
PHYSICAL REVIEW B 97, 144422 (2018)
Editors’ Suggestion

Semiclassical theory of Landau levels and magnetic breakdown in topological metals

A. Alexandradinata* and Leonid Glazman
Department of Physics, Yale University, New Haven, Connecticut 06520, USA

(Received 9 February 2018; published 26 April 2018)

The Bohr-Sommerfeld quantization rule lies at the heart of the semiclassical theory of a Bloch electron in a
magnetic field. This rule is predictive of Landau levels and de Haas–van Alphen oscillations for conventional
metals, as well as for a host of topological metals which have emerged in the recent intercourse between band
theory, crystalline symmetries, and topology. The essential ingredients in any quantization rule are connection
formulas that match the semiclassical (WKB) wave function across regions of strong quantum fluctuations. Here,
we propose (a) a multicomponent WKB wave function that describes transport within degenerate-band subspaces,
and (b) the requisite connection formulas for saddle points and type-II Dirac points, where tunneling respectively
occurs within the same band, and between distinct bands. (a) and (b) extend previous works by incorporating
phase corrections that are subleading in powers of the field; these corrections include the geometric Berry phase,
and account for the orbital magnetic moment and the Zeeman coupling. A comprehensive symmetry analysis is
performed for such phase corrections occurring in closed orbits, which is applicable to solids in any (magnetic)
space group. We have further formulated a graph-theoretic description of semiclassical orbits. This allows us to
systematize the construction of quantization rules for a large class of closed orbits (with or without tunneling), as
well as to formulate the notion of a topological invariant in semiclassical magnetotransport—as a quantity that is
invariant under continuous deformations of the graph. Landau levels in the presence of tunneling are generically
quasirandom, i.e., disordered on the scale of nearest-neighbor level spacings but having longer-ranged correlations;
we develop a perturbative theory to determine Landau levels in such quasirandom spectra.
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I. INTRODUCTION

The Peierls-Onsager-Lifshitz semiclassical theory of Bloch
electrons in a weak magnetic field is the bridge that connects
experimentally accessible, field-induced oscillations to prop-
erties of a metal at zero field [1–5]. This theory underlies
the phenomenological construction of the Fermi surface of
normal metals [6,7] and superconductors [8]—from measuring
the oscillatory period of the magnetization [9] or resistivity
[10]. These de Haas–van Alphen (dHvA) oscillations are
generically disrupted by field-induced quantum tunneling be-
tween semiclassical orbits. Such tunneling, known as magnetic
breakdown, occurs wherever semiclassical orbits intersect at
saddle points (in the energy-momentum dispersion) [11] or
at band-touching points [12]. The experimental discovery of
breakdown in magnesium [6] sparked an extension of the
semiclassical theory to incorporate tunneling [11–19].

The semiclassical theory has been further extended to
incorporate two modern concepts: a wave packet that orbits
around the Fermi surface accumulates a geometric Berry
phase [20,21] as well as a second phase associated with
the orbital magnetic moment of a wave packet around its
center of mass [22]. Both phases were first derived from
the effective-Hamiltonian theory pioneered in the 1960s
[14,23–26]; analogs of these phases appear ubiquitously in
the asymptotic theory of coupled-wave equations [27–30],
which apply in a much wider variety of physical contexts
than the present study. Only more recently have the physical
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consequences of the geometric phase and the orbital magnetic
moment been explored for solids [25,31,32]—especially in
the complementary theory of wave packets [22,33–35].

Both of the above phases are evaluated on semiclassical
orbits uniquely determined by Hamilton’s equation. On the
other hand, semiclassical orbits are no longer unique in the
presence of breakdown. The challenge is to resolve this tension.
Recently, we have synthesized the geometric phase, the orbital
moment, and tunneling—into a single, generalized Bohr-
Sommerfeld quantization rule [36]. This rule is not only predic-
tive of Landau levels and de Haas–van Alphen oscillations for
conventional metals, but it is also critically relevant to describe
a host of topological metals which have emerged in the recent
intercourse between band theory, crystalline symmetries, and
topology. Such topological metals have intrinsically unremov-
able geometric phase, owing to the presence of Dirac-Weyl
points where conically dispersing bands touch [37–44]; their
Fermi surfaces are twisted into unusual topologies [45–47]
such that breakdown is also unavoidable.

The essential ingredients in any quantization rule are con-
nection formulas that match the semiclassical (WKB) wave
function across regions of strong quantum fluctuations. The
main subject of this work is the derivation of these ingredients
and the systematic construction of quantization rules for a
large class of closed orbits—with and without breakdown. Our
results are summarized in the following section.

II. SUMMARY AND ORGANIZATION OF RESULTS

The semiclassical theory is a method to approximate the
wave functions and energy levels of a Bloch electron in a

2469-9950/2018/97(14)/144422(74) 144422-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.144422&domain=pdf&date_stamp=2018-04-26
https://doi.org/10.1103/PhysRevB.97.144422


A. ALEXANDRADINATA AND LEONID GLAZMAN PHYSICAL REVIEW B 97, 144422 (2018)

magnetic field. These approximations become increasingly
accurate in the limit where a classical action function—which
characterizes the solid at zero field—is much larger than a
parameter characteristic of the magnetic field. These quantities
are simplest to exemplify for a semiclassical orbit on a Fermi
surface having the topology of a sphere; an orbiting wave
packet evolves according to Hamilton’s equation of motion:

h̄k̇ = − |e|
ch̄

∇kε × B. (1)

The semiclassical approximation is valid where the the area
|S| (in k space) of this orbit is much larger than 1/l2, with the
magnetic length defined as

l =
√

h̄c

|e|B . (2)

To simplify notation, we henceforth adopt a coordinate system
where the magnetic field B = −B�z, and the semiclassical
orbit is therefore a band contour at fixed energy E (and
wave vector kz, for 3D solids), equipped with an orientation
from Eq. (1). The Bohr-Sommerfeld quantization rules of the
semiclassical theory are derived in the effective-Hamiltonian
formalism [1,5,14,23,24,48–50], which we briefly review in
Sec. IV. Certain notations used in this review, and throughout
the text, are collected in Sec. III for easy reference.

We begin properly in Sec. V by deriving the quantization
rules for closed orbits in the absence of breakdown; these rules
are summarized in Eqs. (68)–(74), and their consequences
for Landau levels and de Haas–van Alphen oscillations are
discussed in Sec. V D. These rules are equivalent to a continuity
condition of the WKB solution to the above-reviewed effec-
tive Hamiltonian. The single-component WKB wave function
[51,52] (as applied to a nondegenerate band) is reviewed
in Sec. V A 1, and we generalize this to a multicomponent
wave function in Sec. V A 2 (as applied to bands of arbitrary
degeneracy D). As this wave function is continued around a
closed orbit, it accumulates a phase proportional to 1/B and
the oriented area of the orbit; the subleading-in-B variation of
the wave function is described by a D ×D unitary propagator
A [cf. Eq. (74)], which is generated by a one-form that includes
the Berry connection (non-Abelian for D > 1), the orbital
magnetic moment, and the Zeeman coupling. Each eigenphase
(i.e., phase of each eigenvalue) of this propagator enters the
quantization rule as anO(1) phase correction. In addition, there
is a subleading Maslov correction originating from turning
points on the orbit where the WKB solution is invalid. A
general method to determine Maslov corrections is described in
Sec. V B, which is applicable to twisted Fermi surfaces whose
orbits intersect at points. We emphasize that there are no further
O(1) corrections to the quantization rule.

Section VI is an exposition of the effects of symmetry
(in any space or magnetic space group) in the quantization
condition. By a symmetry analysis of the propagator A
[cf. Eq. (74)], we ascertain how symmetry constrains the
degeneracy and energetic offsets of the Landau levels, as well
as phase offsets in the de Haas–van Alphen oscillations. In
addition, we provide a general symmetry analysis of the orbital
magnetic moment and Zeeman coupling in Sec. VI B; this may
be applied to k-resolved measurements of the orbital magnetic
moment, e.g., through circular dichroism in photoemission
[53].

In Sec. VII, we describe quantization rules which are appli-
cable to orbits which intersect at saddle points in the energy-
momenta dispersion. Saddle points are the nuclei of Lifshitz
transitions in the Fermi-surface topology, as exemplified by
the surface states of topological crystalline insulators [45,54].
In the vicinity of saddle points lie regions of strong intraband
tunneling, where the WKB solutions lose their validity. WKB
wave functions away from the saddle point are patched together
by a connection formula that we derive in Sec. VII A. The
generalized quantization rule is equivalent to the continuity of
patched-up WKB wave functions over the intersecting orbit;
the general algorithm for constructing such rules is presented
in Sec. VII B. This algorithm is then applied to two case
studies: a Weyl metal near a metal-insulator phase transition
(cf. Sec. VII C), and the surface states in the SnTe class of
topological crystalline insulators [55] (cf. Sec. VII D).

A qualitatively distinct type of breakdown occurs where
orbits intersect at a touching point between two bands which
are otherwise nondegenerate at generic wave vectors. In this
work, we focus on touching points for which the nearby band
dispersion is conical. From a general classification of Fermi
surfaces near conical touching points [56], we identify the
orbit intersection as a type-II Dirac point (in short, a II-Dirac
point) [57–59], which might be viewed as an over-tilted version
of the conventional, rotationally symmetric Dirac point [60].
Due to the discontinuity of the Bloch wave function across
the II-Dirac point [61], the effective Hamiltonian that was
reviewed in Sec. IV is not applicable. What we require is a
different representation for the effective Hamiltonian, where
the basis functions evolve smoothly across the II-Dirac point.
Inspired by the basis functions proposed by Slutskin [12],
we formulate such an effective Hamiltonian in Sec. VIII, as
summarized in Eqs. (230)–(237). This effective Hamiltonian
extends previous formulations [12,17] by (i) being applicable
to any band-touching point (of any degeneracy and dispersion,
e.g., Weyl [37–39], multi-Weyl [62], and spin-1 Weyl points
[40], fourfold-degenerate Dirac points [41–43], and charge-2
Dirac points [44]), and by (ii) accounting for subleading-in-B
corrections, which includes the multiband orbital magnetic
moment at the band-touching point.

The solution of the above effective Hamiltonian—
particularized to a II-Dirac point—affords us a connection
formula presented in Sec. IX C. This rule is a crucial ingredient
in quantization rules for orbits that intersect at a II-Dirac
point. We demonstrate how to construct such rules for orbits
surrounding an isolated, over-tilted Weyl point in Sec. IX D.
The Landau-level spectrum in the presence of interband
breakdown (and also intraband breakdown in low-symmetry
metals) is generically quasirandom, i.e., disordered on the scale
of nearest-neighbor level spacings but having longer-ranged
correlations. A perturbative theory to determine Landau levels
in quasirandom spectra is presented in Sec. IX E and applied
to our case study.

Throughout the text, we will employ a graph-theoretic
description of orbits that is summarized in Sec. III F for easy
reference. Such a description is not only useful in system-
atizing the construction of quantization rules (with or without
breakdown); it allows us to define an equivalence class of
Fermi surfaces—through the homotopy equivalence of their
corresponding graphs. This allows us to precisely define a
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topological invariant in semiclassical magnetotransport: as a
quantity that is invariant under continuous deformations of
the Hamiltonian that preserves the homotopy class of the
graph. The generalization to symmetry-protected topological
invariants is simply described in Sec. III F. Examples of such
topological invariants have been presented in our previous
companion works [32,36].

III. PRELIMINARIES

We review the exact Hamiltonian of a Bloch electron, with
and without a magnetic field, to establish notation that will be
used throughout this paper.

A. Bloch Hamiltonian in the crystal momentum representation

In materials with light elements and consequently weak
spin-orbit coupling, we will apply the field-free Schrödinger
Hamiltonian, defined as

Ĥ0 = p2

2m
+ V (r); (3)

otherwise, we apply the Pauli Hamiltonian:

Ĥ0 = 1

2m

(
p + h̄

4mc2
σ × ∇V

)2

+ V (r), (4)

which is accurate to order E/mc2. We use the same symbol
Ĥ0 for both Hamiltonians, and unless otherwise stated in the
context, we assume that expressions with Ĥ0 apply to both
types of Hamiltonians. Each eigenstate of Ĥ0 may be expressed
as a Bloch function

ψnk = eik·runk, (5)

where unk = unk(r) in the Schrödinger case, and = unk(r,s)
with additional spin index s in the Pauli case. In both cases,
unk is periodic with respect to Bravais-lattice translations
r → r + R, and shall henceforth be referred to as cell-periodic
functions. It is convenient to define the cell-periodic position
coordinate τ with the equivalence τ ∼ τ + R, as well as
the variable α, which is a flexible shorthand for τ in the
Schrödinger case, and for (τ ,s) in the Pauli case. It is well
known that cell-periodic functions form an orthonormal set
which is complete with respect to the space of α:∑

α

u∗
mk(α)unk(α) = δmn, and

∑
m

umk(α)u∗
mk(β) = δαβ. (6)

Here and henceforth, we employ the Dirac notation: 〈u|v〉 =∑
α u

∗(α)v(α), where
∑

α should be interpreted as an inte-
gration of τ over the unit cell (normalized multiplicatively by
the volume of the Brillouin torus), and possibly also a sum
over the spin indices. Analogously, δαβ denotes the Dirac delta
function δ(τ − τ ′), possibly multiplied with a Kronecker delta
function in spin space. When there is no topological obstruction
to constructing Wannier functions (Wn), we will find it useful to
expand the cell-periodic function in terms of Wannier functions
as

unk(τ ,s) = 1√
N

∑
R

e−ik·(τ−R)Wn(τ − R,s). (7)

The Hamiltonian acts on cell-periodic functions as

Ĥ0(k) = e−ik·r̂Ĥ0e
ik·r̂ ; (8)

we will refer to Ĥ0 as the Hamiltonian, and Ĥ0(k) as the Bloch
Hamiltonian. The velocity operator is defined by

�̂ = − i

h̄
[r̂,Ĥ0] = ∇ pĤ0, (9)

and it acts on cell-periodic functions as

�̂(k) := e−ik·r �̂ eik·r = �̂ + h̄k
m

= ∇ pĤ0(k)

= ∇kĤ0(k) =
{

p̂+h̄k
m

,

p̂+h̄k
m

− μB

2emcσ × ∇V,
(10)

with the Bohr magneton μB = |e|h̄/2mc. The Bloch Hamil-
tonian may always be expanded around a chosen wave vector
k0 as

Ĥ0(k) = Ĥ0(k0) + h̄(k − k0) · �̂(k0) + h̄2(k − k0)2

2m
. (11)

Any operator which acts on functions of r (and possibly
also on spin index s) are denoted with a hat, as exemplified in
Eqs. (3)–(10); the same operator in the basis of cell-periodic
functions is a matrix denoted by the same symbol with a tilde.
Unless specified otherwise, we will usually employ a basis of
cell-periodic functions which correspond to energy bands, i.e.,
for which the Hamiltonian matrix is diagonal,

H̃0(k)mn = 〈umk|Ĥ0(k)|unk〉 = εnkδmn. (12)

Another example is the velocity matrix

�̃(k)mn = 〈umk|�̂(k)|unk〉, (13)

which may be identified, in the basis of energy eigenstates, as

h̄�̃(k)mn = ∇kεnδmn + iX̃(k)mn(εmk − εnk). (14)

Here, we have introduced

X̃(k)mn = i〈umk|∇kunk〉, (15)

which occurs as part of the matrix elements of the position
operator in the crystal-momentum representation [63]. It is
also useful to define the diagonal component of the velocity
matrix as

ṽ(k)mn = 1

h̄
∇kεnδmn, (16)

as well as the spin-half matrix

h̄

2
σ̃ (k)mn = h̄

2
〈umk|σ̂ |unk〉. (17)

While these matrices are formally infinite-dimensional, we are
often interested in the physics of a finite number of (possibly
degenerate) bands, projected by

P (k) =
D∑
n=1

|unk〉〈unk|, (18)

with D the dimension of said subspace at each wave vector.
Bands not in P are henceforth labeled with an extra bar: m̄,n̄,
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and their corresponding projection is

Q(k) =
∑
n̄

|un̄k〉〈un̄k| = I − P (k). (19)

Let us then define the restriction of any matrix in the infinite
basis to the subspace projected by P as

P : {�̃,X̃,ṽ,σ̃ } → {�,X,v,σ }. (20)

These finite-dimensional matrices are distinguished notation-
ally by having no accents. A case in point is X, which is
the Berry connection [20] for solids [64]. This connection
manifests whenever one differentiates operators represented
in the D-dimensional cell-periodic basis: for any Ô(k),

∇kO(k)mn = ∇k〈umk|Ô(k)|unk〉
= 〈umk|∇kÔ|unk〉 + i[X(k),O(k)]mn. (21)

B. Gauge transformations in band theory

We will often deal with U (D) basis transformations in the
cell-periodic functions in P :

|unk〉 →
D∑

m=1

|umk〉Vmn(k), V −1 = V †. (22)

We will refer to this as a gauge transformation within P . With
respect to this transformation, certain objects are invariant
(such as the projection P itself); other objects transform
covariantly; i.e., they change only in being conjugated by the
unitary V (e.g., the just-defined spin matrix σ → V −1σV );
other objects have a more complicated transformation rule;
e.g., the non-Abelian Berry connection transforms as [65]

X → V −1XV + iV −1∇kV. (23)

C. Review of symmetry in Bloch Hamiltonians

Let g denote a symmetry in the (magnetic) space group (G)
of a solid; we use ĝ to denote its representation in real space
tensored with spin space. Its action on the position operator
can always be decomposed as a point-group operation (an op-
eration that preserves at least one point) and a translation [66]:

ĝ−1r̂i ĝ = ǧij r̂j + δi, ǧ−1 = ǧt ∈ R, (24)

which we shorten notationally as ĝ−1 r̂ ĝ = ǧ r̂ + δ. Here, we
have introduced a real, orthogonal matrix ǧ that represents
the point-group component of g that acts in real space. For
all symmetry elements in symmorphic space groups, a spatial
origin may be chosen such that δ is a Bravais-lattice vector
[66]. To describe nonsymmorphic operations such as screw
rotations and glide reflections, we allow δ to be a rational
fraction of a Bravais-lattice vector.

In addition to g that transforms space, we also consider
g that reverses time. The time-reversal operation g = T acts
trivially on space (ǧ = I,δ = 0), and is represented by T̂ =
UTK , with UT a unitary transformation and K the complex
conjugation operation; T̂ 2 = (−1)F , where F = 0 for integer-
spin representations (UT = I ), andF = 1 for half-integer-spin
representations (UT = −iσy in spinor space). It is useful to
introduce a Z2 index that distinguishes between transforma-
tions which are purely spatial (and therefore have a unitary

representation ĝ), and transformations which involve a time
reversal, possibly composed with a spatial operation (ĝ here is
antiunitary):

g :

(
r̂
t

)
→

(
ǧ 0
0 (−1)s(g)

)(
r̂
t

)
+
(

δ

0

)
;

s(g) =
{

0, ĝ unitary,

1, ĝ antiunitary.
(25)

As a useful example, we apply Eqs. (25) and (24) to derive

ĝeik·r̂ ĝ−1 = ei(−1)s(g)[ǧk]·(r̂−δ), (26)

which implies that a Bloch function at wave vector k, when
operated upon by g, transforms in the representation

g ◦ k := (−1)s(g)ǧk. (27)

If g is a symmetry of the Hamiltonian ([ĝ,Ĥ0] = 0), then

ĝ(k)Ĥ0(k)ĝ−1(k) = Ĥ0(g ◦ k), with

ĝ(k) := e−i(g◦k)·δ ĝ. (28)

This implies that if |umk〉 is an eigenstate of Ĥ0(k) with
eigenvalue εmk, then ĝ(k)|umk〉Ks(g) belongs to the eigenspace
of Ĥ0( g ◦ k ) with the same energy εmk; this is expressed as

ĝ(k)|umk〉Ks(g) = |un,g◦k〉ğ(k)nm, (29)

where ğ, a unitary matrix that is block-diagonal with respect to
the energy eigenspaces, expresses the ambiguity in our choice
of basis vectors within each energy eigenspace. To clarify
a possible source of confusion, 〈α|ĝ(k)|umk〉Ks(g) is just a
complex number—where s(g) = 1, there are two K operators
in this expression: one explicit, and the other implicit in ĝ.

We refer to ğ(k) colloquially as the “sewing matrix,” owing
to its function in “sewing” together the cell-periodic functions
by symmetry. Sewing matrices are the basic objects that encode
symmetry constraints in the crystal-momentum representation,
and they will play a prominent role in constraining the effective
Hamiltonian. These matrices may be understood from a group-
cohomological perspective [67]; the winding number of the
sewing matrix over the Brillouin torus also plays a role in the
topological classification of band insulators [68,69].

For our purpose of determining the symmetry constraints
on the effective Hamiltonian, we will need to review a few
properties of sewing matrices. Depending on the presence
of spin-SU(2) symmetry, {ğ(k)} forms either an integer- or
half-integer-spin representation of the space group [67,70].
A simple example might convey this point: let g be a glide
operation (gx,�y/2) that is composed of a reflection, that inverts
x → −x, and a translation by half a Bravais-lattice vector in
�y (denoted t�y/2). In the space group, the multiplication rule for
this element is g2

x,�y/2 = e t�y , with e a 2π rotation and t�y a full
lattice translation; this is represented as [71]

[ğx,�y/2(−kx,ky,kz)ğx,�y/2(k)]mn

=
∑
l

〈umk|e−iky/2ĝx,�y/2

∣∣ul,(−kx ,ky ,kz)〉
× 〈

ul,(−kx ,ky ,kz)
∣∣e−iky/2ĝx,�y/2|unk〉

= e−iky 〈umk|ĝ2
x,�y/2|unk〉 = e−iky (−1)F δmn. (30)
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TABLE I. Examples of symmetries g of order N . a and R are
defined through Eq. (31). m and p are quantities that are introduced
later in Sec. VI D 5: m is the number of cycles in the g orbit, and
p ∼ p +N labels inequivalent extensions (by quasimomentum loop
translations) of the point group generated by g. We have chosen
the convention that o is clockwise-oriented, and that cnz induces an
anticlockwise rotation in k space; if both o and cnz are anticlockwise-
oriented, then the above values of p should be inverted in sign.

g N a R m p

i 2 0 0 1 1
T 2 1 0 1 1
cnz n 1 0 1 1
T c3z 6 1 0 1 5
T c4z 4 1 0 1 3
T c6z 6 1 0 2 4
gx,�y/2 2 1 �y 1 1

In the last equality, we employed that a rotation by 2π produces
a representation-dependent, ±1 factor, and also that tR has a
trivial action on cell-periodic functions.

More generally, for any nontrivial g which is not purely a
translation, we may assign to g an order N (g), which is the
smallest integer in {2,3,4,6} such that

gN(g) = ea(g)tR(g), a(g) ∈ {0,1}, (31)

with tR a translation by a Bravais-lattice vector R (possibly
the zero vector) which depends on g. We have introduced a
Z2 index a(g) that equals 0 (resp. 1) if gN is proportional
to an odd (resp. even) multiple of a 2π rotation (a = 1). In
the case of g = g2

x,�y/2 in Eq. (30), N = 2,a = 1, and R = �y;
other representative examples are summarized in Table I. If g
reverses time, its order must be even:

s(g) = 1 ⇒ N (g) ∈ 2Z. (32)

This follows because gN by assumption does not invert time
[cf. Eq. (31)], and on the other hand it is the composition of
T N with a spatial transformation.

For any k1, we define

g orbit of k1 := {ki}Ni=1, with

ki+1 := gi ◦ k1 := ki+N+1, (33)

which is not to be confused with Hamilton’s semiclassical
orbit; we are guaranteed that ki = ki+N owing to Eq. (31).
Equation (31) is represented with the sewing matrices as

ği := ğ(ki), ğNK
s . . . ğ2K

s ğ1K
s = (−1)Fae−ik·R. (34)

When this equation is particularized to g which is unitarily
represented, and to k = g ◦ k, we obtain

ğ(k)N = (−1)Fae−ik·R. (35)

The N possible eigenvalues of ğ (at g-invariant wave vectors),
corresponding to the N roots of eiπFa−ik·R, label the different
representations of g. More examples of sewing matrices are
provided in the second column of Table II.

Finally, we consider how the sewing matrix transforms
under basis transformations of the form in Eq. (22). From
Eq. (29), we derive

ğ(k) → V †(g ◦ k)ğ(k)Ks(g)V (k)Ks(g). (36)

For g-invariant wave vectors (defined through k = g ◦ k mod-
ulo a reciprocal vector), Eq. (36) particularizes to

ğ →
{
V †ğV , for unitary g,

V †ğV ∗, for antiunitary g.
(37)

This distinction between unitary and antiunitary symmetries
becomes relevant when we consider the symmetry constraints
of the orbital moment in Sec. VI B.

For future reference, we employ the following notation for
symmetry operations: T denotes time reversal, t�z/2 a real-space
translation by half a Bravais-lattice vector parallel to �z; T t�z/2

is the composition of T and t�z/2. i denotes spatial inversion. rα
(gα, �β/2) is normal (glide) reflection that inverts the spatial coor-
dinate α; the glide operation includes an additional translation
by �β/2, which is half a Bravais-lattice vector in the β direction.
cnz is ann-fold rotation about �z (n ∈ {2,3,4,5}); snz,m is a screw
rotation that satisfies snz,mn = tmG with G the smallest recip-
rocal vector parallel to �z andm ∈ {0,1, . . . ,n− 1}. To describe
half-integer-spin representations, we will employ the double-
group formalism that identifies a 2π rotation with a group
element (e) that is distinct from and squares to the identity.

D. Hamiltonian of a Bloch electron in a magnetic field

We study a Bloch electron immersed in a spatially homoge-
neous magnetic field B, with corresponding vector potential

B = ∇ × A, a = |e|
c

A. (38)

The field-on Schrödinger Hamiltonian is defined as

Ĥ = [ p + a(r)]2

2m
+ V (r); (39)

this is distinguished notationally from the zero-field
Schrödinger Hamiltonian (Ĥ0) by having no subscript. Anal-
ogously, the field-on Pauli Hamiltonian is

Ĥ = 1

2m

(
p + a + h̄

4mc2
σ × ∇V

)2

+ V (r) + g0

2
μBσ · B, (40)

with the free-electron g factor g0 ≈ 2. The semiclassical
equation of motion for a Bloch electron in a magnetic field is

h̄k̇
⊥|k = l−2εαβ �αvβ(k), α,β ∈ {x,y}, (41)

which particularizes Eq. (1) to the case B = −B�z. We refer
to k̇

⊥|k as the orbit velocity at k, which is distinguished from
the field-independent band velocity v(k).

E. Field-free Bloch Hamiltonian
in the Luttinger-Kohn representation

This subsection reviews a set of basis functions which are
more convenient to employ near a conical band touching; this
will be useful when we derive the effective Hamiltonian
near a band degeneracy in Sec. VIII, and derive the
Bohr-Sommerfeld quantization conditions in the presence of
interband breakdown in Sec. IX.
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TABLE II. The first column lists some commonly found symmetries in crystals, and we have employed the notation for symmetries that was
introduced in Sec. III C; their corresponding sewing matrices form a representation of the space group, as described in the second column. The
third and fourth columns describe general constraints on the orbital moment for the single- and multiband cases. In the last column, we describe
the constraints which are specific to twofold spin-degenerate bands in a spin-orbit-coupled system, for which ğ transforms in a half-integer-spin
representation of the symmetry g; no restrictions of the symmetry representations have been made in the other columns; note that the multiband
constraints in the fourth column also apply to spin-degenerate bands. A relation with the qualifier |k applies to all wave vectors; |k=−č2zk applies
to any wave vector in the planes defined by kz = 0 and π ; finally, |k=−k applies to wave vectors which are invariant under inversion, modulo
reciprocal-lattice translations. In the last two rows, we employ the notation k(i) := č

i
nzk. In the last column, certain canonical choices for the

sewing matrices are displayed; i.e., a basis may always be found where ğ assumes the displayed forms, assuming that ğ transforms in the
half-integer-spin representation; by Mz ∝ σ2, we mean that it is proportional to the Pauli matrix σ2 with a real, k-dependent proportionality
constant. As explained in the main text, the form of a symmetry constraint on Mz applies also to the Roth and Zeeman Hamiltonians (HR

1 and
HZ

1 ); in the latter case, we should fix F = 1 for half-integer-spin representations.

g Space-group rule Single-band M Multiband M Two-band constraints (F = 1)

T ğ|−kğ
∗|k = (−1)F , M|−k = −M|k M|−k = −ğM∗ğ−1|k For k = −k,

ğ|Tk=−k = (−1)F ğ|k=−k ğ = −iσ2, Tr[M] = 0

T i ğ|kğ
∗|k = (−1)F , M|k = 0 M|k = −ğ M∗ ğ−1|k For all k,

ğ|Tk = (−1)F ğ|k ğ = −iσ2, Tr[M] = 0

T c2z ğ|−č2zkğ
∗|k = I, M|−č2zk = −č2zM|k, M|−č2zk = −ğ [č2zM∗] ğ−1|k For kz = 0 or π,

ğ|Tk=−č2zk = ğ|k=−č2zk Mz|k=−č2zk = 0 ğ = I, Mz ∝ σ2

T t�z/2 ğ|−kğ
∗|k = (−1)F e−ikz , M|−k = −M|k M|−k = −ğM∗ğ−1|k (i) For {kz = 0,k⊥ = −k⊥},

ğ|Tk=−k = (−1)F e−ikz ğ|k=−k ğ = −iσ2, Tr[M] = 0

(ii) For {kz = π,k⊥ = −k⊥},
ğ = I, M ∝ σ2

i ğ|−kğ|k = I M|−k = M|k M|−k = ğMğ−1|k, Tr[M]|−k = Tr[M]|k

[ğ,M]|k=−k = 0

rx ğ|řx kğ|k = (−1)F M|řx k = −[řx M]|k, M|řx k = −ğ[řx M]ğ−1|k, Tr[M]|řx k = −řxTr[M]|k

Mα|řx k=k = 0, α∈{y,z} [ğ,Mx]|řx k=k = 0

gx,�y/2 ğ|řx kğ|k = (−1)F e−iky M|řx k = −[řx M]|k, M|řx k = −ğ[řx M]ğ−1|k, Tr[M]|řx k = −řxTr[M]|k

Mα|řx k=k = 0, α∈{y,z} [ğ,Mx]|řx k=k = 0

cnz ğ|k(n−1) . . . ğ|k(1) ğ|k = (−1)F M|čnzk = [čnzM]|k M|čnzk = ğ[čnzM]ğ−1|k, Tr[M]|čnzk = čnzTr[M]|k

[ğ,Mz]|čnzk=k = 0

snz,m ğ|k(n−1) . . . ğ|k(1) ğ|k = (−1)F e−imkz M|čnzk = [čnzM]|k M|čnzk = ğ[čnzM]ğ−1|k, Tr[M]|čnzk = čnzTr[M]|k

[ğ,Mz]|čnzk=k = 0

The Bloch functions are not an ideal basis for application
near conical band touchings, owing to their discontinuity
with respect to k at the touching point [61], which we set
by convention to 0. Here, it is convenient to employ the
Luttinger-Kohn functions {unkx0(r)eik·r}, which are known to
form a complete and orthonormal set of basis functions [72]
and are analytically better behaved at k = 0. To clarify the
terminology we employ, Luttinger and Kohn (LK) considered
in similar spirit the functions {un0e

ik·r} [72]; we take the
liberty of referring to {ũnkx0e

ik·r} as LK functions—the proof
of completeness and orthonormality for {ũnkx0e

ik·r} is nearly
identical to that presented in Ref. [72].

The Bloch Hamiltonian in the LK representation has the
form (with h̄ = 1)〈

um,kx,0
∣∣Ĥ0(k)

∣∣un,kx ,0〉
= H̃ (kx,0)mn + ky
̃

y
mn(kx,0) + k2

y

2m
δmn, (42)

where we have applied the expansion Eq. (11) around the ky =
0 line, which intersects the band-touching point at k = 0. It is
convenient to choose unkx0 to be eigenfunctions of the Bloch

Hamiltonian Ĥ0(kx,0) [i.e., such that H̃ (kx,0) is diagonal]; this
choice for unkx0 will be emphasized notationally by adding a
tilde: unkx0 → ũnkx0.

Let us restrict {ũnkx0}Dn=1 to the D-dimensional subspace
projected by P , and further assume that this subspace of bands
is D-fold degenerate at k = 0; we further set the origin of
energy such that H0(0) = 0. Applying the identity of Eq. (21)
to ∇x

kH0|0, the Hamiltonian to linear order in ki simplifies to〈
ũm,kx ,0

∣∣Ĥ0(k)
∣∣ũn,kx ,0〉 = kx


x
mn(0) + ky


y
mn(0), (43)

with 
x and 
y D ×D diagonal matrices.
It would be useful to transform between the crystal-

momentum and Luttinger-Kohn representations by the overlap
matrix S̃ defined as

unk =
∞∑
l=1

ũl,kx ,0S̃ln(kx,0,k)

=
D∑
l=1

ũl,kx ,0Sln(kx,0,k) +O(ky/Gy), with

S̃(kx,0,k)mn = 〈
ũmkx0

∣∣unk
〉
, (44)
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FIG. 1. (a) An example of a zero-field band dispersion with a
saddle point. (b) A constant-energy band contour of (a). (c) The
graph interpretation of (b); we refer to this as the “double-well” graph.
(d) Turning points are degree-two vertices. (e) Intraband-breakdown
vertex. (f) Interband-breakdown vertex. (g) The “butterfly” graph.

and Gy a reciprocal period. The projection of S̃ into the
D-dimensional subspace is approximated, to an accuracy of
O(ky/Gy), by a unitary matrix S defined by the eigenvalue
equation:

D∑
l=1

[kx

x(0) + ky


y(0)]mlSln = εn,kSmn, (45)

where unk diagonalizes H0(k) with energy eigenvalue εn,k.

F. Graph-theoretic description of orbits

With the eventual goal of formulating quantization con-
ditions (with and without breakdown) and their topological
invariants, we will find it useful to formulate a graph-theoretic
description of orbits. This section is written for easy reference
of graph-theoretic terminology that we will eventually employ,
and the reader may skip this on a first reading, and refer back
to it when necessary.

Any zero-field band structure [as exemplified in Fig. 1(a)],
when considered at fixed energy (and fixed kz for 3D solids)
[see Fig. 1(b)], may be represented as a directed graph
[Fig. 1(c)]. A directed graph is composed of directed edges
and vertices. A directed edge is a continuous line with an
orientation; its beginning and end points are referred to as
vertices. In our context, a directed edge is a section [black,
arrowed trajectory in Fig. 1(c)] of a constant-energy band
contour, and the vertices are either turning points (green dots),
where the y component of the wave packet velocity vanishes,
or breakdown regions (blue squares), where quantum tunneling
between orbits is significant.

Each vertex is associated with a degree, which is the
number of edges connected to the vertex: a turning vertex has
degree two, and a breakdown vertex has degree four. Note
that a breakdown region typically has dimension of order
1/l, but its assumed smallness compared to the size of a
typical orbit justifies our use of the term “breakdown vertex.”
From the orientation of the edges connected to the vertex,
we might describe a turning vertex as one-in-one-out, and the

breakdown vertex as two-in-two-out. It is useful to assign an
orientation to each turning vertex, which might be clockwise or
anticlockwise [Fig. 1(d)]—this determines the phase (−i and
+i, respectively) acquired by a wave packet as it turns, as we
elaborate in Sec. V B. It is also useful to assign an orientation to
distinguish two classes of breakdown vertices: in the case of the
intraband-breakdown vertex [Fig. 1(e)], where tunneling oc-
curs between orbits in the same band, the two incoming edges
are parallel and lie on the same diagonal; for the interband-
breakdown vertex [Fig. 1(f)], where tunneling occurs between
different bands, the incoming edges lie on distinct diagonals.
Intraband and interband breakdown is described respectively
in Secs. VII and IX. For exemplification, Fig. 1(c) illustrates
a “double-well” graph composed of six edges, four turning
vertices, and a single intraband-breakdown vertex. Figure 1(g)
illustrates a “butterfly” graph composed of eight edges, four
turning vertices, and two intraband-breakdown vertices. The
quantization conditions for these two graphs will be studied in
Secs. VII C and VII D, respectively.

Two further comments regard the type of directed graphs
that are relevant to the Bloch electron in a magnetic field. First,
we are generally interested in directed multigraphs, which
means that we allow for two vertices to be connected by more
than one edge; e.g., the two breakdown vertices in the butterfly
graph are connected by two edges lying in the middle of the
graph. We also insist that our graphs are two-toroidal, by which
we mean a graph may be drawn/embedded on a two-torus (here,
the Brillouin torus) such that no edges cross.

The notion of connected components is intimately related
to quantum tunneling. A connected component is a maximally
connected subgraph—each vertex and edge belongs to exactly
one connected component, and any two vertices in a connected
component can be linked by a path. The appropriate description
of orbits which are not linked by tunneling is a disconnected
graph with multiple connected components; when the minimal
separation in k space between two neighboring components
is of order 1/l, it becomes appropriate to connect the two
components by an intraband- or interband-breakdown vertex.
In the presence of tunneling, we may define a broken orbit
in the following way: it is an oriented subgraph, composed
only of directed edges and turning vertices, that forms a
continuous path beginning and ending at a breakdown vertex.
The beginning and ending vertex may be identical (as for the
double well, which is composed of two broken orbits linked
by a single breakdown vertex), or distinct (as for the butterfly
graph, which is composed of four broken orbits linked by
two vertices). The two-in-two-out rule for each breakdown
vertex implies there are always two broken orbits which shoot
out from the vertex, and another two broken orbits which
terminate at the same vertex. The orientation of a broken
orbit is determined from Hamilton’s equation, and it generally
comprises an Ns number of edges and (Ns − 1) number of
turning vertices, withNs � 1; if an edge ν (resp. turning vertex
p) belongs to a broken orbit oi , we denote this by ν ∈ oi (resp.
p ∈ oi).

For our formulation of a topological invariant in the
quantization condition, it is useful to formulate a class of
homotopically equivalent graphs. Two equivalent graphs may
be continuously deformed into each other, given three rules for
what is meant by “continuous”: (i) one can neither break apart
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a connected component, nor merge two connected components
into one, (ii) a breakdown vertex is movable in k space, but un-
removable from the graph, and (iii) the total number of turning
vertices is not invariant, as explained in Sec. V B, however the
net circulation of all turning vertices on a connected path is
invariant.

Definition. A topological invariant in magnetic transport
is a quantity that is invariant under continuous deformations
of the zero-field Hamiltonian that preserve the homotopy
class of the graph. A symmetry-protected topological invariant
in magnetic transport is a quantity that is invariant under
continuous deformations of the zero-field Hamiltonian that
(i) preserves the homotopy class of the graph, as well as (ii)
respects the symmetry of the zero-field Hamiltonian.

IV. REVIEW OF EFFECTIVE HAMILTONIAN IN
THE ABSENCE OF INTERBAND BREAKDOWN

We are interested in semiclassical approximations to the
exact Hamiltonians of a Bloch electron in a magnetic field,
as shown in Eqs. (39) and (40); such approximations will
be referred to as effective Hamiltonians. In this section, we
particularize to cases where interband breakdown is negligible;
the effective Hamiltonian that is valid near an interband
degeneracy takes a different form that is described in Sec. IX.

In the presence of a field along �z, k⊥ = (kx,ky) is no longer a
conserved quantity for the Bloch electron. In the lowest-order
approximation, the effective Hamiltonian is obtained by the
Peierls substitution [1]:

H0(k) ↔ H0(K ), (46)

which describes the unique, Weyl correspondence between a
function of commuting variables (kx,ky), and a function of
noncommuting variables:

K = k + a(i∇k). (47)

We refer to K as the kinetic quasimomentum operators, and
their noncommutivity is manifest in

K × K = −i e
c

B, e < 0. (48)

Generally, a one-to-one correspondence exists between a
classical “symbol” [A(k)] and an operator [A(K )], if A(k) is
a Fourier-invertible function of commuting variables, with the
Fourier transform Ǎ(r):

A(k) =
∫

d reik·rǍ(r). (49)

Many of the functions we deal with, including the matrix
H0(k), are periodic in reciprocal-lattice translations: k →
k + G, in which case Eq. (49) particularizes to a Fourier-series
expansion. The operator to which the symbol corresponds is

A(K ) := [A(k)] :=
∫

d reiK ·rǍ(r). (50)

To make this definition rigorous, one assumes certain regularity
conditions onA, and checks that the integral converges in some
suitable sense [73]. The lowest-order effective Hamiltonian
H0(K ) was first derived in a tight-binding approximation
[5]; its form may be argued from general principles of

electromagnetic gauge invariance [74]. However, we cannot
appeal to gauge invariance to predict the form of higher-order
corrections, which may be organized in an asymptotic [52,75]
expansion:

H(K ) = H0(K ) +H1(K ) +H2(K ) + · · · , (51)

where each term in the expansion corresponds to the symbol
Hj (k) = O(l−2j ). ByO(l−2j ), we mean thatHj is of the order
(a/l)2j , where a is a typical lattice period. Hj is obtained sys-
tematically [24] by expanding an eigenstate of Ĥ , defined by

(Ĥ − E)�E = 0, (52)

in a complete [50,76] basis of field-modified Bloch functions

�E(r) =
∑
nk

gnkEφnk(r), (53)

such that, in an asymptotic sense,∑
n

[H(K )mn − Eδmn]gnkE = 0. (54)

Note that by
∑

k we really mean a continuous integral over
the Brillouin torus. There are several different proposals for
the best basis functions to formulate an effective Hamiltonian
[14,23,24,48,50], but all these proposals agree [77] to lowest
order in l−2 [5,51,78]:

φnk(r) = eik·run,k+a(r)(r). (55)

This form of φ manifests the semiclassical intuition that for
a slowly varying vector potential, the ordinary Bloch function
is modified locally in space, but only through the wave vector
dependence of the cell-periodic component: unk → un,k+a,

which is no longer periodic in Bravais-lattice translations;
we provide a further argument that motivates the form of φ
in Appendix A 1. The Fourier transform of φ is a real-space
function that may be obtained from applying the magnetic
translation [79] to a Wannier function; in this real-space
basis, the effective-Hamiltonian equation is a finite-difference
equation for a wave function defined on a lattice [17], as
famously exemplified by the Harper equation [80].

