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Orbital effect for the Fulde-Ferrell-Larkin-Ovchinnikov phase in a quasi-two-dimensional
superconductor in a parallel magnetic field
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We theoretically study the orbital destructive effect against superconductivity in a parallel magnetic field in
the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO or LOFF) phase at zero temperature in a quasi-two-dimensional
(Q2D) conductor. We demonstrate that at zero temperature a special parameter, λ = l⊥(H )/d , is responsible for
strength of the orbital effect, where l⊥(H ) is a typical “size” of the quasiclassical electron orbit in a magnetic
field and d is the interplane distance. We discuss applications of our results to the existing experiments on the
FFLO phase in the organic Q2D conductors κ-(ET)2Cu(NCS)2 and κ-(ET)2Cu[N(CN)2]Cl.
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It is well known that the orbital effect of electron motion
in external magnetic field destroys superconductivity [1]. In
singlet type-II superconductors, superconductivity is usually
destroyed by magnetic fields higher than the so-called upper
critical field, Hc2. For a 3D isotropic case, at zero temperature
Hc2(0) was calculated in Ref. [2], whereas temperature de-
pendence of the upper critical field, Hc2(T ), was found several
years later [3]. As to triplet superconductivity, it can be restored
in some cases in magnetic fields much higher than the Hc2(0),
as theoretically predicted for quasi-one-dimensional (Q1D)
[4,5], quasi-two-dimensional (Q2D) [6], and isotropic 3D [7]
superconductors.

Note that superconductivity in singlet superconductors can
also be destroyed by spin effects, as was first demonstrated in
Refs. [8,9] (i.e., above the so-called Clogston-Chandrasekhar
paramagnetic limit, HP ). Nevertheless, Larkin, Ovchinnikov,
Felde, and Ferrell (LOFF) stressed [10,11] that the situation
with the above mentioned paramagnetic destruction of super-
conductivity is not so simple. Indeed, they showed that there
might exist the FFLO (or LOFF) superconducting nonuniform
phase in the restricted area of magnetic fields, Hp < H <

HFFLO. This happens when the orbital effect is small enough,
which is realized in Q1D superconductors in an arbitrary
oriented magnetic field and in Q2D superconductors for a
magnetic field parallel to the conducting layers. As was shown
in Ref. [12], the FFLO phase was stable in a pure 1D case
for arbitrary strong magnetic field in the absence of the orbital
effect. In Refs. [4,5,13,14], a possibility of the FFLO phase to
exist in real Q1D materials from chemical family (TMTSF)2X

(X = ClO4, PF6, etc.) was studied taking into account the
orbital effect in a perpendicular magnetic field. In Ref. [15],
it was shown that the FFLO phase has to exist in the Q1D
superconductor (TMTSF)2ClO4, despite the orbital effect in a
parallel magnetic field. Some important signatures of the possi-
ble existence of the FFLO phase were experimentally observed
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in perpendicular [16,17] and parallel [18,19] magnetic fields in
the Q1D superconductors (TMTSF)2ClO4 and (TMTSF)2PF6.

As mentioned before, the second convenient case for a pos-
sible observation of the FFLO phase is a Q2D superconductor
in a parallel magnetic field. In the absence of the orbital effect
(i.e., for a pure 2D case), such a problem was considered
in Refs. [20–26] and some others (see for the references,
reviews [23,24]). The orbital effect was first considered in
Refs. [27,28] for high enough temperatures, T � t⊥, for a Q2D
superconductor with t⊥ � Tc0. Here, t⊥ is the overlapping
integral of electron wave functions, corresponding to electron
jumping in a perpendicular to the conducting planes direction,
Tc0 is superconducting transition temperature in the absence
of a magnetic field. The main result of Refs. [27,28] is that
the orbital effect is of the relative order of t2

⊥/T 2
c0 � 1. From

the experimental side, plenty of experimental works on Q2D
organic and some other superconductors have been performed
[29–41] to establish the possible existence of the FFLO phase
in a parallel magnetic field.

