uniform superconducting order parameter coupled directly
to applied strain, we find a linear dependence of the super-
conducting critical temperature on strain and go some way
towards quantifying the very strong dependence of Tc on strain
in STO compared to elemental superconductors [12,13]. We

find that the increase in Tc observed in some samples under
uniaxial compression [12] can be understood qualitatively if
the couplings between the superconducting order parameter
and strains in different directions have different strengths.

II. SUPERCONDUCTING DOME UNDER STRAIN

One of the key features of superconductivity in STO is
the presence of a superconducting dome where Tc varies
with carrier density n with a maximum at “optimum” doping
[14,15]. The generic functional dependence of the critical
temperature on strain, u = (a − a0)/a0 for lattice constant a

and unstrained value a0, and carrier concentration n can be
written as Tc = T0f (n(u),u) where T0 is the overall scale
and f a dimensionless function assumed to be bounded from
above at unity. Since the carrier density n will be affected by
changes in the volume of the unit cell, n = n(u). We expect
that ∂uTc/T0 = f ′(n(u),u) = ∂nf ∂un + ∂uf , but the changes
in n due to changes in the volume of the unit cell are small at
small strains so ∂un ≈ 0 (see Appendix A).

To be specific, we use the model of Ref. [10] (also Appendix
B) where ferroelectric phonons are assumed to be responsible
for the superconducting pairing. This model provides a good
description of the superconducting dome within a strong-
coupling framework [10] despite the fact that STO is not
within the Migdal limit [16]. In the Eliashberg strong-coupling
formalism, the BCS coupling constant is [10,17]

λ =
∫ ∞

0
dωq

α2(ωq)

ωq

F (ωq), (1)

where ωq is any phonon dispersion and α(ωq) is the electron-
phonon coupling. The main features of soft-mode supercon-
ductivity are captured by considering a Van Hove singularity
at q = 0, for which F (ωq) ∼ δ(ωq − ω0) so λ → λ0 = α2/ω0.
The critical temperature is then [10,18]

Tc = εse
−ω0/α

2
(2)
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FIG. 1. Superconducting domes for several values of isotropic
strain (−0.75% � u � 1.00%) in 3D using the model of Ref. [10]
and the strain dependence of the ferroelectric mode frequencies from
density functional theory (DFT) calculations. The dome broadens and
Tc increases under dilation, with the appearance of a peak at low carrier
concentrations that is a signature of ωq (u) = 0 in Eq. (1). The scale
of maximum Tc is set by T0 = 7 K used here. Experimental data from
Ref. [14].

where εs sets the energy scale. With constant electron-phonon
coupling, this means that ω0 → ω0(u). Differentiating Eq. (2)
with respect to strain gives

∂uTc(u)

Tc(u)
= −∂uω0(u)

α2
. (3)

Experiments on compressed bulk STO found a linear depen-
dence of ω2 on applied pressure for both the structural and
ferroelectric phonon modes [3,19]. We therefore consider soft
modes at q = 0 with a general form under applied strain:
ω2

0(u) = ω2
0(0) + bu [3]. Calculating ∂uω0(u) gives

∂uTc(u)

Tc(u)
= −b

α2ω0(u)
. (4)

The immediate consequence is a sharp rise in the derivative
of Tc with respect to u near criticality where ω0 → 0. The
divergence in the derivative is a consequence of the simple
model we use and is not physical, yet the peak in Tc as a result
of the quantum critical point is physical and its signature should
be observable experimentally.