The value of Eq. (54) is that, in many cases of interest, the
matrix elements between a single band and its complement
(i.e., all other bands) have been removed perturbatively in the
parameter l−2; this decoupling of bands is asymptotic and fails
if interband gaps become too small [52]. Assuming otherwise,
we may truncate

∑
n and solve for [H(K )nn − E]gnkE = 0; in

this sense we say H(K )nn is a one-band effective Hamiltonian.
The Weyl correspondence thus provides the link between the
magnetic problem [given by H(K )nn] and band properties at
zero field: [H0]nn(k) describes the dispersion of a single band,
which is renormalized [26,81,82] by the higher-order {Hj (k)}
as we eliminate degrees of freedom in the other bands. In other
applications of Eq. (54), we may utilize a multiband effective
Hamiltonian to describe a degenerate band subspace.

The effective-Hamiltonian theory has been rigorously jus-
tified for an energetically isolated nondegenerate band [50];
the justification for a finite family of (possibly magnetic)
bands was achieved only recently [83]. While these impressive
works go a long way in solving “one of the few unsolved
problems of one-particle quantum mechanics” [84], they rely
on the assumption of a strictly isolated band (or family of
bands), i.e., that there exists a direct energy gap above and
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below the band(s) in question. The complicated nature of
bands in naturally occurring crystals often implies that indirect
gaps are as common as direct gaps, except in the extreme
tight-binding limit; this problem is especially severe in highly
symmetrical crystals with many band touchings, of both the
immovable [40] and movable kinds [85]. We further highlight
a class of metallic systems where the nonexistence of a gap
is guaranteed from topological principles—the surface states
of certain topological insulators robustly interpolate between
conduction and valence bands [54,55,86]; this phenomenon of
spectral flow is familiar from the integer quantum Hall effect.

From physical grounds, one may expect that the effective
Hamiltonian is valid for bands which are not energetically
isolated over the Brillouin torus. That is, the existence of
well-defined semiclassical orbits (at some energy E) at least
validates H(K ) in a local neighborhood of the orbit and at that
energy E. Let us exemplify our perspective for graphene in a
magnetic field—we will apply a single-bandH at wave vectors
sufficiently far (on the scale of l) from the Dirac point, even
though it is impossible to symmetrically separate graphene’s
two bands (not counting spin). This impossibility is enforced
by symmetry; i.e., thepz bands of graphene form an elementary
band representation [87–90] with two branches. Generally, the
existence of semiclassical orbits leads to discrete magnetic
energy levels (henceforth referred to as Landau levels) which
may be determined by Bohr-Sommerfeld quantization rules
[2–4,26,51,52]; this method has been verified numerically for
simple models [91] and is predictive [32] of de Haas–van
Alphen oscillations in metals [9,10]. We further substantiate
our perspective for the single-band effective Hamiltonian in
Sec. IV A, and for the multiband case in Sec. IV B.

A. Single-band effective Hamiltonian

The applicability of the single-band Hnn(K ) generically
depends on the wave vector and energy in question, and is
contingent on the cell-periodic functions (in this one-band
subspace) being smooth enough. By smooth enough, we mean
that ∂ku = O(a) with a a typical lattice period; there may be
isolated regions in k space where such smoothness cannot hold;
e.g., where two bands touch at a conical degeneracy (a Dirac
point), the Berry connection (with ∇k in the azimuthal direc-
tion) diverges [61]. Even so, we may apply Hnn(K ) at wave
vectors sufficiently far (on the scale of l−1) from the conical de-
generacy. For notational convenience, we henceforth drop the
subscript H(K )nn → H(K ). These are common scenarios in
which we might consider a single-band effective Hamiltonian:

(i) Low-symmetry wave vectors where all bands are nonde-
generate, e.g., a generic wave vector for a spin-orbit-coupled
system without spacetime-inversion symmetry. By spacetime
inversion, we mean a simultaneous inversion of both space and
time (denoted T i in later sections), which is known to result in
spin-degenerate bands.

(ii) Spin-degenerate bands in the absence of spin-orbit
and Zeeman couplings. Since Sz (spin component in the
�z direction) is conserved, electron dynamics in a field is
effectively constrained within a single band.

Explicit expressions for the single-band effective Hamil-
tonian have been derived up to H2 = O(l−4) [24]; in this
work, we derive the quantization conditions for the truncated

H0 +H1, where

H0(k) = εnk (56)

is the energy-momentum dispersion of a band (labeled by an
integer n), and H1 may be split into gauge-dependent (HB

1 )
and -independent (HR

1 ,H
Z
1 ) terms as [24,92]

H1(k) = HB
1 (k) +HR

1 (k) +HZ
1 (k), (57)

HB
1 (k) = l−2εαβXβvαn , (58)

HR
1 (k) = 1

2l2
εαβ

∑
m

X̃
β

nm(
̃α − ṽα)mn, (59)

HZ
1 (k) = − g0h̄

2

4ml2
σ z. (60)

Here, band indices m and n are not summed over unless
explicitly stated; εαβ is the Levi-Cevita tensor with εxy = 1 =
−εyx ; vn := ∇kεn; and �̃, X̃, ṽ, v, σ z, and X are k-dependent
matrices defined in Eqs. (13), (15), (16), and (20), respectively;
in particular, X = X̃nn in this context. By gauge dependency,
we refer to a phase ambiguity in the cell-periodic functions
of band n [cf. Eq. (22) with D = 1], and hence also of
the field-modified Bloch functions which form our basis [cf.
Eq. (53)]; this results in HB

1 being not uniquely defined:

|unk〉 → |unk〉eiφn(k)

⇒HB
1 → HB

1 + l−2εαβ∂αφnv
β
n . (61)

We will shortly demonstrate that the quantization condition
is nevertheless gauge-invariant. If a symmetry (e.g., T i) con-
strains the Berry curvature to vanish, a basis may be found such
that the Berry connection Xnn(k) (hence also HB

1 ) vanishes at
any k; this basis may be continuously defined over the Brillouin
torus unless there is a topological obstruction, which may
originate from a Dirac point in 2D, or a line node in 3D [21].

On the other hand, HR
1 may be expressed in a manner that

manifests its gauge invariance:∑
m

X̃
α

nm(
̃β − ṽβ)mn = i〈unk|(∂αQ)
̂β |unk〉, (62)

where Q is the gauge-invariant, cell-periodic projections
defined in Eq. (19), for D = 1. As we will demonstrate
in Sec. V A, the WKB wave function of H = H0 +H1

includes multiplicatively a geometric Berry phase factor [20]
that originates from the gauge-dependent HB

1 (henceforth
called the Berry term), and a nongeometric phase factor that
originates from the gauge-independent HR

1 . We interpret
HR

1 as a coupling (−Mn · B) of the field to the band orbital
moment, defined for band n as

M(k)αn = − |e|
2h̄c

εαβγ
∑
m̄

X̃
β

nm̄(
̃γ − ṽγ )m̄n

= i
|e|

2h̄c
εαβγ

∑
m̄


̃
β
nm̄
̃

γ
m̄n

(εn − εm̄)

= − i
|e|

2h̄c
εαβγ 〈∂βun|Ĥ0(k) − εnk|∂γ un〉. (63)

144422-9



A. ALEXANDRADINATA AND LEONID GLAZMAN PHYSICAL REVIEW B 97, 144422 (2018)

Here, we have used m̄ to label bands which are orthogonally
complementary to band n [cf. Eq. (19)]. These equivalent
expressions for the orbital moment in Eqs. (62) and (63) are
derived in Appendix A 2.

An expression identical to Eq. (63) appears in the correction
to the energy of a wave packet in a Bloch band [22,33,34].
We, however, disagree with a claim in Ref. [22] that the orbital
moment is absent in nonmagnetic Bloch bands (i.e., eigenstates
of Ĥ0 without spontaneous time-reversal-symmetry breaking);
we substantiate this point by a comprehensive symmetry
analysis of H1 in Sec. VI. The derivation of the semiclassical
equations of motion, as corrected by H1, was accomplished
in Ref. [92]. HR

1 is sometimes referred to as the Rammal-
Wilkinson term, and has been alternatively derived from a
purely algebraic approach [93], as well as in a semiclassical
treatment of the Harper-Hofstadter model [26,94]. Finally, we
remark that terms analogous to HR

1 and HB
1 appear ubiqui-

tously in the asymptotic theory of coupled-wave equations
(i.e., multicomponent WKB theory) [27–29] as well as in
space-adiabatic perturbation theory [30], which apply in a
much wider variety of physical contexts than the present
study.

B. Multiband effective Hamiltonian

Consider a multiband effective Hamiltonian that describes a
D-fold degenerate band subspace projected byP [cf. Eq. (18)].
A common example of D = 2 arises in spin-orbit-coupled
solids with spacetime-inversion symmetry—bands are spin-
degenerate at generic wave vectors, and dynamics in a magnetic
field is described by a two-band effective Hamiltonian [H(K )].
H(K ) loses its applicability near (on the scale of 1/l) fourfold-
degenerate band touchings which might occur in various
contexts, e.g., (i) a 3D Dirac point, which is the critical point of
a topological phase transition between trivial and topological
insulators [41], or (ii) a symmetry-protected degeneracy that
can be found in nonsymmorphic space groups [40,43].

For any D, the multiband generalization of Eq. (57) is [24]

H1 = l−2εαβ

[
1

2
{
̃α − ṽα,X̃

β} + Xβvα
]

− g0h̄
2

4ml2
σ z

= HR
1 +HB

1 +HZ
1 , (64)

where {a,b} = ab + ba, and we consider only matrix elements
of H1 within the P subspace. HB

1 ∝ Xαvβ is just the product
of two D ×D matrices; in contrast, since v is the diagonal
component of � [cf. Eq. (13)], the first term in Eq. (64) involves
only matrix summations between P and Q subspaces:

[(
̃β − ṽβ)X̃
α
]mn =

∑
l̄

[
̃β − ṽβ]ml̄X̃
α

l̄n. (65)

While HZ
1 has the advantage of looking more symmetric with

respect to α and β, the following alternative expressions reveal
a closer resemblance to the one-band HZ

1 in Eq. (57):

εαβ

2
{
̃β − ṽβ ,X̃

α} = εαβX̃
α
(
̃β − ṽβ)

= − εαβ(
̃α − ṽα)X̃
β
. (66)

The multiband orbital moment, defined by HR
1 = −M · B,

therefore has a very similar form to Eq. (63):

M(k)αmn = − |e|
2h̄c

εαβγ
∑
l̄

X̃
β

ml̄(
̃
γ − ṽγ )l̄n

= i
|e|

2h̄c
εαβγ

∑
l̄


̃
β

ml̄

̃

γ

l̄n

(εm − εl̄)
. (67)

We stress that the multiband orbital moment nontrivially affects
the Landau levels, which motivates a comprehensive symmetry
analysis of HR

1 in Sec. VI B. Through HB
1 , the energy levels

are also sensitive to the non-Abelian gauge structure in the
subspaceP , as we will demonstrate in the next section (Sec. V).

V. QUANTIZATION CONDITIONS FOR CLOSED
ORBITS WITHOUT BREAKDOWN

As motivated in the last paragraphs of Sec. IV, we are in-
terested in determining Landau levels from Bohr-Sommerfeld
quantization rules. In this section we derive the rules for closed
orbits, by which we mean orbits that do not extend beyond one
unit cell in k space. These clearly do not exhaust all possible
orbits [18], but they are sufficient to exemplify the results of this
work; we will briefly remark on generalizations beyond closed
orbits in Sec. V C 1. We further particularize to isolated orbits
whose closest distance to any other orbit (if they exist) is much
greater than 1/l, with l the magnetic length. If this condition
is violated, tunneling between orbits must be accounted for;
generalized quantization conditions that incorporate tunneling
are presented in Secs. VII and IX.

Let us first summarize our results, which we will derive
in the subsequent subsections. For a closed orbit (o) corre-
sponding to a nondegenerate band (labeled n) of the Pauli
Hamiltonian [Eq. (4)], the Bohr-Sommerfeld quantization
rule is

l2S[o] + φM +
∮
o

(X + A) · dk + Z

∮
o

σ z dk

v⊥

∣∣∣∣
E=Ej ,kz

= 2πj +O(l−2), j ∈ Z. (68)

The left-hand side of Eq. (68) comprises five terms which we
define in their order of appearance:

(i) The first term is a dynamical phase that is proportional
to the k⊥-space area S bounded by oj , with S being positive
(resp. negative) for a clockwise-oriented (resp. anticlockwise)
orbit.

(ii) The second term is a Maslov phase [95], e.g., φM = π

for orbits which are deformable to a circle, and equals 0 for
figure-of-eight orbits, as elaborated in Sec. V B. To leading
order in the field, l2S + φM = 2π (j + 1/2) is a well-known
result by Onsager and Lifshitz [2–4]. The Landau-level degen-
eracy (N ) may be obtained from the following semiclassical
phase-space argument [96]: N equals the phase-space density
of states [(2π )−2 for two spatial dimensions, which we assume
in this paragraph for simplicity], multiplied by the phase-space
volume (δV) in between two constant-energy hypersurfaces;
these hypersurfaces correspond to nearest-neighbor Landau
levels indexed by adjacent integers in the quantization rule,
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hence

N = δV
(2π )2

= ĀδS

2π2
= Ā

2πl2
, (69)

with Ā the real-space area of the 2D solid. This degeneracy
simply reflects that a single-particle state undergoing localized
cyclotron motion occupies an average area of 2πl2 in the
semiclassical limit.

(iii) Beyond Onsager-Lifshitz,
∮
X is the single-band Berry

phase acquired over a single cyclotron period [X = X̃nn as
defined in Eq. (15)]. We might utilize Stoke’s theorem to
combine terms (i) and (iii) as

l2S[o] +
∮

o

X · dk = l2S̃,

S̃ :=
∫

|d2k|[1 − l−2F z(k)], (70)

with the Berry curvature defined by F z = εαβ∇α
kX

β . One
may therefore interpret (2π )−2[1 − l−2F z(k)] as the Berry-
corrected, phase-space density of states for a 2D solid im-
mersed in a spatially homogeneous field; i.e., a single-particle
state occupies a volume in phase space that is modified by
the coupling of the magnetic field to the Berry curvature.
This correction to the phase-space density of states may
alternatively be derived from a different route: through the
semiclassical equations of motion [97–99], which ultimately
also derives from the effective-Hamiltonian formalism [49,74].

(iv) The fourth term is the line integral of a one-form that
encodes the orbital magnetic moment:

A · dk := [X̃
x
(
̃y − ṽy)]nn

2vyn
dkx + (x ↔ y), (71)

where X̃
x
(
̃y − ṽy) is formally the product of two infinite-

dimensional matrices expressed in Eq. (62).
∮
A · dk is not a

geometric phase because it depends on the rate at which the
orbit is traversed [recall that the orbit velocity is related to
the band velocity through Eq. (41)]. Analogous expressions of∮
A · dk have been called, in various contexts, the “no-name”

phase [27,28,100], and sometimes the Ramal-Wilkinson phase.
However, we will refer to it as the Roth phase to honor its
first discoverer [24,25] in the context of Bloch electrons in a
magnetic field.

(v) Finally, Z
∮
σ z/v⊥dk is the Zeeman energy of the

nondegenerate band integrated over the orbit; the k dependence
of the Zeeman energy originates from spin-orbit coupling.
Note Z := g0h̄/4m, dk = |dk|, v⊥ := (v2

x + v2
y)1/2, σ z(k) :=

σ z
nn(k) = 〈unk|σ̂ z|unk〉 ∈ R.

All of (i)–(v) may be evaluated knowing the band structure
at zero field; (i) and (ii)–(v) depend continuously on the
energy of the orbit E; in three spatial dimensions, they depend
additionally on the wave vector (kz) parallel to the field.
Equation (68) leads to discrete, macroscopically degenerate
Landau levels labeled as Ej ; more details about the spectrum,
as well as consequences in dHvA oscillations, are described in
Sec. V D.

In the absence of spin-orbit coupling, a spin-degenerate
band results in spin-split Landau levels obtained from the two

quantization conditions:

l2S[o] + φM +
∮
o

(X + A) · dk ± π
g0

2

mc[o]

m

∣∣∣∣
E=E±,j ,kz

= 2πj +O(l−2), j ∈ Z, (72)

where mc:=(h̄2/2π )∂S/∂E is the cyclotron mass for the orbit
o. Despite the notational similarity of Eqs. (68) and (72),
we remind the reader that the velocity matrix �̃ is defined
differently when there is no spin-orbit coupling [cf. Eq. (10)].
In spite of the spin degeneracy of the bands at zero field,
we analyze this case under the heading of “single band”
(e.g., in Sec. V A 1) because the field-on Hamiltonian may be
block-diagonalized with respect to the spin quantum number
Sz = ±h̄/2; all “single-band” statements are then understood
to apply to either of Sz = ±h̄/2, and all symmetries that we
consider preserve Sz.

Equations (68) and (72) may be derived from the condition
of continuity of the WKB wave function around the closed
orbit [17,52]. This wave function is derived in Sec. V A,
where we also demonstrate that the Berry and Roth phases
are respectively generated from HB

1 and HR
1 . The additional

phase of π on the right-hand side of Eq. (68) [and also of
Eq. (72)] is a Maslov correction that we derive in Sec. V B;
here, we argue that previous derivations [17,52] of the Maslov
correction introduce an uncertainty of O(l−2/3), which we
reduce toO(l−2) in an improved derivation. We combine these
results in Sec. V C 1 to finally derive Eq. (68), and further
discuss experimental signatures in quantum oscillations in
Sec. V D.

For a closed orbit (o) corresponding to aD-fold-degenerate
band subspace, the quantization condition is

l2S(Ea,j ,kz) + φM + λa(Ea,j ,kz)

= 2πj +O(l−2/3), j ∈ Z, a ∈ ZD, (73)

where {eiλa }Da=1 is the spectrum of the unitary propagator

A[o] = exp

[
i

∮
o

{
(A + X) · dk + Z(σ z/v⊥) dk

}]
. (74)

Here, exp denotes a path-ordered exponential, and we employ
the same symbol X for both the Abelian [as in Eq. (68)]
and non-Abelian [as in Eq. (73)] Berry connection. The
non-Abelian generalization of the Abelian Roth one-form
[in Eq. (71)] is

(A · dk)mn = [X̃
x
(
̃y − ṽy)]mn

2vy
dkx + (x ↔ y), (75)

withm,n = 1,2, . . . ,D. Due to the assumed degeneracy within
P , the band velocity v1 = · · · = vD := v. Equation (73) leads
to D sets of Landau levels (labeled by the a subscript on
{Ea,j }). Landau levels within each set are locally periodic; i.e.,
the difference between two adjacent Landau levels (Ea,j+1 −
Ea,j ) is approximately 2π/l2(∂S/∂E) evaluated at Ea,j , as
elaborated in Sec. V D.

The quantizations rule in Eqs. (73) and (74) may be
compared with previous works. For T i-symmetric, spin-orbit-
coupled systems (D = 2), two-band quantization conditions
have been derived [31] with an “equation-of-motion” method
[25], which leads to formulating {eiλa } as eigenvalues of a
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complex Ricatti equation [31]. Their method presupposes a
special basis for the Bloch functions (i.e., a special gauge) in
which the matrix exponent in Eq. (74) is traceless, as elaborated
in Sec. C 4 b; note that {eiλa } are gauge-independent, so in
principle their and our methods should converge to the same
quantization rule for this symmetry class. In other formulations
of the quantization rule for spin-degenerate bands, the Berry
phase and/or orbital moment have either been neglected explic-
itly [19] or derived in a form that is difficult for comparison
[101,102]. On the other hand, Eqs. (73) and (74) represent
the quantization condition in its most general form, which
would apply to any symmetry class, and to bands of any energy
degeneracy (D). Since no special gauge was assumed in our
expressions, they are useful for numerical computations where
gauge fixing is often troublesome. One further contribution
we make is a comprehensive, group-theoretic analysis of
the propagator in Eq. (74), which determines in complete
generality the symmetry constraints on the Landau levels (see
Sec. VI D). In a complementary perspective, multiband wave
packet theory has been derived in Ref. [35], and reviewed in
Ref. [34] with notation that is closer to ours. They derived
an equation of motion for a multicomponent wave packet that
is also sensitive to the non-Abelian gauge structure; however,
their dynamical equations are nontrivially coupled, and it is
unclear to us whether a non-Abelian quantization rule can be
derived in their approach.

Our results may plausibly be applied to charge-neutral,
cold-atomic systems (e.g., optical lattices of bosonic cold
atoms, degenerate Fermi gases) described by the field-on
Schrödinger Hamiltonian [Eq. (39)] with an artificially induced
gauge field. It is possible to mimic a magnetic field by
(i) rotation of a Bose-Einstein condensate [103], (ii) cou-
pling neutral fermionic atoms to slow light [104,105], and
(iii) laser-assisted tunneling in an optical lattice [106]. In the
limit of weak interactions, this leads to the quantization of
energy levels which are analogous to Landau levels [107].

We remark on one caveat to the above discussion: energy
quantization of closed orbits is never strictly correct in a solid.
While the magnetic field tends to quantize electronic motion
and form discrete levels, the crystalline potential tends to
form bands. From the perspective of semiclassical orbits in
k space, there generally exists a nonzero tunneling probability
between closed orbits in distinct Brillouin zones. This leads
to broadening of the Landau levels that cannot be accounted
for with the above quantization rules. While this broadening
is usually exponentially small in the field [14,108], it cannot
be neglected in narrow energy ranges where the separation of
orbits is of order 1/l; this frequently occurs at saddle points at
the Brillouin-zone edge [109,110].

A. WKB wave function of effective Hamiltonians

1. Single-band WKB wave function

We look for an eigenfunction of the single-band H(K ) =
H0 +H1 with the WKB ansatz

gk = e−iψk with ψ = ψ−1 + ψ0 + ψ1 + · · · , (76)

where the subscript denotes the order in the WKB parameter
l−2. Any function that is asymptotically expandable as Eq. (76)
will be called a WKB function. In the classically allowed

regions, ψ−1 ∈ R is the integral of a classical action, while
higher-order ψj ∈ C. In the Landau gauge A = (By,0,0), the
kinetic quasimomentum operators are

Kx = kx + il−2∂y, Ky = ky, (77)

and we will look for wave functions over the circle
parametrized by ky , with kx a good quantum number. We shall
refer to this as the wave function in the (Kx,ky) representation.
In this representation, H may be solved as

[H0(K ) +H1(K ) − E]gνkE = O(l−4), (78)

gνkE = 1√|vxν |
eikxky l

2
e−il2 ∫ [kνx−Hν

1 (vxν )−1]dky . (79)

Here, all quantities carrying a ν superscript or subscript depend
on ky and E; they also depend, in three spatial dimensions, on
the wave vector kz, but we shall henceforth omit this notation-
ally. As a case in point, kνx (ky,E) should be distinguished from
the continuous parameter kx . kνx describes an oriented edge
(labeled by ν) of the zero-field band contour (o) at fixed energy
E, with the orientation prescribed by Hamilton’s equation;
each kνx corresponds to a single-valued solution of

H0(kνx (ky,E),ky) = E. (80)

The constant-energy contour of a single band may be divided
into multiple edges; e.g., a closed contour has at least two
edges. A more elaborate, graph-theoretic description of edges
is provided in Sec. III F. For sν corresponding to a band index
n, we further define

vxν (ky,E) := vxn
(
kνx (ky,E),ky

)
and

Hν
1 (ky,E) := H1

(
kνx (ky,E),ky

)
, (81)

as the band velocity and the first-order Hamiltonian [cf.
Eq. (57)] evaluated on the edge ν. The single-band WKB wave
function of H0 was first derived by Zilberman [51]; Fischbeck
later derived the corrections due to H1 and H2 [52], of which
we have shown only the first-order correction in Eq. (79). We
will therefore refer to Eq. (79) as the Zilberman-Fischbeck
function; the same expression without theH1 correction will be
referred to as the Zilberman function. With sufficient hindsight,
we may now identify the Roth, Berry, and Zeeman phases as
being generated, respectively, by HR

1 ,H
B
1 , and HZ

1 :

l2
∫

H1
dky

vx
= l2

∫ (
HR

1 +HB
1 +HZ

1

)dky
vx

=
∫

(A + X) · dk + σ z Z dk

v⊥ ; (82)

this expression is understood to be evaluated on a certain
edge. To derive the last equality, we combine the definitions in
Eq. (57) with the identity 0 = vx dkx + vy dky (which is valid
on a constant-energy contour); Hamilton’s equation in Eq. (41)
is also useful in identifying −dky/vx = dk/v⊥.

Let us derive the single-band, Zilberman-Fischbeck wave
function. This serves a pedagogical purpose, but also warms
us up for the slightly more complicated derivation of the
multiband WKB wave function in Sec. V A 2, which in its most
general form has not been seen.
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Proof of Eq. (79). Applying the identity Eq. (B10) (derived
in Appendix B 1) to Eq. (78), with the WKB ansatz g = e−iψ ,
we derive

E = H0 +H1 + l−2

[
i

2

∂2H0

∂kx∂ky
+ ψ ′

0(ky)∂xH0

]

+ i

2
l−4ψ ′′

−1∂
2
xH0 +O(l−4), (83)

whereHj and its derivatives are evaluated at (kx + ψ ′
−1/l

2,ky),
andψ ′

j is the first derivative ofψj with respect to ky . A solution
exists if ψ−1 can be found that satisfies the zeroth-order
relation:

E = H0(kx + ψ ′
−1/l

2,ky). (84)

For the purpose of deriving the quantization conditions, we will
only need the WKB wave functions in the classically allowed
regions, where ψ ′

−1 ∈ R. Generally, there might be multiple
single-valued and real solutions, which we label with ν as kx +
ψν

−1
′/l2 := kνx (ky,E) [compare Eq. (84) with Eq. (80)]. This

implies

ψν
−1 = −l2kxky + l2

∫
kνx (ky,E)dky (85)

up to an irrelevant integration constant. Collecting the first-
order terms in Eq. (83), and substituting the just-obtained
expression for ψν

−1
′′,

0 = l2H1 + i

2

(
∂2H0

∂kx∂ky
+ ∂kνx

∂ky

∂2H0

∂k2
x

)

+ ψν
0

′(ky)
∂H0

∂kx

∣∣∣∣
k→(kνx ,ky )

. (86)

Let us separateψ0 = ψ0R + iψ0I into real and imaginary parts.
Setting the imaginary component of Eq. (86) to zero,

0 = 1

2

∂vxν

∂ky
+ ψν′

0I v
x
ν ⇒ eψ

ν
0I ∝ 1√∣∣vxν ∣∣ , (87)

with vxν defined in Eq. (81). Setting the real component of
Eq. (86) to zero,

l2H1 + ψν
0R

′ ∂H0

∂kx

∣∣∣∣
k→(kνx ,ky )

= 0 ⇒ ψν
0R = −l2

∫
Hν

1 (ky,E)
(
vνx
)−1

dky, (88)

with Hν
1 defined in Eq. (81).

2. Multiband WKB wave function

Let us define the multiband WKB wave function f as the
eigenfunction of

[H0(K ) +H1(K ) − E] f νkE = O(l−4); (89)

matrix summation is implicit in this expression, and f is
a vector-valued function with as many components as the
number (D) of bands in the degenerate subspace P . We would
like to demonstrate that

f νkE = Aν
kE f 0ν

kE (90)

with f 0 the product of an as-yet-undetermined, ky-independent
vector c with the Zilberman function:

f 0ν
a = cνa

1√∣∣vxν ∣∣e
ikxky l

2
e−il2 ∫ kνx dky , cνa ∈ C, (91)

with a = 1, . . . ,D, and A a unitary propagator defined as the
path-ordered exponential

Aν
kE = exp

[
il2

∫
Hν

1

(
vxν
)−1

dky

]
. (92)

Despite being a simple extension of the single-band wave
function, we have not seen a multiband ansatz for the Roth
effective Hamiltonian in the literature.

Proof. The assumed band degeneracy within P implies
[H0(k)]mn = δmn[H0(k)], and therefore

[H0(K ) − E] f 0ν = O(l−4), (93)

with f 0ν defined in Eq. (91), as a special case of Eq. (79) with
H1 = 0. We propose the ansatz g = A f 0 with Ak a D ×D

matrix that is differentiable with respect to ky . Each matrix
element Aab ∈ C is assumed to be of order one. The following
identity is useful:

H0(K )Aab

=
∑

R

Ȟ0(R)eik·R−iRxRy l
2

× {Aab − l−2Rx∂yAab +O(l−4)}e−l−2Rx∂y , (94)

which is derivable from Eq. (B11). Letting Eq. (94), a matrix
operator, act on the vector f 0ν , we obtain∑

c

H0(K )Abcf
0ν
c

=
∑
c

AbcH0(K )f 0ν
c + il−2

∑
c

∂yAacv
x
ν f

0ν
c +O(l−4),

(95)

with help from Eq. (B12). Here, we have introduced the band
velocity vxν on the edge labeled ν. By similar manipulations
with the H1 term, we derive∑

bc

H1(K )abAbcf
0ν
c =

∑
bc

(
Hν

1

)
ab
Abc f 0ν

c +O(l−4). (96)

Inserting Eqs. (95) and (96) into Eq. (89), the zeroth-order
terms cancel owing to Eq. (93); after factoring out a common
multiplicative factor (the Zilberman function), what remains is∑

b

il−2∂yAabv
x
ν c

ν
b +

∑
bd

(
Hν

1

)
ab
Abdc

ν
d = O(l−4).

We would like this equation to be true for arbitary cν ; hence
we are led to a simplified differential equation

∂yA = il2
(
vxν
)−1

Hν
1 A, (97)

which is solved by Eq. (92).

B. Maslov correction from turning points

For any closed orbit, as exemplified in Figs. 2(e)–2(h), there
are at least two turning points for which, in their vicinity,
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FIG. 2. Illustration of various turning points. Each turning point
may be assigned a sense of circulation, which will be indicated
by the sign of ±i next to each green dot. Each turning point may
be divided into four classes illustrated by (a)–(d); these classes are
distinguished by (i) the sign in ky ∼ ±k2

x [i.e., whether the band
contour forms an upright (�) or inverted (�) parabola], as well as
(ii) an orientation determined by the direction of a semiclassical wave
packet. If the band dispersion is expanded around each of the turning
point as εk = uyky + k2

x/2mx , then in (a) uy,mx > 0, (b) uy,mx < 0,
(c) uy > ,mx < 0, and in (d) uy < 0,mx > 0. The correspondence
between the sign of ±i and the four classes (a)–(d) of turning points
is derived in Appendix B 2 a. (e)–(g) illustrate simple, closed orbits
which are deformable to a circle, and (h) a nonsimple, closed orbit in
the shape of a figure-of-eight.

the Zilberman-Fischbeck (ZF) wave function loses its validity
due to strong quantum fluctuations. In the graph-theoretic
language introduced in Sec. III F, a turning point is a vertex
which is connected to two edges; alternatively stated, the
beginning and end points of edges are vertices, and a turning
point exemplifies a degree-two vertex.

It is well-known from the theory of caustics [95] that
in passing around a turning point the WKB wave function
effectively picks up a phase φr . For us, φr describes the
phase difference between incoming and outgoing single-band
ZF wave functions, which are valid sufficiently far from the
turning point [111]; “incoming” and “outgoing” are inter-
pretive characterizations of different edges of the ZF wave
function—we may uniquely assign an orientation to each edge
from Hamilton’s equation [cf. Eq. (41)]. In analogy with a 1D
Schrödinger particle reflecting off a wall, we might interpret
the semiclassical wave packet for a Bloch electron as being
reflected in the coordinate ky—we therefore refer to φr as a
reflection phase.

For a turning point in the orbit of a single band, we
determine that φr = ±π/2 +O(l−2), where the sign of π/2 is
determined by the sense of circulation when passing the turning
point: plus for anticlockwise, and minus for clockwise. We
should clarify that this orientation is assigned locally to each
turning point, and in a manner independent of the shape and
orientation of the rest of the orbit. We may imagine minimally
extending the parabolic contour at each turning point into a
circle (e.g., �→� , �→�); we then assign the orientation
by interpreting the circle as a clock face.

φr is derived by a divide-and-conquer approach—we ap-
proximately describe the turning region with an effective

Hamiltonian that is linear in one momentum component and
quadratic in the other. What distinguishes our approach from
previous works [17,51,52] is that the effective Hamiltonian
we adopt to describe the turning point is not just the Peierls-
Onsager Hamiltonian, but includes the first-order correction by
H1. For simplicity, we consider a hard-wall boundary condition
at the turning point; i.e., we ignore tunneling between closed
orbits. We then match the asymptotic wave function of this
small-momentum, effective Hamiltonian with the incoming
and reflected WKB functions; the proof is completed in
Appendix B 2.

The multiband analog of the calculation in Appendix B 2 is
more involved. One may, however, avoid this calculation if one
is willing to accept an uncertainty ofO(l−2/3) in the quantization
condition; this viewpoint seems to be implicitly adopted in
past works [17,51,52,101,102], though no attempt was made to
quantify this uncertainty. To clarify, by exploiting the smallness
of the turning regions relative to the rest of the semiclassical
orbit, we might neglect the effect of H1 in the turning regions,
but account for it everywhere else on the orbit. In practice,
this just means applying the zeroth-order Maslov correction
(π for a closed orbit) to a quantization condition which
already includes first-order corrections through the propagator
of Eq. (92). Let us estimate the uncertainty in this approach.
(i) If our asymptotic expansion of the quantization conditions
is at all valid, we expect Hj to make an O(l2−2j ) contribution
to the quantization condition; in particular, H1 makes an O(1)
contribution. (ii) The length of the orbit lying within the turning
region is ofO(l−2/3), as shown in Appendix B 2; generically, the
length of the semiclassical orbit is on the order of the reciprocal
period. The ratio of the turning length to that of the entire
orbit is then of O(l−2/3). Combining (i) and (ii), we expect that
neglecting H1 in the turning regions introduces an uncertainty
of O(l−2/3). For the multiband case, we therefore argue that the
Maslov correction for a closed orbit is π +O(l−2/3), for each
of the D sets of sub-Landau levels [indexed by a in Eq. (73)].

C. Quantization conditions

1. Single-band quantization condition for closed orbits

Let us illustrate how to formulate the continuity condition
for the circular closed orbit, which is composed of two edges
(labeled by ν = ±) which touch at two turning points, as
illustrated for two orientations in Figs. 2(e) and 2(f). We shall
focus on the orbit that circulates as � in Fig. 2(e), which
is expected of an electron pocket at the Fermi level. The
quantization condition for an energy eigenstate at energy E

and wave vector (kx,kz) is the continuity (with respect to ky)
of the wave function in the (Kx,ky) representation.

The continuity condition on f may be formulated in a
manner that emphasizes a semiclassical motion along the orbit;
this motion is described by the time evolution of certain scalar
amplitudes that we define for each edge:

aν,E(tν) := e−il2 ∫ [kνx−Hν
1 (vxν )−1](dky/dtν )dtν |E. (98)

This amplitude is simply the phase component of the
Zilberman-Fischbeck wave function gνkE [cf. Eq. (79)], except
without eikxky l

2
, which is trivially continuous over any closed

orbit. The triviality of eikxky l
2

would not be true of open orbits,
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as we will substantiate in Sec. V C 3. We have parametrized
each amplitude in Eq. (B30) by a timelike variable tν ∈ [0,1],
which increases along the orbit in a direction consistent with
Hamilton’s equation. The end points (tν = 0 and 1) correspond
to distinct turning points that bound the edge ν. We may loosely
interpret k(tν) as the wave vector of the “moving wave packet”
at time tν ; we caution the reader that there are no turning
points in conventional wave packet theory [7], but the language
of a “moving wave packet” offers a convenient and visually
appealing metaphor for the continuity and patching of wave
functions in WKB theory.

With this caveat in mind, we will interpret

eiθν (E,l2) = aν,E(1)

aν,E(0)

:= e−il2 ∫ 1
0 [kνx−Hν

1 (vxν )−1](dky/dtν )dtν
∣∣
E

(99)

as the semiclassical phase acquired by a wave packet as it
traverses the edge ν. As the wave packet approaches a turning
point along the edge ν ′, it is reflected onto a distinct edge ν and
picks up an additional phase of ±π/2; the sign depends on the
sense of circulation of the turning point, as we have illustrated
in Figs. 2(a)–2(d). We implement this reflection phase in the
boundary condition

aν(0) = eiφ
ν′
r aν ′ (1), eiφ

ν′
r = ±i. (100)

For any closed orbit, the set of equations in Eq. (99) and
Eq. (100) (for all ν,ν ′) may be combined into a single equation
that is parametrized by E (and kz in 3D solids). For our case
study of the simplest closed orbit �, this single equation
may be expressed in a manner that emphasizes its motional
interpretation:

1 = (−i)eiθ− (−i)eiθ+|E,kz,l−2 . (101)

Reading from right to left, a wave packet that begins at t+ = 0
first accumulates the semiclassical phase eiθ+ along edge +, is
then reflected unto edge −, and accumulates eiθ− in traveling
along this edge; a second reflection closes the loop, and the
quantization rule states that the net phase (acquired by the
wave packet around the loop) is an integer multiple of 2π .
Equation (101) may equivalently be expressed as in Eq. (68),
or as

−1 = exp

[
il2S+i

∮
o

(A+X) · dk+iZ

∮
o

(σ z/v⊥)dk

]
Ej ,kz

,

(102)

with S defined as the oriented area of the orbit:

S[o] := −
∫ 1

0
kνx (dky/dtν)dtν. (103)

The other terms in the exponent are, collectively, the
Roth-Berry-Zeeman phase originating from theH1 term in eiθν

[cf. Eq. (82)]. The gauge ambiguity in the definition of HB
1

[recall Eq. (61)] is reflected in the above equations by the
ambiguity in the Berry connection X. However, it is known
[20] that the exponentiated loop integral of iX, as appears in
Eq. (102), is gauge-invariant.

Being independent of kx , Eq. (102) defines a set of discrete
energy levels {Ej } which are each macroscopically degenerate;
we refer to them as Landau levels. The Zeeman term in
Eq. (102) may be further simplified if spin-orbit coupling is ab-
sent; we might then replace σ z → ±1 and Eq. (102) reduces to
Eq. (72) with the identification Z

∫
dk/v⊥ = π (g0/2)(mc/m),

with mc the cyclotron mass.
The extension of Eq. (101) to the most general closed orbit,

composed of Ns ∈ 2Z edges and an equal number of turning
points, is

1 =
Ns∏
ν=1

eiφ
ν
r eiθν

∣∣∣∣
E,kz,l−2

, (104)

where we identify the Maslov phase

φM :=
Ns∏
ν=1

φνr (105)

as the net reflection phase of all turning points. To derive the
same quantization condition from more conventional means
(i.e., continuity and patching of wave functions), we refer the
interested reader to Appendix B 3. Equation (104) applies to
any simple closed orbit, which we define as orbits that are
deformable to a circle, e.g., Fig. 2(g). Equation (104) also
applies to nonsimple closed orbits which are homotopically
inequivalent to a circle, a case in point being the figure-of-eight
illustrated in Fig. 2(h). A figure-of-eight pinches together an
electron-like pocket with a hole-like pocket, and has recently
been studied in the context of over-tilted Weyl/Dirac fermions
[46,47]. The four turning points in a figure-of-eight have
canceling circulations [as indicated by the sign of ±i in
Fig. 2(h)], and therefore there is no Maslov correction, contrary
to a claim in Ref. [46]; we shall extend our analysis of the over-
tilted Weyl/Dirac fermion to include interband breakdown in
Sec. IX.

The net reflection phase (
∏Ns

ν=1 e
iφνr ) of a closed orbit is

invariant under continuous deformations of the orbit trajectory;
we will argue for this by locally deforming the band contour
near a turning point, while maintaining a closed orbit. If we
invert the parabolic contour associated with a single turning
point, we necessarily introduce a Mexican-hat wiggle with
two additional turning points; e.g., Fig. 2(g) is a deformed
version of Fig. 2(e). Since the net circulation (a notion we
make precise in Sec. V B) of the final three points is always
equal to that of the original point, there is no net change in the
reflection phase. Having argued that the combined reflection
phase is topologically invariant for a closed orbit, we may
therefore evaluate this quantity for the simplest, homotopically
equivalent representative. For the simple closed orbits, this is
a circle [Figs. 2(e) and 2(f)], which has a reflection phase of π ;
this accounts for the π Maslov correction to the quantization
condition. One implication of this argument: while Eq. (102)
has been derived for a circular orbit, its final expression is
generally valid for any simple closed orbit.