The goal of our paper is to consider the orbital effect in a
parallel magnetic field in a Q2D conductor at zero temperature,
in contrast to Refs. [27,28]. We show that there exists a new
parameter, λ = l⊥(H )/d, where l⊥(H ) is a typical “size” of
the quasiclassical electron trajectory in a magnetic field and d

is the interlayer distance. We show that λ defines how many
conducting layers participate in the creation of one supercon-
ducting pair. In particular, we demonstrate that if this parameter
is small, then we have effectively the superconducting pairing
within almost one conducting layer and can disregard the
orbital effect. On the contrary, if this parameter is large, then
the superconducting pair is larger than the interlayer distance
and it is necessary to take into account the orbital effect against
superconductivity. We compare the obtained results with the
existing experiments on the FFLO phase at low temperatures in
κ-(ET)2Cu(NCS)2, where the FFLO phase has been the most
firmly established [40].

Below, we consider a layered superconductor with the
following Q2D electron spectrum:

ε(p) = ε‖(px,py) + 2t⊥ cos(pzd) , t⊥ � εF , (1)
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in a parallel magnetic field,

H = (0,H,0) , A = (0,0, − Hx) , (2)

where h̄ ≡ 1. Here, in-plane electron energy ε‖(px,py) ∼ εF

with εF being the Fermi energy. Note that near 2D Fermi
surface (FS),

ε‖(px,py) = εF , (3)

the Q2D electron spectrum (1) can be linearized:

ε(p) − εF = vx(py)[px − px(py)] + 2t⊥ cos(pzd) , (4)

where vx(py) = ∂ε‖(px,py)/∂px is a velocity component and
px(py) is the Fermi momentum component along the x axis.

First, let us consider a qualitative physical picture of
superconducting pairing in the magnetic field (2) and study
the quasiclassical electron motion in the field. For simplicity,
we employ an isotropic in-plane electron spectrum with

ε(px,py) =
(
p2

x + p2
y

)
2m

. (5)

For electrons with spectrum (4),(5) the second Newton’s law
can be written in the magnetic field (2) as

dpz

dt
=

(
e

c

)
vF H sin α, (6)

where α is the angle between the magnetic field and electron
position on the 2D FS (5). Note that electron velocity in
perpendicular to the conducting planes direction can be written

as vz(py) = 2t⊥d sin(pzd) from Eq. (1). Therefore, electron
oscillates in time in the perpendicular direction in the following
way:

z = z0 + 2t⊥d

ωc sin α
sin(ωc sin αt), ωc = evF dH

c
, (7)

where

l⊥(H ) = λd

sin α
, λ = 4t⊥

ωc

(8)

is a typical “size” of electron orbit in the magnetic field (2).
From Eq. (8) it is directly seen that, at

λ � 1, (9)

the most electrons are localized on conducting planes. This
means that the orbital effect is small and, under this condition,
we can expect that electrons form almost 2D superconducting
pairs. Therefore, the FFLO phase is expected to survive.

Let us now consider the quantitative quantum problem of
the FFLO phase formation in the presence of the orbital effect
against superconductivity. To obtain electron Hamiltonian in
the magnetic field (2), Ĥ (x; py,pz,s), we make use of the
Peierls substitution method in Eq. (4) in the following way
[6]:

px → −i

(
d

dx

)
, pz → pz +

(
e

c

)
Hx, (10)

where s = ± 1
2 is electron spin projection along the quantiza-

tion y axis.

Under such conditions, the Green’s functions of the Q2D electrons (4) in the magnetic field (2) obey the following differential
equation [42],

[iωn − Ĥ (x; py,pz,s)]G(iωn; x,x1; py,pz; s) = δ(x − x1),{
iωn − vx(py)

[
−i

d

dx
− px(py)

]
+ 2t⊥ cos

(
pzd + eHdx

c

)
+ 2μBHs

}
G(iωn; x,x1; py,pz; s) = δ(x − x1) . (11)

In Eq. (11), ωn is the so-called Matsubara frequency [42] and μB is the Bohr magneton. Let us solve Eq. (11) analytically. As a
result, for the Green’s functions we obtain

G(iωn; x,x1; py,pz; s) = −i
sgn ωn

vx(py)
exp

[
−ωn(x − x1)

vx(py)

]
× exp

{
iλ(py)

2

[
sin

(
pzd + eHdx

c

)
− sin

(
pzd + eHdx1

c

)]}

× exp[ipx(py)(x − x1)] exp

[
2iμBsH (x − x1)

vx(py)