In Fig. 1, superconducting domes, constructed using the
model of Ref. [10], and including the dependence of both
the phonon spectra and Fermi energy on strain (details in
Appendix B), are plotted for several values of isotropic strain in
3D. The key features of Fig. 1 are a strong increase in the critical
temperature under tensile strains, accompanied by a shift of
the maximum Tc towards lower carrier densities, a broadening
of the superconducting dome, and the appearance of a sharp
secondary peak in Tc(n) at low carrier concentrations, the value
of which is limited by the range of temperatures considered
and the tuning over the carrier density. We note that the effect
of tensile strain is substantial, with the enhancement in Tc by
more than a factor of two, under experimentally achievable
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FIG. 2. Squared frequencies of the ferroelectric modes with strain
calculated using DFT (details in Appendix C) and their linear fits with
slope b. (a) Isotropic strain: b = −15.9, −12.7 for modes parallel
(red, solid) and perpendicular (blue, dashed) to the antiferrodis-
tortive (AFD) axis. Hardening of both modes under compression
and softening under dilation characterizes “asymmetric” behavior.
(b) Biaxial strain in the basal plane of the tetragonal unit cell: b =
6.8, −11.8, respectively. One mode softens while the other hardens
under both compression and dilation allowing “symmetric” behavior
of Tc whereby it increases or decreases for all strains. The crosses
indicate the DFT data points.

strain conditions. Under compression, the dome is narrowed
and the critical temperature decreases.

The strong peak in Tc at low carrier densities is the direct
result of the softening of the ferroelectric modes explicitly
present in the coupling [Eq. (1)] and its location corresponds
exactly to the carrier densities where ω0(u) = 0. Its presence in
the case of oxygen isotope substitution [10] was not observed
because, in that model, it occurs at much lower carrier densities.
Away from these soft-mode induced peaks, the maximum Tc

varies linearly with strain, and a strong deviation, including,
as seen at lower carrier concentrations, the possibility for the
largest Tc to occur at intermediate strains, would indicate a
soft mode in the coupling mechanism. The strong dependence
of the ferroelectric modes in STO on strain potentially allows
access to interesting new features by bringing them within the
range of carrier concentrations relevant for superconductivity,
although the strong, relatively narrow peaks observed here are
direct consequences of the model used and appear as kinks in Tc

in a more detailed description that accounts for the anisotropy
in the ferroelectric phase [20].

The value of b = −13 (strain as a percentage) used is repre-
sentative of the linear fits to the squared phonon frequencies in
Fig. 2. A smaller value of |b| would result in weaker changes
in Tc and the peak in Tc occurring at lower carrier densities
for a given strain. A positive value of b would lead to an
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increase inTc and the divergence moving towards higher carrier
concentrations under compression rather than dilation as seen
here.

We can characterize two types of general response: an
“asymmetric” response that occurs when the relevant ferro-
electric mode softens (frequency decreases) under one sign
of strain and hardens for the other so the change in Tc under
tensile (compressive) strain is an extension of the behavior
under compressive (tensile) strain. A “symmetric” response is
characterized by the variation in Tc having the same sign for
all strains although the gradients may not necessarily be the
same on each side of u = 0.

As seen from the squared frequencies of the ferroelectric
modes plotted in Fig. 2, all individual modes give asymmetric
behavior under isotropic strain; symmetric behavior is possible
in the case of biaxial strain if the critical temperature is
controlled by the softest rather than a particular mode. There-
fore such symmetric or asymmetric behavior under different
types of strain could indicate whether the critical temperature
is determined by the softest (lowest frequency) ferroelectric
mode, or linked to a specific mode or orientation of the
tetragonal c axis, providing an important insight into the
superconducting coupling mechanism of STO.

Having examined the effects of isotropic strain on the
superconducting dome assuming a ferroelectric soft-mode
character for the superconducting coupling, we now develop a
simple Ginzburg-Landau model of the strained superconduct-
ing system to capture the dominant features of the change in
the critical temperature. We focus on the asymmetric response
and assume that the coupling strength is independent of strain.