2. Multiband quantization condition for closed orbits

In the multiband case with P (k) having rank D, we may
analogously define a vector-valued amplitude for each edge
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(labeled by ν) as

aνE(tν) := e−il2 ∫ tν0 kνx (dky/dt ′ν )dt ′ν Aν
k(tν )E aνE(0)

∣∣
E
. (106)

As defined in Eq. (92), A is a D ×D unitary matrix acting on
an as-yet-unspecified, constant vector a(0). tν ∈ [0,1] and k(tν)
have the same meaning as for the single-band case, as described
below Eq. (98). We implement the boundary condition

aνE(0) = eiφ
ν′
r aν ′E(1), eiφ

ν′
r = ±i, (107)

for every two edges (ν and ν ′) that touch at a turning point.
For a closed orbit (o) comprising Ns edges (and an equal

number of turning points), Eqs. (106) and (107) may be
combined into a system of linear equations with D variables.
The quantization condition is then equivalent to solving this
system of equations; a solution exists upon satisfaction of the
following determinantal equation:

det

[(
Ns∏
ν=1

eiφ
ν
r

)
eil

2S A[o] − I

]∣∣∣∣∣
E=Ea,j ,kz

= 0, (108)

with a ∈ ZD, j ∈ Z.A[o] is the propagator of Eq. (74) defined
over the full orbit. Its solution corresponds to D sets of
equidistant, macroscopically degenerate Landau levels. For a
simple closed orbit,

∏Ns

ν=1 e
iφνr = −1, and we are led directly

to the multiband quantization conditions in Eqs. (73) and (74).
In Sec. VI D 1, we show that Eq. (108) is invariant under the
U (D) gauge transformations [cf. Eq. (22)]; the transformation
of the propagator under symmetry is further investigated in
Sec. VI D 2, where we prove certain symmetry constraints for
the Landau levels.

As an example, consider a spin system where T i symmetry
imposes a twofold degeneracy (D = 2) in the zero-field band
dispersion. In the presence of a field, the same symmetry
imposes λ1 = −λ2 mod 2π , as elaborated in Sec. VI D 2. If
spin-orbit coupling is negligible, |λ1 − λ2| just equals the free-
electron Zeeman splitting [π (g0/2)(mc/m) from Eq. (72)].

3. Beyond closed orbits

We briefly comment on the quantization conditions for
open orbits with negligible breakdown. One example would
be a noncontractible orbit which extends across the Brillouin
torus in a single direction; in the extended-zone scheme,
these orbits traverse across different Brillouin zones. Since the
phase factor eikxky l

2
is not single-valued when k is advanced

by a reciprocal vector, this phase cannot be neglected when
one imposes continuity on the wave function in the (Kx,ky)
representation. When this phase is accounted for, it introduces a
kx dependence to the quantization condition, and consequently
a loss of the (exponentially accurate) macroscopic degeneracy
that characterizes closed orbits. We refer the reader to [18] for
a more extensive discussion of open orbits.

D. Landau levels and de Haas–van Alphen
oscillations for closed orbits

1. Single-band case

When the single-band quantization condition [Eq. (68)] is
viewed at a fixed field (and a fixed wave vector kz for a 3D
solid), the energy difference between adjacent Landau levels

is locally periodic as

Ej+1 − Ej = 2π

l2∂S/∂E

∣∣∣∣
E=Ej ,kz

+O(l−4). (109)

This follows from the assumption that the area of the orbit (S)
as well as the Roth-Berry-Zeeman (RBZ) phase, collectively
defined as

λ(E,kz) :=
∮
o

(A + X) · dk + Z

∮
o

(σ z/v⊥)dk, (110)

are smooth functions of energy on the scale of Ej+1 − Ej =
O(l−2). Equivalently stated, we assume ∂S/∂E and ∂λ/∂E are
O(l0) quantities. The quantity (h̄2/2π )∂S/∂E that determines
Landau-level differences has been referred to as the cyclotron
mass; it coincides, in the free-electron limit (V = 0), with the
free-electron mass. Supposing E0

n are zeroth-order solutions
of the quantization condition, the H1 correction to E0

n is

δEn = −l−2 λ

∂S/∂E

∣∣∣∣
E0
n

+O(l−4). (111)

If we view Eq. (68) at fixed energy (e.g., the Fermi energy
EF ) and variable field, then the quantization condition is
satisfied for a discrete set of fields (indexed by integer j ), with
corresponding magnetic lengths satisfying

l2j+1 − l2j = 2π

S(EF ,kz)
+O(l−2),

l2j = 2πj − φM − λ

S

∣∣∣∣
E=EF ,kz

+O(l−2). (112)

The first equation forms the basis of quantum oscillatory
phenomena of the de Haas–van Alphen (dHvA) type—they
reflect how quasiperiodic Landau levels successively become
equal to the Fermi energy as the reciprocal magnetic field is
changed. Such l2j is henceforth referred to as a dHvA level,
and the set of all dHvA levels is referred to as the dHvA
spectrum. The period in l2j is not affected by the RBZ phase
(λ), in accordance with the conventional theory of metals [6].
On the other hand, one may look to the phase offset of the
dHvA oscillation to extract λ. In 3D metals, the curvature of
the Fermi surface results in an additional Lifshitz-Kosevich
correction [3,4] to this phase offset, which in sum equals

γ := l2j S + φLK mod 2π ≡ −λ− φM + φLK, (113)

with φLK = ±π/4 depending on whether the orbit is maximal
or minimal. Restated from the perspective of measurement, γ
is the phase offset of the oscillations of the magnetization of
a solid [8]. In the experimental literature, γ is often viewed
graphically as the intercept of an extrapolated line connecting
the discrete values of l2 where the magnetization is peaked; we
shall therefore refer to the quantity defined in Eq. (113) as the
γ intercept.

A comprehensive symmetry analysis of the RBZ phase is
performed in Sec. VI D; here we illustrate two highlights:

(i) Orbits which are mapped to themselves, up to a reversal in
orientation, are said to be self-constrained. Graphene provides
a paradigmatic example, for which an orbit encircling the
Dirac point is invariant under T c2z symmetry; this leads to
the vanishing of the Roth moment at each wave vector, as well
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as the quantization of the Berry phase to π , which cancels the
Maslov correction in the γ intercept.

(ii) Just as relevant are orbits which are mapped to distinct
orbits by a symmetry; two related orbits are said to be
mutually constrained. In a toy model of spinless graphene,
two orbits which encircle different valley centers are mutually
constrained by T symmetry; since each orbit does not encircle
a T -invariant wave vector, it is not self-constrained by T

symmetry. If the spatial symmetry (c2z) is further broken
(plausibly by epitaxial growth on certain substrates [112,113]),
each valley-centered orbit develops an orbital moment; i.e.,
when integrated over the orbit, this moment results in a
nontrivial Roth phase. Owing to T symmetry, the sum of
Roth-Berry phases in two mutually constrained orbits cancels
modulo 2π , but individually each phase should be measurable
from the γ intercept of its corresponding orbit. Alternatively
stated, two distinct but mutually constrained harmonics should
appear in the magnetization oscillations. To make this toy
model of graphene more realistic, one must incorporate the
Zeeman effect, as described in Ref. [32].

The equations in this section directly apply to spin-orbit-
coupled systems with nondegenerate bands; for Zeeman-
coupled systems with negligible spin-orbit coupling, the above
equations would apply to either of the two spin species, with σz
replaced by ±1; for intrinsically spinless systems described by
a Schrödinger Hamiltonian, the above equations apply without
the Zeeman term (i.e., set Z = 0).

2. Multiband case

Considering Eq. (73) at fixed field and kz, we obtain, for
each eigenvalue eiλa of the D ×D propagator [Eq. (74)], a
set of discrete energy levels {Ea,j }j∈Z. For fixed a, the energy
difference between adjacent Landau levels is to leading order

Ea,j+1 − Ea,j ≈ 2π

l2∂S/∂E

∣∣∣∣
E=Ea,j ,kz

. (114)

We have assumed here that ∂S/∂E and ∂λa/∂E are bothO(l0).
When Eq. (73) is viewed at fixed energy (EF ) and varying field,
the quantization condition is satisfied for a discrete set of fields
corresponding to

l2a,j ≈ 2πj − φM − λa

S

∣∣∣∣
E=EF ,kz

,

l2a,j+1 − l2a,j ≈ 2π

S(EF ,kz)
. (115)

All equations in this section are accurate to O(l−8/3), due to
the O(l−2/3) uncertainty in the multiband Maslov correction
(derived in Sec. V B). The dHvA spectrum therefore divides
into D sets of levels indexed by a = 1, . . . ,D; each set
corresponds to a harmonic in the magnetization oscillations,
with corresponding intercept γa := l2a,j S + φLK mod 2π .

Particularizing to spin-orbit-coupled bands with T i symme-
try (D = 2), Eq. (115) implies the existence of two harmonics
in the magnetic oscillations. Absent any other symmetries,
these harmonics are generally distinct, withλ1 = −λ2 mod 2π ,
as proven in the paragraph surrounding Eq. (146) in Sec. VI D.
A more comprehensive symmetry analysis of λa is performed
in the next section (Sec. VI).

VI. SYMMETRY IN THE FIRST-ORDER EFFECTIVE
HAMILTONIAN THEORY

This section describes the effects of symmetry in the
first-order effective theory; our analysis covers all possible
symmetries that occur in crystals, i.e., in any space group
or magnetic space group. We first identify in Sec. VI A
the symmetries that are relevant to semiclassical orbits; we
then describe how symmetry constrains the orbital magnetic
moment and the Zeeman coupling (Sec. VI B), the first-order
effective Hamiltonian (H1) (Sec. VI C), and the propagator that
is generated by H1 (Sec. VI D) over an orbit. The eigenphases
of this propagator enter the quantization conditions, from
which one may determine the symmetry constraints on the
Landau levels and dHvA oscillations. Our symmetry analysis
is simplified by the classification of closed orbits into ten (and
only ten) symmetry classes. These ten symmetry classes were
first introduced and exemplified in Ref. [32]; in Sec. VI D,
we provide a more detailed derivation which focuses on
the possible types of symmetry representations. In addition,
Sec. VI B may be used to analyze k-resolved measurements of
the orbital magnetic moment, e.g., through circular dichroism
in photoemission [53].

A. Symmetries of semiclassical orbits

We encourage the reader to scan through Sec. III C, where
we reviewed how symmetry constrains Bloch functions at zero
field. We assume the reader is familiar with certain notations
for symmetry transformations that were introduced therein.
As a reminder, g denotes a symmetry in the (magnetic) space
group (G) of a solid, and its representations in various contexts
(cf. Sec. III C) are denoted by ĝ,ǧ,ğ.

We would like to particularize to symmetries which are
relevant to Bloch electrons in a field. Assuming that the field
is oriented along �z, all semiclassical orbits are contained in
quasimomentum planes orthogonal to �z, and we are interested
in symmetries which relate one such orbit to another (or
possibly an orbit to itself, up to a reversal in orientation). For
3D solids, g’s action in k space may be block-diagonalized as

g : k → g ◦ k := (−1)s(g)ǧk

= (−1)s(g)(ǧ⊥k⊥,(−1)t(g)kz),

t(g) ∈ {0,1}, (116)

where t(g) = 0 (resp. 1) for symmetries whose point-group
operation preserves (resp. inverts) the coordinate parallel to
the field. We distinguish between k which parametrizes the 3D
Brillouin torus, and k⊥ = (kx,ky) which parametrizes a two-
torus (BT⊥) perpendicular to the field. We shall sometimes
refer to BT⊥ as a plane; symmetry operations that act only in
BT⊥ are described as planar.

In Eq. (116), we have also introduced ǧ⊥ as a real,
orthogonal, 2×2 matrix; it represents the point-group
operation that is restricted to BT⊥. The determinant of ǧ⊥

defines a Z2 variable u as

(−1)u(g) := det[ǧ⊥], u(g) ∈ {0,1},
det[ǧ] = (−1)t(g)+u(g). (117)

Let us demonstrate that u(g) = 0 (resp. 1) if g preserves
(resp. inverts) the orientation of the semiclassical orbit; to
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clarify, the orientation of an orbit is its sense of circulation,
whether clockwise or anticlockwise, that is determined from
Hamilton’s equation [cf. Eq. (1)].

The symmetry constraint on the band velocities at k and
g ◦ k [recall Eq. (116)]

v(k) = (−)s(g)[ǧT v(g ◦ k)], ǧTαβ = ǧβα, (118)

implies, through Eq. (41), an analogous relation between the
orbit velocities [defined in Eq. (41)]:

det[ǧ⊥]k̇
⊥|g◦k = (−)s(g)[ǧ⊥ k̇

⊥|k]. (119)

To interpret this equation, consider the map Yg : R2 → R2

between two planar wave vectors related by symmetry g:

Yg(k⊥) = (−1)s ǧ⊥k⊥ = (g ◦ k)⊥. (120)

Equation (119) states that Yg(k̇
⊥|k) is equal in magnitude to

the orbit velocity at g ◦ k, with a minus-sign difference iff
det[ǧ⊥] = (−1)u(g) = −1. �

All symmetries, whose point-group operation block-
diagonalizes as in Eq. (116), will henceforth be referred to
as symmetries of the orbit configuration. In deriving how
these symmetries constrain the effective Hamiltonian, the
following decomposition, valid for any symmetry of the orbit
configuration, would be useful:

g = T s(g) tδ r
t(g)
z ru(g)

x c
v(g)
n(g),z e

w(g), (121)

where tδ,T ,r,c,e are symmetry operations defined in Sec. VI A;
s,t,u ∈ {0,1} have been previously defined [Eqs. (25), (116),
and (117)]; n ∈ {2,3,4,6} labels the possible discrete rotations;
and we introduce here w ∈ {0,1} and v ∈ {0,1, . . . ,n− 1}.
Equation (121) is really valid for a double group; for ordinary
groups the same decomposition holds without the factor of ew.

Proof of decomposition Eq. (121). If g inverts time, we
decompose g = T g′ such that g′ is a purely spatial operation;
otherwise, g = g′. Our shorthand for this is g = T sg′. We
further decompose g′ into translational and point-preserving
spatial transformations: g′ = tδg

′′. Applying Eq. (116), we
find that g′′ decomposes as g′′ = rtzg

⊥, such that the g⊥ acts
trivially on the coordinate orthogonal to the plane, i.e., g⊥ :
k → (ǧ⊥k⊥,kz).

To complete the proof, we would need to show that any
planar, spatial transformation may be expressed as g⊥ =
ruxc

m
nze

w. Any point group is built up of discrete rotations (c) and
reflections (r), which are the fundamental covering operations
[114]; 2D point groups are built up from planar rotations (cnz)
and reflection-invariant lines contained in the plane (in short:
planar reflections); the latter are exemplified by rx and ry . It
is useful to distinguish between planar-proper (det ǧ⊥ = +1)
and planar-improper (det ǧ⊥ = −1) transformations; all planar
reflections (resp. rotations) are planar-improper (resp. proper).
Some properties of successive transformations will be needed
[114]: (i) the product of two planar rotations is another planar
rotation, (ii) the product of two planar reflections is a planar
rotation, and (iii) the product of a planar rotation with a planar
reflection is another planar reflection. It follows from (i)–(iii)
that any planar-proper transformation is proportional to cmnz
for some integers m and n ∈ {2,3,4,6}; the proportionality
factor must act trivially in space, so it may be the identity
operation or a 2π rotation. Therefore, if g⊥ is planar-proper,

it is expressible as cmnze
w. Otherwise if g⊥ is planar-improper,

it can always be expressed as the product of (a) an arbitrarily
chosen reflection (e.g., rx), with (b) a proper transformation
(cmnze

w) that depends on our choice in (a). In summary, we may
say g⊥ = ruxc

m
nze

w with (−1)u = det[ǧ⊥] [cf. Eq. (117)]. This
completes the proof. �

Combining Eq. (116) with Eq. (121), g maps k⊥ ∈ BT⊥ to

g ◦ k⊥ = (−1)s ǧ⊥k⊥, with ǧ⊥ = ř
u
x č

v
nz. (122)

We say that k⊥ is g-invariant if g ◦ k⊥ = k⊥ up to a planar
reciprocal vector. If g acts as a planar reflection, then its order
must be even:

u(g) = 1 ⇒ N (g) ∈ 2Z. (123)

This follows because any odd power of a planar reflection is
still a planar reflection, while by assumption u(gN ) = 0 [cf.
Eq. (31)].

It will be useful to classify symmetries according to the
topology of the g-invariant points. Type-I symmetries are
defined to leave every, generic k⊥ invariant; hence

(−1)s ǧ⊥ = I2 ⇒ det ǧ⊥ = 1 ⇒ u(g) = 0, (124)

with I2 the 2×2 identity matrix. We may further distinguish
type-I symmetries by s: either u = s = v = 0, or u = 0,s = 1,
and č

v
nz = č2z.

Type-II symmetries are symmetries for which the generic
k⊥ is not invariant; g-invariant k⊥ are isolated points if u = 0;
otherwise (u = 1), they form isolated lines. To prove the last
claim, if type-II g is planar-proper (u = 0), then g maps k⊥

to č
s
2zč

v
nzk

⊥, where we have identified (−1)s with č
s
2z. Being

the product of two planar rotations, čs2zč
v
nz must be again a

planar rotation, whatever the values of s,n,v. Moreover, čs2zč
v
nz

cannot be the trivial rotation (identity transformation), due to
our assumption that it is type II. The only rotationally invariant
k⊥ are isolated points. Now if type-II g is planar-improper,
g acts on k⊥ as the product of a planar reflection (řx) and a
planar rotation (čs2zč

v
nz); any such product is a planar reflection,

possibly with the reflection-invariant line rotated.
Our classification of type-I and -II symmetries is extended

to a classification of symmetric orbits in Sec. VI D.

B. Symmetry constraints of the orbital magnetic
moment and the Zeeman coupling

We would like to identify the symmetry classes which allow
for a k-dependent orbital moment/Zeeman coupling. If the
average of the orbital moment/Zeeman coupling over an orbit
is nonzero, then the Landau levels are nontrivially affected,
as explained in Sec. VI D 2. Our symmetry analysis is further
motivated by recent experiments that are able to probe the
orbital moment (at each wave vector) through circular dichro-
ism in momentum-resolved photoemission [53]. We would like
to determine whether dichroism is allowed by symmetry, and
where dichroism may be found in the Brillouin torus.

Consider the orbital moment for a subspace of bands
projected by P (k) in Eq. (18), where, again, D the dimension
of the subspace at each wave vector. For D = 1, we refer
to the single-band Mn defined in Eq. (63) for band n, but
henceforth we will drop the n subscript; for D > 1, we refer
to the multiband M defined in Eq. (67), which is a D ×D
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Hermitian matrix. To derive the symmetry constraints on the
orbital moment, it is convenient to begin with its expression
with the velocity matrix � [second line of Eq. (67)], since the
current operator �̂ = −i[r̂,Ĥ0]/h̄ transforms simply under a
symmetry (g). From the action of g on the position operator
[cf. Eq. (24)], and the symmetry constraint on the cell-periodic
functions [cf. Eq. (29)], we obtain


α
mn

∣∣
g◦k = (−1)s(g)ǧαβK

s(g)[ğ∗ 
β ğT ]mnK
s(g)|k. (125)

Inserting this into Eq. (67) and after a little gymnastics (detailed
in Appendix C 2),

M|g◦k = (−1)s(g) det[ǧ] ğ Ks(g) (ǧM)Ks(g) ğ−1|k. (126)

While this expression is valid for any number of bands, it
simplifies in the single-band case owing to (i) M, being a
Hermitian 1×1 matrix, is a real number, and (ii) ğ, being a
unitary 1×1 matrix, is a commuting phase factor that cancels
with its Hermitian adjoint ğ−1. Therefore, the single-band
orbital moment satisfies

M|g◦k = (−1)s(g) det[ǧ][ǧM]|k. (127)

To interpret this equation, recall that each g corresponds to
a certain action in spacetime, which may be decomposed as a
point-preserving transformation and a translation [cf. Eq. (25)];
(−1)s(g) det[ǧ] is the determinant of the matrix corresponding
to the point-preserving transformation. Therefore, M trans-
forms like the spatial components of a (3+1)-dimensional
pseudovector, in addition to the transformation of its argument
k. Equation (127) is the full generalization (to any symmetry)
of well-known constraints on the single-band moment with
T and/or i symmetry [25,33,74]. We exemplify Eqs. (126)
and (127) with some naturally occurring, but certainly not
exhaustive, symmetries in Table II; there, we employ certain
notation for symmetries that have been introduced in Sec. III C.

The single-band orbital moment, in a certain direction
α, vanishes at a specific k, if there exists a symmetry that
invertsMα → −Mα , and simultaneously maps said k to itself.
This vanishing may occur at isolated points, e.g., M = 0 at
inversion-invariant wave vectors (where k = −k) in systems
with only time-reversal symmetry. In T i-symmetric systems,
M = 0 in the entire torus. For further exemplification,Mz = 0
for high-symmetry planes in systems with T c2z symmetry, and
assuming no other symmetry we should not expect Mx or My

to likewise vanish. For these examples we list the symmetry
constraints on the single-band moment in the third column.

In the multiband case, symmetry cannot enforce that Mα

vanishes as a matrix, but the analogous constraint is that its
trace vanishes, as shown in the second-to-last column. Let us
particularize the following discussion to spin-orbit-coupled
systems, where bands are twofold spin-degenerate, and
transform in a half-integer-spin representation (F = 1). Any
of T , T i, or T c2z symmetries constrains the trace of Mα to
vanish for at least one α; i.e., Mα depends on (at most) three
real parameters. The traceless condition for T i symmetry has
previously been observed by [115]. For T c2z, the constraint on
Mz is comparatively stronger, leading to Mz only depending
on one real parameter. This distinction originates from (T c2z)2

being a 4π rotation, and (T i)2 = T 2 being a 2π rotation, as
we proceed to explain.

(i) Antiunitary representations that square to minus one.
Since (T i)2 = −I for a half-integer-spin representation,
the corresponding sewing matrices satisfy ğ(k)Kğ(k)K =
ğ(k)ğ∗(k) = −I which, in combination with the unitary of ğ,
implies that ğ is skew-symmetric. From physical grounds, we
expect that T i inverts the spin and should map any state to an
orthogonal state. Mathematically, we understand this from the
impossibility of finding a basis where the sewing matrix is diag-
onal; i.e., the effect of a basis transformation is to conjugate the
sewing matrix by a complex, orthogonal matrix [cf. Eq. (37)],
but no skew-symmetric matrix can be diagonalized by an
orthogonal transformation. In the case of twofold-degenerate
bands, we employ that any 2×2, unitary, skew-symmetric
matrix is proportional to the Pauli matrixσ2; the proportionality
factor is an irrelevant phase factor that depends on the basis
choice [cf. Eq. (22)]. The constraint on the orbital moment,
M = −σ2 M∗σ2 (from the fourth column), then implies M is
traceless over the entire torus. A similar story unfolds for T
symmetry at the inversion-invariant wave vectors.

(ii) Antiunitary representations that square to one.
(T c2z)2 = I implies that the corresponding ğ (in high-
symmetry planes) is symmetric, and may be diagonalized by an
orthogonal transformation. By phase redefinitions of the cell-
periodic functions, it is always possible to find a basis where
ğ = I (the 2×2 identity matrix); in this basis, Mz = −Mz∗
(from the fourth column) implies that Mz is proportional to
the Pauli matrix σ2 with a real proportionality constant. One
may verify that in whatever basis is chosen, Mz only depends
only on one real parameter.

For any antiunitary representation that squares to a phase
factor, the associativity of symmetry representations guaran-
tees that this phase factor is either one [henceforth called
type (ii)] or minus one [type (i)]. (Indeed, if ğ2 = eiφ,ğ3 =
eiφğ = ğeiφ ⇒ eiφ ∈ R.) In symmorphic space groups, all
order-two symmetries that invert time may be classified, by
their corresponding sewing matrices, into types (i) and (ii). This
statement must be refined in nonsymmorphic, magnetic space
groups where the multiplication rules for sewing matrices
are wave-vector-dependent. A case in point is a spin-orbit-
coupled system with T t�z/2 symmetry, which arises in layered,
antiferromagnetic compounds where the layers are stacked
in the z direction; the ferromagnetic alignment in each layer
alternates between every adjacent layer (separated by half a
lattice vector: �z/2). Since (T t�z/2)2 is the composition of a 2π
rotation and a full lattice translation, the sewing matrix satisfies
ğ|−kğ

∗|k = −e−ikz , which acts like a symmetry of type (i)
where kz = 0, and of type (ii) where kz = π ; this leads to
wave-vector-dependent constraints on the moment, as detailed
in the last column.

The last class of symmetries are completely spatial and
unitarily represented. Under basis transformations of the cell-
periodic functions, the sewing matrices at high-symmetry
points or lines may always be diagonalized by a unitary
transformation [cf. Eq. (37)]; this is superfluously true for
the single-band sewing matrix. The possible eigenvalues are
discrete in phase, and they are determined by space-group rules
in the second column. Alternatively stated, if a completely
spatial g belongs to the group of the wave vector k [114],
the eigenvalues of the sewing matrix label the representations
of the bands at k. Depending on the symmetry, different
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components of the multiband orbital moment may be simulta-
neously diagonalized at the high-symmetry wave vectors: M
for spatial inversion i,Mx for reflection rx and glide gx,�y/2,M

z

for rotations cnz and screws snz,m.
Let us add one final remark regarding the utility of Table II.

Since the Roth Hamiltonian is defined by HR
1 := −MzBz,

constraints that act on Mz apply directly to HR
1 . A case in

point: since T symmetry imposes Mz(−k) = −Mz(k) in the
single-band case (second column), it follows immediately
that HR

1 (−k) = −HR
1 (k). For half-integer-spin representa-

tions (F = 1), the spin matrix σ z transforms in the same way
as Mz, as derived in Appendix C 3. Consequently, symmetry
constraints on the Zeeman coupling HZ

1 ∝ σ zBz may also be
deduced from the table, if particularized to F = 1.

C. Symmetry of the first-order effective Hamiltonian

As derived in Appendix C 3, the first-order effective Hamil-
tonian transforms under a symmetry (g) of the orbit configu-
ration as

H1|g◦k = (−1)s(g)+u(g)ğKs(g)H1K
s(g)ğ−1

+ i(−1)u(g)l−2εαβ ğ∇β

k ğ
−1vα|k + l−2εαβδ

βvα|g◦k.

(128)

This expression may be applied to (a) spin-orbit-coupled sys-
tems, (b) spinful systems with negligible spin-orbit coupling,
and (c) plausibly to charge-neutral systems with effective
magnetic fields. However, the meaning of H1 is slightly
different in each context:

(a) In spin-orbit-coupled systems, the Bloch functions form
a half-integer-spin representations of the (magnetic) space
group, and H1 = HR

1 +HB
1 +HZ

1 is contributed by Roth,
Berry, and Zeeman [cf. Eq. (57)]. In systems with spacetime-
inversion (T i) symmetry, bands are spin-degenerate and H1 is
a matrix with minimal dimension of two.

(b) H0 is spin-SU(2)-symmetric in spinful systems with
negligible spin-orbit coupling. It is therefore possible to work
in a single-band basis that diagonalizes the Zeeman term; i.e.,
if the field points along �z, we work in the eigenbasis of σ̂ z

where basis vectors are distinguished by the spin eigenvalue
s ∈ ±1. In this basis, H1(k) is a diagonal 2×2 matrix:

H1(k) =
(
H+

1 0

0 H−
1

)
,

H±
1 (k) = HR

1 +HB
1 ∓ g0h̄

2

4ml2
. (129)

The symmetry analysis, when restricted to the s = +1
eigenspace (we could also have picked the −1 subspace; it
matters not), is considerably simplified. The spin-restricted
set of Bloch functions ψk(r,s = +) forms an integer-spin
representation of the (magnetic) space group; the scalar Hamil-
tonians HR

1 and HB
1 are defined, just as in Eqs. (58) and (59),

but with respect to Bloch functions in one spin eigenspace.
Since we are ignoring the full spinor structure of the Bloch
functionsψk(r,s ∈ ±), we might colloquially refer toψk(r,+)
as “single-spin” Bloch functions, and HR

1 +HB
1 as the “spin-

independent” first-order-effective Hamiltonian. A symmetry
operation in the (magnetic) space group that preserves the

eigenvalue of σ̂ z is described as a single-spin symmetry. For
example, while time reversal flips spin and is represented by
T̂ = −iσ̂yK satisfying T̂ 2 = −I , we may define a single-spin
time-reversal operator T ′ that preserves Sz by composing T

with a π -spin rotation about the �y axis: T̂ ′ = K squares to
identity. While T constrains the full spin-dependent effective
Hamiltonian [H1 in Eq. (129)], it is T ′ that constrains the
spin-independent Hamiltonian HR

1 +HB
1 . Rather than carry

around two symbols (T ′ and T ) for time reversal, it is simpler
to talk about a single time reversal (T ) which is represented
on integer or half-integer spins, which we distinguish by
F ∈ {0,1}: T̂ 2 = (−1)F .

(c) Charge-neutral, cold-atomic systems are characterizable
by the Berry phase and the Roth orbital moment: H1 = HR

1 +
HB

1 ; we shall leave out of this discussion the Zeeman effect.
Bloch functions of bosonic atoms (in optical lattices) form an
integer-spin representations of the (magnetic) space group.

In all cases (a)–(c), the form of Eq. (128) may be motivated
from the following two arguments:

(i) A field-free Bloch Hamiltonian having the same sym-
metry (g) transforms in nearly the same way to the first term
on the right-hand side of Eq. (128) [recall Eq. (28)]; the
only difference is an additional factor of (−1)s+u (which may
be trivial) in Eq. (128). To understand this phase factor, let
us consider an alternative definition of a symmetry of the
orbit configuration (g) which is consistent with the original
definition in Sec. VI A: it is an element of the space group (or
magnetic space group) which induces a coordinate transfor-
mation where the magnetic field B → (−1)s+uB. In fact, the
field-on Hamiltonian [Eqs. (39) and (40)] is invariant under
g, if g acts not only on the electronic degrees of freedom
in the solid through Eq. (25), but also on the magnetic field
[116]. Since Eq. (128) describes a symmetry relation between
electronic wave functions of the solid at a fixed field, we expect
a compensating factor of (−1)s+u.

(ii) The second term originates from the transformation
of the Berry term, which we recall from Eq. (64) as being
proportional to εαβX

βvα . Applying Eq. (29) to the definition
of the non-Abelian Berry connection in Eq. (15),

Xα|g◦k = ǧαβ
(
ğKs(g)XβKs(g)ğ−1

+ i(−1)s(g) ğ∇β

k ğ
−1
)∣∣

k + δα. (130)

The derivation of the above equation is aided by two identities
[Eqs. (C20) and (C23)] proven in Appendix C 1. The first (resp.
second) term in Eq. (130) contributes to the first (resp. second)
term in Eq. (128).

Supposing the second and third terms in Eq. (128) were
absent, we say that H1 transforms covariantly under g. Given
that the sewing matrix for a symmetry g depends on the basis
chosen for the cell-periodic functions [cf. Eqs. (36) and (37)],
one may ask if a basis exists where H1 transforms covariantly
under g for all k in the Brillouin torus. If the answer is yes, such
a basis may be exploited to derive symmetry constraints on the
Landau levels with relative ease. In short, the answer is no for
a large class of band subspaces; we devote Appendix C 4 to
a self-contained elaboration of “no,” which originates from
an obstruction in topologically nontrivial band subspaces.
Some well-known obstructions forbid the construction of
exponentially localized Wannier functions [117] (i.e., global
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sections of the vector bundle), or symmetry-invariant Wannier
functions [118]. In Appendix C 4, we will describe a novel
type of obstruction—to symmetry covariance ofH1. The reader
who is more interested in quantization conditions may transit
immediately to the next section (Sec. VI D).

D. Symmetry of the first-order effective propagator

In the last section we dealt primarily with the symmetry and
gauge transformations of the first-order effective Hamiltonian
H1, and argued that H1 generically does not transform non-
covariantly. A related observation is that the eigenspectrum
of H1 has no gauge-invariant meaning. This reflects how
the effective-Hamiltonian description of a Bloch electron in
a magnetic field is fundamentally a nondynamical gauge
theory; in gauge theories, a known source of gauge-invariant
observables comes from the spectrum of Wilson-loop operators
[65]. In our context, we identify the analogous operator as the
propagator A, which we defined in Eq. (74) as the unitary
generated by H1 over the cyclotron period.

We will show that, unlike H1,A behaves nicely under
gauge and symmetry transformations. Precisely, we will show
that A transforms covariantly under the U (D) gauge trans-
formation of the type Eq. (22) (in Sec. VI D 1), and covari-
antly under symmetry transformations of the type Eq. (128)
(in Sec. VI D 2). One motivation for investigating these trans-
formation behaviors is that A encodes the subleading cor-
rections to the Bohr-Sommerfeld quantization conditions, as
derived in Sec. V C 1. As we will show, the gauge covariance of
A implies the gauge invariance of the Landau levels determined
from the quantization conditions; the symmetry covariance of
A implies certain symmetry constraints for the Landau levels
that we will prove below.

We will use the same symbols (A and H1) in a variety
of contexts which are not necessarily mutually exclusive:
(i) nondegenerate subspaces (D = 1), in which case A is a
unimodular phase factor, (ii) degenerate subspaces (D > 1), in
which case A is a D ×D unitary, (iii) spin-orbit-coupled sys-
tems, (iv) spinful systems with negligible spin-orbit coupling,
and (v) charge-neutral particles coupled to effective magnetic
fields. We remind the reader that H1 has a slightly different
meaning in each of (iii)–(v), as detailed below Eq. (128).
UnlessD or the symmetry representation is explicitly specified
in an equation, the reader may safely assume that the equation
applies to all of (i)–(v).

We highlight one potentially confusing case where it is
useful to have two related notions of A: this is the case
of spin-degenerate (D = 2) bands in solids with negligible
spin-orbit coupling. We define the spin-dependent AF=1 as the
unitary generated by the spin-dependent H1 [the 2×2 matrix
in Eq. (129)], and the spin-independent AF=0 as the unitary
generated by the spin-independent, scalar HR

1 +HB
1 [defined

in Eq. (129)]. Both notions are related as

AF=1 =
(
AF=0e

iπ
g0
2

mc [o]
m 0

0 AF=0e
−iπ g0

2
mc [o]
m

)
,

det AF=1 = A2
F=0, (131)

where the only spin-dependent component of AF=1 originates
from the Zeeman coupling [g0,mc,m are defined in Eq. (72)].

The right equation in Eq. (131) expresses how the determinant
of AF=1 is fully determined by the spin-independent HR

1 +
HB

1 , and is not affected by the Zeeman splitting. Supposing
g is a symmetry of the orbit configuration, it is represented
differently when it acts on AF=1 vs AF=0; e.g., time reversal
is represented as T̂ 2 = (−1)F , as explained below Eq. (129).

1. Gauge covariance of the first-order propagator

One motivation to prove that the first-order propagator
transforms covariantly: it follows that the spectrum obtained
from the multiband quantization condition in Eq. (108) is gauge
invariant; we remind the reader that the gauge invariance of the
single-band quantization condition has been proven with less
effort in Sec. V C 1.

To substantiate the multiband claim, we remind the reader
that a matrix transforms covariantly if it is conjugated by the
unitaryV which reshuffles the bands withinP [cf. Eq. (22)], as
exemplified by the Roth and spin matrices [defined in Eq. (75),
Eq. (17), and Eq. (20)]

A → V −1AV, σ → V −1σV. (132)

In the single-band case, V is a commuting phase factor that
cancels withV −1; hence all covariant objects are also invariant.
In contrast, the Berry connection transforms non-covariantly,
as shown in Eq. (23). Nevertheless, we show that the propagator
around a loop transforms as

A[o] → V (k(0))−1A[o]V (k(0)), (133)

with k(0) the base point of the loop o. It follows that the
quantization condition in Eq. (108) is gauge-invariant:

0 = det
[
eil

2SA[o] + I
]

→ det
[
eil

2SV (k(0))−1A[o]V (k(0)) + I
]

= det[V (k(0))−1] det
[
eil

2SA[o] + I
]

det[V (k(0))−1].

To prove Eq. (133), it is convenient to consider the propagator

A[k ← k − dk]

≈ exp[i(A + X) · dk + iσ z(Z/v⊥)dk] +O(dk2) (134)

over an infinitesimal path along the orbit, ending at k(t) and
beginning at k(t − δt) = k(t) − dk(t); in short, we call such
objects infinitesimal propagators. Applying Eqs. (132) and
(23), the infinitesimal propagator transforms as

A[k ← k − dk]

→ eiV
−1(A+X)V ·dk+iV −1σ z(Z/v⊥)V dk−V −1∇kV ·dk

= V −1(k)ei(A+X)·dk+iσ z(Z/v⊥)dkV (k)e−V −1∇kV ·dk

= V (k)−1A[k ← k − dk]V (k − dk), (135)

to linear order in dk. Consider a path-ordered multiplication of
these infinitesimal propagators around a closed orbit beginning
and ending at k(0); every V matrix that is not evaluated at k(0)
is multiplied with its inverse. What remains of this path-ordered
product, after taking the limit δt → 0, is the right-hand side of
Eq. (133).

144422-21



A. ALEXANDRADINATA AND LEONID GLAZMAN PHYSICAL REVIEW B 97, 144422 (2018)

2. Symmetry covariance of the first-order propagator

For a system having a symmetry (g) of the orbit configuration, we consider the infinitesimal propagator centered at wave
vector g ◦ k on an orbit, which is related through Eq. (128) to the infinitesimal propagator centered at k:

e−iH1δt/h̄|g◦k = (
ğKse−i(−1)uH1δt/h̄Ksğ−1

)(
e(−1)ul−2εαβ ğ∇β

k ğ
−1vαδt/h̄

)∣∣
ke

−il−2εαβδ
βvαδt/h̄

∣∣
g◦k +O(δt2). (136)

Hamilton’s equation of motion [Eq. (1) particularized to B = −B�z] informs us that δt/h̄l2 = −δky(k)/vx(k) = δkx(k)/vy(k)
[let us also define δk⊥(k) = (δkx,δky)]; hence the above equation simplifies to

e−iH1δt/h̄|g◦k = (
ğKse−i(−1)uH1δt/h̄Ksğ−1

)(
e−(−1)uğ∇k ğ

−1·δk⊥)∣∣
ke

iδ·δk⊥ ∣∣
g◦k +O(δt2)

= (
ğKse−i(−1)uH1δt/h̄Ks

)∣∣
kğ

−1
∣∣

k−(−1)uδk⊥(k)e
iδ·δk⊥ ∣∣

g◦k +O(δt2). (137)

If u(g) = 1, the infinitesimal-time propagator centered at k
(the right-hand side of the above equation) is reversed in ori-
entation with respect to the semiclassical orbit, and vice versa.
Equation (137) forms the basis to derive the symmetry con-
straints for any configuration of orbits.

Let us translate the symmetry constraint on infinitesimal
propagators into a constraint for finite-time propagators, which
are analogous to Wilson lines. Suppose ki and kf are boundary
points of a curved line segment (S) contained within an orbit;
S is equipped with an orientation such that ki (resp. kf ) is
the initial point (resp. final point), which we will denote as
S : kf ← ki . The propagator over S is defined by

A[S : kf ← ki] := exp

{
−i

∫ t(kf )

t(ki )
H1(k(t))

dt

h̄

}
, (138)

with exp a path-ordered exponential, and k(t) and its inverse
t(k) determined by Hamilton’s equation. We may define −S as
the same line segment as S but with the opposite orientation;
the corresponding propagator satisfies

A[−S : ki ← kf ] = A[S : kf ← ki]−1. (139)

Let us define the symmetry-mapped segment (g ◦ S) as being
bounded by initial point g ◦ ki and final point g ◦ kf [with g ◦
k := (−1)s ǧk]. The two corresponding segment propagators
are related as

A[g ◦ S : g ◦ kf ← g ◦ ki]

= ğ(kf )Ks A[S : kf ← ki] Ks ğ−1(ki) e
iδ·∫

g◦S dk⊥
,

(140)

which may be derived by a path-ordered multiplication of the
infinitesimal propagators in Eq. (137), and taking the limit
δt → 0; in this process, every sewing matrix [originating from
the right-hand side of Eq. (137)] is multiplied with its inverse,
except for the sewing matrices at the boundary points.

Let us generalize Eq. (140) to a relation between propaga-
tors over closed orbits. If o is a closed orbit with base point k1,
then

o : k1 ← k1, A[g ◦ o] = ğ(k1)Ks A[o] Ks ğ−1(k1).