]
, (12)

where λ(py) = 4t⊥c/eHdvx(py).
To determine superconducting transition temperature as a function of a magnetic field, Tc(H ), we derive the so-called Gor’kov’s

equations [42] for the case of nonuniform superconductivity [4]. As a result, we obtain

	(x) = U

∮
dl

v⊥(l)

∫ ∞

|x−x1|> |vx (l)|



2πT dx1

vx(l) sinh
[ 2πT |x−x1|

vx (l)

]

× J0

{
2λ(l) sin

[
eHd(x − x1)

2c

]
sin

[
eHd(x + x1)

2c

]}
× cos

[
2μBH (x − x1)

vx(l)

]
	(x1) , (13)

where integration in Eq. (13) is made along the 2D contour, ε‖(px,py) = εF , v⊥(l) is a velocity component perpendicular to the
contour, U is an effective electron-electron interactions constant, 
 is a cutoff energy, and J0(...) is the zero-order Bessel function.
[Note that, for simplicity, Eq. (13) is derived for singlet s-wave superconductors].

We point out that Eq. (13) is the most general one among the existing equations to determine the parallel upper critical field in
a layered s-wave superconductor. As the limiting cases, it contains Ginzburg-Landau and Lawrence-Doniach equations [43,44]
as well as quasiclassical equation similar to the gap equation of Ref. [2]. In particular, it takes into account quantum effects of
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electrons motion in a magnetic field—the Bragg reflections—and related 3D → 2D dimensional crossovers of electrons [6],
which move in the extended Brillouin zone in a parallel magnetic field.

If we disregard the orbital effect in Eq. (13), it reduces to the following form

1 = U

∮
dl

v⊥(l)

∫ ∞

|z|> |vx (l)|



2πT dz

vx(l) sinh
[ 2πT |z|

vx (l)

] cos

[
2μBHz

vx(l)

]
cos[k1z] , (14)

defining the FFLO phase in a pure 2D case. Below, we consider the situation, where in the absence of the orbital effect small
electron spectrum anisotropic effects fix the wave vector k1 of the FFLO phase [28] and, thus, we have the following solution

	0(x) = cos(k1x). (15)

Here, we apply the in-plane magnetic field (2) perpendicular to the wave vector k1 of the FFLO phase. Our task is to determine
which fields can be considered as small ones and, thus, do not destroy the FFLO phase. We consider in-plane electron spectrum
anisotropy to be large enough to fix the FFLO wave vector and to be small enough to influence the orbital effect [28]. In other
words, in the presence of the orbital effects, we use the following equation, obtained for the isotropic in-plane electron spectrum
(5):

	(x) = g

2

〈∫ ∞

|x−x1|〉 | sin α|



2πT dx1

vF sin α sinh
[ 2πT |x−x1|

vF sin α

]

× J0

{
2λ

sin α
sin

[
eHd(x − x1)

2c

]
sin

[
eHd(x + x1)

2c

]}
× cos

[
2μBH (x − x1)

vF sin α

]
	(x1)

〉
α

, (16)

where g is the effective electron coupling constant, 〈. . .〉α stands for averaging procedure over angle α. Below, we introduce a
more convenient variable, z = (x − y)/ sin α. In this case, we can rewrite Eq. (16) in the following way:

	(x) = g

∫ ∞

vF



2πT dz

vF sinh
(

2πT z
vF

) cos

(
2μBHz

vF

)
×

〈
J0

{
2λ

sin α
sin

(
ωcz sin α

2vF

)
sin

[
ωc(2x − z sin α)

2vF

]}
×	(x − z sin α)

〉
α

. (17)

Below, we treat the orbital effect against superconductivity as a small perturbation. To this end, we can expend the Bessel
function in Eq. (17) with respect to a small parameter, λ � 1, (8),(9):

J0

{
2λ

sin α
sin

(
zωc sin α

2vF

)
sin

[
ωc(2x − z sin α)

2vF

]}
≈ 1 − λ2

2 sin2 α
sin2

(
zωc sin α

2vF

)

+ λ2

2 sin2 α
cos

(
2ωcx

vF

)
sin2

(
zωc sin α

2vF

)
cos

(
zωc sin α

vF

)