III. GINZBURG-LANDAU DESCRIPTION

The (Helmholtz) free energy has three parts: the unstrained
superconductor in the absence of an applied magnetic field
with coefficients α = a(T − T 0

c ) and β [21]; Hooke’s law with
strain u and elastic constants ζ [3,6,22]; a part describing the
direct coupling between strain and the order parameter ψ with
coupling strengths γ [23,24]:

F = α|ψ |2 + β

2
|ψ |4 + ζ11

2
u2

1 + ζ22

2
u2

2 + ζ12u1u2

+ (γ1u1 + γ2u2)|ψ |2. (5)

In order to focus on the qualitative behaviors that may occur,
we restrict our analysis to a single uniform superconducting
order parameter ψ in two dimensions with strains applied
along the principal axes of a rectangular lattice. The strains
u1 and u2 therefore denote fractional changes in length along
any two of the 〈100〉 directions of the tetragonal unit cell
[6]. Our strain notation is such that, from the general γαβuαβ

coupling between the strain and order parameter permitted
[25–27], all shear strains (α 	= β) are zero and the remaining
indices have been contracted. These restrictions are discussed
further in Appendix D. All shear strains are assumed to be zero
and the volume-preserving reaction along the remaining 〈100〉
direction is neglected.

Minimizing Eq. (5) with respect to ψ∗ gives a linear change
in the critical temperature with applied strain:

�Tc = T s
c − T 0

c = −u11 − u22, (6)
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FIG. 3. Change in Tc as a result of uniaxial applied strain u1

with u2 = −νu1. Varying (negative) 1 while keeping 1 + 2 =
−600 K leads to both an increase and a decrease of Tc under uniaxial
compression depending on the exact value of 1.

where scaled coupling constants,  = γ /a, with units of tem-
perature (K) have been introduced. In the case of symmetry-
preserving strain, u1 = u2 = u, and we define  = 1 + 2 so
Eq. (6) simplifies to

�T lm
c = −u. (7)

There is a simple linear dependence of Tc on strain and the
behavior would reflect an asymmetric nature of the ferroelec-
tric modes under strain. Detail of how an estimate for  can
be extracted from experimental pressure data is contained in
Appendix E.

Meanwhile, when the only applied strain is u1, the re-
laxation of the lattice determines u2 so u2 = −νu1 where
ν is Poisson’s ratio [28] (ν ≈ 0.25 for bulk STO [29]), and
the couplings to strains in the different directions become
important. For simplicity, we neglect the effects of the change
of the crystal symmetry and assume that, at least for small
strains, the dominant irreducible representation of the order
parameter will be the same as the unstrained system, although
in principle they will differ [30]. The change in the critical
temperature is again linear in the applied (uniaxial) strain:

�T ux
c = −u1(1 − ν2). (8)

Assuming that 1 and 2 have the same sign, the relative
sizes of 1 and 2 will determine the sign of �T ux

c , with no
change in Tc due to uniaxial strain if 1 = ν2. In Fig. 3, the
value of  = 1 + 2 is fixed at  = −600 K as determined
from hydrostatic pressure data [12,19] and �T ux

c for different
choices of 1 are plotted showing that both decreases and
increases in Tc under uniaxial compressive strains are possible.
As discussed in Appendix D, for strains applied to an initially
square lattice, 1 = 2. However, if the initial 2D lattice is
rectangular, 1 	= 2 is permissible and, for 1 sufficiently
small, an increase of Tc under compression may occur.

In experiments, linear �Tc under uniaxial compression in
the [100] direction has been observed to be either positive
or negative depending on the carrier concentration, while in
all other cases, compression led to a decrease in Tc that
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was strongest for hydrostatic pressure [12]. The analysis
presented here indicates that at different points across the
superconducting dome the relative sizes of 1 and 2 may
differ while their sum is (approximately) constant across the
superconducting dome [12,19]. Since the observed increase
in Tc under uniaxial compression is weak compared with the
decrease under hydrostatic pressure [12], the possibility of
1 > 0 has not been considered.

Further, the linear changes of Tc under various stress con-
figurations have been observed over a broad range (−0.12 �
�Tc � 0.031 K) of temperatures for T 0

c = 0.27 K [12], so,
although the limit of a Landau analysis is usually (T −
T 0

c )/T 0
c � 1, the linear variation of Tc considered here is likely

to be representative of strains giving a broad range of Tc/T 0
c .