(141)

Note that
∫
g◦o dk⊥ = 0 for a closed orbit; hence the δ-

dependent phase factor on the right-hand side of Eq. (140)
is trivial. When particularized to the case that g ◦ o and o are
identical orbits, up to a reversal in orientation that depends on

u(g),

g ◦ o = (−1)uo, A[o](−1)u = ğ(k1)Ks A[o] Ks ğ−1(k1),

(142)

where A(−1)u equals A (resp. A−1) if u = 0 (resp. u = 1).
A topologically distinct possibility is that g ◦ o and o are
disconnected orbits. Let us defineo1 ando2 as two disconnected
orbits, whose orientations are determined by Hamilton’s equa-
tion; o1 is equipped with a base point k1, and o2 with a base
point k2 := g ◦ k1. Then a simple generalization of Eq. (142)
provides us with

g ◦ o1 = (−1)uo2,

A[o2](−1)u = ğ(k1)Ks A[o1] Ks ğ−1(k1). (143)

3. Ten classes of closed, elementary orbits

In a Brillouin two-torus (BT⊥), any closed orbit configu-
ration possessing a symmetry g may be divided into a set of
elementary orbits ({Ei}). An elementary orbit Ei is defined
to be the smallest possible closed orbit configuration that is
closed under g; i.e., it cannot further be divided into smaller
configurations which are closed under g. To clarify two distinct
notions, “closed orbits” do not wrap around BT⊥; if Ei is
“closed under g,” we mean that for every k⊥ ∈ Ei, g ◦ k⊥ ∈ Ei

as well. We remind the reader that g maps k⊥ to g ◦ k⊥ :=
(−1)s(g)ǧ⊥k⊥, with ǧ⊥ the point-group component of g, as
restricted to BT⊥. Generally, Ei is composed of one or more
closed orbits.

If there are multiple symmetries (g,g′, . . .) in the group
of the orbit configuration, the same orbit configuration may
be divided into two (or more) distinct sets of elementary
orbits ({Ei} and {E′

i}), which are closed under g and g′,
respectively; each elementary orbit is therefore defined by
its closure under a single symmetry, and we emphasize this
by the paired notation (g,Ei). The motivation for this g-
centric organization is that distinct symmetries impose distinct
constraints on the propagators, which we classify into ten (and
only ten) classes. In other words, any pair (g,Ei) falls into
one of ten classes, and the propagator(s) over closed orbits
(∈ Ei) satisfy one of ten classes of constraints, which we
summarize in Table III. These ten classes were first introduced
in Ref. [32] and exemplified by many existing materials; here
we present a more mathematically oriented discussion that
emphasizes the group-theoretic aspects of the ten classes. In
addition, (i) a more thorough discussion is also provided for
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TABLE III. The first column distinguishes between three topologically distinct mappings of g : k → g ◦ k, as summarized in Eqs. (144) and
(145). The second and third columns subdivide the three mapping classes according to two Z2 indices defined in Eqs. (25) and (117); this gives
ten classes in total. The fourth column describes the constraints on the propagator: for classes I and II-A (top six rows), A is the propagator for
a single, elementary orbit o; for class II-B (last four rows), {Aj }2

j=1 is shorthand for A[oj ], with oj+1 = g ◦ oj being symmetry-related, closed
orbits. ğ, {ği}Ni=1, and g̃ are representations of the point group generated by g [cf. Eqs. (33)–(35)], as summarized in the sixth column. The fifth
column describes the constraint imposed by g on the spectrum of A, which we denote by σ (A). We indicate the lack of a symmetry constraint
with a −. σ (A) = σ (A)∗ means the spectrum is invariant under complex conjugation; it follows immediately that det A = ±1. In some cases,
the sign of this determinant is fully determined by specifying the band degeneracy (D) and the symmetry representation of the Bloch functions
(whether integer- or half-integer-spin). Class-I symmetries have order two, and σ (A) = �i∈±σi indicates that A is block-diagonal with respect
to the two representations of the order-two symmetry. The last column lists some representative examples of the ten symmetry classes; the
symbolic notation of various symmetries has been summarized in Sec. III C.

u(g) s(g) Constraint on A Spectrum of A Representation of g Ex. of g

(I)∀ k⊥, 0 0 A = ğAğ−1 σ (A) = σ+� σ− ğ2 = eiπFa−ik1 ·R rz,gz,�x/2

k⊥ = g◦k⊥ 0 1 A = ğA∗ğ−1 σ (A) = σ (A)∗ (ğK)2 = eiπFa−ik1 ·R T i,T c2z

(II-A) 0 0 A = g̃Ag̃−1 − g̃N = ApeiπFa i,cnz

k⊥ ∈ o, 0 1 A = g̃A∗g̃−1 σ (A) = σ (A)∗ (g̃K)N = ApeiπFa T ,T c6z

|o| = |g◦o| 1 0 A = ğA−1ğ−1 σ (A) = σ (A)∗ ğN = eiπFa−ik1 ·R rx,ry

1 1 A = ğAt ğ−1 − (ğK)N = eiπFa−ik1 ·R T rx,T ry

(II-B) 0 0 A2 = ğ1A1ğ
−1
1 σ (A2) = σ (A1) ğN . . . ğ1 = eiπFa−ik1 ·R cnz

k⊥ ∈ o, 0 1 A2 = ğ1A∗
1ğ

−1
1 σ (A2) = σ (A1)∗ ğNK . . . ğ1K = eiπFa−ik1 ·R T

|o| �= |g◦o| 1 0 A2 = ğ1A−1
1 ğ−1

1 σ (A2) = σ (A1)∗ ğN . . . ğ1 = eiπFa−ik1 ·R rx,ry

1 1 A2 = ğ1At
1ğ

−1
1 σ (A2) = σ (A1) ğNK . . . ğ1K = eiπFa−ik1 ·R T rx,T ry

g′-symmetric orbit configurations that lie within mirror/glide-
invariant planes, where g′ is an additional symmetry distinct
from said mirror/glide. (ii) We also demonstrate how, with
additional input about the symmetry representations of Bloch
functions on the orbit, one may derive additional constraints
on the spectrum of A that go beyond Table III.

The ten classes are partially distinguished by twoZ2 indices
which we have previously defined:u(g) and s(g). To remind the
reader, s(g) = 1 if g contains a time reversal, and 0 otherwise
[cf. Eq. (25)]; u(g) = 0 if the determinant of ǧ⊥ (the point-
group component of g, restricted to the xy plane) equals 1,
and u(g) = 1 if det ǧ⊥ = −1 [cf. Eq. (117)]; as explained in
Sec. VI A, u(g) = 0 (resp. 1) if g preserves (resp. inverts) the
orientation of the semiclassical orbit.

We shall subdivide the ten classes according to three
topologically distinct mappings of g : k⊥ → g ◦ k⊥ as

(I) ∀ k⊥, k⊥ = g ◦ k⊥, (144)

(II) generically, k⊥ �= g ◦ k⊥,

k⊥ ∈ o,

{
(II-A) |o| = |g ◦ o|,
(II-B) |o| �= |g ◦ o|. (145)

In mappings of class I, all wave vectors inBT⊥ are individually
invariant under the symmetry, which implies that u(g) = 0,
as proven in Eq. (124). There are therefore two classes of
class-I elementary orbits which we distinguish by s(g) ∈
Z2. For mappings of class II, generic wave vectors are not
invariant under g, but there exist closed submanifolds (isolated
points/lines) of BT⊥ which are invariant; we have shown in
Sec. VI A that points occur iff u = 0, and lines iff u = 1.
Suppose k⊥ is a point in a closed orbit o ∈ Ei ; sinceEi is closed
under g, g ◦ k⊥ ∈ g ◦ o ∈ Ei . We further distinguish between

mappings where g ◦ o is identical to o up to orientation (class
II-A), or they are disconnected orbits (class II-B). We employ
the notation that o and −o have opposing orientations, and |o|
as having no orientation. The defining characteristics of II-A
and II-B may then be expressed as in Eq. (145). In class I and
II-A, Ei is composed of a single orbit o, and we may say that
o is self-constrained by g; in II-B, Ei is composed of at least
two closed orbits, which we say are mutually constrained by
g. For class-II mappings, there are no constraints on s or u [as
there were for class I in Eq. (124)]; hence there are four classes
for each of II-A and II-B. This gives ten classes of elementary
orbits in total, whose defining characteristics are summarized
in the first three columns of Table III; representative examples
of each class are given in the last column.

The rest of the table summarizes how the space-group
symmetry g constrains the propagators A; the operators (de-
noted by ğ in eight rows, and by g̃ in two) that constrain
A form a representation of the space-group symmetry g, as
shown in column six. ğ form either a linear or projective
[119] representation of the point group (Pg) generated by g

[120], while g̃ forms necessarily a projective representation.
To clarify this comment, Pg is isomorphic to ZN if g has order
N ; generally, Pg is a subgroup of the full point group of the
space group. It is well known that symmorphic (resp. non-
symmorphic) space groups are split (resp. unsplit) extensions
of point groups by discrete spatial translations [121]. Unsplit
extensions may contain nonsymmorphic elements of order
N—the corresponding multiplication rule is represented by
ğN ∝ e−ik1·R. Double space groups are known to correspond
to a further extension by a 2π spin rotation; the multiplication
rule for an order-N symmetry is represented by ğN ∝ eiFπa .
These two observations explain the form of the multiplication
rules in all ten rows except for the third and fourth, where
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respectively g̃N and (g̃K)N are proportional toAp, with p �= 0
(mod N ) and depending on (g,Ei). These two rules represent
an unsplit extension of the point group by quasimomentum
translations around the orbit Ei , which in the present context
is a single loop; these translations are represented by the
propagatorA, which generates a normal subgroup (isomorphic
to Z) of the extension. Extensions by quasimomentum loop
translations are one key result of this section, and occur
for all self-constrained orbits having no g-invariant points;
this sharply delineates class-II-A orbits with u = 0 from the
remaining eight classes, which are all linearly represented
with respect to A. To recapitulate, ğ (or g̃), eik1·R, eiπ , and
A generate a group; (i) the multiplication rules of this group
(columns four and six), when combined with (ii) the spectral
constraint on A (column five), uniquely distinguishes each of
the ten classes. In other words, given (i) and (ii), one may
uniquely determine the corresponding mapping type (I, II-A,
II-B), u and s. We derive the table and discuss its implications
in the following subsections, which are divided according to
class-I mappings (Sec. VI D 4), class II-A (Sec. VI D 5), and
class II-B (Sec. VI D 6). For some (and only some) classes,
the above spectral constraints are further strengthened when
given additional data about the band degeneracy D and the
spin representation (whether integer or half-integer).

One last remark regards the application of Table III beyond
the semiclassical theory of magnetotransport. All constraints
in Secs. VI D 3–VI D 8 which are tabulated or expressed in
labeled equations remain valid if we substitute A → W , with
W the purely geometric component of A. That is, if we
set the Roth and Zeeman Hamiltonians to zero, A reduces
to W—a path-ordered exponential of the Berry connection
[20], which is non-Abelian for D > 1. Though generically the
spectra of A and W are distinct, they satisfy the same type
of constraints; e.g., if σ (A) = σ (A)∗ from Table III, so would
σ (W) = σ (W)∗. W is the matrix representation of holonomy
around the orbit o [122] and has been called the Wilson loop of
the Berry gauge field [65]. The commonality betweenW andA
originates from their identical transformation behavior under
symmetry [cf. Eqs. (140)–(143)]. The Wilson loop is a basic
geometric characterization of bands that is intimately related to
the topology of wave functions over the Brillouin torus [122].

4. Class-I elementary orbits

Let g be a symmetry such that every wave vector (k⊥) in
a Brillouin two-torus BT⊥ is g-invariant. Common examples
include g = T i,T c2z, and rz; for 3D T i-symmetric solids,
any two-torus embedded in the 3D Brillouin zone is invariant
under T i, while for 3D solids with either T c2z or rz symmetry,
we would particularize to the high-symmetry planes (kz = 0
and π ).

Since every k⊥ ∈ BT⊥ is g-invariant, if k⊥ ∈ o (a single
closed orbit), then o = g ◦ o, which further implies o is itself
an elementary orbit [of class I, as classified in Eqs. (144) and
(145)]. If g is the only symmetry of o, there is no constraint on
the shape of o. We have also proven that u(g) = 0 in Eq. (124),
i.e., that class-I symmetries are orientation preserving. We fur-
ther subdivide class-I orbits according to whether g includes a
time reversal or not [s(g) = 1 or 0 respectively]; s distinguishes
between two classes of constraints on the propagatorA[o] over

the oriented o. In contexts where we are discussing a single
orbit, we employ A as a shorthand for A[o].

Class-I elementary orbits with s(g) = 0. This occurs when
g is purely a spatial transformation; we ignore g that is
purely a spatial translation, because it trivially constrains the
propagator. To leave every wave vector in BT⊥ invariant,
BT⊥ must be a mirror (g = rz) or a glide (e.g., g = gz,�x/2)
plane. In either case, g is an order-two spatial symmetry [the
order of a symmetry is defined in Eqs. (31)–(35)], which
implies that g has two distinct representations. It is useful to
block-diagonalize the Hilbert space (L) with respect to the
two representations of g; we shall denote this decomposition
asL = L+ ⊕ L−. The corresponding block-diagonalization of
A is denoted as A = A+ ⊕ A− in the first row of Table III.

Suppose there exists a distinct symmetry g′ in the group
of the orbit configuration, whose operation preserves the
decomposition L+ ⊕ L−. That is, if a Bloch functionψ ∈ L+,
then the symmetry-mapped Bloch function g′ ◦ ψ belongs also
in L+. To analyze how g′ further constrains A±, we divide
the orbit configuration into elementary orbits {(g′,E′

i)}; each
of {(g′,E′

i)} falls into one of the remaining nine classes. We
may then apply any of the results in the bottom nine rows of
Table III, with the understanding that A (as denoted in the
table) is the propagator restricted to L±.

Let us particularize to g′ that permutes the two represen-
tations of g, i.e., g′ ◦ L± = L∓. Then if A+ is the propagator
for a closed orbit o, it is symmetry-related to A− which is
the propagator for g′ ◦ o; in general o �= g′ ◦ o. A+[o] and
A−[g′ ◦ o] are mutually constrained in four possible ways,
depending on theZ2 indices u(g′) and s(g′) which characterize
g′ (not g); these constraints are summarized in Table IV below,
which applies regardless of whether o = g′ ◦ o or not. Table IV
summarizes one new result of this work.

The four classes of (g′,E′
i) in Table IV are essentially iden-

tical to the four classes of class-II-B elementary orbits (bottom
four rows of Table III), if one relabels A1,2 ↔ A±. The basic
commonality is the existence of two distinct but symmetry-
related vector bundles, each of which is defined over a 1D base

TABLE IV. Table of constraints for solids with (i) a class-I,
unitarily represented, order-two symmetry g, and (ii) an additional
symmetry g′ that permutes the two representations of g. The second
and third columns classify the constraints according to two Z2

indices [defined in Eqs. (25) and (117)] that characterize g′ (not g).
Fourth column describes the constraints on propagators A± which
are defined with respect to states in L±. In the entire table, A+
is shorthand for A+[o], and A− for A−[g ◦ o]. The sixth column
lists some representative examples of g′, for the specific case of a
half-integer-spin representation of g = rz. For the nonsymmorphic
examples of g′ [s2z,�z/2 and T gx,�z/2], g′ permutes the half-integer-spin
representation of rz in the kz = π plane; for the remaining two
symmorphic examples, this permutation occurs in both kz = 0 and
π planes.

u′ s ′ Constraint on A± Spectrum of A± g′

0 0 A+ = ğ′A−(ğ′)−1 σ (A+) = σ (A−) s2z,�z/2

g′◦L± 0 1 A+ = ğ′A∗
−(ğ′)−1 σ (A+) = σ (A−)∗ T ,T i

= L∓ 1 0 A+ = ğ′A−1
− (ğ′)−1 σ (A+) = σ (A−)∗ rx,ry

1 1 A+ = ğ′At
−(ğ′)−1 σ (A+) = σ (A−) T gx,�z/2
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space (embedded inBT⊥). In the case of (g′,E′
i), the two vector

bundles are distinct because the fibers transform in different
representations of the order-two symmetry g; in the case of
class-II-B elementary orbits, the two vector bundles are distinct
because their base spaces (o and g ◦ o) are distinct. Given
this broader perspective, the derivation of the four classes of
constraints listed in Table IV are essentially identical to those
for class II-B, which may be found in Sec. VI D 6 below.

Class-I elementary orbits with s(g) = 1. If g includes a
time reversal, as exemplified by g = T i and T c2z, we apply
Eq. (142) to derive

A = ğA∗ğ−1 ⇒ σ (A) = σ (A)∗ ⇒ det[A] = ±1. (146)

The middle line states that the spectrum of A is invariant under
complex conjugation. That det[A] = −1 might seem surpris-
ing for a contractible orbit, especially when one recalls that
the U(1) Berry curvature F z(k) = εαβ∇α

kTr[Xβ(k)] vanishes
almost everywhere—in the torus for the T i-symmetric case,
and in the high-symmetry planes for the T c2z-symmetric case.
For D = 1, the resolution is that the orbit must enclose a
singularity in the curvature: the orbit is linked with an odd
number of line nodes in the T i-symmetric case (a known
result by Mikitik [21]), and encircles an odd number of Dirac
points in the T c2z-symmetric case; the latter is exemplified
by graphene, as we have substantiated in Sec. V D 1. To
complete the argument that det[A] = −1 in these cases, the
conical dispersion around a Dirac point/line node guarantees
that the velocity (∇kε) is finite at the singular point; hence
the nongeometric one-forms (Roth and Zeeman) negligibly
contribute to A in the limit where the area of the loop (that
encircles the singular point) vanishes.

For spin-orbit-coupled solids with bands which are spin-
degenerate (D = 2) owing to T i symmetry, we may rule
out det[A] = −1 because all time-reversal-symmetric orbits
can be continuously contracted to a point; the argument for
this is presented in Sec. VI D 7. The implications of this
determinantal constraint for the quantization conditions and
magnetic oscillations have been discussed, around Eqs. (73)
and (115), respectively. We remark that det[A] = +1 may be
alternatively derived if H1 is traceless, as we have discussed in
Sec. C 4 b.

5. Class-II-A elementary orbits

A class-II-A elementary orbit is a single closed orbit
(denoted o), which is closed under g (i.e., g ◦ o = o). Just as
for class-I orbits, we define A[o] as the propagator over the
oriented orbit o. At times we may suppress the argument of A
notationally; in these cases A should be understood as A[o].

Class-II-A elementary orbits with u(g) = 1. If u(g) = 1,
we have shown in Sec. VI A that g acts on k⊥ as a planar
reflection, and therefore g-invariant k⊥ form isolated lines.
Since o is closed as an orbit, it must intersect a g-invariant
line at minimally two points. For simple, closed orbits (which
are equivalent to circle), there are only two intersections, which
we denote by ka and kb. There might be more intersections for
nonsimple closed orbits (e.g., a figure-of-eight), but we shall
identify the two intersection points that are farthest apart (on
the g-invariant line) as ka and kb. It is analytically convenient
in derivations to let the base point of A lie on one of these

invariant wave vectors (say, ka); we remark that the spectrum
of A is independent of the position of the base point [123].
Particularizing Eq. (142) to the present context,

A = ğKs A−1 Ks ğ−1 ⇒ σ (A) = K1+sσ (A)K1+s , (147)

with the sewing matrix ğ evaluated at ka . To clarify the
above notation, K 1+sσ (A)K 1+s = σ (A)∗ iff 1 + s is odd, and
therefore σ (A) is not constrained if s(g) = 0.

To obtain another useful constraint, we might split the
propagator into the product A = A(kb)A(ka), where A(ka)
propagates through half the orbit beginning from ka and ending
at kb, and A(kb) completes the orbit. The constraint between
A(ka) and A(kb) in Eq. (140) implies that

A = A(kb)A(ka)

= eiδ·(g◦ka−g◦kb)ğ(ka)Ks A(ka)−1 Ks ğ−1(kb)A(ka).

(148)

This is an additional constraint that has not been included in
Table III. The spectra of unitaries with such a constraint have
been studied by one of us in Refs. [123–125]; a common theme
in these works is that, for certain symmetries {g}, the spectrum
of A (or a subset thereof) may be robustly fixed to special
values; the existence of such robust eigenvalues depends on
the symmetry representations at the g-invariant wave vectors.

To provide a simple illustration, we consider a simple
closed orbit that is invariant under the mirror symmetry g =
rx (u = 1,s = 0,δ = 0). Since rx is an order-two symmetry,
it has two distinct types of representations which we shall
refer to as even and odd. For a nondegenerate band (D = 1),
Eq. (148) simplifies to A = r̆x(ka)r̆−1

x (kb), which equals +1 if
the representations at ka and kb are identical, and −1 if the two
representations are distinct. A = +1 is exemplified by a band
that is nondegenerate at all k⊥ bounded by o; due to continuity
of the mirror representation along the g-invariant line, the
representations at ka and kb must be identical. We may derive
A = +1 from an alternative argument: the nondegeneracy at
all k⊥ implies that o is continuously contractible to a point.
A = −1 occurs iff there is an odd number of band touchings
along the segment of the mirror line contained within o; at each
band touching (a Dirac point), the mirror representation flips
discontinuously, and an odd number of flips implies that the
representations at ka and kb are distinct. This is exemplified by
the surface state of the SnTe class [55] of topological crystalline
insulators. Dirac cones protected by glide or screw symmetry
are also characterized by A = −1 [59].

Class-II-A elementary orbits with u(g) = 0. If u(g) = 0,
we have shown in Sec. VI A that g acts on generic k⊥ as a
discrete rotation, whileg-invariant (nongeneric) k⊥ are isolated
points. Given that g ◦ o = o, and that o is closed as an orbit, o
must encircle a g-invariant point; however, o itself contains no
g-invariant points. In other words, g maps every wave vector
on o to a distinct wave vector on the same orbit. A commonly
encountered example is g = T or i, which maps k1 → −k1;
for orbits that encircle an inversion-invariant point, {k1,− k1}
are distinct points lying on the same orbit.

Before stating the main result of this section, it would
be useful to review and expand on the definition of order-N
symmetries (g) and their corresponding g orbits. For any g

which is not purely a translation, we may assign to g an

144422-25



A. ALEXANDRADINATA AND LEONID GLAZMAN PHYSICAL REVIEW B 97, 144422 (2018)

order N (g) ∈ {2,3,4,6}, a Z2 index a(g), and a Bravais-lattice
vector R(g), such that Eq. (31) is satisfied. A case in point
is g = i, where i2 = I implies N = 2,a = 0,R = 0, while
cnnz = e implies N = n,a = 1,R = 0. Further examples are
provided in Table I. Let k1 be an arbitrarily chosen base point
in o, and define the g orbit of k1 as in Eq. (33); in particular, the
g orbit of any k ∈ o also lies within o. For g = cnz, there areN
distinct points in the g orbit, which is a single cycle of length
N . More generally, the g orbit may contain m(g) cycle(s) of
length L(g) = N/m ∈ N; L is the smallest integer such that
gL ◦ k⊥ = k⊥ for all k⊥; u = 1⇒L ∈ 2Z owing to u(gL) = 0.
m is a positive natural number that divides N , but is not equal
to N ; the latter inequality follows from the assumption that g
is class II (m = N would imply that generic wave vectors are
invariant under g). For example g = T c6z has order N = 6,
and its g-orbit is composed of m = 2 cycles of length L = 3;
further examples are provided in Table I. It will be useful to
define ği as the sewing matrix that relates the Bloch functions
at ki to those at ki+1: in more detail, ği := ği+L := ğ(ki), as
defined in Eq. (29). It follows from Eq. (29) and (31) that the
sewing matrices form a representation of the space group, as
shown in Eq. (34).

The main result of this section is that for every class-II-A
symmetry (g) with u(g) = 0, there exists an equivalence class
of operators [g̃Ks] that constrains the propagator as

0 = [ g̃Ks,A ]. (149)

g̃ is a unitary defined with the equivalence

g̃−1 = g̃†, g̃Ks ∼ Ag̃Ks. (150)

The motivation for this equivalence: if g̃Ks were to be found
that commutes with A, it follows trivially that A g̃Ks would
also commute with A. g̃ and A are mutually constrained as

(g̃Ks)N = Ap (−1)Fa, p(g) ∼ p +N, (151)

where s,a,p,N , and R are g-dependent. Equations (149)
and (151) may be viewed as multiplication rules in a group
generated by A, g̃Ks , and (−1)F .

Observe that the group relation for g̃Ks in Eq. (151) differs
from the point-group relation for g only by a multiplicative
factor of Ap; we say that Eq. (151) represents an extension
of the point group by the loop propagators A. The exponent
p(g) is an integer defined with an equivalence p ∼ p +N ,
which reflects g̃Ks ∼ Ag̃Ks ; the values of p for our list of
representative symmetries are provided in Table I. Moreover,
we prove in Sec. VI D 8 that

[p(g)] = [ν m] ∈ {[1],[2], . . . ,[N − 1]}, ν(g) ∈ {1,−1},
(152)

where m (as defined above) is the number of cycles in the g
orbit, and ν(g) = −1 (resp. +1) if the g orbit has the same
(resp. opposite) orientation as A. Recall that m is a positive
natural number that divides N but is less then N , and therefore
p is not ∼0. This implies that Eq. (151) represents an unsplit
extension of the point group (generated by g) by the group of
loop translations (generated byA and isomorphic toZ). Equiv-
alently stated, g̃Ks ∼ Ag̃Ks form an intrinsically projective
representation [119] of a point group; inequivalent projective
representations are classified by the second group cohomology

[126], as we further develop in Sec. VI D 8. In addition to this
general group-theoretic discussion, we provide a more detailed
case study of the order-two symmetries T and i in Sec. VI D 7.

The following constraint on the spectrum and determinant
of A follows directly from Eq. (149):

σ (A) = Ksσ (A)Ks⇒ if s = 1, det A = ±1. (153)

While the determinantal constraint (for s = 1) is a general
result that applies independently of the band degeneracy
and the symmetry representation, we may further restrict
the determinant once these additional data are specified; we
shall exemplify this claim with g = T . For bands which are
nondegenerate along o (D = 1), the determinantal constraint is
merely a reality constraint onA, a unimodular phase factor. The
sign ofA ∈ R is determined by the symmetry representation as

g = T , D = 1, A = (−1)F . (154)

F = 0 corresponds to integer-spin representations, which
include single-spin bands in solids without spin-orbit coupling,
and also charge-neutral bosonic systems. In the former case,
D = 1 should be interpreted as the energy degeneracy
of bands restricted to one spin subspace, and the reality
constraint applies to the spin-independent propagator AF=0

defined in Eq. (131).
Next, let us consider spin-degenerate bands (D = 2) which

transform in a half-integer-spin representation (F = 1) of time
reversal (T ). They may arise in (a) spin-orbit-coupled solids
with i symmetry (in addition to the assumed T symmetry),
and (b) solids with negligible spin-orbit coupling. In these two
cases, the constraint Eq. (153) particularizes to

for spin-degenerate bands, D = 2,F = 1, detA = 1. (155)

The proof for case (b) follows: we have already shown in
Eq. (131) how det A is independent of the Zeeman effect,
because the coupling to spin up exactly cancels the coupling
to spin down. Consequently, det A is completely determined
by the Roth-Berry phase, which characterizes the zero-field
HamiltonianH0. Due to the spin-SU(2) symmetry ofH0, det A
equals the square of the Roth-Berry phase factor of the scalar
(i.e., nonspinor, spinless) wave function [cf. Eq. (131)]. To
complete the proof, we utilize our general result in Eq. (153),
which applies in particular to spinless, nondegenerate (D = 1)
bands: the Roth-Berry phase factor is restricted to ±1, owing
to time-reversal symmetry.

The proof of Eq. (155) for case (a), as well as that of
Eq. (154), is more involved and will be deferred to Sec. VI D 7.

6. Class-II-B elementary orbits

Let A1 := A[o1] and A2 := A[o2] denote the propaga-
tors for two disconnected closed orbits related by g ◦ o1 =
(−1)uo2; the orientations of both oi are determined by Hamil-
ton’s equation. We denote the spectrum of Ai by σ (Ai) =
{exp iλ(i)

a }D
a=1, where D is the band degeneracy (and may equal

1); {λ(1)
a
}D
a=1 and {λ(2)

a
}D
a=1 enter two independent quantization

conditions having the same form as in Eq. (73). It follows
from Eq. (143) that

A1 = ğKsA(−1)u

2 Ksğ−1 ⇒ σ (A1) = Ks+uσ (A2)Ks+u.
(156)
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For illustration, consider two disconnected orbits related
by time-reversal symmetry, but neither orbit encircles a T -
invariant point. We particularize to a spinless solid whose
bands are nondegenerate (D = 1) along both of oi . The above
equations then simplify to the mutual constraint A1 = A∗

2 or
equivalently λ1 = −λ2 mod 2π . Since oi is not individually
invariant under T , the average of the orbital moment over
each orbit is generically nonzero; this leads to a nonzero
Roth contribution to each of λi . The assumed absence of
any stabilizing symmetry of oi implies that the Berry-phase
contribution is not fixed to any special value. To recapitulate,
there exists no constraints on individual values of λi ; they
satisfy only a mutual constraint. There are then two ladders of
sub-Landau levels corresponding to two uncoupled orbits. In
energetic units (locally defined) where the separation between
adjacent levels (within one sub-Landau ladder) is one, the
offset between the two ladders is 2λ1/2π mod 1 [cf. Eq. (111)].
This splitting should be observable as two mutually constrained
harmonics in the dHvA oscillations, as exemplified by a toy
model of distorted, spinless graphene in Sec. V D 1.

7. Class-II-A orbits with time-reversal
or spatial-inversion symmetry

We provide a case study of class-II-A orbits with T (u =
0,s = 1) or i (u = 0,s = 0) symmetry. We may study each
symmetry independently, without assuming that the solid si-
multaneously has both symmetries. Both T and i are order-two
symmetries (N = 2), and their corresponding g orbits consist
of a single cycle (m = 1).

First, we will provide an elementary derivation of
Eqs. (149)–(152) particularized to N = 2,m = 1,[p] = [1].
In the following proof, equations with the symbol g apply to
both g = T and g = i; they are distinguished by s(T ) = 1 and
s(i) = 0. It is convenient to decompose the propagator as A =
A(−k1)A(k1), where A(k1) propagates through half the loop
beginning from k1 and ending at −k1, and A(−k1) completes
the loop. Equation (140) constrains the half propagators as

A(±k1) = ğ(±k1)KsA(∓k1)Ksğ−1(∓k1), (157)

where ğ(k)Ks forms a representation of the space group:

for g = T , s(g) = 1, ğ(−k)ğ(k)∗ = (−1)F ,

for g = i, s(g) = 0, ğ(−k)ğ(k) = I. (158)

The above equations are the particularization of Eq. (34)
for N = 2; they respectively represent T 2 = e and i2 = I ; F
distinguishes between integer-spin (F = 0) and half-integer-
spin representations (F = 1). Owing to Eq. (157), the full
propagator is constrained as

A = A(−k1)A(k1)

= ğ(−k1)KsA(k1)A(−k1)Ksğ−1(−k1)

= ğ(−k1)KsA−1(−k1)A(−k1)A(k1)A(−k1)Ksğ−1(−k1)

= g̃KsAKsg̃−1. (159)

We have introduced the unitary matrix g̃:

g̃ := ğ(−k1)KsA−1(−k1)Ks, g̃−1 = g̃†, (160)

which satisfies

(g̃Ks)2 = A−1 ğ(−k1)Ksğ(k1)Ks

=
{

(−1)FA−1, g = T ,

A−1, g = i.
(161)

�
Forg = i, Eq. (159) implies that g̃ andA are simultaneously

diagonalizable, while Eq. (161) implies their eigenvalues are
mutually correlated. A similar story occurs for g = cnz: an
operator c̃nz can be found that commutes with A and satisfies
the extended group relation c̃nnz = A e. The mutual constraints
between A and g̃ do not constrain the spectrum of A for a
single orbit; however, they may result in robust crossings in the
spectra of a continuous family of rotationally invariant orbits,
which cover a 2D Fermi surface embedded in a 3D Brillouin
torus. Incidentally, such crossings are already known to exist
in the spectra of a continuous family of Wilson loops (W)
that cover a Fermi surface; as mentioned earlier, A and W
are similarly constrained; i.e., the above equations are valid
with A replaced by W . The presence of an odd number of
crossings diagnoses the presence of a 3D Dirac point (protected
by rotational symmetry [42]) enclosed by the Fermi surface
[127,128].

Let us particularize to g = T , for which Eq. (159) implies
det A = ±1. As noted in Eqs. (154) and (155) of Sec. VI D 5,
the determinant is completely determined by the following
additional data: band degeneracy (D) at generic k⊥, the sym-
metry representation (whether integer- or half-integer-spin,
as specified by F ). In the subsequent paragraphs, we derive
Eq. (154), as well as Eq. (155) for solids with both T and i

symmetries.
D = 1,F = 0. By assumption, the k-space loop o0 encloses

a time-reversal-invariant point, which we denote by ǩ. We first
offer a simplified argument for A = +1 given two assump-
tions, which we will subsequently relax: our first assumption
is that (a) the group of ǩ [denotedG(ǩ)] is only generated by T ;
hence all irreducible representations (irreps, in short) are one-
dimensional. It follows that the group of a generic wave vector
enclosed by o is trivial. We may therefore conclude that the
minimal, symmetry-enforced degeneracy at any wave vector
within o is unity. Our second assumption is that, (b) at any k
withino, there are no accidental degeneracies between two one-
dimensional irreps; we use “accidental” to generally describe
degeneracies that are not enforced by symmetry, but require
some fine-tuning of the Hamiltonian parameters. (a) and (b) im-
ply that the band degeneracy is constant for all k within o0, and
consequently there exists a family of time-reversal-symmetric
loops (os , parametrized by s ∈ [0,1]) that interpolates between
o0 and a zero-area loopo1 which encircles ǩ; these loops are just
the constant-energy contours of the assumed-nondegenerate
band dispersion. Correspondingly, there exists also a family
of time-reversal-symmetric propagators A[os] which contin-
uously interpolates between A[o0] to A[o1]; in short, we say
that A is contractible T -symmetrically. Since T is preserved
throughout the interpolation, the sign of A[os] is independent
of s, from which follows that A[o0] = A[o1]. To complete the
argument, we would demonstrate that A[o1] = +1. Since the
loop is of zero area and encloses no singularity in the Berry
curvature, the Berry phase contribution to A[o1] vanishes.
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Such an argument cannot be applied to the nongeometric
contributions (orbital moment and Zeeman coupling), owing
to their inverse proportionality to the band velocity—which
vanishes at the T -invariant point. Instead, by utilizing that time
reversal inverts the angular momentum of states at ±k⊥, we
derive that the orbit-average of the nongeometric one-forms
vanish. This completes the demonstration.

This result persists were we to relax our assumptions (a)
and (b), as we proceed to explain. Let us consider the case
where the band, which is presumed to be nondegenerate along
o0, is continuously connected to a band-touching point at ǩ
enclosed by o0. This touching point may be of three types:
(i) it may correspond to a higher-dimensional irrep of G(ǩ),
that includes one or more point-group symmetries. (ii) The
degeneracy might be an accidental touching between two
one-dimensional irreps of T symmetry. It is also possible that
(iii) the touching is an accidental degeneracy between multiple
irreps, one or more of which has dimension greater than one
due to a point-group symmetry. Due to the presence of this band
touching at ǩ, we might question theT -symmetric contractibil-
ity of o0. However, the reality constraint in Eq. (154) relies
only on T symmetry; hence any T -symmetric perturbation
to H0 cannot change the sign of A. We may choose our
T -symmetric perturbation to remove any accidental or point-
group-symmetry-enforced degeneracy at ǩ; in the latter case
we would choose a perturbation that lowers the symmetry
of ǩ. Analogously, we may also remove any degeneracy at
generic wave vectors within o0. To clarify our argument, our
perturbation to H0 may be arbitrarily small in magnitude,
and the energetic splitting of the degeneracy also arbitrarily
small—but strictly nonzero. We might define o′

0 as the band
contour of the perturbed H0, which lies at the same energy as
o0; o′

0 → o0 as the strength of the perturbation vanishes. The
smallness of the perturbation guarantees that the topology of o0

does not change discontinuously, i.e., in the sense of a Lifshitz
transition; the reality condition guarantees that under such
continuous deformations, A[o0] = A[o′

0]. In this manner, we
are once again able to construct the continuous, T -symmetric
interpolation from A[o0] → A[o′

0] → +1; in the second →,
the family of T -symmetric loops {o′

s |s ∈ [0,1]} are just the
constant-energy band contours of the perturbed H0, with o′

1

the zero-area loop enclosing ǩ.
D = 1,F = 1. Let us consider Eq. (154) for half-integer-

spin representations (F = 1); we restrict ourselves to solids
without spatial inversion (i) symmetry; only then are bands
nondegenerate at generic wave vectors. Since o0 encloses a
Kramers-degenerate wave vector (ǩ), A[o0] is not contractible
T -symmetrically. The linearly dispersing band touching at ǩ
contributes a Berry phase of π [20]; if linearly dispersing
touchings occur elsewhere within o0, they come always in
time-reversed pairs; hence the net Berry phase for all touchings
remains π . Furthermore, the Roth and Zeeman phases individ-
ually vanish, since T symmetry imposes HR

1 (k) = −HR
1 (−k)

and HZ
1 (k) = −HZ

1 (−k) (cf. second column of Table II). We
therefore conclude thatA = −I . Our assumption of a twofold,
Kramers degeneracy at ǩ may be challenged: the degeneracy
may be further enhanced by point-group symmetry [40] and/or
by fine-tuning of parameters in H0. However, by T -symmetric
perturbations which preserve the sign of A, we may always
remove all point-group symmetries and accidental touchings,

and recover the minimal scenario of a single Dirac touching
at ǩ.

D = 2,F = 1. In the case with spin-orbit coupling, we may
argue for the stronger determinantal constraint of Eq. (155) in
two different ways. The first is based on the observation that
the only nontrivial symmetry of a generic wave vector is the
combined space-time inversion T i; its half-integer-spin irrep is
two-dimensional. The group of ǩ (an inversion-invariant wave
vector) is generated by T and i individually; this group has only
two inequivalent half-integer-spin irreps (corresponding to
even and odd parities under i) which are both two-dimensional.
Consequently, bands are twofold degenerate at every k lying
in o0, absent accidental touchings and any other point-group
symmetry (beyond i) that may enhance the twofold degeneracy.
As we have argued analogously above, these absences may be
guaranteed by T - and i-symmetric perturbations that preserve
the sign of det[A]. The constancy of band degeneracy at all k
within o0 implies that A[o0] is T -symmetrically contractible
to the 2×2 identity matrix, and therefore det[A] = +1.

In an alternative argument, we may exploit the existence of
a continuous T -symmetric interpolation of the spin-degenerate
subspace to a limit with vanishing spin-orbit coupling det[A],
being fixed to either of ±1, is invariant throughout this inter-
polation. Since we have independently proven det[A] = +1
in the case with vanishing spin-orbit coupling [cf. the discus-
sion below Eq. (155)], we obtain a result consistent with the
previous paragraph.

This unit determinant also applies to loops o′′ that neither
wrap around the Brillouin torus nor enclose an inversion-
invariant point (ǩ). Absent other superfluous point-group sym-
metries, the group of any wave vector in o′′ is generated by T i
and has a single inequivalent half-integer-spin irrep, which is
two-dimensional; we may then apply the perturb-then-contract
argument to obtain the desired result.

8. Group-theoretic analysis of class-II-A orbits with u(g) = 0

One goal of this section is to derive Eqs. (149)–(152).
Before this, we shall elaborate on their implications on the
group-theoretic structure of class-II-A orbits (u = 0). We have
claimed that g̃Ks ∼ A g̃Ks reflects an intrinsic ambiguity in
how we represent symmetries of the propagator A. The reader
may be familiar with an analogous U(1)-phase ambiguity in the
representation of symmetries of quantum Hamiltonians [119],
which motivates the extension of groups by U(1) phase factors.
In different contexts, these groups are known as ray or double
groups, and have applications in magnetic translations [79] and
in describing half-integer-spin systems [119]. Analogously,Ap

in Eq. (151) originates from an extension of the point group
by quasimomentum loop translations.

To elaborate on this extension, let us define Go as the
subgroup of the (magnetic) space group (G) that stabilizes a
contractible orbit o. Go is itself a (magnetic) space group, and
its quotient with respect to its translational subgroup is a point
group defined as Po. Let A ∈ GA := {Az|z ∈ Z} represent a
single translation around o. The action of Po on GA is defined
through

g ∈ Po, g̃Ks AKsg̃−1 = A(−1)u , (162)
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where g is a representative element in Po. g̃Ks is defined to be
an operator that maps the propagator to itself, up to a reversal
in orientation that is determined by u(g). If g̃Ks is found that
satisfies Eq. (162), it follows trivially that Ag̃Ks only satisfies
Eq. (162). Therefore, g̃Ks is only defined up to an equivalence
g̃Ks ∼ Ag̃Ks , and we say that the equivalence class [g̃Ks]
forms a (possibly projective) representation of g ∈ Po. Alter-
natively stated, g̃Ks and A are elements of a group which is an
extension of Po by GA; the possible extensions are classified
by the second group cohomology [121,126]: H 2(Go,GA).
Extensions of the point group by noncontractible translations
in k space were first studied by one of us in Ref. [70],
to classify the symmetries of noncontractible Wilson loops
that wrap around the Brillouin torus. The present program
further demonstrates that extensions by contractible k-space
translations are needed in the group-theoretic description of
closed orbits.