+ λ2

2 sin2 α
sin

(
2ωcx

vF

)
sin2

(
zωc sin α

2vF

)
sin

(
zωc sin α

vF

)
. (18)

It is possible to make sure that Eqs. (17) under the approximation (18) has the following solution at T = 0:

	(x) = cos(k1x) + A cos(k1x) cos(k2x) + B sin(k1x) sin(k2x), (19)

where k1 = 2μB/vF and k2 = 2ωc/vF ; A ∼ B ∼ λ2. Note that, in Eqs. (18) and (19), we keep only terms of the order of λ2 and
disregard all terms of the order of λ4 or less. After substituting Eqs. (18) and (19) into integral Eq. (17) and disregarding all terms
of the order of λ4, we obtain the following three equations at T = 0:

1

g
=

∫ ∞

vF



dz

z

〈[
1 − λ2

2 sin2 α
sin2

(
k2z sin α

4

)]
× cos(k1z) cos(k1z sin α)

〉
α

, (20)

(A + B)

{
1

g
−

∫ ∞

vF



dz

z
cos(k1z)J0[(k1 − k2)z]

}
= λ2

2

∫ ∞

vF



dz

z

〈
1

sin2 α
sin2

(
k2z sin α

4

)
cos

[
(k1 − k2)z sin α

2

]
cos(k1z)

〉
α

, (21)

(A − B)

{
1

g
−

∫ ∞

vF



dz

z
cos(k1z)J0[(k1 + k2)z]

}
= λ2

2

∫ ∞

vF



dz

z

〈
1

sin2 α
sin2

(
k2z sin α

4

)
cos

[
(k1 + k2)z sin α

2

]
cos(k1z)

〉
α

. (22)

Note that Eq. (20) defines correction to the FFLO critical magnetic field due to the orbital effect at T = 0, whereas Eqs. (21) and
(22) define corrections (19) to the FFLO solution (15).

In this paper, we restrict our analysis by calculation of correction (20) to the FFLO critical magnetic field, HFFLO. Let us recall
that, in the absence of a magnetic field, Eq. (17) reduces to:

1

g
=

∫ ∞

vF



2πTc0dz

vF sinh
( 2πTc0z

vF

) , (23)
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whereTc0 is the superconducting transition temperature atH =
0. Note that, if orbital effect is negligible (i.e., at λ = 0), then
the FFLO critical magnetic field, HFFLO satisfy the following
equation (20):∫ ∞

vF



2πTc0dz

vF sinh
( 2πTc0z

vF

) =
∫ ∞

vF



dz

z
cos(k1z)J0(k1z), (24)

where

J0(k1z) = 〈cos(k1z sin α)〉α. (25)

As shown in Ref. [20], in a pure 2D case, Eq. (24) has the
following solution (see also Ref. [45]):

HFFLO = 	0

μB

= πkbTc0

2γ
, (26)

where 	0 is a superconducting gap in the Bardeen-Cooper-
Schrieffer theory [1], kB is the Boltzmann constant, and γ is
the Euler constant [45].

Therefore, Eq. (20) can be rewritten as

ln(HFFLO/H ∗
FFLO) = λ2

∫ ∞

0

dz

z
×

〈
sin2(k2z sin α/4)

2 sin2 α
cos(k1z) cos(k1z sin α)

〉
α

, (27)

where H ∗
FFLO is the critical field of the FFLO phase in the presence of the orbital effect. In this paper we consider the case of the

small orbital effect (9), thus, Eq. (27) can be rewritten in the following way:

(HFFLO − H ∗
FFLO)/HFFLO = λ2

∫ ∞

0

dz

z
×

〈
sin2(k2z sin α/4)

2 sin2 α
cos(k1z) cos(k1z sin α)

〉
α

. (28)

It is possible to make sure that the integral in Eqs. (27) and
(28) is a convergent one. Moreover, the integral is small since
it is proportional to λ2 � 1 and, thus, the FFLO phase is stable
even in the presence of the orbital effect. As we have already
discussed in the “qualitative” part of this paper, physically this
means that the FFLO superconducting pair is located mostly
within one conducting layer. Under such a condition (9), the
intralayer currents are small and, in fact, we have coexistence
of the FFLO phase [10,11] and the reentrant superconductivity
[4–6].