Moreover, changes in Tc larger than 10% for lattice changes
of ∼0.1% have also been observed in two dimensionally
doped STO where the size of the effect was attributed to
the variation of dielectric properties with the orientation of
tetragonal domains [31].

In the above discussion, we considered a 2D superconduct-
ing order parameter and the results presented are qualitative in
nature. The example with u1 = u2 reflects 3D isotropic strain
while the uniaxial case (u2 = −νu1) is representative of all
strain configurations where the lattice relaxes in directions
perpendicular to the applied strain but otherwise preserves
the pseudocubic structure of the unit cell. The value of  is
overestimated, but the behaviors are representative of those
that may occur.

The interplay between ferroelectricity and superconductiv-
ity in STO has been examined for both oxygen isotope substitu-
tion [10] and a combination of oxygen depletion and calcium
doping [9], with critical carrier densities 1019 < 1020 cm−3

beyond which the ferroelectric-like order is destroyed [9,10].
Both bulk [3] and thin-film STO [6,8] samples become ferro-
electric beyond critical strains on the range of 0.3% [6,8,32–
34]. Assuming that the critical carrier density that destroys
ferroelectric order in STO does not depend strongly on the
origin of the ferroelectric order, we expect ferroelectric order
and superconductivity to occur within the same range of carrier
densities for strained systems. The proposed strain tunability
of STO superconductivity builds on these ideas and provides
an alternative test of the role of ferroelectric criticality in
STO superconductivity with several distinct signatures. While
the discussion has focused on bulk STO, we expect similar
effects to occur in interfacial superconductivity of STO-based
systems.

IV. CONCLUSIONS

In conclusion, we have considered the effects of strain on
superconductivity in STO in two situations. First, we assumed
that the superconducting coupling is caused by the ferroelectric
modes that are present due to the incipient ferroelectric nature
of STO. This led to an increase of Tc under isotropic tensile
strain, a broadening of the superconducting dome, and a shift
of the maximum Tc towards lower carrier densities. We found
that strain is an efficient way to control the soft-mode induced
superconductivity, with the Tc more than doubling under small
strains. The behaviors are exactly opposite under compression.
We note that differences between isotropic and biaxial strain

experiments may provide insight into the relative importance
of the ferroelectric modes parallel and perpendicular to the
tetragonal c axis for the superconducting pairing. Although
reference has been made to STO, the behaviors observed are
expected to be general for any superconductor where pairing is
mediated by softening ferroelectric modes, such as in KTaO3

[35]. One important feature of strained STO is that small
tensile strains are sufficient to bring the ferroelectric quantum
critical point, characterized by ω0(u) = 0, to carrier densities
that are well within the superconducting dome, leading to a
distinct signature in Tc [20]. Thus strain tuning is expected
to be a versatile means of investigating the interplay between
superconductivity and ferroelectricity in STO.

In order to understand experimental data of linear changes
of Tc under various strain configurations, we also considered a
simple Ginzburg-Landau analysis of a uniform 2D supercon-
ductor under strain in which there is a linear dependence—very
strong for STO—of Tc on strain. The observed qualitative
differences between uniaxial and isotropic strain (hydrostatic
pressure) [12] can be understood by considering that the
couplings to strain in different directions may depend on carrier
density while their sum remains fixed.
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APPENDIX A: ON ASSUMING n(u) ≈ n(0)

The carrier density is defined as the number of free electrons
ne per unit cell of volume V . In the unstrained tetragonal
unit cell, V = V0 = a2

0c. If strain is applied uniaxially along
one 〈100〉 axis and the lattice is allowed to relax in the two
perpendicular directions, the Poisson’s ratios for the relaxation
are needed. Since STO has a tetragonal unit cell, the Poisson’s
ratios in the in-plane νa and c-axis νc directions are, in
principle, different.