Proof of Eqs. (149)–(152). Let us define Si ≡ Si+L as the
minimal-length, oriented line segment (contained within o)
that begins at ki and ends at ki+1; recall that ki are points on
the g orbit of k1, and ki+1 = g ◦ ki , as defined in Eq. (34).
For order-two symmetries such as T or i, there are two
equal-length segments connecting k1 and k2 := −k1; in this
case, either choice of segment is valid, and will not affect
[p(g)] in Eq. (152). We further define Ai ≡ Ai+L as the
propagator along Si ; in more detail, Ai := A[Si : ki+1 ← ki]
with segment propagator A[S] defined in Eq. (138). Let us
introduce an index ν(g), which equals −1 (resp. +1) if Si(g)
has the same (resp. reversed) orientation as o. Depending on
ν,A is composed of a concatenation of {Ai} as

A[o] = ( AL . . .A2A1 )−ν . (163)

Note that we have arbitrarily chosen the base point of o as k1,
but this choice does not affect the eigenvalues of A[o], which
enter the quantization conditions (cf. Sec. V).

A particularization of Eq. (140) implies that

eiδ·(g◦kj+1−g◦kj )ğj+1K
sAjK

sğ−1
j = Aj+1 (164)

⇔ eiδ·(g◦kj−g◦kj+1)ğjK
sA−1

j Ksğ−1
j+1 = A−1

j+1 (165)

⇔ eiδ·(g◦kj )ğjK
sA−1

j = eiδ·(g◦kj+1)A−1
j+1ğj+1K

s. (166)

Inserting Eq. (164) into Eq. (163) for ν = −1,

ν(g) = −1, A[o] = ğ0K
sAL−1 . . .A1ALK

sğ−1
0

= ğ0K
sA−1

0 ALAL−1 . . .A1A0K
sğ−1

0

= g̃KsA[o]Ksg̃−1, (167)

where g̃ in the last line is defined as

[g̃Ks] = [
eik1·δ ğ0K

sA−1
0

]
, g̃Ks ∼ A[o] g̃Ks. (168)

Inserting Eq. (165) into Eq. (163) for ν = +1,

ν(g) = 1, A[o] = ğ0K
sA−1

0 A−1
1 . . .A−1

L−1K
sğ−1

0

= (
ğ0K

sA−1
0

)
A−1

1 . . .A−1
L−1A−1

L

(
A0K

sğ−1
0

)
= g̃KsA[o]Ksg̃−1, (169)

utilizing the same definition of g̃ in Eq. (168). In either case
for ν, g̃ satisfies

(g̃Ks)N = (
ei(g◦k0)·δ ğ0K

sA−1
0

)N
= A−1

1

(
ei(g◦k1)·δğ1K

sA−1
1

)N−1
ei(g◦k1)·δğ1K

s

= A−1
1 A−1

2

(
ei(g◦k2)·δğ2K

sA−1
2

)N−2

× ei(g◦k2)·δğ2K
sei(g◦k1)·δğ1K

s

= (
A−1

1 A−1
2 . . .A−1

N

) (
ei(g◦kN )·δ ğNKs . . .

ei(g◦k2)·δ ğ2K
sei(g◦k1)·δ ğ1K

s
)

= A[o]νm (−1)Fa(g). (170)

The second to fifth equalities are derived by an N number
of iterative applications of Eq. (166); in the last line, we
have employed Eq. (163), and the fact that the g orbit {ki}Ni=1
contains m cycle(s) of length L = N/m, with kL = k0.

VII. INTRABAND BREAKDOWN

Intraband breakdown occurs in the vicinity of saddle points,
which are the nuclei of Lifshitz transitions, i.e., changes in
the topology of constant-energy band contours as a function
of energy. In the neighborhood of a saddle point, the band
contours approach each other as two arms of a hyperbola
illustrated in Fig. 3. It is convenient to orient ourselves by
parametrizing the zero-field, band dispersion as

εk = k2
x

2m1
− k2

y

2m2
, (171)

with k := (kx,ky) chosen so that both mj > 0. In 3D solids, ε
additionally depends on kz as

εkx,ky ,kz = k2
x

2m1
− k2

y

2m2
+ f (kz). (172)

Since kz remains a conserved quantity in the presence of
a magnetic field along �z, we may as well define εkx,ky :=
εkx,ky ,kz − f (kz) and work directly with Eq. (171).

For a fixed energy εk = E, it is convenient to introduce the
hyperbolic parameters

k2
x

a2
− k2

y

b2
= sgn[E],

a(E) =
√

2m1|E|, (173)

b(E) =
√

2m2|E|,
such that the hyperbolic asymptotes are diagonal lines
parametrized by ky = ±(b/a)kx . Figures 3(b) and 3(c) illus-
trate a discontinuous change in the band contours at E = 0.

A quantity of geometric significance is the area (4ab)
of the rectangle inscribed between the two hyperbolic arms
(see Fig. 3); it is natural that the dimensionless parameter

μ = sgn[E] 1
2abl

2 = √
m1m2El

2 (174)

determines the probability of tunneling between orbits; the
exact form ofμwill be motivated by the connection formula in
Eq. (182). When |μ| = O(1), the minimal separation between
two contours becomes of order l−1, and tunneling between
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FIG. 3. (a) illustrates a region in k space where quantum fluc-
tuations are strong; it shall be referred to as the breakdown region.
The solid black lines are constant-energy band contours near a saddle
point. The breakdown region overlaps with the semiclassical region
(indicated by gray wavy lines). In (b) and (c), we representatively
indicate the band and orbit velocities: respectively, ∇kε is indicated
by blue arrows, and k̇ (for a semiclassical wave packet with negative
charge in a magnetic field B = −B�z, B > 0) is indicated by red
arrows. (b) shows the velocities at positive ε, and (c) for negative ε.

orbits—intraband breakdown—must be accounted for. One
indication that the semiclassical equations of motion might fail
is that the cyclotron mass (h̄2/2π )∂S/∂E of the orbit diverges
logarithmically asE → 0 [129]; a related symptom is that both
components of the band velocity∇kε vanish at the saddle point,
as illustrated in Figs. 3(b) and 3(c). Both symptoms suggest that
a hypothetical, Hamilton-obeying wave packet never reaches
the saddle point in finite time.

A. Connection formula with intraband breakdown

The method to determine energy levels is similar in spirit
to the divide-and-conquer approach of Sec. V B. The vicinity
of the saddle point is a region of quantum fluctuations where
the Zilberman-Fischbeck (ZF) function [Eq. (79)] loses its
validity—as may be inferred from the diverging prefactor of
1/|vx |1/2. What is needed is an approximate solution of the wave
function in this breakdown region, with which to connect the
two incoming ZF functions approaching along the kx = aky/b

diagonal (see Fig. 3), with two outgoing ZF functions along
the kx = −aky/b diagonal.

The main goal of this section is to derive this connection
formula. The first step is to derive an effective Hamiltonian
that is valid in the breakdown region; we must then derive
the eigenfunctions (of this effective Hamiltonian) to the same
order of accuracy (in inverse powers of l) as the Zilberman-

Fischbeck function. For this purpose, one must go beyond
the Peierls substitution of Eq. (171), which produces only the
lowest-order, Peierls-Onsager Hamiltonian in the asymptotic
expansion of Eq. (51). The Peierls-Onsager Hamiltonian forms
the basis of previous treatments [11,130,131] of this problem,
as briefly reviewed in Appendix D 1 a.

Let us elaborate on how this connection is done. As
illustrated in Fig. 3(a), there exists an interval in ky ∈ [k+

y ,k
−
y ],

centered at the saddle point, where a semiclassical description
breaks down; we shall refer to [k+

y ,k
−
y ] as the breakdown

interval. It is convenient to define four directed edges which
meet in the breakdown interval, which we label by the di-
rections of their semiclassical motion along the hyperbolic
asymptotes: ν ∈ {↖ , ↙} above the breakdown interval, and
ν ∈ {↗ , ↘} below. By “directed edge,” we are utilizing
graph-theoretic language that is reviewed in Sec. III F. Each
edge is parametrized by two single-valued functions kνx (ky,E)
and kνy (kx,E); it is convenient to define for each edge the
coordinate of closest approach [kν0(E) := (kνx0(E),kνy0(E))] to
the saddle point, as indicated by red dots in Fig. 3(a).

Above the breakdown interval, the general analysis of
Sec. V A 1 informs us that the wave function in the (Kx,ky)
representation [Eq. (77)] is a linear combination of at least two
ZF functions (corresponding to the two edges above a saddle
point):

f +
kE = c↖Eg̃

↖
kE + c↙Eg̃

↙
kE + · · · . (175)

cνE are edge-dependent constants which are to be determined.
As denoted vaguely by · · · , there might in general be more
edges in the above sum which correspond to constant-energy
band contours far away from the saddle point (and therefore
not illustrated in Fig. 3), but they will not be important in
the matching procedure. The ZF functions in Eq. (175) are
defined (up to a ky-independent phase) as eigenfunctions of
the effective Hamiltonian in the semiclassical region (denoted
sm):

For k ∈ sm, [H0(K ) +H1(K ) − E]g̃νkE = O(l−4). (176)

Precisely, we define

g̃νkE := eikxky l
2√|vνx |
e
−il2 ∫ ky

kν
y0(E) (kνx−H̃ ν

1 /v
x
ν )dz

∣∣∣∣
E→Ẽ

, (177)

Ẽ := E −H1(0), H̃1(k) := H1(k) −H1(0); (178)

one may verify that g̃ indeed satisfies the eigenvalue equation
Eq. (176). Indeed, beginning from Eq. (176), one may redefine
the origin of the energy as in Eq. (178), and utilize the known
WKB solution from Eqs. (78) and (79). The reader may wonder
what is the point of the redefinition of energetic origin, i.e., why
not directly use the simpler expression

gνkE := eikx ky l
2√∣∣vνx∣∣ exp

{
−il2 ∫ ky

kνy0(E)

(
kνx − Hν

1
vxν

)
dz
}∣∣∣

E
, (179)

which is also a solution of Eq. (176) in the semiclassical region.
Indeed, gνkE − g̃νkE = O(l−2) in the semiclassical region, as
proven in Appendix D 1 c. However, at the coordinate of the
saddle point, the phase ofg [which includes a term proportional
to H1(0) log |E|] diverges logarithmically as |E| → 0, while
the phase of g̃ is continuous across E = 0. For this reason, we
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will find that g̃ is a better WKB function to formulate quanti-
zation conditions that are valid in the vicinity of a saddle point.

Below the breakdown interval, we analogously have

f −
kE = c↗Eg̃

↗
kE + c↘Eg̃

↘
kE + · · · . (180)

Assuming the non-WKB wave function in the breakdown
region has been solved for, we may utilize this wave function
as a bridge to coherently relate {c↖E,c↙E} (defined above
the breakdown region) to {c↗E,c↘E} (defined below). For the
purpose of deriving quantization conditions in Sec. VII B, we
find it intuitive to express this relation as a scattering-matrix
equation connecting incoming to outgoing sections:(

c↖E

c↘E

)
= S(E,kz)

(
c↗E

c↙E

)
. (181)

The scattering matrix in the Peierls-Onsager approximation is
known to be [111,130,131]

S(0)(E,l2) =
(
T R
R T

)∣∣∣∣
El2

,

T (μ) = eiφ(μ) eπμ/2

√
2 cosh(πμ)

,

R(μ) = − i eiφ(μ) e−πμ/2

√
2 cosh(πμ)

,

φ(μ) = arg[�(1/2 − iμ)] + μ log |μ| − μ, (182)

with μ defined in Eq. (174) and � the Gamma function. Al-
ternatively stated, S(0) is the connection formula for Zilberman
functions without higher-order corrections [i.e., Eq. (177) with
H1(k) = 0].

The derivation of Eq. (182) is reviewed in Appendix D 1 a,
where we elaborate on a useful analogy: magnetic tunneling of
a Bloch electron near a saddle point is mathematically equiv-
alent to a Schrödinger particle tunneling across an inverted
parabolic barrier—a problem first studied by Kemble [132]. In
particular, it is well known [132] that the tunneling probability
at the barrier maximum is half of unity, which is reflected in
Eq. (182) by |T |2 = |R|2 = 1/2 for μ = 0 [see Fig. 4(a)];
we shall refer to this as the Kemble limit. We refer to φ as
the intraband scattering phase and plot it in Fig. 4(b); φ has
the following properties: (a) it is an odd function of μ that
vanishes at zero and the limits ±∞, and (b) its first-order
derivative diverges logarithmically as μ → 0. In all cases we
have studied, property (b) does not lead to any irregularity in
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FIG. 4. Plots vs μ of (a) |R|2 (red) and |T |2 (blue), (b) the
scattering phase φ (blue) and its derivative with respect to μ (red).

the Landau levels, owing to the cancellations of logarithmic
divergences in (∂φ/∂E) and the cyclotron mass (∝ ∂S/∂E);
we will exemplify this cancellation in Sec. VII C. For quick
reference in the future,

μ → +∞, T → 1, R → 0, φ → 0; (183)

μ → 0, T → 1/
√

2, R → −i/
√

2, φ → 0; (184)

μ → −∞, T → 0, R → −i, φ → 0. (185)

The transition from {|T | = 1,|R| = 0} to {|T | = 0,|R| = 1}
reflects a Lifshitz transition of the band contours. While the
change in the band contour is discontinuous across E = 0,
the scattering parameters are continuous in energy; there is, as
noted, a first-order non-analyticity in φ. The μ → −∞ limit
corresponds to the absence of tunneling (in the �y direction)
between the two semiclassical orbits drawn in Fig. 3(c). In
this limit, R = −i is the phase acquired by a wave packet
as it approaches the saddle point and is reflected with unit
probability; the point of closest approach to the saddle point
may therefore be identified as a turning point, just as discussed
in Sec. V B. Indeed, we have demonstrated in Sec. V B that
a wave packet rounding a turning point with a clockwise
orientation picks up a phase of −i, which we consistently
identify with R = −i here.

Let us argue generally that the scattering matrix, for any
form of breakdown, should transform covariantly under gauge
transformations within P . Viewed broadly, the scattering
matrix describes the phase-coherent amplitudes for Feynman
trajectories through the breakdown region. There is in general a
phase ambiguity in how we define the incoming and outgoing
scattering states, whose wave functions have the Zilberman-
Fischbeck form in Eq. (177); in particular, the phase difference
between any two states connected by a tunneling trajectory has
no gauge-invariant meaning. To appreciate this point, consider
a phase redefinition of the cell-periodic function projected by
P : |uk〉 → |uk〉eiφ(k). The resultant non-covariant transforma-
tion of the Berry connection (X → X − ∇kφ) occurring in
H̃1 [cf. Eq. (177)] results in the scattering-state wave function
transforming as

gν±kE → gν±kEe
−iφν (ky )+iφ(kν0), (186)

where in the last expression φν(ky) equals φ(k) evaluated
on the section ν, and at the coordinate ky . If hypothetically
the scattering matrix were insensitive to phase redefinitions
of the scattering states, as is S(0) [cf. Eq. (182)], one would
conclude that the quantization condition depended on the
phase difference φ(kν0) − φ(kμ0 ), which is generally nonzero
for a tunneling trajectory connecting the edges ν and μ (note
kν0 �= kμ0 ). The coefficients cνE , defined in Eqs. (175)–(180),
should transform with a canceling phase factor

cνE → cνEe
−iφ(kν0)

⇒ S →
(
e−iφ(k↖

0 ) 0
0 e−iφ(k↘

0 )

)
S

(
e−iφ(k↗

0 ) 0
0 e−iφ(k↙

0 )

)
.
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Equivalently stated, the scattering matrix must transform
gauge-covariantly. We see from this argument that the ne-
cessity of gauge covariance follows from the existence of
tunneling trajectories, which is a characteristic feature of both
intraband and interband breakdown—but not of turning points.
We believe that our argument should broadly apply to any
quantum tunneling phenomenon within a subspace of states
(bands, in our context) that is nontrivially embedded in a larger
space of states; this point has been overlooked in conventional
treatments [111] of tunneling with scattering matrices.

Let us show that the next-order corrections to S(0) restore
the essential gauge covariance. For this purpose, it is sufficient
to consider the correction by the Berry term HB

1 alone:

S(E,l2)

H1=HB
1

=

(
T (μ) ei

∫ b
−b X

y (0,ky )dky R(μ) e−i ∫ a−a Xx (kx ,0)dkx

R(μ) ei
∫ a
−a X

x (kx ,0)dkx T (μ) e−i ∫ b−b Xy (0,ky )dky

)
,

(187)

neglecting terms of order O(l−2,(b/G)2,(a/G)2). a(E) and
b(E) are the hyperbolic parameters defined in Eq. (173),
and G is a typical reciprocal period. For positive
E,

∫ b(E)
−b(E) X

y(0,ky)dky is the integral of the Berry connection
along the shortest-length tunneling trajectory that connects
k↗

0 (E) to k↖
0 (E) through the classically forbidden region [e.g.,

the vertical dashed line in Fig. 5(b)]. That this tunneling
trajectory is of the shortest length should not be taken too
seriously; a slightly deformed trajectory within the breakdown
region gives a correction [of O(l−2)] that is beyond the
accuracy of our calculation (detailed in Appendix D 1). Under
a phase redefinition |uk〉 → |uk〉eiφ(k), the open-line Berry
integral transforms as∫ b

−b
Xydky →

∫ b

−b
Xydky − φ(k↖

0 ) + φ(k↗
0 ), (188)

which implies that the scattering matrix transforms covariantly
as

S →
(
e−iφ(k↖

0 ) 0
0 e−iφ(k↘

0 )

)
S

(
e−iφ(k↗

0 ) 0
0 e−iφ(k↙

0 )

)
. (189)

Indeed, Eq. (187) is minimally corrected from S(0) to ensure
gauge covariance; our calculation shows that the minimally
corrected matrix completely accounts for corrections by HB

1 .
In solids where the Roth (HR

1 ) and Zeeman (HZ
1 ) terms

vanish by symmetry (e.g., c2zT symmetry; cf. Sec. VI B),
there are no further leading-order corrections to the scattering
matrix.

Unlike the Berry correction to the scattering matrix, the
Roth and Zeeman corrections cannot be argued for from gauge
covariance; a calculation is necessary, which we detail in
Appendix D 1. When all three corrections are accounted for,
we find that the scattering matrix takes the form

S(E,l2) =
(
T (μ̃)eiδy (Ẽ) R(μ̃)e−iδx (Ẽ)

R(μ̃)eiδx (Ẽ) T (μ̃)e−iδy (Ẽ)

)

+O(l−2,(b/G)2,(a/G)2), (190)

S1 S2

S1 S2

1 2 1 2

1 2

t1=1
t1=0

ky

kx

t1=0

t1=1

kx

1 2ky

(d)

kx

1 2ky

(e)

(a) (b)

(c)

FIG. 5. (a) The double-well graph consists of two broken orbits
(labeled i = 1,2) linked by a single breakdown vertex. Each broken
orbit comprises three sections and two turning points. (b) and
(c) illustrate the band contours at positive and negative energies,
respectively. (d) and (e) are possible realizations of the double-well
graph: (d) depicts a band dispersion with two nearby peaks, and
(e) illustrates two Dirac points (indicated by orange dots) in close
proximity.

Ẽ := E −H1(0), μ̃ := √
m1m2Ẽl

2, (191)

δy(E) := 2m1 H1x b(E) l2, δx(E) := 2m2 H1y a(E) l2,
(192)

where H1(0),H1x , and H1y are defined as coefficients in the
low-momentum expansion of H1 = HB

1 +HR
1 +HZ

1 about
the saddle point:

H1(k) := H1(0) +H1xkx +H1yky + · · ·,
HB

1 (k) = l−2(Xyvx − Xxvy)

= l−2

(
Xy kx

m1
+ Xx ky

m2

)
:= HB

1xkx +HB
1yky, (193)

H1(0) = HR
1 (0) +HZ

1 (0). (194)

Note that HB
1 (0) = 0 because the saddle point is an extremum

in the band dispersion, and the second line follows from
particularizing the definition of H 1

B [cf. Eq. (58)] to the saddle
point.

In Eq. (192), we have defined δx and δy as phase corrections
to the scattering matrix. Their respective proportionality to
a(E) and b(E) identifies them as phases acquired in the
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tunneling trajectories parallel to �x and �y. This tunneling phase
includes the open-line Berry phase from our previous result in
Eq. (187); e.g., we may identify

δy =
∫ b

−b
Xy(0,ky)dky + 2m1

(
HR

1x +HZ
1x

)
b l2 +O

(
b2

G2

)
,

(195)

with aid from Eq. (193). Under a phase redefinition |uk〉 →
|uk〉eiφ(k), δy transforms just like Eq. (188) owing to the gauge
invariance of HR

1 and HZ
1 , and therefore S(E,l2) in Eq. (190)

transforms covariantly, just as in Eq. (189). We might further
motivate the form of Eq. (195) by rewriting it completely in
terms of H1, v

x , and b:

δy ≈
∫ b

−b

{
H1(k) −H1(0)

vx(k)

}
ky

dky, (196)

where {·̄}ky denotes the kx average of the quantity · over
a fixed-ky cross section of the classically forbidden region.
With some creative license, one might interpret Eq. (196)
as the Roth-Berry-Zeeman phase averaged over all possible
tunneling trajectories parallel to �y.

As expressed in (195), δy may be separated into gauge-
dependent (δBy with B for Berry) and gauge-invariant (δRZ

y for
Roth and Zeeman) terms. δRZ

y may be dropped if we are willing
to accept an O(1) accuracy for the scattering phase. Indeed,
we make the following estimate for the size of δRZ

y : since
the tunneling trajectory has length 2b with b the hyperbolic
parameter [cf. Eq. (173)], δRZ

y is of order O(b/G) with G the
reciprocal period. We might further bound b � O(1/l), which
is the width of the breakdown region. An analogous argument
allows us to approximate

δx = δBx +O(1/l), δBx :=
∫ a

−a
Xx(kx,0)dkx,

δy = δBy +O(1/l), δBy :=
∫ b

−b
Xy(0,ky)dky. (197)

Since δBi is gauge-dependent, there is no sense in which we
might similarly conclude it is small.

B. Quantization condition for closed orbits
with intraband breakdown

We summarize a few salient points from the previous sub-
section (Sec. VII A): in the presence of intraband breakdown,
we divide the Brillouin torus into overlapping subregions.
A breakdown region is a strip centered at a saddle point in
the energy-momentum dispersion, as illustrated in Fig. 3(a);
wave functions therein are eigenfunctions of an approximate
effective Hamiltonian in the (Kx,ky) representation. In the
semiclassical subregions, the Zilberman-Fischbeck wave func-
tions [g̃kE in Eq. (177)] are asymptotically valid in the limit of
weak fields. Both types of wave functions are matched where
the breakdown and semiclassical subregions overlap; matching
conditions are known as connection formulas, and may be
expressed with the scattering matrix in Eq. (190).

The condition for an energy eigenstate at energy E and
wave vector kx is the continuity (with respect to ky) of the
wave function in the (Kx,ky) representation. This continuity

condition has a simple graphical interpretation, which we will
now develop. We view a closed-orbit configuration (which
is presumably close to at least one saddle point) as a graph,
which is composed of breakdown vertices and broken orbits.
A breakdown vertex is region of dimension 1/l and centered
at the coordinate of a saddle point, as illustrated in a blue patch
in Fig. 5. A broken orbit is an orbit over a smooth trajectory
that begins at a breakdown vertex and ends at a (possibly
distinct) breakdown vertex (a precise definition is provided in
Sec. III F). The continuity condition is conveniently expressed
as a system of linear equations whose variables are scalar
amplitudes ({AiE}, defined in the next paragraph) which are
associated to broken orbits (denoted {oi}). We will find it useful
to parametrize each broken orbit (oi) by a timelike variable
ti ∈ [0,1], which increases along the orbit in a direction
consistent with Hamilton’s equation. ti = 0 corresponds to the
point of closest approach to the saddle point of origin, and
ti = 1 to the point of closest approach to the destined saddle
point, as illustrated for the graph in Figs. 5(b) and 5(d). We
caution the reader that (i) these points of closest approach are
zero-field band characterizations of each breakdown vertex,
which is equipped with more internal structure than a point, and
(ii) ti should be distinguished from tν , which we introduced in
Eq. (98) to parametrize an edge ν.

To each point on the broken orbit oi we assign a scalar
amplitude Ai,E(ti); while in principle we may specify its full
functional dependence on ti ∈ [0,1], it is simplest in practice
to just specify the ratio of the amplitudes at the end points:

ei�i (E,l2) := Ai,E(1)

Ai,E(0)
:=

∏
p∈oi

eiφ
p
r

∏
ν∈oi

eiθ̃ν

∣∣∣∣
E,l2

. (198)

In the moving-wave packet description (introduced in
Sec. V C 1), AiE(ti) may be interpreted as the time-evolving
amplitude for a wave packet moving within oi . �i is then the
net phase acquired by a wave packet in traversing the full length
of oi . �i includes the sum of semiclassical phases θ̃ν acquired
along each edge ν ∈ oi :

eiθ̃ν (E,l2) := e
−il2 ∫ kνyf

kν
yi

[kνx−H̃ ν
1 (vxν )−1]dky ∣∣

Ẽ,l2
, (199)

with Ẽ and H̃ defined in Eq. (178), and kνyi (resp. kνyf ) defined as
the ky coordinate of the wave packet as it enters (resp. leaves)
the oriented edge ν; precisely, if the edge ν is bounded by
two turning vertices, kνyi and kνyf are coordinates of these two
vertices; if the edge ν enters a breakdown vertex, kνyf is the
coordinate of closest approach to the saddle point. We further
add to �i a reflection phase φpr for each turning vertex p ∈ oi .
As discussed in Sec. V B,φpr = ±π/2, with the sign depending
on the sense of circulation of each turning vertex.

The connection formula at each saddle point (labeled s) may
be expressed as a scattering matrix (which in general depends
on s) that maps two incoming amplitudes to two outgoing
amplitudes: (

Ai↖,E(0)
Ai↘,E(0)

)
= Ss(E,l

2)

(
Ai↗,E(1)
Ai↙,E(1)

)
. (200)

The expression for S may be found in Eqs. (187) and (190).
i↗ labels the broken orbit that is approaching the saddle point
from the ↗ direction, i.e., in the direction of increasing kx and
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ky ; take care that {i↖,i↘,i↗,i↙} do not necessarily correspond
to four distinct broken orbits.

Combining Eqs. (198) and (200) for all broken orbits in
the graph, we obtain a system of linear equations with the
variables {Ai,E(0)}, which is then solved by standard algebraic
methods. A solution exists upon satisfaction of a determinantal
equation that is parametrized by energy E (and wave vector
kz in 3D solids); this is the generalized Bohr-Sommerfeld
quantization condition. For comparison, Eq. (108) shows an
analogous determinantal equation for a simple, closed orbit
without breakdown. Let us follow this algorithm to determine
the quantization conditions for two case studies.

C. Case study: The double-well graph, applied
to conventional and topological metals

The simplest graph with a single breakdown vertex de-
scribes a Lifshitz transition where two orbits merge into one, as
illustrated in Figs. 5(a)–5(c). Scattering from a saddle point is
analogous to a Schrödinger particle scattering from an inverted
parabolic potential. The semiclassical motion of wave packets
on either side of the saddle point is reminiscent of a Schrödinger
particle in a double well; hence we shall refer to Fig. 5(a) as
the double-well graph.

We offer two topologically distinct realizations of the
double-well graph illustrated in Fig. 5(a): Fig. 5(d) illustrates
a conventional metal whose band dispersion has two nearby
maxima—this has also been referred to as “necking” in
Ref. [11]; Fig. 5(e) illustrates two Dirac/Weyl points in close
proximity, which materializes in topological metals near a
metal-insulator transition. The double-well graph is a good
description of both conventional and topological metals for an
interval of energy centered at their respective saddle points;
however, their difference in Berry phase leaves a signature in
the Landau levels which we will investigate. The quantization
condition for the double-well graph was first derived by Azbel
in the Peierls-Osager approximation [11]; here, we derive also
the subleading corrections to the quantization condition that
encode the Berry phase, the orbital moment, and the Zeeman
effect. A particular expression of this corrected condition was
presented previously in Ref. [36] assuming certain crystalline
point-group symmetries; here, we shall assume no such sym-
metries and derive the most general form of the quantization
condition.

1. Quantization condition for the asymmetric double well

The two broken orbits in the double-well graph are denoted
by oi , with i = 1,2 indicated in Fig. 5(a). Corresponding to
these orbits are two scalar amplitudes (A1E,A2E), which are
related by the scattering matrix as(

A1E(0)
A2E(0)

)
= S(E,l2)

(
A1E(1)
A2E(1)

)

⇒ det

[
S

(
ei�1 0

0 ei�2

)
− I

]∣∣∣∣
E,l2

= 0, (201)

with �j (E) defined in Eq. (198). The above equation may be
interpreted thus: a wave packet that traverses the full length of
oi accumulates a phase �i ; as it passes through the breakdown
region, the incoming wave packet splits into two outgoing

wave packets with amplitudes determined by the scattering
matrix. The determinantal equation in Eq. (201) expresses the
condition that these amplitudes are everywhere single-valued.

Employing the expression for the scattering matrix
[Eq. (190)] and the identityT 2 − R2 = ei2φ , the determinantal
equation may be expressed trigonometrically as

cos

[
�1 +�2

2

∣∣∣∣
E,l2

+ φ(μ̃)

]
= |T (μ̃)| cos

[
�1 −�2

2

∣∣∣∣
E,l2

]
.

(202)

μ̃ has been defined in Eq. (191), and�j ∈ Rmay be expressed,
modulo 2π , as

�j (E,l2)

:= �j (E,l2) + (−1)j+1δy(Ẽ,l2)

= π +
{
l2Sj + l2

∫ 1

0

H̃
ν(tj )
1

vxν(tj )

dky

dtj
dtj + (−1)j+1δBy

}
Ẽ,l2

,

(203)

with k(tj ,E) defined as the point on oj at timelike tj and energy
E, and ν(tj ,E) labels uniquely the edge that contains k(tj ,E).
For E > 0,�j is simply the phase (�j ) acquired by a wave
packet as it traverses the full length of oj [cf. Eq. (198)];
E < 0, oj is not closed [see Fig. 5(c)], and �j includes an
additional Berry phase (δBy ) acquired in a tunneling trajectory
that connects the two end points of oj . In more detail, let
us describe the four terms in Eq. (203) in their order of
appearance:

(i) The π term originates from the two turning vertices on
each broken orbit, as indicated by green dots in Fig. 5(a). Each
turning vertex has an anticlockwise circulation and contributes
a +π/2 reflection phase, as discussed in Sec. V B.

(ii) We have previously employed S(E) to denote the
oriented area of a simple, closed orbit in Sec. V; S is positive
for clockwise-oriented orbits and vice versa. In the presence of
intraband breakdown, Sj (E) denotes analogously the oriented
area of a closed Feynman trajectory (denoted ōj,E), which is a
“minimally modified closure” of the broken orbit oj at energy
E. That is, we extend the broken orbit by the shortest possible
path to form a closed loop. For E > 0, oj is already closed
[see Fig. 5(b)]; for E < 0, we add an oriented vertical line
[dashed line in Fig. 5(c)] of length 2b across the classically
forbidden region. We shall refer to this added line as a tunneling
trajectory.

(iii) The two additional terms that contribute to �j

[in Eq. (203)] represent the leading-order corrections to the
Peierls-Onsager approximation. The first corrective term is
a phase acquired over oj , and is generated by the Roth-
Berry-Zeeman correction to the Peierls-Onsager Hamiltonian
[H1 in Eq. (57)].

(iv) The second corrective term [±δBy in Eq. (203)] is
defined to vanish for E > 0, but for E < 0 it is the Berry
phase acquired over the tunneling trajectory that connects the
boundary points of oj [cf. Eq. (197)]. We may combine δBy
with the Berry contribution to

∫
H̃1dt to obtain an integral

of the Berry connection over the closed loop ōj,E . Thus,
a gauge transformation of the type Eq. (23) (with D = 1)
may modify �j by any integer multiple of 2π , but does not
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affect the quantization condition in Eq. (202). This concretely
exemplifies how the gauge-covariance of the scattering matrix
(originating from δBy ) results in the gauge-invariance of the
quantization condition.

Equations (202) and (203) are the main result of this
section. This quantization condition provides an algebraic
approach to determine the Landau levels for any tunneling
strength, and without recourse [45–47] to large-scale numerical
diagonalization. There are two limits μ → ±∞ where the
Landau levels determined by Eq. (202) are locally periodic in
the sense of Eq. (109). ForE > 0 and in the limit of weak field,
we combine Eqs. (183) and (202) to obtain sin(�j/2) = 0,
which are independent quantization conditions for two orbits
with negligible tunneling, as illustrated in Fig. 5(b). Each
condition may be cast more familiarly as

2π (n+ 1/2) ≈ l2Sj (En) +
∮
ōj

(A + X) · dk

+ Z(σ z/v⊥)|dk||En
, (204)

with v⊥ := (vx + vy)1/2; this expression is the anticlockwise-
oriented analog of the single-band quantization condition in
Eq. (68) for simple closed orbits. The last three terms on the
right-hand side are the Roth, Berry, and Zeeman contributions,
as we have defined below Eq. (68). In deriving Eq. (204), we
have employed a well-known expression for the cyclotron mass
[7] (∂S/∂E = − ∮ |dk|/v⊥) and the identity

for |E| > 0,{
Sj +H1(0)

∫ 1

0

dtj

vxν(tj )

dky

dtj

}
E−H1(0)

=
{
Sj −H1(0)

∫
ōj

|dk|
v⊥

}
E−H1(0)

= Sj (E) +O(l−4).

A different, locally periodic spectrum emerges in the weak-
field limit for E < 0: combining Eqs. (185) and (202), we
obtain a single quantization condition for the combined orbit
illustrated in Fig. 5(c): cos(�1/2 +�2/2) = 0. This condition
is equivalent to Eq. (204) with the replacements Sj → S1 + S2

and
∮
ōj

→ ∮
ō1+ō2

.
For generalμ and not assuming any symmetry, the spectrum

of Eq. (202) is neither locally periodic nor completely random.
Corresponding to the two distinct arguments of the cosine func-
tions in Eq. (202), there are generally two, distinct harmonics
that competitively produce a quasirandom [18] spectrum, i.e.,
a spectrum that is intermediate between that of an ordered and
disordered system. Consequently, magnetic oscillatory pat-
terns (e.g., of the de Haas–van Alphen type) are not completely
smeared out, but retain a regularity that reflects the long-range
correlations in a quasirandom spectrum [18]. We will refer to
linearly independent arguments of trigonometric functions in
the quantization condition as “trigonometric harmonics,” to
distinguish them from the related concept of dHvA harmonics
in the magnetization.

While our quantization condition is valid for any tun-
neling strength, we may anyway gain some intuition about
quasirandomness in a weak-tunneling parameter regime where
one trigonometric harmonic is dominant over the other. The

dominant harmonic determines a semiclassical Landau fan in
the absence of tunneling; to clarify, a Landau fan describes dis-
crete energy levels {E0

j (B)}j∈Z whose separation (Ej+1 − Ej )
increases with the magnetic field; i.e., the levels fan out.
To leading order in a tunneling parameter (specified below),
the tunneling correction to the fan δEj (B) oscillates with
the frequency corresponding to the weaker harmonic. Such
a perturbative treatment of quasirandom spectra is developed
generally in Sec. IX E. As an example, let us perturbatively
treat the regime μ � 0, where (�1 +�2)/2 dominates over
(�1 −�2)/2. The dominant harmonic determines the semi-
classical Landau fan through cos(�1/2 +�2/2) = 0; Landau
levels are indexed by j ∈ Z as

�1 +�2

2

∣∣∣∣
E0
j

= π

2
+ jπ. (205)

To leading order in |T | and φ, the correction to the Landau
fan is

δEj (B) = φ + (−1)j |T | cos[ (�1 −�2)/2 ]

(−1/2)[ ∂(�1 +�2)/∂E ]

∣∣∣∣
E0
j

, (206)

where the factor (−1)j originated from our evaluation of
sin[(�1 +�2)/2] atE0

j . The above equation is valid assuming
|T | and φ are small and slowly varying on the scale of
δE. Indeed, the typical scale of variation for |T (μ)| and
φ(μ) is �μ ∼ 1 [see Figs. 4(a) and 4(b)], which implies an
energy scale �E ∼ 1/

√
m1m2l

2 from the defining relation
μ = √

m1m2El
2. It follows that

δEj

�E
∼

√
m1m2

∂(S1 + S2)/∂E

[
φ + (−1)j |T | cos

�1 −�2

2

]∣∣∣∣
E0
j

,

which vanishes for small enough field or large enough |E0
j |.

2. Quantization condition for the symmetric double well

Next, we discuss how certain (magnetic) point-group sym-
metries may simplify the quantization condition, and make
contact with the simpler expressions found in Ref. [36].

(i) Consider a time-reversal-symmetric (T ), spin-orbit-
coupled solid with a twofold rotational axis (c2z) parallel to
the field, but lacking spatial inversion symmetry. The latter
implies bands are nondegenerate at generic wave vectors. We
shall assume the Weyl points and saddle points [Figs. 5(c) and
5(d)] lie on generic wave vectors in a plane (e.g., kz = 0) that is
invariant under both rotation and time reversal. Weyl points in a
rotationally invariant plane are not uncommon, as exemplified
by TaAs [133–135]. The combined symmetryT c2z ensures that
HR

1 = HB
1 = 0 at any k in this plane (cf. Sec. VI B); hence

Eq. (203) simplifies to

�j (E,l2) = π + l2Sj (E) +
∮
ōj (E)

X · dk, (207)

with the right-hand side evaluated at E = Ẽ [recall that Ẽ
differs from E by HR

1 (0) +HZ
1 (0)].

(ii) Suppose a mirror symmetry (x→−x) relates the two
maxima in Fig. 5(c) and the two Weyl points in Fig. 5(d);
the saddle point lies on the mirror line where HR

1 = HZ
1 = 0

(cf. Sec. VI B); hence E = Ẽ also. Note however that the Roth
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FIG. 6. Surface-state band contours in the SnTe class of topolog-
ical crystalline insulators. The corresponding graph consists of four
broken orbits (labeled i = 1,2,3,4) linked by two breakdown vertices.
Orbits 1 and 4 each comprise three edges and two turning vertices;
orbits 2 and 3 each comprise a single edge.

and Zeeman terms are not constrained to vanish at generic wave
vectors away from the mirror line; thus

�j (l2,E) = π + l2Sj (E) +
∮
ōj (E)

X · dk

+
∮
oj (E)

A · dk + Z(σ z/v⊥)|dk|. (208)

The Landau levels and dHvA oscillations for both cases (i) and
(ii) have been studied in Ref. [36].

In our next case study, we will apply the algorithm devel-
oped in Sec. VII B to derive the quantization condition for a
relatively more complicated graph.

D. Case study of topological crystalline insulators:
The butterfly graph

The butterfly graph illustrated in Fig. 6(c) is materialized
on the 001 surface of the SnTe class of topological crystalline
insulators [55,136,137], which has the same symmetry as
rocksalt. The 001 surface is symmetric under the point group
C4v , which is generated by the fourfold rotation c4z and the
reflection rx . We focus on the vicinity of the c2z-invariant
wave vector Ȳ , which is an intersection of two orthogonal
reflection-invariant (rx and ry) lines. Along the rx-invariant
line, the dispersion of the surface states is plotted with blue
lines in Fig. 6(a). The four surface bands intersect at four Dirac
points, two of which (indicated by red dots) are robust due to
Kramers degeneracy, and the other two (brown dots) are robust
due to rx symmetry. We shall distinguish them by calling the
formerT -Dirac points, and the latter rx-Dirac points. At energy
ε+ just below the rx-Dirac points, the band contours form
two nonconcentric circles (within the red plane); at energy
ε− just above the lower T -Dirac point, the band contours
form two concentric circles (within the brown plane). At an

intermediate, critical energy, there is necessarily a Lifshitz
transition [55] facilitated by two saddle points, as illustrated in
Figs. 6(b)–6(d).

Following our algorithm to determine the quantization
condition, we first identify four broken orbits and label them
as 1,2,3,4 in Fig. 6(c). Corresponding to these orbits are four
scalar amplitudes, which are related by the scattering matrices
as (

A1E(0)
A3E(0)

)
= S(E)

(
A2E(1)
A4E(1)

)
,

(
A2E(0)
A4E(0)

)
= S(E)

(
A1E(1)
A3E(1)

)

⇒ det

[
S

(
ei�2 0

0 ei�4

)

× S

(
ei�1 0

0 ei�3

)
− I

]∣∣∣∣
E

= 0. (209)

Here, the scattering matrices corresponding to the two saddle
points are identical owing to ry symmetry; we remind the reader
that �i is the semiclassical phase acquired by a wave packet
in traversing the full length of oi , as defined in Eq. (198). In
spin-orbit-coupled systems with c2zT symmetry, both single-
band Roth and Zeeman terms vanish (i.e.,HZ

1 = HR
1 = 0); this

follows from particularizing the general symmetry constraints
in Eqs. (C35) and (C36). The Berry term is, however, non-
negligible due to the Dirac cones present in this band structure.