Let us demonstrate that the above mentioned situation cor-
responds to the existence of the FFLO phase in the Q2D super-
conductor κ-(ET)2Cu(NCS)2, where, in our opinion, it is the
most firmly experimentally established [40]. Indeed, if we take
experimental value of the perpendicular upper critical field,
H⊥

c2 � 5 T , we obtain the Ginzburg-Landau parallel coherence
length ξ‖ � 0.8 × 10−6 cm from the standard equation: H⊥

c2 =
τφ0/(2πξ 2

‖ ), where τ = (Tc0 − T )/Tc0, φ0 is the flux quantum.

Then, from the equation ξ‖ = √
7ζ (3)vF /(4

√
2πTc0) [46],

we find the value of in-plane Fermi velocity, vF � 0.65 ×
107 cm/s. If we take into account that the interplane distance is
d = 1.62 × 10−7 cm, we obtain the cyclotron frequency (7):
ωc(H )/H � 1.23 K/T. So, in the integral (28), k2/k1 � 1.85
and, as it is possible to show, its numerical evaluation gives the
value of 0.12. Therefore, Eq. (28) can be rewritten as

HFFLO − H ∗
FFLO = 0.12 λ2. (29)

Estimation of t⊥ � 2 K [47], gives us the following value
of parameter λ = 0.16 in the vicinity of the magnetic field
HFFLO � 27.5 T. So, we can conclude that indeed, in the Q2D
superconductor κ-(ET)2Cu(NCS)2, the FFLO phase coexists
with the reentrant superconductivity. Note that qualitatively
the above mentioned statement does not depend on actual
symmetry of superconducting gap, which may be d wave in
the κ-(ET)2Cu(NCS)2.

Let us consider another relative Q2D organic conductor—
κ-(ET)2Cu[N(CN)2]Cl (see, for example, Ref. [31]). In ac-
cordance with [31], in this case under pressure P = 1.9 kbar,

Tc0 � 7 K, and H⊥
c2 � 2 T. Using the same equations as before,

we obtain ξ‖ � 1.25 × 10−6 cm and vF � 0.73 × 107 cm/s.
Moreover, from Ref. [31], it follows that H

‖
c2 � 20 T and,

using equation ξ⊥ = √
7ζ (3)2t⊥d/(4

√
2πTc0) [46], we obtain

t⊥ � 17 K. Taking into account that d � 1.5 × 10−7 cm, we
find that, in this case, the parameter λ � 2.6 is large and
Eq. (18) is not valid. In other words, the orbital effect against
superconductivity is important and, thus, it is necessary to solve
Eq. (17) directly for λ � 1. However, this is beyond the scope
of the current paper.

To summarize, we have shown that, at small values of the
parameter λ � 1 in Eq. (8), the superconducting FFLO phase
in a parallel magnetic field occupies almost one conducting
layer at T = 0. In this case, the FFLO phase [10,11] exists
under the reentrant superconductivity regime [4–6] and the
correction from the orbital effect to the FFLO critical magnetic
field (28) is small. Such a situation has been shown to exist in
the Q2D superconductor κ-(ET)2Cu(NCS)2. If parameter λ

is of the order of unity, as it is in the case of another Q2D
organic conductors κ-(ET)2Cu[N(CN)2]Cl, then the orbital
effect becomes large and Eq. (17) needs to be solved without
expanding the Bessel function. The latter problem is very
difficult from a numerical point of view and hopefully will
be considered in the future. We stress that our results are
different from that in Refs. [27,28], since at zero temperature
it is not possible to expand the superconducting gap equation
with respect to parameter t⊥/T . In the end of the paper, we
discuss in a brief one delicate property of our model—that the
direction of the FFLO phase is supposed to be unchanged in
a magnetic field. This definitely works for the case of small
magnetic fields, considered in the paper, where anisotropy of
the 2D FS fixes the FFLO direction. As to relatively high
magnetic fields, the effect of changing of the FFLO direction
has to be somehow added to Eq. (17).

We are thankful to C.C. Agosta, N.N. Bagmet (Lebed), and
M.V. Kartsovnik for useful discussions.
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