The volume of the strained unit cell is V (u) =
(a0 + δa[100])(a0 + δa[010])(c + δc[001]) for changes δa,δc in
the lattice constants. With strain defined as the frac-
tional change in the lattice constants, i.e., u = (a −
a0)/a0, the strains resulting from the controlled deforma-
tion in the [100] direction are u[010] = δa[010]/a0 = −νau[100]

and u[001] = δc[001]/c0 = −νcu[100]. Thus, V (u) = V0(1 +
u[100])(1 − νau[100])(1 − νcu[100]).

Considering the case of a small strain applied in the [100]
direction, only the linear term is kept in expanding V (u) ≈
V0[1 + u[100](1 − νa − νc)], from which

n(u) ≈ n0[1 + u[100](1 − νa − νc)]. (A1)
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For many materials ν ∼ 0.3 [28] and for cubic STO ν ≈ 0.25
[29]. Further, the absolute maximum of ν is 0.5 [28] so
tetragonal STO probably has νa 	= νc ∼ 0.25, implying that
the limit of carrier density under uniaxial strain is

n(u) ≈ n0(1 + 0.5u[100]).

If strain is applied equally to more than one axis, then the
effective ν of the second axis is −1; ignoring or forbidding
relaxation of the third axis is equivalent to ν = 0 for this
axis. Isotropic strain (u[100] = u[010] = u[001]) that preserves
the tetragonal unit cell has the maximum change in volume,
with the resulting change in carrier density:

n(u) ≈ n0(1 − 3u).

Thus, at least for small strains (1% strain corresponds to u =
0.01), the change in carrier density due to strain is small and
can be neglected.

APPENDIX B: DESCRIPTION
OF SUPERCONDUCTING DOME

The superconducting dome is constructed by combining
Eliashberg strong-coupling theory with the standard expres-
sion for the superconducting critical temperature [10,17]. The
coupling is given by Eq. (1) of the main text [10]:

λ =
∫ ∞

0
dω

α2(ω)

ω
F (ω)

with ω = ωq . The frequencies of the soft ferroelectric mode
excitations around the paraelectric ground state are given by

ω2
q(u) = 4f [f − 2J cos(q)] + bu, (B1)

in which f = A + BE2
f + CEf with Ef weakly dependent

on strain through the carrier density n(u) = n0/([1 + u]3) ≈
n0(1 − 3u). If b > 0, ω2

q decreases with compressive strain,
while it would increase under compression for b < 0. On the
basis of our DFT calculations and existing experimental data
[3,12,19], we believe that the latter scenario is realized in
isotropically strained STO. For isotropic strain, the coupling is

λ ∼
∫ π

−π

dq√
4f [f − 2J cos(q)] + bu

. (B2)

The ratio f /2J is unity on the ferroelectric quantum critical
line so 2J = 1 is used for simplicity. The values of the
parameters chosen are such that f = 1 at zero doping and
strain: A = 1.14,B = 10−6 K−2, and C = 2.5 × 10−3 K−1.
The Fermi energy, Ef , is converted to carrier concentration
in order to plot the superconducting dome [10].

The standard expression for the critical temperature is
[10,17]

1 = λ

2π2

∫ 0

−Ef

dεN (ε)
tanh(ε/2Tc)

ε
,

where ε is the energy relative to the Fermi energy Ef and N (ε)
is the density of states. The two limits are set by N (ε) = 0
for ε � −Ef and ε = 0 at Ef . For low doping, the relevant
energy range is near −Ef and the density of states in 3D is
N (ε) ∼ √

ε + Ef . A change of variables x = ε/Tc is made
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FIG. 4. Variation of the ferroelectric mode frequencies with (a)
isotropic strain and (b) biaxial strain in the basal plane of the tetragonal
unit cell. The solid blue curves are for the mode perpendicular to
the axis of the antiferrodistortive (AFD) rotations and the dashed red
curves correspond to the mode parallel to the AFD axis; in both cases,
the crosses mark the DFT data points. The imaginary frequencies
correspond to unstable phonon modes.

and we have to solve [10,17]

D

λ
=

√
Tc

∫ 0

−Ef /Tc

dx
√

x + Ef /Tc

tanh(x/2)

x
(B3)

numerically with D = 190 K1/2 and λ given by Eq. (B2).