Let us then insert the Berry-corrected scattering matrix
[Eq. (187)] into Eq. (209) and perform the necessarily algebraic
manipulations, with aid from the identityT 2 − R2 = ei2φ . The
result may be stated intuitively in this manner: let us define
for each of the three delineated regions in Fig. 6(c) a closed
Feynman trajectory [a concept described below Eq. (203)],
which we denote respectively as ō1,E,ō2,E , and ō3,E . The
semiclassical phase acquired from traversing each Feynman
trajectory in a direction determined by Hamilton’s equation is,
respectively,

�1(E,l2) = l2S1(E),

�2(E,l2) = l2S2(E) + π, (210)

�3(E,l2) = l2S3(E),

with negative S1 and S3 (due to the anticlockwise orientations
of ō1,E and ō3,E) and positive S2. Each of {ōj,E}3

j=1 encircles
a Dirac point (as illustrated in Fig. 6), and is therefore
characterized by a Berry phase ofπ ; once again, the robustness
of π is due to c2zT symmetry. There are two turning points on
each of ō1,E and ō3,E , as indicated by green dots in Fig. 6(c); the
resultant Maslov correction cancels the Berry-phase correction
in �1 and �3. Finally, we should exploit that the areas of
left and right boundaries (ō1,E and ō3,E) are identical due to
rx symmetry; hence �1 = �3. Putting all this together, the
quantization condition may be expressed as a competition of
two trigonometric harmonics:

0 = e−i2φ + ei(�1+�3+2φ) + |R|2[ei(�1−�2+�3) + ei�2 ]

− |T |2[ei�1 + ei�3 ]

⇒ 0 = cos(�1 + 2φ) + |R|2 cos(�1 −�2) − |T |2.
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In the three limits of μ described in Eqs. (183)–(185),

μ → +∞, l2S1 = 2nπ ;

μ = 0, 1 = 2 cos[l2S1] − cos[l2(S1 + S2)]; (211)

μ → −∞, l2(2S1 + S2) = 2mπ, l2S2 = 2nπ ;

with m,n ∈ Z. There are two semiclassical limits of the quan-
tization condition: for μ → +∞ (resp. μ → −∞), we obtain
independent quantization conditions for two nonconcentric
(resp. concentric) simple orbits; in these cases, the Maslov and
Berry corrections sum to zero modulo 2π . Except in these
two semiclassical limits, the spectrum is quasirandom, and
may be analyzed with the perturbative techniques developed
in Appendix F 4.

VIII. EFFECTIVE HAMILTONIAN FOR GENERAL
BAND TOUCHINGS

Band touchings have long provided endless entertainment
in condensed-matter physics [138,139]. There are two senses in
which bands may robustly touch at a point in k space. In one
sense, the touching is movable, but alone it is unremovable.
A 3D Weyl point exemplifies a linearly dispersing touching
between two bands which is free to move in the Brillouin torus
[37–39,41] but can never be removed unless it meets a Weyl
point with an opposite chirality [122,140]. The freedom of one
Weyl point to move but not to gap out may be understood from
the following argument: in the absence of symmetry, a touching
between two bands is described locally (in k space) by a two-
dimensional Hamiltonian having no constraints. For a generic
2×2 Hermitian matrix, three real parameters must be tuned
to impose a degeneracy. In general, we refer to the number of
real Hamiltonian parameters needed to tune a degeneracy as the
co-dimension (p) of the Hamiltonian [141]; the co-dimension
depends on the symmetry class of the Hamiltonian, which in
the present discussion is trivial. In 3D solids, the Brillouin
torus affords us three parameters; hence perturbations of the
k-dependent Hamiltonian of a Weyl fermion merely moves the
Weyl point but cannot gap it out.

Imposing a point-group symmetry (of both symmorphic
and nonsymmorphic kinds), often in combination with time-
reversal symmetry, may reduce the co-dimension. If such
symmetry exists in the groups of all wave vectors in the 3D
Brillouin torus, then line nodes are stable. More generally, the
stable nodes form a (d − p)-dimensional submanifold of a d-
dimensional manifold in k space;p is the symmetry-dependent
co-dimension of the Hamiltonian, d is the dimension of
manifold where this symmetry acts locally (i.e., maps k → k).
d may be less than the spatial dimension of the solid. For
example, 3D Weyl points are stable in a 2D submanifold
(d = 2) that is invariant under the composition of twofold
rotation and time reversal (which enforces p = 2) [133]; other
examples where d = p = 1 may be found in the literature
[42,59,62].

In the other sense of robustness, a band touching may be
both immovable and unremovable. It occurs at high-symmetry
points or lines, and is attributed to a high-dimensional irre-
ducible representation of the little group at such a point. In
time-reversal-invariant, spin-orbit-coupled systems, the possi-

ble dimensions of these irreducible representations are 3,4,6,8
[40,43].

The physical phenomena that are attributed to all these
band touchings form an immense literature; much of
this literature focuses on their unusual magnetic response
[36,37,46,142,143]. Any theoretical understanding of these
magnetic phenomenon begins in the formulation of an effective
Hamiltonian that is applicable to band degeneracies; however,
this formulation is complicated by the discontinuity [61] of
the band eigenfunction at a touching point. The standard lore
is to operationally implement the Peierls substitution in a
k · p Hamiltonian. To our knowledge, such a lowest-order
effective Hamiltonian has only been justified for a two-band
touching with a linear dispersion [12,17]; i.e., no justification
exists for (a) twofold degeneracies with nonlinear dispersions
(e.g., the multi-Weyl points in Ref. [62]), and (b) higher-fold
band degeneracies [40].

Moreover, there has been no attempt to derive higher-order
(in l−2) corrections to the Peierls-substituted Hamiltonian. A
Peierls-subtituted Hamiltonian for a low-energy band subspace
(that touches) accurately determines Landau levels if this
subspace is from all other bands by an energy gap that is large
compared to the cyclotron energy. However, in naturally occur-
ring solids, the band-touching subspace is typically embedded
in a larger space of bands which disperse like spaghetti, and
energy gaps between bands are typically small [40]. In some
cases [44,144], the band-touching subspace is connected (in
the sense of a graph [85,145]) to a larger-rank elementary band
representation [87–90]. Simply stated, symmetry enforces that
there are other bands close by.

This section addresses the above issues by presenting an
effective Hamiltonian that is applicable to any type of band
touching, including all cases mentioned above. The lowest-
order effective Hamiltonian confirms the standard lore that
the Peierls substitution works, if correctly done. Motivated by
applications to spaghetti bands, we also derive the subleading
corrections to the Peierls-type Hamiltonian, which encode the
band-degenerate generalization of the orbital moment and the
geometric phase.

A. Basis functions in the vicinity of a band degeneracy

In the rest of this section, we use k := (kx,ky) to denote
a two-component wave vector, with the understanding that
kz (for 3D solids) is a conserved quantity for a field aligned
in �z. The majority of band touchings occur at isolated wave
vectors in the constant-kz plane; these point degeneracies are
2D Dirac points. Even generically dispersing line nodes may
be viewed as a point degeneracy, when we restrict the line node
to a constant-kz plane [146].

The effective Hamiltonian [cf. Eq. (51)] in a basis of
field-modified Bloch functions [cf. Eq. (55)] is not applicable
near a point degeneracy k̄. Indeed, Eq. (51) is an asymptotic
expansion in the parameter l−2, and each power of l−1 is
accompanied with a derivative (with respect to k) of either the
Bloch Hamiltonian, the band dispersion, or the cell-periodic
energy eigenfunction (unk) [24]. The validity of this expansion
thus relies on l−1∇kunk being of order a/l (with a a lattice
period), lest there is no sense in which Hj+1 is smaller than
Hj . However, this would not be true in the vicinity of the Dirac
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point, where the Berry connection (for a k-space derivative
in the azimuthal direction) diverges [61,63]. This directly
invalidates the first-order Berry term [HB

1 in Eq. (58)] in the
expansion.

The appropriate basis functions near a band-touching point
are either field-modified Wannier functions (in a generalized
sense [17,50]) or field-modified Luttinger-Kohn functions
[12]. Luttinger-Kohn functions are well known from the
effective-mass theory [72,147] and have been reviewed in
Sec. III E. We will adopt the latter approach by Slutskin, which
produces an effective Hamiltonian that acts on wave functions
over quasimomentum space.

Previous derivations [12,17] of the effective Hamiltonian
have only been carried out to lowest order in the field, and
only for a conventional Dirac point with a conical dispersion.
Here, no assumptions will be made about the degeneracy or
the band dispersion. We will employ an ansatz for the wave
function that is inspired by Slutskin [12]:

�(r) = 1√
N

∑
nk

eik·run,Kx,0(r)fnk, (212)

with Kx [the kinetic quasimomentum operator defined in
Eq. (77)] acting on fnk, which we refer to as the wave function
in the (Kx,0) representation; shortly we will derive an effective
Hamiltonian for fnk. In Eq. (212) and henceforth, we suppress
the spin index and assume k̄ = 0 for notational simplicity.
unKx0 is defined by replacing kx in unkx0 by the kinetic quasi-
momentum Kx . Explicitly, employing the Wannier-function
expansion of unkx0 in Eq. (7) [148], we replace kx in the
exponent of Eq. (7) by Kx :

unKx0(r) := 1√
N

∑
R

e−iKx (x−Rx )Wn(r − R). (213)

The boundary conditions on fnk are determined (as detailed in
Appendix E 2) by the condition that the expansion in Eq. (212)
is independent of the unit cell in k space, i.e.,

α(k,r) :=
∑
n

eik·runKx0(r)fnk = α(k + G,r) (214)

for any reciprocal vector G. For definiteness, we will choose∑
k to be an integral over the first Brillouin zone.
The main motivation for our ansatz is that {unkx0} can be

chosen to be smooth with respect to kx (even at the band-
touching point), and we might therefore anticipate that the re-
sultant effective Hamiltonian is well-behaved analytically. An
example of a smooth basis would be the energy eigenfunctions
of Ĥ0(kx,0), with corresponding energy functions {εnkx0} that
are smooth across kx = 0; we refer to this as the “energy basis.”

Under certain formal assumptions, our ansatz in Eq. (212)
is equivalent to an expansion in Slutskin’s basis functions
[12] (cf. Appendix E 2). An analogy can also be made
with Roth’s basis [24] of field-modified Bloch functions
[cf. Eqs. (53)–(55)]. Indeed, Roth’s ansatz is equivalent to
Eq. (212) with unKx0(r) replaced by unK (r), as we demonstrate
in Appendix A 1.

We will demonstrate that our basis functions are complete
and orthonormal with respect to functions in Rd ; neither of
these properties were proven in the previous works [12,17],
and instead a variational argument was used. The question of

completeness is, can any function over Rd be written in the
form of Eq. (212)? We may make the following argument for
the positive claim: if l−2 is set to zero in Eq. (212), it reduces to
an expansion over Luttinger-Kohn functions: unkx0e

ik·r , which
are known to form a complete and orthonormal set of basis
functions [72]. For sufficiently small fields, it is plausible that
the completeness and orthonormality relations are preserved;
the latter property should presently be understood as an
operator relation∫

d r u†mKx0(r)e−ik·reik
′ ·runK ′

x0(r) = δ(k − k′)δmn, (215)

with k and k′ restricted to the first Brillouin zone. Let us prove
our claim.

Some well-known properties of Luttinger-Kohn functions
will be useful, including the completeness and orthonormality
of {unkx0} with respect to cell-periodic functions [reviewed
in Eq. (6)]. These properties are simply generalized to the
operator relations∑

n

un,Kx0(τ )u†n,Kx0(τ ′) = δ(τ − τ ′), (216)∫
dτu

†
m,Kx0(τ )ul,Kx0(τ ) = δml. (217)

We remind the reader that τ is the cell-periodic position
coordinate, and

∫
dτ is the integral over a unit cell; we will

often decompose r = τ + R, with R labeling a Bravais-lattice
cell. The adjoint operation in Eq. (217) is defined as u†nKx0 :=
[u∗

nkx0]; i.e., we first complex-conjugate the symbol and then
symmetrize it. We will employ that the Bloch functions
[denoted {vnk(r)eik·r}n∈Z with v cell-periodic] are complete
with respect to functions of r ∈ Rd ; i.e., any �(r) may be
expressed as

�(r) = 1√
N

∑
nk

eik·rvnk(τ )gnk (218)

for some function gnk. By expressing vnk(τ ) = ∫
dτ ′δ(τ −

τ ′)vnk(τ ′) and inserting Eq. (216), we arrive at

�(r) = 1√
N

∑
mk

eik·rumKx0(τ )
∑
n

〈
umKx0

∣∣vnk
〉
gnk, (219)

from which we identify the wave function in the (Kx,0) repre-
sentation as fmk = ∑

n 〈umKx0|vnk〉gnk. This proves complete-
ness. To prove the orthonormality, we exploit the translational
symmetry of unKx0(r) = unKx0(r + R) to express the left-hand
side of Eq. (215) as∫

dτ u
†
mKx0(τ )

{∑
R

ei(k
′−k)·R

}
ei(k

′−k)·τunK ′
x0(τ ). (220)

The sum over R produces δ(k − k′); from Eq. (217), we derive
that the integral over τ produces δmn. The orthonormality
condition implies that, given any�(r), we may extract its wave
function in the (Kx,0) representation by

fnk = 1√
N

∫
d re−ik·ru†nKx0(r)�(r); (221)

here, we have assumed k lies in the first Brillouin zone.
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B. Effective Hamiltonian in the vicinity of a band degeneracy

Our goal is to derive an effective Hamiltonian in the (Kx,0)
representation, i.e., acting on the wave function fnk which we
introduced in Eq. (212). Due to the periodicity of α(k,r) [cf.
Eq. (214)], the position operator acts in a simple manner:

r̂�(r) = 1√
N

∑
nk

eik·r (i∇k)unKx0fnk, (222)

and therefore the mechanical momentum acts as

{ p̂ + a(r̂)}�(r) = 1√
N

∑
nk

eik·r{ p̂ + K }unKx0fnk (223)

with K = k + a(i∇k) the kinetic quasimomentum operator.
It follows that the field-on Hamiltonian [Eqs. (39) and (40)]
acts as

Ĥ�(r) = 1√
N

∑
nk

eik·rĤ0(K )unKx0fnk. (224)

Applying the operation (1/N)
∫
d re−ik·ru†mKx 0 to the time-

independent Hamiltonian equation, (Ĥ − E)� = 0, we obtain
an effective Hamiltonian equation∑

n

{H̃mn − Eδmn}fnk = 0. (225)

The Eδmn term in Eq. (225) is simply obtained from the
wave function extraction of Eq. (221); determining H̃ requires
a calculation that we detail in Appendix E 3; its complete
form is

H̃ =
[
H̃0 + ky
̃

y + k2
y

2m
− 1

l2

(
X̃
x

̃y + ky

m
X̃
x

)

+ 1

2ml4
(X̃

x
X̃
x − i∂kx X̃

x
)

]
Kx,0

. (226)

Here, H̃0, �̃, and X̃ are matrices defined respectively in
Eqs. (12), (13), and (15); the notation [H̃0]Kx ,0 is shorthand
for the operator [H̃0(kx,0)]. To simplify the presentation, we
assume that Ĥ corresponds to the Schrödinger Hamiltonian
minimally coupled to the electromagnetic field [cf. Eq. (39)];
the Pauli case [cf. Eq. (40)] is a simple generalization of the
present equations.

While Eq. (226) is formally an infinite-dimensional matrix
equation that is valid over the entire Brillouin torus, we are
pragmatically interested in a few-band, effective Hamiltonian
that corresponds to a low-energy subspace projected by P ; in
the k region of interest, it is assumed there are no band touch-
ings between P and its orthogonal complement. To achieve an
effective few-band Hamiltonian, we need to transform H as

S†H̃S = H̃′, (227)

such that H̃′ is block-diagonal with respect to the decompo-
sition P ⊕Q. From the wave function perspective, we are
modifying our ansatz in Eq. (212) as

� ′(r) = 1√
N

∑
nk

eik·run,Kx,0(r)S(K )fnk. (228)

One aspect of the block diagonalization is well known: for
any Luttinger-Kohn-type basis functions which are evaluated

at ky = 0, we expect that any few-band, effective Hamiltonian
should be valid only for small ky . Consequently, we would
treat ky/Gy (withGy a reciprocal period) as a small parameter.
Using standard Löwdin partitioning techniques which are well
known in k · p theory [72,149,150], the block diagonalization
may then be carried out perturbatively in ky .

However, a nontrivial generalization of Löwdin partitioning
techniques is required, since every term in Eq. (227) is a
function of noncommuting variables (K ). The major difficulty
lies in evaluating a product of matrix functions of K . To
overcome this, we borrow an insight from past constructions
of effective Hamiltonians [14,23,24]; namely, we will organize
H̃ and S in an expansion in powers of l−2, such that each
term in the series is a symmetrized function of K . Once this
organization is performed, we may then exploit well-known
rules for the calculus of symmetrized operators. Of particular
utility is the following product rule [24]:

A(K )B(K ) = [
e(i/2)l−2εαβ∇α

k∇β

k′A(k)B(k′)
∣∣

k=k′
]
, (229)

which we derive in Eq. (E8). Equation (229) is a particu-
larization of a Moyal expansion, which is familiar from the
correspondence between quantum and classical physics [151].
As it stands, our expression for H in Eq. (226) is not organized
in the above sense, but this will be rectified in Sec. VIII C.

The upshot of the last two paragraphs is that both ky and
l−2 should be taken as independent, small parameters. To our
knowledge, partitioning the Hilbert space simultaneously with
these two parameters has never been done. In Sec. VIII D,
we formulate an algorithm for this partitioning, which may
in principle be carried out to any order in ky and l−2. When
this algorithm is carried out to the lowest nontrivial order, we
derive the following effective Hamiltonian:

H = H0 + HR
1 + HB

1 +O
(
kyl

−2,k2
y,l

−4
)
, (230)

H0 = H0(Kx,0) + 1
2 [{ky,
y(kx,0)}], (231)

HR
1 = 1

2l2
[{ϒ̃y,
̃x} − {X̊x

,
̃y}]Kx,0, (232)

HB
1 = − 1

2l2
{Xx,
y}Kx,0, (233)

where [{A,B}] := [AB + BA]. We have retained our conven-
tion that the infinite-dimensional matrices {H̃0,X̃

x
,�̃}, when

restricted to the D-dimensional vector space projected by P ,
are to be denoted by the same symbols without the tilde accent;
cf. Eq. (20). HR

1 in Eq. (232) should be understood as the
D-rank projection of infinite-dimensional matrices; two of
those matrices, which are both off-block-diagonal with respect
to P ⊕Q, are defined for the first time here: (a) X̊

x
is the

off-block-diagonal component of

X̃
x = X̊

x + Ẋ
x
, X̊

x

mn = X̊
x

m̄n̄ = 0,

iX̊
x

mn̄(kx,0) = − 
̃x
mn̄(kx,0)

εmkx0 − εn̄kx0
, (234)

while Ẋ
x

is block-diagonal. (b) ϒ̃y is defined by its elements:
for anym,n (labeling bands projected by P ) and m̄,n̄ (labeling
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bands projected by Q),

ϒ̃y
mn = ϒ̃

y
m̄n̄ = 0,

iϒ̃
y
m̄n(kx) = − 
̃

y
m̄n(kx,0)

εm̄kx0 − εnkx0
, (235)

iϒ̃
y
mn̄(kx) = − 
̃

y
mn̄(kx,0)

εmkx0 − εn̄kx0
.

These particular expressions for X̊
x

and ϒ̃y are valid in a
certain basis for the cell-periodic functions—namely, where
{unkx0} from our ansatz [cf. Eq. (228)] correspond to energy
bands, and are also smooth in kx ; in this basis, H0(kx,0) is
a diagonal matrix, with diagonal elements equal to energy
functions {εnkx0}Dn=1 which are also smooth in kx . For any line
(at fixed ky = 0) that does not form a loop (around the Brillouin
torus), such an “energy basis” can always be found.

Let us discuss the possible band structures for which
Eq. (230) may be applied. While we have motivated the choice
of our basis functions (in Sec. VIII A) by their utility in the
vicinity of a point degeneracy, we should clarify that the
derivation of the effective Hamiltonian [cf. Eq. (230)] makes
no assumptions about the presence of a point degeneracy,
and is therefore also applicable to nondegenerate bands. If
there exists multiple touchings between bands in the subspace
of P , Eq. (230) is applicable if there exists an orthogonal
coordinate system where all touchings occur on the straight
line of fixed ky = 0. The range of kx for which H is valid is
only restricted by the existence of a smooth (in kx) “energy
basis”; in some cases, this smooth basis may be found over
the entire circle of fixed ky = 0. For applications to a single
point degeneracy, the essential physics is often captured by an
effective Hamiltonian that is linearized in kx around said point,
in which case Eq. (233) particularizes to

H = H0 +Kx

x + iKx[Xx,H0] + ky


y + 1

2l2
({ϒ̃y,
̃x}

− {X̊x
,
̃y} − {Xx,
y}) +O

(
kil

−2,k2
i ,l

−4
)
, (236)

where all matrices above are evaluated at k̄ = 0. The above
equation is derived by utilizing the identity in Eq. (21). In
particular, if k̄ = 0 is a point of degeneracy for all D bands
projected byP (k), then [Xx,H0] vanishes and Eq. (236) further
simplifies to

H = H0 +Kx

x + ky


y + 1

2l2
({ϒ̃y,
̃x}

− {X̊x
,
̃y} − {Xx,
y}) +O

(
kil

−2,k2
i ,l

−4
)
. (237)

H0 in Eq. (231) [as well as the first three terms in Eq. (237)]
shall be referred to as the Peierls-Onsager Hamiltonian in the
(Kx,0) representation; its form is closely analogous to the
Peierls-Onsager Hamiltonian in the (Kx,ky)-representation
[cf. Eq. (56)]. Indeed, we may arrive at the first three terms
in Eq. (237) by the Peierls substitution k → K of the
Bloch Hamiltonian in the Luttinger-Kohn representation:
H0(k) = H0(0) + kx


x(0) + ky

y(0) +O(kikj ) [derived in

Eq. (43)]. In the presence of a point degeneracy, this Peierls
substitution is only valid for a Luttinger-Kohn basis that is
smooth (in kx) across the degeneracy. A case in point is the
Peierls-Onsager Hamiltonian for the Dirac point in graphene:

H = vKxτ1 + vKyτ2, where τj are Pauli matrices that span
a vector space corresponding to the two sublattices. Here,
we may identify τ1 = ±1 as labeling the two Luttinger-Kohn
functions (u±,kx ,0), which depend smoothly on kx across
the Dirac point. Going beyond two-band touchings with
conical dispersions, we emphasize that Eq. (237) proves the
lowest-order validity of the Peierls-Onsager Hamiltonian
for band touchings of any kind, including (a) those with
nonlinear dispersions, e.g., the double-Weyl point in Ref.
[62] disperses quadratically in two directions, as well as (b)
higher-degeneracy touchings, e.g., the “spin-one Weyl” point
described by KxLx +KyLy + kzLz [20,40], where L are the
generators of SO(3) in the spin-one representation.

Going beyond the leading-order Peierls substitution, we
view HR

1 [in Eq. (232)] as the direct generalization of the
Roth orbital moment, and the HB

1 [in Eq. (233)] as the direct
generalization of the Berry term; their implications on the
Landau levels will be investigated in a future work. In their
original formulation [14,23,24], the Roth and Berry terms
describe the first-order corrections to the Peierls-Onsager
effective Hamiltonian for either (i) a single, nondegenerate
band (as reviewed in Sec. IV A), or (ii) a subspace of degenerate
bands (reviewed in Sec. IV B). Here, we are claiming that
HR

1 and HB
1 are applicable to multiple bands, degenerate

or nondegenerate, which disperse in any fashion—possibly
touching at isolated wave vectors. The broadness of our claim
suggests that if we particularize Eq. (230) to cases (i) or (ii), we
should be able to recover an analog of the previously derived
effective Hamiltonians; we demonstrate this in Appendix E 4.

C. Derivation of symmetrized effective Hamiltonian
in the (Kx,0) representation

As motivated in the paragraph containing Eq. (229), the goal
of this subsection is to derive Eq. (225) with H̃ expressed in a
power series in l−2, such that each term is symmetrized with
respect to K . H̃ is defined implicitly through∑

n

H̃(K )mnfnk = 1√
N

∫
d r u†mKx0(r)e−ik·rĤ�(r), (238)

with � having the ansatz form in Eq. (212), and k assumed to
lie in the integral domain of

∑
k in Eq. (212).

In the first step, we show that H̃ has the more explicit form:

H̃(K )mn =
∫

dτu
†
mKx0(τ )Ĥ0(K )unKx0(τ ). (239)

Beginning from the right-hand side of Eq. (238), we employ
Eq. (224) and the translational symmetry of the operator
unKx0(r) = unKx0(r + R) to derive

1√
N

∫
d r u†mKx0(r)e−ik·rĤ�(r)

= 1

N

∫
d r

∑
nk′

u
†
mKx0(r)ei(k

′−k)·rĤ0(K ′)unK ′
x0(r)fnk′

= 1

N

∫
dτ

∑
nk′

u
†
mKx0(τ )ei(k

′−k)·τ
{∑

R

ei(k
′−k)·R

}

× Ĥ0(K ′)unK ′
x0(τ )fnk′

=
∫

dτ
∑
n

u
†
mKx0(τ )Ĥ0(K )unKx0(τ )fnk, (240)
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from which Eq. (239) directly follows. In the second equality, we have split the integral
∫
d rf (r) as

∑
R

∫
dτf (τ + R); i.e., we

integrate over the cell-periodic position coordinate τ and sum over all unit cells labeled by the Bravais lattice vectors R.
The right-hand side of Eq. (239) involves a triple product of symmetrized operators; we evaluate it utilizing the product rule

of Eq. (229). We first consider the product of Ĥ0(K ) with any other symmetrized operator; owing to Ĥ0(k) being quadratic in k,
the expansion of Eq. (229) continues at most to second order:

Ĥ0(K )B(K ) = [Ĥ (k)B(k)] + i

2l2
εαβ[
̂α(k)∂βB(k)] − 1

8ml4
εαβεαν[∂β∂νB(k)] = [

Ĥ
(
kα + (i/2)l−2εαβ∇β

k

)
B(k)

]
. (241)

To evaluate a triple product of the form A(K )Ĥ0(K )B(K ), we may first evaluate Ĥ0B using Eq. (241), then apply Eq. (E8) to
{A{Ĥ0B}}. In this manner, we derive the symbol of H̃(K ) as

H̃mn(k) = e(i/2)l−2εαβ∇α
k∇β

k′
∫

dτu∗
mkx0(τ )Ĥ0

(
k′
α + (i/2)l−2εαβ∇β

k′
)
unk′

x0(τ )
∣∣

k′=k

= 〈
umkx0

∣∣Ĥ0(k)
∣∣unkx0

〉+ i

2l2
{〈∇x

kumkx0

∣∣
̂y(k)
∣∣unkx0

〉− 〈
umkx0

∣∣
̂y(k)
∣∣∇x

kunkx0
〉}+ 1

2ml4
〈∇x

kumkx0

∣∣∇x
kunkx0

〉
,

= 〈
umkx0

∣∣Ĥ0(k)
∣∣unkx0

〉− 1

2l2

{
X̃
x
,

(

̃y + ky

m

)}
mn;kx0

+ 1

2ml4
(X̃

x
)2
mn;kx0. (242)

In the last equality, we employed �̂(k) = �̂ + k/m, which
follows from the definition of the velocity operator in Eqs. (9)
and (10). We might also express

〈
umkx0

∣∣Ĥ0(k)
∣∣unkx0

〉 = (H̃0 + ky
̃
y)mn;kx0 + k2

y

2m
δmn, (243)

using the identity in Eq. (11). The highest-order term in
Eq. (242) is O(l−4) due to the following two reasons:

(i) e(i/2)l−2εαβ∇α
k∇β

k′ acts on a function which depends quadrat-
ically on ky [through Ĥ0(k)], and (ii) the operator Ĥ0(k′

α +
(i/2)l−2εαβ∇β

k′) is at most of order l−4.
As motivated towards the end of Sec. VIII B, we should

consider ky/Gy as a small parameter, independent of and in
addition to l−2. For any function of k and l−2, we may indicate
its order in ky by a superscript:

Ga
b(k,l−2) = O

(
kay l

−2b
)
; (244)

we retain our convention of indicating the order in l−2 through
the subscript; for matrices, we would have additional subscripts
to indicate the row and column indices: {Ga

b}mn. For sym-
metrized operators G(K ), we may also label them as Ga

b(K )
if their corresponding symbols satisfy Eq. (244). We are now
ready to organize the effective Hamiltonian in Eq. (242) in
a power series in the two small parameters, with the aid of
Eq. (243):

H̃(K ) = H̃0
0 + H̃1

0 + H̃0
1 + H̃1

1 + H̃2
0 + H̃0

2, (245)

H̃0
0(K ) = H̃0(Kx,0), (246)

H̃1
0(K ) = 1

2 [{ky,
̃y(kx,0)}], (247)

H̃0
1(K ) = − 1

2l2
{X̃x

(Kx,0),
̃y(Kx,0)}, (248)

H̃1
1(K ) = − 1

2ml2
[{X̃x

(kx,0),ky}], (249)

H̃2
0(K ) = k2

y

2m
, (250)

H̃0
2(K ) = 1

2ml4
(X̃

x
)2

∣∣∣∣
Kx,0

. (251)

D. Block-diagonalization of effective Hamiltonian

Our goal is to find a transformation (S) that block-
diagonalizes the effective Hamiltonian [H̃ in Eq. (245)] with
respect to the decomposition P ⊕Q; recall Eq. (227). We
will carry out this transformation perturbatively in the two
small parameters ky and l−2; our approach thus marries
the traditional Löwdin partitioning in k · p Hamiltonians
(which utilizes k as a small parameter) [72,149,150] with
the lesser-known block-diagonalization procedures of effec-
tive Hamiltonians (which utilize l−2 as a small parameter)
[14,23,24].

Let us expand S in a series organized in powers of ky and
l−2, where each term in the series is a symmetrized function
of K :

S(K ) = I +
∑
i,j

′
Sij (K ), Sij (K ) = [

Sij (k)
]
,

Sij
†
(K ) = [

Sij
†
(k)
]
, Sij (k) = O

(
kiyl

−2j
)
. (252)

By
∑′

i,j , we mean to sum over all nonnegative integers but
exclude the single case of i = j = 0. S is formally an infinite-
dimensional matrix operator, as are H̃ and H̃′. We have chosen
the lowest-order term in S to be the identity operation, since
H0

0 is already block diagonal [cf. Eq. (246)], and requires no
further modification.

From a wave function perspective, we are modifying
our ansatz � → � ′ as in Eq. (228). Following essentially
the same steps as outlined in Sec. VIII B, the modified,
time-independent Hamiltonian equation [(Ĥ − E)� ′ = 0] is
equivalent to

{S†H̃S − ES†S} ∗ fk = 0, (253)

where, again, A ∗ B denotes a matrix multiplying a vector
with implicit index summation. To maintain the structure of
an eigenvalue equation, we insist on the unitary condition
S†S = I . In practice, this unitarity condition will be imposed
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perturbatively. That is, from

S†(K )S(K ) = I +
∑
i,j

′
Sij

†
(K )

+
∑
a,b

′
Sab (K ) +

∑
i,j,a,b

′
Sij

†
(K )Sab (K ),

we impose the conditions order by order, e.g.,

S0
1 = −S0

1
†
, S1

0 = −S1
0
†
,

0 = S1
1 + S1

1
† + S0

1
†
S1

0 + S1
0
†
S0

1 ,

0 = S0
2
† + S0

2 + S0
1
†
S0

1 ,

0 = S2
0
† + S2

0 + S1
0
†
S1

0 , . . . . (254)

We may also expand

S†H̃S = H̃0
0 + (

H̃1
0 + [

H̃0
0,S

1
0

])+ (
H̃0

1 + [
H̃0

0,S
0
1

])
+ (

H̃2
0 + H̃0

0S
2
0 + S2

0
†H̃0

0 + [
H̃1

0,S
1
0

]+ S1
0
†H̃0

0S
1
0

)
+ · · · . (255)

The commutators in the above expansion were derived by
utilizing the anti-Hermiticity of S1

0 and S0
1 [cf. Eq. (254)].

The commutator of two symmetrized operators is not just the
symmetrized commutator of their corresponding symbols, e.g.,

[
H̃0

0(K ),Sij (K )
] = [[

H̃0(kx,0),Sij (k)
]]+

i∑
n=1

Ci−n
j+n. (256)

The additional terms {Ci+n
j+n}in=1 on the right-hand side originate

from a Moyal expansion, which we express in a more general
form in Eq. (E9). The regularity of Ci+n

j+n implies that for every
unit increase in the power in l−2, there is a corresponding unit
decrease in the power of ky . After all, the Moyal expansion
is an expansion in l−2εαβ∇α

k∇β

k . Each of {Ci−n
j+n} renormalizes

{H̃i−n′
j+n } in the block-diagonalization procedure.

In principle, we may block-diagonalize H̃ to any order in
ky or l−2; this will be demonstrated explicitly for H̃i

j with
(i,j ) = (0,1) and (1,0). Two identities will be useful for this
purpose, which are particularizations of Eq. (256):

[
H̃0

0(K ),S1
0 (K )

] = [[
H̃0(kx,0),S1

0 (k)
]]

+ i

2l2
[{

̃x(kx,0),∇y

kS
1
0

}]
, (257)[

H̃0
0(K ),S0

1 (K )
] = [[

H̃0(kx,0),S0
1 (k)

]]
. (258)

Equation (257) has one more term than (258) because S1
0 is

linear in ky while S0
1 is independent of ky . We will exemplify

how the last term in Eq. (257) renormalizes H̃0
1.

Employing the identities in Eqs. (257) and (258), the first
two brackets in Eq. (255) may be expressed as

H̃1
0 + [

H̃0
0,S

1
0

]∣∣
K = [

H̃1
0(k) + [

H̃0(kx,0),S1
0 (k)

]
+ i

2l2
{

̃x(kx,0),∇y

kS
1
0

}]
,

H̃0
1 + [

H̃0
0,S

0
1

]∣∣
K = [

H̃0
1(k) + [

H̃0(kx,0),S0
1 (k)

]]
, (259)

leading to

H̃′1
0 = [

H̃1
0(k) + [

H̃0(kx,0),S1
0 (k)

]]
, (260)

H̃′0
1 =

[
H̃0

1(k) + [
H̃0(kx,0),S0

1 (k)
]

+ i

2l2
{

̃x(kx,0),∇y

kS
1
0

}]
. (261)

To block-diagonalize H̃′1
0 with respect toP ⊕Q, we choose S1

0
so that the off-block-diagonal elements of [H̃0,S

1
0 ] exactly can-

cel the off-block-diagonal elements of H̃1
0. A simple expression

for S1
0 (k) exists if we employ a basis for cell-periodic functions

{unkx0} that (i) corresponds to energy bands, and (ii) retains
our initial assumption of smoothness in kx . The cancellation
of off-block-diagonal elements in the energy basis leads to the
following condition:{

H̃1
0(k)

}
m̄n

= −(εm̄kx0 − εnkx0
){
S1

0 (k)
}
m̄n

⇒ {
S1

0 (k)
}
m̄n

= −ky 
̃
y
m̄n(kx,0)

εm̄kx0 − εnkx0
, (262)

with m̄ labeling bands in Q and n the bands in P ; clearly the
above equality also holds with m̄ and n interchanged. In the last
equality, we extracted H̃1

0 from Eq. (247). The block-diagonal
elements of S1

0 may be any smooth function of k that is linear
in ky ; in practice we will set all of them to zero, such that

S1
0 (k) = −ikyϒ̃y(kx), (263)

with ϒ̃ defined in Eq. (235).
Inserting this equation, as well as Eq. (248), into Eq. (261)

we obtain

H̃′0
1 =

[[
H̃0(kx,0),S0

1 (k)
]− 1

2l2
{X̃x

,
̃y}kx ,0

+ 1

2l2
{
̃x,ϒ̃y}kx ,0

]
(264)

=
[[
H̃0(kx,0),S0

1 (k)
]+ 1

2l2
({ϒ̃y,
̃x}

− {X̊x
,
̃y})kx ,0 − 1

2l2
{Ẋx

,
̃y}kx ,0
]
. (265)

In the last equality, we have separated Xx into its block-
diagonal (Ẋ

x
) and off-block-diagonal (X̊

x
) components

[cf. Eq. (234)]. In similar fashion to the case of H1
0
′
, we will

cancel the off-block-diagonal elements of H0
1
′

by a judicious
choice of S0

1 :

{
S0

1 (k)
}
m̄n

= ({ϒ̃y,
̃x} − {X̊x
,
̃y} − {Ẋx

,
̃y})m̄n;kx0

−2l2
(
εm̄kx0 − εnkx0

) ,

{
S0

1 (k)
}
mn

= S0
1 (k)}m̄n̄ = 0. (266)

This completes the block-diagonalization to order ky and
l−2; what remains is to define finite-dimensional matrices,
having dimension D equal to the rank of P (k), to replace
the infinite-dimensional matrices. We then finally obtain the
effective Hamiltonian of Eq. (230).
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FIG. 7. (a) illustrates the interband breakdown region, which
overlaps with the semiclassical region (indicated by gray wavy lines).
Solid black lines illustrate the band contours at positive energy. The
orbit velocity k̇ is indicated by arrows, and determined by Hamilton’s
equation. (b) Band dispersion at fixed ky = 0 for the Hamiltonian in
Eq. (267), with u > v > 0 and w > 0. The two bands are labeled by
indexes 1 and 2.

IX. INTERBAND BREAKDOWN

Interband breakdown occurs where two constant-energy
band contours—belonging to distinct bands—become anoma-
lously close. As illustrated in Fig. 7(b), the two contours
approach each other as two arms of a hyperbola, just as in
the case for intraband breakdown. What distinguishes the two
cases are the orientations [152] of traveling wave packets (as
determined by Hamilton’s equation) on both arms: opposite
for interband [Fig. 7(b)], and identical for intraband [Figs. 3(b)
and 3(c)]. Another distinguishing feature is that for interband
breakdown, only one of two in-plane components of the band
velocity (∇kε) becomes anomalously small, whereas this is
true for both in-plane components in the intraband case.

To systematize the derivation of quantization conditions, it
will be useful to formalize the above discussion in the language
of graph theory (cf. Sec. III F). Each region of strong tunneling
is identified with a degree-four, two-in-two-out vertex. For
the intraband- (resp. interband-) breakdown vertex, the two
incoming edges are (resp. not) diametrically opposite to each
other. To simplify notation, any “breakdown vertex” in the rest
of this section should be understood as an interband-breakdown
vertex.

A. Symmetry analysis and Bloch Hamiltonian
near a II-Dirac point

Let us identify the symmetry classes which stabilize band
touchings of the kind that leads to interband breakdown. To
begin, how are band touchings (of any kind) stabilized in a
Brillouin two-torus (BT⊥) parametrized by k = (kx,ky); we
shall again assume the field is aligned in �z. Our present
discussion is restricted toBT⊥, but we will eventually comment
on how BT⊥ is embedded in a Brillouin three-torus. Applying
the argument in the introduction of Sec. VIII, robust band
touchings occur on points or curves, if the co-dimension of the
Hamiltonian is two or one, respectively. We shall investigate
the former case, and postpone the latter case to future studies.
We shall also assume throughout this section that the point
touching occurs between two nondegenerate bands; touchings
between spin-degenerate bands are briefly discussed in Sec. X.

We focus on point degeneracies which lie at the tip of
an energy-momentum cone; i.e., the band degeneracy splits
at linear order in k (originating from the band touching),
and the constant-energy contours intersect as an “X”. From
a general classification of Fermi surfaces near conical band
touchings [56], this “X” must correspond to a type-II Dirac
point [57–59]. A II-Dirac point is minimally modeled by the
following Hamiltonian in the Luttinger-Kohn representation
[cf. Eq. (43)]:

H0(k) = (u+ vγ3)kx + wkyγ1,


x(0) = u+ vγ3, (267)


y(0) = wγ1,

with k = (kx,ky) originating from the point of degeneracy;
γj are Pauli matrices spanning a (pseudo)spin-half basis.
The linearized band dispersion is shaped as a “Dirac” cone
which is rotationally invariant if u = 0. If u is continuously
increased till |u| > |v|, the cone tilts over E = 0 (the energy
of the Dirac point), and the zero-energy band contour changes
discontinuously from a point to an “X”. Precisely, for a finite-
energy window near zero, the corresponding contours form a
family of hyperbolic curves:

(kx − kxc)2

ā2
− k2

y

b̄2
= 1, with kxc := uE

u2 − v2
,

ā := vE

u2 − v2
, b̄ := vE

w
√
u2 − v2

, (268)

with kxc the center of the hyperbola; the “X” corresponds to
the hyperbolic asymptotes: ky = ±(b̄/ā)(kx − kxc).

While Eq. (267) is not the most general form of a II-Dirac
Hamiltonian [56], its simplicity manifests the physics we will
describe. We may further motivate Eq. (267) as the most
general Hamiltonian (up to unitary equivalence) satisfying the
symmetry constraints:

[ĝ1,H0(k)] = 0, {ĝ1,i} = 0, ĝ2
1 = +I, (269)

ĝ2H0(k)ĝ−1
2 = H0(kx,−ky), [ĝ2,i] = 0,

Tr[ĝ2] = 0, ĝ2
2 =

{+I, [ĝ1,ĝ2] = 0,
−I, {ĝ1,ĝ2} = 0. (270)

g1 is a spacetime transformation that maps k → k (within the
plane), and has an antiunitary representation that squares to+I .
For example, g1 could be T i in an integer-spin representation;
alternatively, g1 = T c2z in either half-integer or integer-spin
representation, in which case BT⊥ is identified with either of
the high-symmetry planes: kz = 0 or π . In all these cases,
g1 lowers the co-dimension of the Hamiltonian to two, and
hence stabilizes Dirac points in BT⊥. g2 is an order-two,
spatial symmetry which maps k → (kx,−ky). A touching
between two orthogonal representations of g2 occurs at the
Dirac point; the commutation relations between ĝ1 and ĝ2 in
Eq. (270) imply that each representation of g2 is invariant
under g1, so that the band touching may split away from 0.
Examples of g1 include the reflection ry , or the glide gy,�x/2.
Incidentially,T i andgy,�x/2 are the symmetries of the monolayer
MTe2 (M = W, Mo) [153], which serves as a toy model
for II-Dirac fermions [59]. For the pseudospin basis chosen
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in Eq. (267), ĝ1 = K and ĝ2 = σ3. We clarify that k = 0 is
not an inversion-invariant wave vector, but a generic point on
either g2-invariant line (ky = 0 or π ). Lacking a symmetry
(e.g., cnz, T , rx) that nontrivially transforms kx in the sense of
Eq. (28), the Hamiltonian term ukx is legal and tilts the Dirac
cone in the direction parallel to the g2-invariant lines [154].

There are two topologically distinct ways to embed BT⊥
(containing a II-Dirac point) in a 3D Brillouin torus: (i) If
the degeneracy splits away from BT⊥, it is a genuine 3D point
degeneracy of the II-Weyl type; this may be modeled by adding
tkzγ2 to the Hamiltonian in Eq. (267). (ii) If the degeneracy
persists away fromBT⊥, the II-Dirac point should be identified
as a point on a line degeneracy; this may be modeled by
adding tkzγ3 to Eq. (267), such that the line degeneracy lies
on the intersection of two planes: ky = 0 and tkz + vkx = 0.
Interband breakdown in solids with line nodes was first studied
by Slutskin [12], but the conception of Weyl/Dirac points did
not exist at his time (1967).

A quantity of geometric significance is the area (4āb̄)
of the rectangle inscribed between the two hyperbolic arms
(see Fig. 3). It is natural that the dimensionless parameter

μ̄ = 1

2
āb̄l2 = v2E2l2

2w(u2 − v2)3/2
� 0 (271)

determines the probability of tunneling between orbits: tunnel-
ing is negligible where μ̄ � 1, and significant otherwise. The
exact form of μ̄ will be motivated by the connection formula
in Eqs. (283)–(285), which is the key result of this section.

B. Effective Hamiltonian for interband breakdown,
and the Landau-Zener analogy

Following the divide-and-conquer strategy that we have
employed for the turning point and the saddle point, we would
likewise need to formulate an effective Hamiltonian that is
valid at the interband-breakdown region, and solve for its wave
function nonperturbatively. In the Landau electromagnetic
gauge where kx is a good quantum number, the breakdown
region is an interval ky ∈ [k+

y ,k
−
y ] centered at the II-Dirac

point where quantum tunneling is significant, as illustrated in
Fig. 7(a).

One complication for interband breakdown that did not
occur in the previous two cases: a point degeneracy in the
band dispersion invalidates the use of the field-modifed Bloch
functions [cf. Eq. (55)] as basis functions. As motivated in
Sec. VIII A, we will instead employ a set of field-modified [12]
Luttinger-Kohn functions [72] which are analytic with respect
to k at the degeneracy; these are basis functions in what we
call the (Kx,0) representation. At energies where interband
breakdown is relevant, our ansatz for the wave function is

�kx (r) = 1√
N

∑
ky∈[k+

y ,k
−
y ]

2∑
n=1

eik·r ũn,Kx,0(r)f̃nk

+ 1√
N

∑
ky /∈[k+

y ,k
−
y ]

2∑
n=1

eik·run,Kx,ky (r)gnk + · · · ,

(272)

with n = 1,2 labeling bands in the band-touching subspace, as
illustrated in Fig. 7. Kx , the kinetic quasimomentum operator
defined in Eq. (77), acts on f̃nk and gnk, which are wave func-
tions in the (Kx,0) and (Kx,ky) representations, respectively.
They are respectively valid in the breakdown and semiclassical
intervals. An assumption (on the band parameters [12]) is
made that the two domains of validity overlap. In this region
of overlap [indicated by wavy lines in Fig. 7(a)], the wave
functions in the two representations may be matched as

f̃mk =
2∑

n=1

〈
ũm,Kx,0

∣∣un,Kx,ky

〉
gnk +O

(
ky

Gy

,l−2

)
, (273)

where n = 1,2 are indices for the band-touching subspace.
The proof of this relation is closely analogous to the proof of
completeness in Eqs. (218) and (219); instead of employing
Bloch functions which are complete with respect to functions
of r ∈ Rd , we would likewise use that field-modified Bloch
functions are complete with respect to functions of r ∈ Rd

[50,76]. As denoted vaguely by . . . in Eq. (272), there might
generally be more contributions to � that are associated with
edges far away from the II-Dirac point (and therefore not
illustrated in Fig. 7); these contributions will not be important
in the matching procedure described in Sec. IX C.

As derived in Sec. VIII B, the effective Hamiltonian in the
(Kx,0) representation is obtained from Eq. (237) as

H0(K ) = H0 +Kx

x + ky


y, (274)

where H0,
j are 2×2 matrices evaluated at the point of
degeneracy (k = 0). When Eq. (274) is particularized to our
minimal model in Eq. (267),

2∑
n=1

([H0]mn − Eδmn)f̃nk, with

H0(K ) = Kx(u+ vγ3) + wkyγ1. (275)

To simplify the notation, we would further assume u,v,w are
all positive. Our neglect of the first-order-in-l−2 corrections in
Eq. (237) is only justified if, near k = 0, a large energetic gap
separates the two-band subspace (involved in the degeneracy)
from every other band [155].

Transforming the wave function as

f̃nk = αkE

2̄∑
m̄=1̄

T̄nm̄f̄m̄k, with

αkE = ei(kx−kxc(E))ky l2 , (276)

T̄ = 1√
2

(
(u+ v)−1/2 (u+ v)−1/2

(u− v)−1/2 −(u− v)−1/2

)
,

the effective eigenvalue equation describes the Landau-Zener
dynamics of a two-level system:

0 =
(
āτ1 + ā

b̄
kyτ3 + i

l2

∂

∂ky

)
f̄k. (277)

Here, τj are Pauli matrices, and Eq. (277) should be interpreted
as a matrix differential equation acting on a two-component
vector wave function f̄m̄k. A more general transformation to a
Landau-Zener dynamical equation is described in
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Appendix F 1, which would apply to a larger class of
matrix Hamiltonians than assumed for our minimal model.

In the Landau-Zener analogy, ky is interpreted as a time
variable, and {knx (ky,E)}2

n=1 as two “Landau-Zener energy”
branches:

knx (ky,E) = kxc + (−1)n|ā|
√

1 + k2
y

b̄2
, knx (0,0) = 0, (278)

with kxc,ā, and b̄ being E-dependent hyperbolic parameters
defined in Eq. (268). “Energy” in the Landau-Zener analogy
should not be confused with the actual energy (E) in the
magnetic problem. We will refer to the zero-field energy bands
labeled by n = 1,2 as the ky-dependent “adiabatic basis” in
the Landau-Zener analogy; as long as E �= 0, there exists
an adiabatic limit (l−2 → 0) where the band is a conserved
quantity. If E = 0, such an adiabatic limit does not exist and
the probability of tunneling is unity; this has been described
as a momentum-space analog of Klein tunneling [46]. At
E = 0, it is more convenient to employ a diabatic basis which
corresponds to the maximal-tunneling trajectories

km̄x (ky) = (−1)m̄
∣∣ā/b̄∣∣ky, (279)

as illustrated in Fig. 8(c); the diabatic basis shall be labeled by
m̄ ∈ {1̄,2̄}, just as we have done for the two-component vector
f̄m̄k in Eq. (277). We see that the matrix T̄nn̄ introduced in
Eq. (276) transforms between the adiabatic and diabatic bases.

C. Connection formula and quantization condition
for interband breakdown

The Bohr-Sommerfeld quantization rule is the continuity
condition on wave functions in both representations [f̃nk and
gnk in Eq. (272)], with the understanding that f̃ and g are re-
lated through Eq. (273) where the semiclassical and breakdown
intervals overlap. In this section, we will derive a scattering-
matrix formula that connects g across the breakdown interval;
in effect, we may forget about f̃ and impose continuity on g,
which satisfies certain wave-function-matching conditions.

Once f̃ is forgotten, we may proceed in close analogy to
the graph-theoretic formulation of the quantization condition
for intraband breakdown in Secs. III F–VII B. We assume
the reader has some familiarity with these sections; we shall
therefore avoid a lengthy exposition on similar-sounding
generalities, in preference for a heuristic derivation of the
quantization condition for a single II-Dirac point, as illustrated
in Fig. 11 below.

A crucial ingredient to quantization conditions with in-
terband breakdown is the connection formula for a single
interband-breakdown vertex, which we will subsequently de-
rive. We will actually derive two connection formulas: (a) the
first formula, as summarized in Eqs. (283)–(285), is applicable
for E �= 0 and connects Zilberman-Fischbeck (ZF) functions
in the adiabatic basis, and (b) for E = 0, the second formula
[Eqs. (287) and (288)] connects ZF functions in the diabatic
basis. These formulas extend a previous formula [12] to include
the effect of the Berry phase.

kx

ky

(a) 

1+

1- 2-

2+

kx

ky

(b) 

1- 2-

1-2-

kx

ky

(c) 

- -

--

1+

1-2-

2+

FIG. 8. (a) Labels for the four edges that meet at an interband-
breakdown vertex. Black solid lines correspond to constant-energy
band contours at zero field and nonzero energy (E = 0 being the
energy of the II-Dirac point); we shall refer to energy bands forE �= 0
as the adiabatic basis. (b) and (c) illustrate the diabatic basis forE �= 0
and E = 0, respectively. For E �= 0, the diabatic basis coincides with
energy bands only for |ky | � |b̄|. For (and only for)E = 0, the center
of the hyperbola [indicated by blue dot in (c)] coincides with the wave
vector (k = 0) of the II-Dirac point, and the diabatic basis coincides
with the energy bands for all ky .

1. Connection formula for E �= 0

As illustrated in Fig. 8(a), the four edges which connect
to the breakdown vertex are distinguished by the labels
(1+,1−,2+,2−). We will eventually formulate the connection
formula as a scattering matrix relating (1+,2+) to (1−,2−).
Given an arbitrary graph with one or more breakdown vertices,
it is important to correctly identify the four labels for each
individual vertex. 1+ and 2+ label the two edges which are
oriented toward the vertex, and 1− and 2− label the edges
oriented away. We remind the reader that the orientation of
each edge is the direction of a hypothetical wave packet, which
is determined by Hamilton’s equation with the convention
B = −|B|�z. Let us set down local coordinates centered on each
vertex, such that + lies to the north and − to the south; we may
then assign 1 to the west, and 2 to the east, as exemplified by
the three graphs in Figs. 9(b)–9(d). It is sometimes convenient
to define (as we have already done) a right-handed coordinate
system where ky increases in the direction from − to +, and

1 2

1 2

ky

kx

12

1 2

2
1

1
2

2 1

(d)

(b)

(c)

(e)

(a)

FIG. 9. (a) Graph for a single II-Dirac point. (b) Anticrossing
figure-of-eight trajectory. (c) is a graph that typically occurs in
band-inverted nonsymmorphic metals [59]. (b) and (e) illustrate
closed Feynman trajectories. Brown and black pockets have opposite
circulations.
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kx increases in the direction from 1 to 2, as exemplified in
Fig. 9(a). Since western and eastern edges also correspond to
distinct bands, we might also view 1,2 as band indices which
are locally defined at each vertex.

For E �= 0, the two edges belonging to band n form a
smooth curve given by knx (ky,E) in Eq. (278). The correspond-
ing Zilberman-Fischbeck (ZF) wave function in the (Kx,ky)
representation is

wnk = 1√∣∣vxn ∣∣e
ikxky l

2
e−il2 ∫ ky0 [knx−Hn

1 (vxn )−1]dz, (280)

following the general analysis of Sec. V A 1; Hn
1 (the Roth-

Berry-Zeeman Hamiltonian) and vxn (the band-diagonal ve-
locity) are single-band quantities evaluated on the nth band
contour. The H1 term in Eq. (280) is further simplified owing
to the assumed space-time symmetry g1 in Eq. (269): (i) The
orbital moment vanishes, as may be deduced from Table II.
(ii) In spin-orbit-coupled systems, the Zeeman coupling also
vanishes owing to g1 (cf. Table II). (iii) In solids with negligible
spin-orbit coupling, we work in the eigenbasis of the spin
operator σ̂z, and the Zeeman splitting results in a constant term
in H1 which we will not write out explicitly. What remains of∫
Hn

1 (vxn )−1 is the integral of the single-band Berry connection
Xn along the nth band contour, i.e.,

wnk = 1√∣∣vxn ∣∣e
ikxky l

2
e−il2 ∫ ky0 knx dz Wnky , (281)

with W defined as

Wnky := exp

[
i

∫
knx (ky ),ky

knx (0),0

Xn · dk′
]

=
{
Wn+, ky � +|b̄|,
Wn−, ky � −|b̄|. (282)

Xn is only well defined everywhere along knx (ky,E) for E �= 0.
For E = 0, the Berry connection (for a k-space derivative in
the azimuthal direction) diverges at the II-Dirac point; it is
appropriate here to employ different ZF functions in a diabatic
basis, which will be described in Sec. IX C 2 below. We will
henceforth refer townk defined in Eq. (280) as the adiabatic ZF
functions, and restrict our attention to E �= 0 in the remainder
of this section.

Since the (Kx,ky) representation is not valid for an interval
of ky in the breakdown region [illustrated by the white region
in Fig. 7(b)], we introduce a label to distinguish (Kx,ky) wave
functions that are valid above (+) and below (−) the II-Dirac
point:

For E �= 0, g±
1k = c±

1 w1k + · · ·, g±
2k = c±

2 w2k + · · ·.
(283)

Here . . . indicates contributions by edges far away from the II-
Dirac point; they will not play a role in deriving the connection
formula. The derivation proceeds in three steps: (i) In the break-
down interval, we solve for the eigenfunction of the effective
Hamiltonian in the (Kx,0) representation [cf. Eq. (275)]. (ii)
In the interval of overlap, we transform the eigenfunction of
(i) to a wave function in the (Kx,ky) representation through
Eq. (273), and (iii) match the resultant wave function to

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.25

-0.2

-0.15

-0.05

0

-0.10
ω/π

μ
FIG. 10. Interband scattering phase ω vs μ̄.

the WKB wave functions (g±
nk) defined above. Step (i) is

elaborated in Appendix F 1, and (ii) and (iii) in Appendix F 2.
In this manner, we obtain a scattering-matrix equation relating
incoming (at positive ky) to outgoing (negative ky) amplitudes:

For E �= 0,

(
c−

1
c−

2

)
= S

(
c+

1
c+

2

)
,

S(E,l2) =
(√

1 − ρ2eiω −ei(θ1−θ2)ρ

ei(θ2−θ1)ρ
√

1 − ρ2e−iω

)
, (284)

ρ(μ̄) = e−πμ̄,

with μ̄ the dimensionless tunneling parameter defined in
Eq. (271).ω is the interband scattering phase plotted in Fig. 10,
and defined by

ω(μ̄) = μ̄− μ̄ ln μ̄+ arg[�(iμ̄)] + π/4

→
{−π/4, μ̄ → 0,

0, μ̄ → +∞,
(285)

with � the Gamma function. In particular, ω = −π/4 at the
energy of the II-Dirac point, which may alternatively be derived
by perturbation theory [156].

The interband tunneling amplitude (S12) may be viewed
[157] as the exponentiated action of a tunneling trajectory
that encircles a Kohn branch point [158] in complex-ky
space; |S12|2 = e−2πμ̄ is the famous Landau-Zener tunneling
probability. The unspecified phase (θ1 − θ2) in S12 reflects an
intrinsic phase ambiguity between two nondegenerate bands.
This ambiguity was implicit in the expansion of Eq. (283),
where we might have arbitrarily redefined wnk → wnke

iθn

by a k-independent but band-dependent phase. This arbitrary
phase should not, however, affect the quantization condition
for closed orbits, owing to the following argument: the quan-
tization condition is a function of phases acquired by wave
packets along closed Feynman trajectories. Let us consider
those closed trajectories that involve interband tunneling. The
two-in-two-out rule at an interband vertex guarantees that a
wave packet must traverse an even number (p ∈ 2Z) of pockets
before forming a loop. For illustration, p = 2 for the figure-
of-eight trajectory in Fig. 9(b), and p = 4 for the trajectory
(indicated by solid lines) in Fig. 9(e). Each pocket corresponds
to a single band, and a wave packet that tunnels between two
pockets (labeled i1 and i2) picks up the interpocket phase
difference (θi2 − θi1 ). Since the wave packet must eventually
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return to the pocket it originated, the sum of all interpocket
phase differences acquired in a closed trajectory vanishes. This
shall be made more explicit in our subsequent case study of
Figs. 9(a) and 9(b) (Sec. IX D below).

2. Connection formula for E = 0

As motivated in the discussion below Eq. (282), we would
like to define a different set of ZF functions (henceforth referred
to as diabatic ZF functions) which are applicable at the energy
of the II-Dirac point. By requiring that these functions are
continuous along the maximal-tunneling trajectories [kn̄x (ky),
as defined in Eq. (279)], they assume the form

wn̄k = 1√∣∣vxn̄ ∣∣e
ikxky l

2
e−il2 ∫ ky0 kn̄x dz Wn̄ky , (286)

with Wn̄ defined just as in Eq. (282), except the Berry
connection is integrated over kn̄x (ky). Following essentially the
same argument as in Eq. (283), we define the coefficients c±

n̄

through

g±
k,E=0 = c±

1̄ w1̄k + c±
2̄ w2̄k + · · · . (287)

These coefficients correspond to the relabeled edges illustrated
in Fig. 8(c), and are related simply as

For E = 0,

(
c−

1̄
c−

2̄

)
= S̄

(
c+

1̄
c+

2̄

)
, S̄(l2) =

(
1 0
0 1

)
, (288)

which states that Landau-Zener tunneling occurs with unit
probability, independently of the strength of the field. This
connection formula may be derived from solving Eq. (277),
which decouples (for E = 0) to two scalar, first-order differ-
ential equations.

Let us compare this zero-energy connection formula [S̄(l2)]
to the finite-energy formula [S(E,l2) in Eq. (284)] in the
limit E → 0±, with 0± a vanishingly small positive/negative
quantity. Ignoring the (θ2 − θ1) phase (whose irrelevance was
argued for in Sec. IX C 1), S → −iτ2, with τ2 a Pauli matrix;
this implies c+

1̄ = c−
1̄ and c+

2̄ = −c−
2̄ , which differs from

Eq. (288) by a minus sign. This apparent discontinuity in
the connection formula does not imply that the quantization
condition is also discontinuous at E = 0; we will see how this
tension is resolved—by the Berry phase—in the following case
study.

D. Case study: Single II-Dirac point

We study the simplest example of a single II-Dirac point,
where the Fermi surface closes off as in Fig. 11(a); this may be
modeled by adding a cubic term to the II-Dirac Hamiltonian
[cf. Eq. (267)]

H0(k) = (u+ vγ3)kx + wkyγ1 − t(1 − γ3)k3
x,

u,v,t,w > 0, u > v. (289)

This model has various realizations in the literature
[46,47,159]. The corresponding graph in Fig. 11(b) comprises
four edges, four turning vertices, and a single interband-
breakdown vertex. The Landau levels of this model were first
studied in Refs. [46,47] using a combination of semiclassical
analysis (for single-band transport) and large-scale numerical

S1 S2

1 2

1 2t1=1
t1=0

<0

>0

ky

kx

(d)

(b)

(c) S1 S21 2t1=1
t1=0

S1 S21 2S1 S21 2

1 2

ky
kx

(a)

FIG. 11. (a) Energy-momentum dispersion of a single II-Dirac
fermion. (b) shall be referred as the II-Dirac graph.

diagonalization; a quantization condition that determines this
Landau level for any tunneling strength was first formulated by
us in Ref. [36]. In this section, we derive the same quantization
condition in greater detail; we hope to equip the interested
reader with the technical know-how to construct quantization
conditions for other, possibly more complicated, graphs. It
should be clarified at the onset that we are constructing quan-
tization conditions that apply to homotopy classes of graphs (a
definition of homotopy equivalence is provided in Sec. III F),
of which Eq. (289) merely describes one representative.

1. Quantization condition for the II-Dirac graph

The II-Dirac graph is similar to the double-well graph
of Sec. VII C 1 in having two broken orbits linked by a
single degree-four vertex (these graph-theoretic terms have
been defined Sec. III F). The major differences between inter-
and intraband breakdown lie in (i) the scattering amplitudes
[contrast Eq. (284) with Eq. (190)], and in (ii) the orientations
of the four edges adjacent to the breakdown vertex (see Fig. 1).
This orientation demonstrably affects the signs of the semiclas-
sical phases acquired along the broken orbits.

To each of our broken orbits (labeled {oi}2
i=1) we assign a

scalar amplitude Ai,E(ti), with ti ∈ [0,1] a timelike variable
that increases along the oi in a direction consistent with
Hamilton’s equation. ti = 0 corresponds to the point of closest
approach to the initial hyperbolic center [k = (kxc(E),0)], and
ti = 1 to the point of closest approach to the final hyperbolic
center, as illustrated in Fig. 11(c). In general, the initial and
final hyperbolas may correspond to distinct II-Dirac points; in
the present case study they are identical.

For E �= 0, the Bloch functions can be made first-order
differentiable with respect to k ∈ oj , and consequently the
Berry connection is well defined; this is not true at E = 0,
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where Bloch functions are discontinuous at the cusp of oj . Let
us then define �j for E �= 0 as the net phase acquired by a
wave packet in traversing ōj : this has the form

�j (E,l2) = l2Sj (E) +
∮
ōj

X · dk + π, (290)

where Sj is the oriented area of oj ; note S1 and S2 have
opposite signs. π in the above equation corresponds to the
Maslov correction for simple closed orbits, and the Berry phase
contribution is fixed to π or 0, corresponding respectively to
whether ōj encircles the II-Dirac point or not (Sec. VI D 2).
The robust quantization of the Berry phase is a result of
the symmetry g1 [cf. Eq. (269)], which additionally ensures
that the Roth and Zeeman contributions to �j vanish for
spin-orbit-coupled solids (cf. Sec. VI B). Since the orbit oj
that encloses the II-Dirac point changes discontinuous across
E = 0,�j is also necessarily discontinuous:

�1(E,l2) =
{
l2S1(E), E > 0,
l2S1(E) + π, E < 0,

�2(E,l2) =
{
l2S2(E) + π, E > 0,
l2S2(E), E < 0.

(291)

Since loop integrals of the Berry connection are only uniquely
defined modulo 2π , some phase convention has been chosen
in the above expressions; such a choice will not matter to the
quantization condition, which is only a function of exp[i�j ]
[as justified in Eqs. (292) and (293) below].

The following determinantal equation expresses the condi-
tion that the amplitudes {Ai} are everywhere single-valued:

(
A1E(0)
A2E(0)

)
= S(E,l2)

(
A1E(1)
A2E(1)

)

= S(E,l2)

(
ei�1 0

0 ei�2

)(
A1E(0)
A2E(0)

)

⇒ det

[
S

(
ei�1 0

0 ei�2

)
− I

]∣∣∣∣
E,l2

= 0. (292)

Employing the expression for the scattering matrix [Eq. (284)]
at nonzero E, the determinantal equation may be expressed as

0 = 1 + ei(�1+�2) −
√

1 − ρ2(ei(�1+ω) + ei(�2−ω)). (293)

The three phases occurring above may be identified with the
phases acquired by a wave packet in traversing three closed
Feynman trajectories; e.g.,�1 +�2 corresponds to the figure-
of-eight trajectory illustrated in Fig. 9(b). As we have argued
generally in Sec. IX C 1, the phase (θ1 − θ2) in the tunneling
matrix element should not affect the quantization condition
since it expresses an arbitrary phase difference between the
electron and hole pocket. We should see this directly from our
case study: the figure-of-eight trajectory includes an electron-
to-hole tunneling trajectory [occurring with amplitude S21 =
ρei(θ2−θ1)], and also the reverse hole-to-electron tunneling
trajectory [with amplitude S12 = −ρei(θ1−θ2)]. Equation (293)

is equivalent to

cos
�1 +�2

2

∣∣∣∣
E,l2

=
√

1 − ρ2 cos

[
�1 −�2

2

∣∣∣∣
E,l2

+ ω(μ̄)

]
,

(294)

which we have previously analyzed in Ref. [36].
Here, we focus on resolving the tension originating from

a discontinuity of our connection formula at E = 0 (see
Sec. IX C 2); the upshot is that a simultaneous discontinuity in
the Berry phase ensures that the quantization condition remains
continuous at E = 0. We remind the reader that Eq. (294) has
been derived utilizing the connection formula for nonzero E.
In the limit μ̄ → 0± (equivalently, E → 0± at finite field),
ρ → 1, and Eq. (294) simplifies to

l2(S1 + S2)

2

∣∣∣∣
E0
n

= nπ. (295)

Despite our proximity to a band degeneracy, the form of
Eq. (295) is reminiscent of an Onsager-Lifshitz-Roth quantiza-
tion condition for single-band magnetotransport; the resultant
Landau levels are also locally periodic. We may ascribe this
emergent periodicity (in the Landau spectrum) to the periodic
motion of a wave packet over the figure-of-eight illustrated in
Fig. 9(b). Over one cyclotron period, the wave packet accumu-
lates (a) a trivial Maslov phase from four turning points with
vanishing net circulation [cf. Fig. 2(h)], (b) a netπ -Berry phase
of the two pockets (owing to a pseudospin argument in Fig. 12),
and (c) a net π phase from two Landau-Zener tunnelings.
The last phase is obtained by multiplying the two off-diagonal
elements of the scattering matrix: [S(0±) = −iτ2].

At strictly zero energy, exactly the same quantization
condition [Eq. (295)] may be derived with the connection
formula of Eq. (288). Here, the emergent periodicity (in
the Landau specrum) is ascribed to periodic motion over a
topologically distinct figure-of-eight (illustrated in Fig. 12).
The two figures-of-eight differ in the vicinity of the II-Dirac
point: bands cross at E = 0, but anticross at E = 0±. For the
crossing figure-of-eight, (a) the scattering matrix is trivially
identity, (b) the Maslov phase vanishes [for the same reason
described in Fig. 2(h)], and (c) the Berry phase is also trivial,
owing to a pseudospin argument given in Fig. 12. One practical
implication of this discussion is that the two limiting values of
Eq. (294) as E → 0± are equal, so one may as well extend
the domain of Eq. (294) to include E = 0; this extended
quantization condition is then continuous in E.

Another aspect of the |E| → 0 limit is worth discussing: the
second-order derivatives (with respect to E) of l2(S1 − S2)/2
[occurring in the right argument of Eq. (294)] diverge logarith-
mically. This divergence is a generic property of hyperbolic
curves at the point of intersection [129]; physically stated, it
originates from the transition from crossing to anticrossing
orbits at the II-Dirac point. This divergence does not lead to any
irregularity in the quantization condition, due to a canceling
logarithmic divergence of the scattering phase ω [which also
occurs in the right argument of Eq. (294)]. It is remarkable that
an analogous cancellation of divergences occurs for intraband
breakdown. This is exemplified by the quantization condition
for the double-well graph [cf. Eq. (202)], where the first-order
derivative of l2(S1 + S2)/2 diverges logarithmically, but is also
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FIG. 12. Expressing H0(k) = d0(k) + d1(k)γ1 + d3(k)γ3 from
Eq. (289), we plot the two-vector [d = (d1,d3)] as black arrows over
k space, for E > 0, E = 0, and E < 0, respectively. The horizontal
(resp. vertical) component of each arrow is proportional to d3 (resp.
d1). The eigenfunctions of H0(k) are two pseudospinors which are
parallel and antiparallel to d. The parallel transport condition for a
wave function is that its pseudospin remains parallel/antiparallel to
d at all times. The Berry phase (φB ) of an orbit may be deduced
by evaluating the winding of the pseudospin over said orbit. (a) The
pseudospin winds by 2π for the left orbit (hence φB = π owing to
Berry’s argument [20]), but does not wind for the right orbit (φB = 0).
(b) The pseudospin does not wind for the crossing figure-of-eight
orbit, hence φB = 0. Take care that as the wave function is parallel-
transported across the II-Dirac point, d flips sign but the pseudospin
does not.

canceled by the diverging scattering phase (φ). These two case
studies suggest that quantum tunneling, of both interband and
intraband types, tends to smoothen out non-analyticities in the
classical action function.

E. Perturbative treatment of quasirandom spectrum

The typical spectrum of quantization conditions with tun-
neling is quasirandom, unless symmetry imposes commensu-
ration of phases in the quantization condition [36]. The goal of
this section is formulate a general perturbation theory to treat
quasirandom spectra, and then apply it to our II-Dirac case
study.

The general structure of the perturbation theory may be
formulated in this manner. Let the quantization condition be
expressed as

f (E,B; τ (E,B)) = 0 → En(B), (296)

which is an implicit equation for the discrete solutions
En(B); τ is a tunneling parameter whose functional form
depends on the type of breakdown (whether inter- or intraband)
and the type of graph. We consider a semiclassical limit of the
quantization condition where τ (E,B) → τ0 (a constant), such
that

f (E,B; τ0) = 0 → E0
n(B) (297)

determines a locally periodic spectrum that forms a Landau
fan. Let τ = τ0 + δτ and consider a perturbative expansion in
δτ . To linear order,

0 = f (E,B; τ0) + δτ (E,B) f1(E,B) +O(δτ 2); (298)

the first-order-corrected energy levels are defined by E1
n =

E0
n + δE1

n +O(δτ 2) with the assumption δE1 = O(δτ ). Sub-
stituting E1

n into the above equation,

O(δτ 2) = f
(
E1
n,B; τ0

)+ δτf1

∣∣
E0
n,B

=
{
δE1

n

∂f

∂E

∣∣∣∣
τ0

+ δτf1

}
E0
n,B

,

⇒ δE1
n = −δτ f1

(∂f/∂E)|τ0

∣∣∣∣
E0
n,B

. (299)

This equation is valid assuming that δτ is small and slowly
varying on the scale of δE1

n; this should be checked for self-
consistency. Equations (297)–(299) have been exemplified for
intraband breakdown in Eqs. (205) and (206), and we shall
now apply it to our case study of interband breakdown. One
key equation [Eq. (300)] in the subsequent section has been
presented in Ref. [36], but the reader may benefit from a more
detailed discussion.

1. Case study: Quasirandom spectrum of the II-Dirac graph

Since no (magnetic) space-group symmetry relates an
electron to a hole pocket, the two distinct arguments in
the cosine functions of Eq. (294) competitively produce a
quasirandom Landau spectrum. In the regime μ̄ ≈ 0, the
dominant trigonometric harmonic (�1 +�2)/2 determines a
semiclassical Landau fan indexed by n ∈ Z [cf. Eq. (295)].
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The largeness of |S1| and |S2| relative to l−2 justifies the
semiclassical approximation; there is, however, no need for
|S1 + S2| to be large. In particular, the zeroth (n = 0) Landau
level is nondispersive and occurs at an energy (E0

0 ) where
electron and hole pockets are perfectly compensated: (S1 +
S2)|E0

0
= 0; this energy does not necessarily lie at the II-Dirac

point [46].
To leading order in

√
1 − ρ2, the correction to the Landau

fan is derived in Appendix F 4 a to be

δE1
n = 2(−1)n+1sgn[E]

√
1 − ρ2

l2(S1 + S2)′

× sin

[
ω + l2(S1 − S2)

2

]∣∣∣∣
E0
n

, (300)

with the shorthand O ′ = ∂O/∂E. In particular, the correction
to the zeroth Landau level is a sinusoid enveloped by a function
∝B1/2:

δE1
0 = −2

√
π

v√
w(u2 − v2)3/4

E0
0

l(S1 + S2)′

× sin

[
ω + l2(S1 − S2)

2

]∣∣∣∣
E0

0

+O(μ̄3/2l−2). (301)

For the nonzeroth Landau levels, we show in Appendix F 4 a
that the envelop function grows as B1/2 at weak field, but
eventually crosses over to a B3/2 dependence at a scale that
depends on the band parameters.

For Eqs. (295)–(300) to be consistent,
√

1 − ρ2 should
be small and slowly varying on the scale of δE1

n. Indeed,
the typical scale of variation for

√
1 − ρ2 is �μ̄ ∼ 1, which

implies an energy scale

�E ∼
√
w(u2 − v2)3/4

v

1

l
, (302)

from the definition of μ̄ in Eq. (271). It follows that

δE1
n

�E
∼ v2

w(u2 − v2)3/2

E0
n

(S1 + S2)′
(303)

vanishes for small enough E0
n. One additional remark is that

the typical spacing of the Landau fan is small compared to the
energy interval where breakdown is significant:

E0
n+1 − E0

n

�E
∼ 2π

l(S1 + S2)′|E0
n

v√
w(u2 − v2)3/4

= O(1/l).

(304)

X. DISCUSSION AND OUTLOOK

We have provided the recipe to cook up quantization
rules for a large class of closed orbits: (i) In the absence
of breakdown, our rules apply to band subspaces of arbi-
trary energy degeneracy. (ii) For band subspaces which are
nondegenerate at generic wave vectors, we have accounted
for intraband breakdown associated with saddle points and
interband breakdown associated with conical touching points
between two bands (II-Dirac points).

This certainly does not exhaust all types of band touchings:
not all point touchings are conical; e.g., the band dispersion
around a multi-Weyl point [62] is quadratic in k. Not all
band touchings occur between two bands; e.g., the spin-one
Weyl point [40] is a touching of three bands. If bands are
spin-degenerate at generic wave vectors, a touching point is
minimally fourfold degenerate, e.g., an over-tilted 3D Dirac
point [160,161]. Spin-degenerate orbits may also intersect at
fourfold-degenerate saddle points. Moreover, band touchings
occur not just at isolated points, but also along lines. The
connection formulas in all the above cases are unknown, but
we hope that this work lays the groundwork for their future
derivation. One necessary ingredient would be an effective
Hamiltonian that is valid at any type of band-touching point,
as we have derived in Sec. VIII. The connection formula
should be derivable by matching the eigenfunctions of this
effective Hamiltonian to semiclassical WKB wave functions.
For spin-degenerate bands, the matching should be performed
for the multicomponent WKB wave function derived in Sec. V.

The quantization rules in this work apply only to closed or-
bits, and include the complete subleading-in-B correction. For
an energy-nondegenerate band in the absence of breakdown,
higher-order corrections to the quantization rule have been
derived with various methods: beginning from the effective-
Hamiltonian formalism, higher-order corrections may be ob-
tained from an equation-of-motion method [25] as well as
with WKB methods [52]; alternatively, these corrections may
be derived from the zero-field, zero-temperature magnetic
response functions [162]. However, a higher-order theory for
energy-degenerate bands has not been developed. Finally, it
would be interesting to generalize this work to open orbits, i.e.,
noncontractible orbits that extend across the Brillouin torus.
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APPENDIX A: APPENDIX TO SEC. IV: “REVIEW
OF EFFECTIVE HAMILTONIAN IN THE ABSENCE

OF INTERBAND BREAKDOWN”

1. Introduction to field-modified Bloch functions

We provide a pedagogical introduction to field-modified
Bloch functions, and derive a few useful identities which will
be used throughout the main text.

Let us first motivate the form of the field-modified Bloch
functions in Eq. (55) by an argument [74] involving gauge
invariance. Suppose at zero field the energy eigenfunctions are
expressed in Bloch form: Ĥ0ψnk′ = εnk′ψnk′ . A zero field is
expressible as the curl of a constant vector potential a0, hence
by gauge invariance,

0 = [Ĥ [a0] − εnk′]ei(k
′−a0)·runk′ . (A1)
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We see that k = k′ − a0 is the quantity that determines the
change in phase of the wave function under discrete transla-
tions, and eik·runk+a0 has energy eigenvalue εnk+a0 . In a weak
field, i.e., for a(r) that slowly varies in space, the appropriate
basis functions to describe field-induced dynamics within
the band n is just eik·runk+a(r) to leading order in the field
[cf. Eq. (55)]; to our knowledge, these types of basis functions
were first proposed by Zilberman [51].

Let us derive equivalent expression for the field-modified
Bloch functions which is more amenable to algebraic manip-
ulations:

unK ∗eik·r =
∫

d r ′ǔnr ′e−iK ∗·r ′
eik·r

=
∫

d r ′ǔnr ′e−i[k+a(−i∇k)]·r ′
eik·r

=
∫

d r ′ǔnr ′e−i[k+a(r)]·r ′
eik·r = un,k+a(r)e

ik·r .

(A2)

Here, ǔnr ′ is the Fourier transform of unk, K are the ki-
netic quasimomentum operators defined in Eq. (47), and the
second-to-last equality is valid in the symmetric gauge, where
[k · r ′,a(−i∇k) · r ′] = 0. An arbitrary state may be expanded
in field-modified Bloch functions as in Eq. (53), which is
equivalently expressed as

�(r) =
∑
nk

(unK ∗eik·r )gnk =
∑
nk

eik·r (unKgnk), (A3)

where
∑

k is really a continuous integral. After the above
“integration by parts,’ the basis functions effectively become
operators acting on the wave function gnk.

This “integration by parts” formula [Eq. (A3)] was proven
in Ref. [24]. Here, we offer a more explicit proof for pedagogy.

Proof. For a constant magnetic field, the vector potential can
be written in the linear gauge as a(r) = bj rj , or equivalently
ai(r) = b

j

i rj . A useful identity in this context is then

e
(1/2)[±iv·bj∇kj

,v·k] = e±(i/2)vib
j

i vj . (A4)

By the Baker-Campbell-Hausdorff lemma,

e−i(r−R)·[k+a(±i∇k)] = e−i(r−R)·ke−i(r−R)·a(±i∇k)

× e∓(i/2)(ri−Ri )b
j

i (rj−Rj ). (A5)

Sandwiching Eq. (A5) in two different ways (also with opposite
signs in the argument of a), we obtain an identity

eik·re−i(r−R)·[k+a(i∇k)]e−ik·R

= e−(i/2)(ri+Ri )b
j

i (rj−Rj )

= e−ik·Re−i(r−R)·[k+a(−i∇k)]eik·r , (A6)

which will be used in the following. We apply the Fourier
expansions

gnk =
∑

R

ǧnRe
−ik·R, and

unK =
∑

R

Wn(r − R)e−iK ·(r−R), (A7)

to express

� =
∑
nk

gnk(unK ∗eik·r )

=
∑

nk,R,R′
ǧnR′Wn(r − R)e−ik·R′

e−iK ∗·(r−R)eik·r

=
∑

nk,R,R′
ǧnR′Wn(r−R)e−ik·R′

e−i[k+a(−i∇k)]·(r−R)eik·r

=
∑

nk,R,R′
ǧnR′Wn(r − R)e−ik·R′

e−i[k+a(r)]·(r−R)eik·r

∝
∑

k

eik·(R−R′). (A8)

The delta function allows us to express the above equation as

� = N
∑
nk,R

ǧnR′Wn(r − R)e−ik·R

× e−i[k+a(−i∇k)]·(r−R)eik·r . (A9)

We would like to show that this equals∑
nk

eik·runKgnk = N
∑
nk,R

ǧnRWn(r − R)eik·r

× e−i[k+a(i∇k)]·(r−R)e−ik·R. (A10)

In deriving the above equality, we have reduced the dou-
ble summation over R to a single summation, by similar
manipulations. Comparing the last two equations, and applying
the identity Eq. (A6), we thus derive the desired relation.