APPENDIX C: FERROELECTRIC MODE
IN STRAINED STO

To gain an insight into the behavior of ferroelectric modes
under strain and carrier doping, we carried out first-principles
calculations. Density functional calculations were performed
using the Vienna Ab initio Simulation Package (VASP) [36],
with the PBEsol approximation to the exchange correlation
functional [37]. We used the default projector augmented wave
pseudopotentials, and the wave function was expanded in plane
waves up to a cutoff of 550 eV. The Brillouin zone was sampled
using an 8 × 8 × 6 k-point grid. We used the low-temperature
tetragonal structure of SrTiO3 and relaxed the structures until
the forces were less than 10−4 eV/Å. The phonon calculations
were performed using the PHONOPY code [38], employing 80-
atom supercells and a 4 × 4 × 6 k-point mesh.

We considered two scenarios: uniform change in lattice con-
stants (isotropic strain corresponding to hydrostatic pressure
conditions) and biaxial strain in the basal plane of the tetragonal
unit cell. Our results for the frequencies of the ferroelectric (FE)
mode are shown in Fig. 4. A uniform reduction in the lattice
constants hardens the FE mode and the frequency becomes
positive for ∼0.1% reduction in the lattice constants [Fig. 4(a)].
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FIG. 5. Ferroelectric mode frequencies at different strain values
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strain in the basal plane of the tetragonal unit cell. Top row [(a), (c)]:
FE mode parallel to the AFD (tetragonal c) axis. Bottom row [(b), (d)]:
FE mode perpendicular to the AFD axis. The imaginary frequencies
denote unstable phonon modes.

On the other hand, with an increase in volume (negative
hydrostatic pressure), the FE-mode frequencies become more
imaginary, indicating a stronger FE instability.

Meanwhile, under biaxial strain, the behavior of FE modes
parallel and perpendicular to the axis of antiferrodistortive
(AFD) rotations, i.e., the c axis, is opposite [Fig. 4(b)]. For
an in-plane compressive strain the FE modes perpendicular to
the AFD axis harden, while the mode parallel to the AFD axis
becomes more unstable. Under tensile strain, the situation is
reversed: modes perpendicular to the AFD axis soften and the
mode parallel to the AFD axis is stabilized. Although different
FE modes are softening, the overall behavior is symmetric
under strain. Uniaxial strain is expected to mirror the biaxial
case analyzed here, although the anisotropy between the two
AFD modes may be greater and, in some geometries, the two
modes perpendicular to the AFD axis may split.

To understand the effect of carrier doping on the ferroelec-
tricity and its interplay with strain, we carried out density
functional calculations by adding electrons to the unit cell
(a background compensating charge was added to maintain
overall charge neutrality). The results are shown in Fig. 5 for
the FE modes parallel and perpendicular to the AFD axis, under
both isotropic and biaxial strain. The effect of electron doping
is to harden the FE-mode frequency: driving the system closer
to the quantum critical point if unstable phonon modes are
present and further away from the quantum critical point if all
FE modes are initially stable.

APPENDIX D: SYMMETRY CONSIDERATIONS
FOR COUPLING TERMS

In the free energy, the general coupling term between strain
and the superconducting order parameter is [25–27]

γ̃ u|ψ |2,

FIG. 6. Sketches of two planes of the unstrained tetragonal unit
cell that permit either (a) equal (square basal plane) or (b) different
(rectangular ac plane) coupling strengths between strain and the order
parameter along the perpendicular strain directions considered.

where u is the symmetric strain tensor with elementsuαβ,α,β ∈
{1,2,3} ≡ {x,y,z} in 3D, or {1,2} in 2D and γ̃ some coupling.

The free energy transforms as a scalar—the identity; assum-
ing a uniform s-wave order parameter, |ψ |2 also transforms
as the identity. u is a rank-two tensor [28] so γ̃ , which
couples a rank-two tensor to a scalar is also a rank-two tensor
[39]. Performing the tensor contraction leads to a prefactor
of each uαβ containing a combination of the various γ̃αβ

elements.
Considering only strains that preserve the pseudocubic

symmetry of the unit cell (i.e.: setting all shear strains, where
α 	= β, to zero), and considering the two-dimensional model,
the coupling term can therefore be written in a simplified form
as

γ1u1 + γ2u2 (D1)

where γ1,2 contain combinations of the original γ̃αβ elements
and u1,2 are u11,22.

A cubic unit with symmetry Oh has all axes equivalent
so γ1 = γ2. However, in the tetragonal unit cell of low-
temperature STO, symmetry D4h, the two couplings may
be different depending on which view is considered. The
structural phase transition means that γc 	= γa; then, for con-
figurations that involve strains along the tetragonal c axis, uc,
γ1 	= γ2. Thus, depending on the view of the tetragonal unit
cell assumed in the 2D discussion, the couplings to u1 and u2

may differ. The two possible initial 2D unit cell symmetries
are sketched in Fig. 6.

In the case of isotropic strain where u1 = u2, the coupling
strength is the sum γ1 + γ2 and would therefore result in a
different slope to the change in Tc. It is when u2 = −νu1 that
the effect of different γ values (and competing contributions
to the change in Tc) becomes significant, as demonstrated in
Fig. 3 of the main paper.

APPENDIX E: COUPLING STRENGTHS
FROM PRESSURE (STRESS) DATA

The strain-order parameter coupling strengths must be
determined from experimental data which are often in
terms of applied pressure. By introducing the Gibbs free
energy, G = F − ∑

λ σλuλ, the stresses (negative pres-
sures) σλ are now present. Assuming isotropic, symmetry-
preserving strains from hydrostatic pressure, u = u1 = u2;
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FIG. 7. Linear change in the superconducting critical temperature
(asymmetric response continued from experimental behavior under
compression [12]) as a result of isotropic strain [Eq. (7) of main text]
for several materials and |u| < 1.7%. The materials and scaled cou-
pling strengths are STO,  = −600 K; Zn,  = −20 K; Sr2RuO4,
 = −10 K; and La,  = 90 K.

σ1 = σ2 = σ ⇒ G = F − 2σu, and solving ∂G/∂u = 0
[3,6,22] gives the equilibrium value of strain:

u = σ

ζ
− γ

2ζ
|ψ |2,

which is substituted into the free energy (ζ = ζ11 + ζ12; γ =
γ1 + γ2)

G(σ ) = |ψ |2
(

α + σγ

2ζ

)
+ |ψ |4

2

(
β − γ 2

2ζ

)
− σ 2

ζ
.

Minimization with respect to ψ∗ gives

�Tc(σ ) = Tc(σ ) − T 0
c = −σ

2ζ
. (E1)

Although superconductivity in STO occurs at temperatures
well below the cubic-tetragonal structural phase transition
at about 105 K [3,40–43], the elastic constants of STO at
low temperatures are not well known [12,44,45] so we use
values extrapolated from the high-temperature cubic unit cell:
ζ11 = ζ22 = 3.36, ζ12 = 1.07 × 1011 Pa [3,6].

In Fig. 7 the changes in the critical temperature that would
occur with coupling constants calculated from hydrostatic
pressure data for STO [12,19], zinc and lanthanum [13], and
[110] strain data for Sr2RuO4 [24] (assuming [110] → u1 =
u2) are plotted for a range of strains that can be achieved in
STO films by lattice mismatch to a substrate [46]. The range of
temperatures is chosen to lie near the maximum Tc observed
in unstrained STO [14].

We note that the value of  obtained here is certainly over-
estimated, as might be expected since the analysis considers
a 2D system but has used hydrostatic pressure data. However,
although the actual coupling strengths are not accurate, a more
precise analysis would have a similar effect on all examples
and the relative sizes of the  values for the different materials
are representative.
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