2. Equivalent expressions for the orbital magnetic moment

a. Single-band orbital moment

The gauge-independent orbital moment, in the spatial di-
rection �α (α = x,y,z), for a band labeled n, is defined as [cf.
Eq. (62)]

M(k)αn = − |e|
2h̄c

εαβγ [Xβ(
γ − vγ )]nn. (A11)

Applying the identity Eq. (14),

[Xα(
β − vβ)]nn =
∑
l;εl �=εn

Xα
nl


β

ln =
∑
l;εl �=εn


α
nl


β

ln

i(εn − εl)
,

(A12)

we derive an equivalent expression

M(k)αn = i
|e|

2h̄c
εαβγ

∑
l;εl �=εn



β

nl

γ

ln

εn − εl

= i
|e|

2m2h̄c
εαβγ

∑
l;εl �=εn

p
β

nlp
γ

ln

εn − εl
; (A13)

in the last equality, pmn(k) is the canonical momentum matrix:
〈umk|p̂|unk〉. Equation (A13) coincides with the correction
(−M · B) to the energy of a wave packet in Ref. [22]. We
offer yet another equivalent expression which is identical in
form (but carrying a different name) to that found in the
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WKB treatment of coupled-wave [27,28] and coupled-channel
equations [100]:

M(k)αn = −i |e|
2h̄c

εαβγ 〈∂βun|Ĥ0(k) − εnk|∂γ un〉

= −i |e|
2h̄c

εαβγ
∑
m

[〈∂βun|Ĥ0(k)|um〉〈um|∂γ un〉

− εn〈∂βun|um〉〈um|∂γ un〉]

= −i |e|
2h̄c

εαβγ
∑

m;m�=n
(εm − εn)〈∂βun|um〉〈um|∂γ un〉

= −i |e|
2h̄c

εαβγ
∑

m;m�=n
(εm − εn)Xβ

nmX
γ
mn

= i
|e|

2h̄c
εαβγ

∑
m;m�=n



β
nm


γ
mn

εn − εm
. (A14)

Let us compare these expressions to the gauge-dependent
moment corresponding to the Berry term in the effective
Hamiltonian; i.e., we express HB

1 = −M̃ · B with

M̃(k)αn = −|e|
h̄c

εαβγ [Xβvγ ]nn = −|e|
h̄c

εαβγXβ
nn∂γ εn

= −|e|
h̄c

εαβγ
[
∂γ
(
Xβ
nnεn

)− i〈∂γ un|∂βun〉εn
]

= −|e|
h̄c

εαβγ
[−∂β(Xγ

nnεn
)+ i〈∂βun|∂γ un〉εn

]
.

(A15)

The total derivative (i.e., the first term in brackets in the above
equation) cannot be ignored: it makes this quantity independent
of the zero of energy. The sum of the two moments is then

[M + M̃](k)αn = −i |e|
2h̄c

εαβγ 〈∂βun|Ĥ0(k) + εn|∂γ un〉

+ |e|
h̄c

εαβγ ∂β
(
Xγ
nnεn

)
. (A16)

For insulators with vanishing Chern number (C1) in the
Brillouin two-torus (T⊥) perpendicular to the field, a first-
order-differentiable basis for unk may be found over T⊥. This
implies that Xnn is continuous over T⊥ (εn clearly also satisfies
this property), and therefore integrating the total moment over
T⊥,∫

T⊥

d2k

(2π )2
[M + M̃](k)αn

C1=0

= i
|e|

2h̄c
εαβγ

∫
T⊥

d2k

(2π )2
〈∂βun|Ĥ0(k) + εn|∂γ un〉. (A17)

The right-hand side seems at first sight to depend on the
zero of energy, but note that the effect of such a shift is
proportional to C1, which vanishes by assumption. Equation
(A17) is identical to the zero-temperature expression obtained
for the orbital magnetization using various methods: (a) a
Wannier representation for bands was used in Refs. [163,164],
(b) quantum-mechanical perturbation theory in Ref. [165], and
(c) a Green’s function approach in Ref. [166].

b. Orbital magnetic moment for any number of bands

Let us derive equivalent expressions for the single- and
multiband orbital magnetic moments, which manifest how
they transform under basis changes of the form Eq. (22). The
basis transformations we consider preserve both P and Q

[recall Eqs. (18) and (19)]; i.e., the unitary V in Eq. (22) is
block-diagonal with respect to the decomposition into P and
Q. From the simple identities,

∂αP =
∑
n

|un〉〈∂αun| + |∂αun〉〈un|,

(∂αP )Q =
∑
n,m̄

|un〉〈∂αun|um̄〉〈um̄|, (A18)

we derive

[(
β − vβ)Xα]mn = i
∑
l̄



β

ml̄
〈ul̄|∂αun〉

= i[P
̂βQ∂αP ]mn, (A19)

[Xα(
β − vβ)]mn = i
∑
l̄

〈um|∂αul̄〉
β

l̄n

= i[P (∂αQ)
̂βP ]mn. (A20)

For the single-band orbital moment for band n, the last equality
reduces to i〈un|(∂αQ)
̂β |un〉, which leads directly to Eq. (62).

APPENDIX B: APPENDIX TO SEC. V: “QUANTIZATION
CONDITIONS FOR CLOSED ORBITS

WITHOUT BREAKDOWN”

1. Identities for Weyl-symmetrized operators

The following identities may be generalized to nonperiodic
functions of k by replacing the Fourier sum with a Fourier
integral.

Let Ǎj (k) be the Fourier transform of Aj (k) = O(l−2j ),
and applying the definition of a Weyl-symmetrized operator
[cf. Eq. (50)],

∑
R

Ǎj (R)eiK ·Re−iψ(ky )

=
∑

R

Ǎj (R)eikxRx e−(Rx/l
2)∂y+ikyRy e−iψ(ky ). (B1)

Applying the Baker-Campbell-Hausdorff identity for a central
commutator,

eA+B = eAeBe(1/2)[B,A] ⇒ e−(Rx/l
2)∂y+ikyRy

= eikyRy e−(Rx/l
2)∂y e−iRxRy/2l2 , (B2)

and an identity valid for any function f (ky),

e−(Rx/l
2)∂y f (ky) = f (ky − Rx/l

2)e−(Rx/l
2)∂y , (B3)
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we derive that Eq. (B1) equals∑
R

Ǎj (R)eiK ·Re−iψ(ky ) =
∑

R

Ǎj (R)eikxRx+ikyRy−iRxRy/2l2e−iψ(ky−Rx/l
2)e−(Rx/l

2)∂y (B4)

=
∑

R

Ǎj (R)eikxRx+ikyRy−iRxRy/2l2e−iψ(ky )+i{ψ ′
−1(ky )+ψ ′

0(ky )}Rx/l
2−(i/2)ψ ′′

−1(ky )R2
x/ l

4+O(l−4)e−(Rx/l
2)∂y (B5)

= e−iψ(ky )
∑

R

Ǎj (R)ei(kx+ψ
′
−1/l

2)Rx+ikyRy−iRxRy/2l2eiψ
′
0Rx/l

2−(i/2)ψ ′′
−1R

2
x/ l

4+O(l−4)e−(Rx/l
2)∂y (B6)

= e−iψ(ky )
∑

R

Ǎj (R)ei(kx+ψ
′
−1/l

2)Rx+ikyRy−iRxRy/2l2
{
1 + iψ ′

0Rx/l
2−(i/2)ψ ′′

−1R
2
x/ l

4 +O(l−4)
}
e−(Rx/l

2)∂y .

(B7)

If ψ = O(1), the above equation particularizes to∑
R

Ǎj (R)eiK ·Re−iψ(ky ) = e−iψ(ky )
∑

R

Ǎj (R)eik·R−iRxRy/2l2{1 + iψ ′
0Rx/l

2 +O(l−4)}e−(Rx/l
2)∂y . (B8)

Letting the operator Eq. (B7) act on the identity function,∑
R

Ǎj (R)eiK ·Re−iψ(ky )1 (B9)

= e−iψ(ky )
∑

R

Ǎj (R)ei(kx+ψ
′
−1/l

2)Rx+ikyRy {1 + i(iRx)(iRy)/2l2 + ψ ′
0(iRx)/l2 + (i/2)ψ ′′

−1(iRx)2/l4 +O(l−4)}

= e−iψ(ky )

{
Aj (k) + i

2l2
∂2A

∂kx∂ky
+ ψ ′

0

l2

∂A

∂kx
+ iψ ′′

−1

2l4
∂2A

∂2kx
+O(l−4−2j )

}
k→k+�xψ ′

−1/l
2

. (B10)

By similar manipulations, we may derive an identity that is closely analogous to Eq. (B7):

f (ky) = O(1),
∑

R

Ǎj (R)eiK ·Rf (ky) =
∑

R

Ǎj (R)eik·R−iRxRy/2l2
{
f (ky) − Rx

l2
f ′(ky) +O(l−4)

}
e−(Rx/l

2)∂y . (B11)

If we let the operator in Eq. (B11) act on e−iψ ,∑
R

Ǎj (R)eiK ·Rf (ky)e−iψ(ky ) =
∑

R

Ǎj (R)eik·R−iRxRy/2l2
{
f (ky) − Rx

l2
f ′(ky) +O(l−4)

}
e−iψ(ky−Rx/l

2)

= f (ky)Aj (K )e−iψ(ky ) + il−2f ′(ky)
∑

R

Ǎj (R)
∂eik·R

∂kx
e−iRxRy/2l2e−iψ(ky−Rx/l

2) +O(l−4−2j )

= f (ky)Aj (K )e−iψ(ky ) + il−2f ′(ky)e−iψ(ky )
∑

R

Ǎj (R)
∂

∂kx
ei(kx+ψ

′
−1/l

2)Rx+ikyRy +O(l−4−2j )

= f (ky)Aj (K )e−iψ(ky ) + il−2f ′(ky)e−iψ(ky ) ∂A

∂kx

∣∣∣∣
k→k+�xψ ′

−1/l
2

+O(l−4−2j ). (B12)

2. Appendix to Sec. V B: “Maslov correction
from turning points”

Here we derive the Maslov correction to the single-band
quantization conditions from a WKB approach. After review-
ing the solution of the Peierls-Onsager Hamiltonian at the turn-
ing point in Appendix B 2 a, we derive the first-order-corrected
effective Hamiltonian and its solution in Appendix B 2 b.
By wave function matching with the Zilberman-Fischbeck
functions, we may determine the “reflection phase” (φr ) at each
turning point; the sum of all reflection phases is the desired
Maslov correction. We pay careful attention to assigning a
sense of circulation to each turning point in Appendix B 2 a; this
determines the sign of eachφr , which is important to keep track

of when we perform the sum
∑

φr . Finally, in Appendix B 2 c,
we estimate the size of the turning region where quantum
fluctuations render the Zilberman-Fischbeck wave functions
invalid.

a. Review of solution to the Peierls-Onsager Hamiltonian
at the turning point

Let us review the Peierls-Onsager solution at the turning
point, which was first derived by Zilberman [51]. We assume
that the reader has some familiarity with the WKB theory of
turning points, and shall keep the review brief. We will go one
small step beyond [51] by defining a sense of circulation for
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each turning point, which determines the sign of the relative
phase between incoming and outgoing WKB solutions.

We assume that the field-free Hamiltonian may be approx-
imated by

H0(k) = E + uyky + k2
x

2mx

, (B13)

with momentum coordinates originating from the turning point
at energy E. The constant-energy band contour in the vicinity
of the turning point may be split into two sections that touch
at the same point; we use ν = + (−) to denote the section to
the right (left) of the point:

k±
x (ky,E) = ±√−2mxuyky. (B14)

The sign of mxuy determines whether the classical region lies
at positive or negative ky , as illustrated in Figs. 2(a)–2(d).

H0(k) is in Weyl correspondence with the Peierls-Onsager
Hamiltonian H0(K ) := [H0(k)]; we shall assume the Landau
gauge Kx = kx + il−2(∂/∂ky) and Ky = ky . H0(K ) becomes
independent of kx after the the basis transformation eikxky l

2
:

e−ikxky l2H0(K )eikxky l
2 = E + uyky − 1

2mxl4

∂2

∂k2
y

. (B15)

We shall separately tackle the two cases corresponding to
different signs of mxuy .

(i) mxuy > 0; band contour is an inverted parabola �, i.e.,
ky ∼ −k2

x .
Equation (B15) is an Airy differential equation with the

dimensionless variable z = (2mxuyl
4)1/3ky . In the limit z � 0

(i.e., within the classical region, and sufficiently far from the
turning point), and assuming a hard-wall boundary condition,
the Airy function has the asymptotic form [167]

lim
z � 0

Ai(z) = 1

|z|1/4
(ei(2/3)|z|3/2+iπ/4 − e−i(2/3)|z|3/2−iπ/4),

(B16)

which is then matched with the Zilberman functions [Eq. (79)
without theH1 correction]; some assumption must be made on
the band parameters and the field for this matching region to
exist [51]. The prefactor |z|−1/4 is proportional to |vxν |−1/2 for
both ν = ±. The phase factor in the Zilberman function is

e−il2 ∫ ky0 kνx (t,E)dt , (B17)

with ky negative in the classical region; we remind the reader
that this sign is determined by the sign of mxuy . From
Eq. (B14), k−

x � 0 and k+
x � 0, so we identify

lim
z � 0

Ai(z) ∝ 1

|vx(ky)|1/2

(
c�+ e−il2 ∫ ky0 k+

x + c�− e−il2 ∫ ky0 k−
x

)
,

c�+ := eiπ/4, c�− := ei3π/4. (B18)

From Hamilton’s equation [Eq. (41)], h̄k̇x = l−2uy ; (uy >0,
mx > 0) thus corresponds to a wave packet circulating in the
clockwise sense: � [illustrated in Fig. 2(a)], and (uy < 0,
mx < 0) to � [Fig. 2(b)]. For the locally clockwise (resp.
locally anticlockwise) trajectory, the relative phase factor
between outgoing and incoming WKB wave is then c�+ /c

�
− =

−i (resp. c�− /c
�
+ = +i); this may be interpreted as the phase

acquired by a wave packet as it is reflected (in ky) from the
turning point.

(ii) mxuy < 0; band contour is an upright parabola �, i.e.,
ky ∼ +k2

x .
Equation (B15) is an Airy differential equation with the

dimensionless variable z = −(2|mxuy |l4)1/3ky , which differs
from the previous case in the sign of z/ky . The Airy solution
in the classical region (ky � 0,z � 0) has the same asymptotic
form as in Eq. (B16). However, now that ky is positive in the
classical region (with k−

x and k+
x retaining their original signs),

we switch the identification of ν = ± Zilberman functions in
the Airy function:

lim
z � 0

Ai(z)

= 1

|z|1/4

(
ei(2/3)|z|3/2+iπ/4 − e−i(2/3)|z|3/2−iπ/4

)
∝ 1

|vx(ky)|1/4

(
c�− e

−il2 ∫ ky0 k−
x + c�+ e

−il2 ∫ ky0 k+
x

)
,

c�− := eiπ/4, c�+ := ei3π/4. (B19)

A wave packet that circulates the turning point in the locally
clockwise sense (uy < 0,mx > 0) thus picks up a phase factor
c�− /c

�
+ = −i [illustrated in Fig. 2(d)]; the locally anticlock-

wise wave packet (uy > 0,mx < 0) picks up +i [Fig. 2(c)].

b. First-order-corrected wave function at the turning point

To account for H1 in the above matching procedure, we
first need to derive a first-order-corrected effective Hamiltonian
(H = H0 +H1) in the turning region. Let us expandH1 around
the turning point as

H1(k) = H1(0) +H1xkx +H1yky +H1xxk
2
x + · · · . (B20)

We argue that only the terms which are written explicitly
above are relevant to H in the limit of small field. Indeed,
the neglected terms (δH1) are bounded by their values at the
boundary of the turning region: δH1(�k) = O(l−4), with our
estimates of�k in the above paragraph. One may verify that the
explicit terms in Eq. (B20), when evaluated on the boundary,
are greater than O(l−4). When these explicit terms are added
to H0, the result is an effective Hamiltonian that is identical in
form to Eq. (B13):

[H(q)] = H( Q) = E + ũyQy + Q2
x

2m̃x

+O(l−4), (B21)

but is shifted in velocity ũy = uy +H1y , mass m̃x = mx −
2m2

xH1xx, and the momentum variables

qx = kx +mH1x, qy = ky +H1(0)/uy ↔
Qx = Kx +mH1x, Qy = Qy +H1(0)/uy. (B22)

We assume mxuy > 0 in this derivation, which is simply
generalized for the other sign. H may be solved with the same
techniques; the Airy eigenfunction may be expressed as a sum
of Zilberman functions:

fkE = eiqxky l
2
∑
ν=±

c�ν
1√∣∣vxν ∣∣e

−il2 ∫ qy0 qνx (z,E)dz, (B23)
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with c�+ /c
�
− = −i, and qνx describes a section of H at energy

E:

0 = H
(
qνx (qy,E),qy

) − E ⇒ q±
x = ±√−2m̃xũyqy. (B24)

This function is related to the zero-field band contour k±
x =

±(−2mxuyky)−1/2 by

qνx (z,E) − kνx (z,E) = −H1yky +H1xx
(
kνx
)2

vxν
+O(l−4).

(B25)

Inserting this, as well as the left-hand side of Eq. (B22), into
Eq. (B23), we express f in terms of the original k coordinates
and the zero-field band contour:

fkE = eikxky l
2
eimxH1xky l

2
∑
ν=±

c�ν
1√∣∣vxν ∣∣

× exp

[
−il2

∫ ky

0
kνxdz + il2

∫ ky

0

× [
H1yz+H1xx

(
kνx
)2]dz

vxν

− il2H1(0)kνx (ky,E)/uy +O(l−2)

]
. (B26)

This complicated expression may be simplified with the iden-
tification

∫ ky

0

Hν
1

vxν
dz = mxkyH1x +

∫ ky

0

H1yz +H1xx
(
kνx
)2

vxν
dz

− kνx (ky,E)H1(0)u−1
y +O(l−4); (B27)

here, our estimation of O(l−4) was made by evaluating the ne-
glected terms at the boundary of the turning region. Therefore,
we arrive at

fkE =
∑
ν=±

c�ν
1√∣∣vxν ∣∣e

−il2 ∫ ky0 dz(kνx−kx−Hν
1 /v

x
ν )+O(l−2), (B28)

which implies that the incoming and reflected Zilberman-
Fischbeck functions are related by the reflection phase factor
eiφr = c�+ /c

�
− = −i +O(l−2). For an analogous result in the

coupled-channel equations in nuclear physics, we refer the
reader to [100].

c. Estimation of size of the turning region

It is useful to estimate the size of the region in k space
(�kx�ky), in the vicinity of the turning point, where the
Zilberman-Fischbeck wave functions are invalid; equivalently,
this is where the asymptotic limits of the Airy functions
would not apply; we have called this the turning region. From
z = O(1), we obtain �ky = O(l−4/3). The two sections s± of
the band contour that meet at the turning point are described by
k±
x = ±(−2mxuyky)−1/2. Combining this with our estimate of
�ky , we obtain �kx = O(l−2/3); note that �kx�ky = O(l−2).
We may further estimate the length of the semiclassical orbit

that lies within the turning region as

2
∫ �kx

0

√
1 + (dky/dkx)2dkx

= 2
∫ �kx

0

√
1 + k2

x

(uymx)2
dkx = O(l−2/3). (B29)

3. Quantization condition for the simplest closed orbit,
from conventional means

We review the conventional determination [51] of the quan-
tization conditions without breakdown, through the simplest
case study of the closed orbit o in Fig. 2(e); it is composed
of two edges (labeled ν = ±) that touch at two turning points.
Let us define the wave function in the (Kx,ky) representation as
fkE ; the quantization condition is the condition of continuity
of fk with respect to ky .

For the interval of ky within the classical region and
sufficiently far from the two turning points, f is the sum of
two Zilberman-Fischbeck (ZF) functions which correspond
to the two edges: fk,E = ∑

ν=± cνg
ν
kE , with g defined in

Eq. (79). To impose continuity, it is convenient to introduce
the gauge-transformed wave function

f̃ky ,E := e−ikxky l2fkE =
∑
ν=±

cν
∣∣vxν (ky)

∣∣−1/2
aν(ky),

where aν are scalar amplitudes which we define for each edge
ν as

aν(ky) := e−il2 ∫ [kνx−Hν
1 (vxν )−1]dky . (B30)

As mentioned in Sec. V C 1, the phase kxkyl
2 is trivially

continuous over a closed orbit.
f̃kyE may be analytically continued into the turning region,

such that its domain extends up to but excludes the turning
point; here, the velocity prefactor diverges. The function that
facilitates this continuation is the leading asymptotic term of
the modified Airy wave function at the turning point, which
we derive in Eq. (B28).

By analytic continuation to the top turning point (at wave
vector ky1), we arrive at the following expression for

f̃kyE = c�−
1

|vx−(ky)|1/2

a−(ky)

a−(ky1)
+ c�+

1

|vx+(ky)|1/2

a+(ky)

a+(ky1)
,

c�+
c�−

= −i. (B31)

By analytic continuation to the bottom turning point (at wave
vector ky2), we obtain a different expression,

f̃kyE = c�−
1

|vx−(ky)|1/2

a−(ky)

a−(ky2)
+ c�+

1

|vx+(ky)|1/2

a+(ky)

a+(ky2)
,

c�+
c�−

= + i. (B32)

The continuity condition is then equivalent to the identity of
Eqs. (B31) and (B32). Equating the right-hand side of these
two equations and eliminating cν , we derive

−1 = a+(ky2)

a+(ky1)

a−(ky1)

a−(ky2)
. (B33)
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By reparametrizing a by the timelike parameters t±
[cf. Eqs. (98) and (99)], the above condition may be identified
with Eq. (101).

APPENDIX C: APPENDIX TO SEC. VI: “SYMMETRY
IN THE FIRST-ORDER EFFECTIVE HAMILTONIAN

THEORY”

1. Symmetry in Bloch Hamiltonians

The aim of this section is to expand on the review of symme-
tries in Sec. III C and further derive some identities which will
be useful in deriving symmetry constraints on the effective
Hamiltonian. These identities all involve cell-periodic func-
tions and their symmetry constraints [cf. Eqs. (C19), (C20),
and (C23)].

To begin, let us recall some notation from Sec. III. A cell-
periodic function may be expanded as

〈α|unk〉 = unk(α), |unk〉 =
∑
α

unk(α)|α〉,

〈unk|α〉 = unk(α)∗, 〈unk| =
∑
α

unk(α)∗〈α|, (C1)

where α is a shorthand for (τ ,s), with s a spin index and τ

the cell-periodic position coordinate that is defined with the
equivalence τ ∼ τ + R (R being a Bravais-lattice vector).

∑
α

should be interpreted as an integration of τ over the unit cell,
in addition to a sum over the spin index σ . The overlap of bra
with ket is defined as

〈u|v〉 =
∑
α

u∗(α)v(α), 〈α|β〉 = δαβ, (C2)

where δαβ is a shorthand for the product of a Dirac delta
function in real space and a Kronecker delta function in spin
space. We remark that the final results of this section, and the
way they are derived, are essentially unchanged if we interpret
α as a discrete label for a basis of Löwdin orbitals [168,169]
in tight-binding methods.

Let a symmetry operation g act on the cell-periodic variable
as

ĝ|α〉 = |β〉[Ug]βαK
s(g), U−1

g = U †
g , (C3)

with s(g) defined in Eq. (25), repeated indices are summed,
and K is the complex-conjugation operation that leaves the
basis vector invariant:

KzK = z∗, K|α〉K = |α〉, K2 = I. (C4)

To clarify, Eq. (C3) is shorthand for

ĝ|α〉 =
{|β〉[Ug]βα, g unitary,
|β〉[Ug]βαK, g antiunitary. (C5)

For example, consider g = Mx as a reflection that maps x →
−x, in which case

M̂x |τx,τy,τz,s〉 = −i|−τx,τy,τz,−s〉. (C6)

Here, s labels the eigenvalue of spin component Sz; we have
used that Mx is a product of a spatial inversion with a twofold
rotation about �x: M̂x = iC2x = ie−iJxπ = ie−iLxπ (−iσx). If
g is the spatial translation by R, then Ug is the identity
operation, due to the just-mentioned equivalence τ ∼ τ + R.

The triviality of spatial translations implies that {UgK
s(g)|

g ∈ G} forms a representation of the point group of the crystal,
i.e., the quotient of the full space group G (or magnetic space
group) over the subgroup of discrete real-space translations.

Bear in mind that ĝ acts on complex numbers as

ĝz = Ks(g)zKs(g)ĝ. (C7)

We further define ĝ∗ by

ĝ∗|α〉 = |β〉[Ug]∗βαK
s(g), (C8)

such that

KĝK = ĝ∗. (C9)

The inverse operation is

ĝ−1|α〉 = Ks(g)|β〉[Ug]†βα, (C10)

from which one may verify ĝĝ−1 = ĝ−1ĝ = I . From Eq. (24),

ĝeik·r̂ ĝ−1 = e[(−1)s(g)i]k·[ǧ−1(r̂−δ)] = ei[g◦k]·(r̂−δ). (C11)

Consequently, a Bloch function at wave vector k, when
operated upon by g, transforms with a possibly distinct wave
vector

k′ := g ◦ k,
∂k′

α

∂kβ
= (−1)s(g)ǧαβ, (C12)

as may be ascertained from

ĝeik·r̂ |unk〉 = eik
′·r̂ ĝ(k)|unk〉. (C13)

Here, we have combined ĝ and the nonsymmorphic phase
factor in Eq. (C11) as

ĝ(k) := e−i(g◦k)·δĝ. (C14)

Combining Eq. (C1) with Eq. (C3),

〈α|ĝ|u〉 = 〈α|
∑
β

Ks(g)u(β)Ks(g)|δ〉[Ug]δβK
s(g)

=
∑
β

Ks(g)u(β)Ks(g)[Ug]αβK
s(g). (C15)

Ifg is a symmetry of the Hamiltonian, then, applying Eq. (C11),

ĝ(k)Ĥ0(k)ĝ(k)−1

= ĝe−ik·r̂ ĝ−1Ĥ0ĝe
ik·r̂ ĝ−1

= e−i[g◦k]·(r̂−δ)Ĥ0e
i[g◦k]·(r̂−δ) = Ĥ0( g ◦ k ). (C16)

This implies that if |umk〉 is an eigenstate of Ĥ0(k) with
eigenvalue εmk, then ĝ(k)|umk〉Ks(g) belongs to the eigenspace
of Ĥ0( g ◦ k ) with the same energy εmk; the ambiguity in
how we pick basis vectors within each energy eigenspace is
expressed as

ĝ(k)|umk〉Ks(g) = |un,g◦k〉ğ(k)nm, (C17)

where ğ is a “sewing matrix” that is block-diagonal with
respect to the energy eigenspaces, such that each distinct block
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corresponds to a distinct energy. Equation (C17) is a shorthand for

e−i(g◦k)·δ ∑
β

Ks(g)umk(β)Ks(g)[Ug]αβ = un,g◦k(α)ğ(k)nm. (C18)

Equation (C17) implies

ĝ(k)|umk〉Ks(g)ğ−1(k)mn = |un,g◦k〉, (C19)

from which one obtains∣∣∇α
kun,k

〉∣∣
k→g◦k = ∂kβ

∂k′
α

∇β

k [ĝ(k)|umk〉Ksğ−1(k)mn]

= (−1)s ǧαβ
(∣∣∇β

kumk
〉
Ksğ−1(k)mn + |umk〉Ks∇β

k ğ
−1(k)mn

)− iδαĝ(k)|umk〉Ksğ−1(k)mn. (C20)

In the last equality we substituted (∂kβ/∂k′
α) with Eq. (C12). Taking the complex conjugate of Eq. (C18),

ei(g◦k)·δ ∑
β

Ks(g)umk(β)∗Ks(g)[Ug]†βα = ğ(k)†mnun,g◦k(α)∗. (C21)

This may be shortened, with Eq. (C10), as

Ks(g)〈umk|ĝ−1(k) = ğ(k)†mn〈un,g◦k|, (C22)

which implies

ğ(k)mlK
s(g)〈ulk| = 〈um,g◦k|ĝ(k). (C23)

This identity, with Eq. (C19), will be used to derive how the current operator transforms under symmetry in the next subsection.

2. Symmetry constraint on the orbital moment

We detail the derivation of the symmetry constraint of the multiband orbital moment in Eq. (126); we assume the reader is
familiar with the outline of the proof sketched in Sec. VI B. As an intermediate step, let us derive Eq. (125), which describes the
symmetry constraint on the current operator.

Proof of Eq. (125). The current operator transforms as

ĝ�̂ĝ−1 = ĝ(−i)[r̂,Ĥ ]ĝ−1 = (−1)s(g)(−i)[ǧ−1(r̂ − δ),Ĥ ] = (−1)s(g)ǧ−1�̂. (C24)

Combining this with Eq. (26), we see that the operator, defined by

�̂(k) = e−ik·r̂�̂eik·r̂ , (C25)

transforms as

ĝ(k)�̂(k)ĝ−1(k) = (−1)s(g)ǧ−1�̂(g ◦ k). (C26)

The matrix elements of the velocity operator thus satisfy the following symmetry constraint:

�(g ◦ k)mn = (−1)s(g)ǧ
〈
um,g◦k

∣∣ĝ(k)�̂(k)ĝ−1(k)
∣∣un,g◦k

〉
. (C27)

Inserting Eqs. (C19) and (C23) into this expression,

�( g ◦ k )mn = (−1)s(g)ǧğ(k)mlK
s(g)〈ulk|ĝ−1(k)ĝ(k)�̂(k)ĝ−1(k)ĝ(k)

∣∣uak
〉
Ks(g)ğ−1(k)an

= (−1)s(g)ǧKs(g)[ğ∗�ğt ]mnK
s(g)
∣∣

k. (C28)

�
In the degenerate subspace projected by P , let us define ε = εm for m ∈ {1, . . . ,D}; k dependence is implicit in this and the

following notations. Combining Eq. (C28) with Eq. (67),

(−i)εabc
∑
n̄


b
mn̄


c
n̄l

ε − εn̄

∣∣∣∣
g◦k

= (−i)εabcǧbd ǧce
∑
n̄

Ks(g)[ğ∗
dğT ]mn̄[ğ∗
eğT ]n̄lKs(g)
∣∣

k

(ε − εn̄)
∣∣
g◦k

. (C29)

Applying the Levi-Civita identity (for an orthogonal matrix satisfying RT = R−1)

det[RT ] εlmn = εabc R
T
la R

T
mb R

T
nc ⇒ Ral det[R] εlmn = εabc Rbm Rcn, (C30)

and the reality of ǧ, we derive that the left-hand side of Eq. (C29) equals

(−1)s(g) det[ǧ]ǧabK
s(g)(−i)εbde

∑
n̄

[ğ∗
dğT ]mn̄[ğ∗
eğT ]n̄l
∣∣

k

(ε − εn̄)
∣∣
g◦k

Ks(g). (C31)
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Let us introduce new labels n̄ := (a′,a′′), such that a′ labels the distinct energy eigenvalues, and a′′ labels an arbitrarily chosen
basis in the finite-dimensional subspace corresponding to energy εa′ . We see in this labeling that εnk does not depend on a′′, so
we may shorten εn̄k → εa′k. Moreover, since the symmetry commutes with the Hamiltonian, εa′k = εa′,g◦k. Therefore, Eq. (C31)
simplifies to

(−1)s(g) det[ǧ]ǧabK
s(g)(−i)εbde

∑
a′;εa′ �=ε

1

(ε − εa′ )

∑
a′′

[ğ∗
dğT ]m,(a′,a′′)[ğ
∗
eğT ](a′,a′′),l

∣∣∣∣
k
Ks(g). (C32)

Since ğ is block-diagonal in the index a′, the above equation may be expressed as

(−1)s(g) det[ǧ]ǧabK
s(g)(−i)εbde

∑
a′;εa′ �=ε

1

(ε − εa′ )

∑
a′′,b′′,c′′

[ğ∗
d ]m,(a′,b′′)ğ
T
(a′,b′′),(a′,a′′)ğ

∗
(a′,a′′),(a′,c′′)[


eğT ](a′,c′′),l

∣∣∣∣
k
Ks(g).

Since each block diagonal of ğ, corresponding to an energy subspace, is unitary, the above equation reduces to

(−1)s(g) det[ǧ]ǧabK
s(g)(−i)εbde

∑
a′;εa′ �=ε

1

(ε − εa′ )

∑
b′′,c′′

[ğ∗
d ]m,(a′,b′′)δb′′,c′′ [
eğT ](a′,c′′),l

∣∣∣∣
k
Ks(g)

= (−1)s(g) det[ǧ]ǧabK
s(g)(−i)εbde

∑
a′;εa′ �=ε

1

(ε − εa′ )

∑
a′′

[ğ∗
d ]m,(a′,a′′)[

eğT ](a′,a′′),l

∣∣∣∣
k
Ks(g). (C33)

Restoring the usual labeling, we conclude that the left-hand side of Eq. (C29) equals

(−1)s(g) det[ǧ]ǧabK
s(g)(−i)εbcd

∑
n̄

[ğ∗
]cmn̄[
ğT ]dn̄l
ε − εn̄

∣∣∣∣
k
Ks(g), (C34)

from which follows Eq. (126).

3. Appendix to symmetry of the first-order effective Hamiltonian

Let us analyze the symmetry constraints on the (a) Roth, (b) Zeeman, and (c) Berry terms in the first-order effective Hamiltonian
[recall their definitions in Eq. (64)], in that order. The final goal is to derive Eq. (128).

(a) For Bloch electrons immersed in a field parallel to �z,HR
1 = −BzMz. For symmetries of semiclassical orbits (defined

precisely in Sec. VI A), Eqs. (116) and (117) inform us that [ǧM]z = (−1)t(g)Mz = (−1)u(g)det[ǧ]Mz, and therefore Eq. (126)
particularizes to

Mz|g◦k = (−1)s(g)+u(g) ğ Ks(g) Mz Ks(g) ğ−1|k, (C35)

with u(g) ∈ Z2 defined in Eq. (117).
(b) For symmetries in spin-orbit-coupled systems, we would like to demonstrate that HZ

1 ∝ Bσz is constrained similarly to
Eq. (C35):

σ z|g◦k = (−1)s(g)+u(g) ğ Ks(g) σ z Ks(g) ğ−1|k, (C36)

where (h̄/2)σ z
mn(k) = (h̄/2)〈umk|σ̂z|unk〉 is the spin-half matrix defined in Eq. (17). We already know how the cell-periodic

functions transform under symmetry [cf. Eq. (29)], so what remains is to determine how σ̂z transforms under a symmetry of the
orbit. For this purpose, the decomposition in Eq. (121) is useful in deriving

ĝ−1σ̂ zĝ = (−1)s(g)+u(g)σ̂ z. (C37)

Indeed, among the factors written on the right-hand side of Eq. (121), only time reversal (if present) and rx (if present) flips the
z component of spin. Combining Eq. (C37) with Eq. (29), we then obtain Eq. (C36).

(c) The Berry term HB
1 = l−2εαβX

βvα . Combining Eq. (130) with the constraint on the band velocity in Eq. (118),

εαβX
βvα|g◦k − εαβδ

βvα|g◦k = (−1)sεαβ ǧαμǧβν
(
ğKsXνKsğ−1 + i(−1)s ğ∇ν

kğ
−1
)
vμ
∣∣

k

= (−1)s+uεαβ
(
ğ−1KsXβKsğ−1 + i(−1)s ğ∇β

k ğ
−1
)
vα
∣∣

k.

The net result of (a)–(c) is Eq. (128).

4. Topological obstruction to symmetry covariance of H1

Supposing H0 is g-symmetric, does a basis (for the cell-
periodic functions) exist where H1 transforms covariantly
under g, for all k in the Brillouin torus? This section is a
self-constrained exposition on the possible obstructions to

symmetry covariance in topologically nontrivial band sub-
spaces. The existence of a topological obstruction is suggested
by the observation in paragraph (ii) of in Sec. VI C: the source
of non-covariance is the Berry term. The Berry curvature is a
measure of the “twisting” of the filled-band wave functions in k
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space; it is known that topologically nontrivial band structures
exist whose curvature cannot be made to vanish [170].

We support this claim with a few case studies in the follow-
ing subsections; a recurrent theme in these case studies is that
the effective Hamiltonian of a symmetry-protected topological
phase transforms anomalously (i.e., non-covariantly) under the
symmetry in question. Our last case study has only the U(1)
symmetry of charge conservation, and we will show that the
effective Hamiltonian for a nontrivial Chern band transforms
anomalously under a gauge transformation.

Before beginning properly, let us introduce a terminology.
Supposing the second and third terms in Eq. (128) were absent;
we say that H1 transforms covariantly under the symmetry
(resp. antisymmetry) g if (−)s(g)+u(g) = +1 (resp. −1). In
simple words, g is referred to as an antisymmetry of H1 if
it inverts the sign of H1.

a. Wigner-Dyson class AII

Let us exemplify this claim with gapped band subspaces
in the symmetry class AII in two [86,171–174] or three
[175–178] spatial dimensions—spin-orbit-coupled, with the
time-reversal symmetry satisfying T̂ 2 = −I ; no assumption
is made presently about the spatial symmetries; however
we will elaborate on their roles in the next two sections
(Appendices C 4 b and C 4 c). We have used the word “gapped”
liberally to describe band subspaces which are energetically
separated from all other bands at each wave vector in the
Brillouin torus; this would include indirect-gap systems with
nonvanishing Fermi lines or surfaces. It is well known that
gapped band subspaces, in either 2D or 3D, are classified by a
strong Z2 invariant [179]; we shall refer to the nontrivial phase
(in both 2D and 3D) as the Z2-topological band.

In this context, we would like to define the effective
Hamiltonian H1(k) over the entire torus; it is minimally a
two-band Hamiltonian due to Kramers degeneracy at k(i). Let
us ask ifH1 may transform covariantly under the antisymmetry
T ; the non-covariant term on the right-hand side of Eq. (128)
vanishes if either (i) v(k) can be made to vanish everywhere,
i.e., the band(s) in P have a flat dispersion, or (ii) the sewing
matrix corresponding to T , as defined by

T̆ (k)mn = 〈um,−k|T̂ |unk〉K, (C38)

can be made to be independent of k. We disregard the
implausibly fine-tuned scenario where the non-covariant term
vanishes without satisfaction of (i) or (ii). For a trivial band
subspace, we argue that an adiabatic continuation exists to a
lattice of inert atoms, where both v(k) = 0 and T̆ reduces to
a k-independent matrix which represents time reversal in the
basis of Löwdin orbitals. Let us then consider (i) and (ii) in the
context of a topological band subspace.

(i) For a Z2-topological band, v(k) cannot everywhere be
zero if the associated tight-binding Hamiltonian has local
(strictly short-ranged) hoppings [180]. In fact, the impossi-
bility of a strictly short-ranged, flat-band Hamiltonian is more
generally true for all of the strong topological band subspaces
in larger-than-one spatial dimensions; this was first proven
for class A in 2D [181], and then extended to the tenfold
symmetry classes [180]. This rigorous result suggests that
if a strictly-flat-band Hamiltonian exists for a Z2-topological

band, it is likely to be a highly optimized scenario [182] which
is challenging to realize in both theoretical and experimental
laboratories. We know only of one model [183] (of a strong
2D topological insulator) with exactly flat bands [184]; the
hopping elements here decay as a Gaussian. We henceforth
assume that v(k) is a nonconstant function, which is the case
of interest in almost all applications.

(ii) Given that the band is not flat, we are led to investigate
the momentum dependence of the sewing matrix for a topo-
logical band. One expression for the strong Z2 invariant, in
both 2D and 3D, involves the even-dimensional sewing matrix
T̆ defined in Eq. (C38). Since this matrix is skew-symmetric
at any inversion-invariant wave vector k(i), we might evaluate
the quantity

δi =
√

det[T̆ (k(i))]/Pf[T̆ (k(i))] = ±1, (C39)

with Pf[·] denoting the Pfaffian of [·]. The product of δi over
all k(i) (numbering four in 2D, and eight in 3D) is the strong
Z2 invariant, which equals +1 (−1) in correspondence with
the trivial (topological) phase [175]; this definition implicitly
assumes the continuity of the cell-periodic functions over the
Brillouin torus. If the sewing matrix were constant over this
torus, an immediate implication is

∏
i δi = +1; alternatively

stated, for the Z2-topological band, there is an obstruction to
defining a constant sewing matrix; consequently, a non-flat-
band H1 must transform non-covariantly under the antisym-
metry T .

b. Class AII with spatial inversion symmetry

Even for Z2-topological band subspaces, it is generically
not true that a topological obstruction exists for all symmetries
of the system. To exemplify this claim, let us consider a
Z2-topological band (in 2D or 3D) with spatial inversion
symmetry i. The spacetime inversion T i (s = 1,u = 0) acts
as an antisymmetry on the first-order effective Hamiltonian.
For simplicity, we assume that bands are twofold degenerate
everywhere on the Brillouin torus, and hence H1 is a two-band
Hamiltonian. We then ask if H1 transforms covariantly under
the antisymmetry T i, or equivalently, if the corresponding
sewing matrix (denoted as T̆i) can be made constant over the
torus. An algorithm for this has been proposed in Ref. [176],
which is plausibly valid in the Z2-nontrivial phase (i.e., with∏

i δi = −1). Assuming such a gauge is found, T i symmetry
then imposes the covariant antisymmetry condition:

H1(k) = −T̆iH ∗
1 (k)T̆ −1

i
, ∇kT̆i = 0, (C40)

which follows from Eq. (128) for a constant sewing matrix.
Evaluating the trace on both sides of Eq. (C40), we further
deduce that H1 is traceless:

Tr[H1(k)] = 0 ⇒ H1(k) = −μBτiBj ξij (k); (C41)

τi here are Pauli matrices describing an effective spin, which is
generally distinct from the free spin due to spin-orbit coupling.
A heuristic argument for the tracelessless of H1 in Eq. (C41)
already exists in the literature [25,31,74]. Here, we have
clarified that H1 is traceless only in a special basis where the
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sewing matrix for T i is constant; consequently, the unitary
generated by H1 [cf. Eq. (74)] has unit determinant, and the
eigenphases of this unitary satisfy λ1 = −λ2 mod 2π . We
remind the reader that λa enter the multiband quantization
conditions in Eq. (73), and also the condition for dHvA
oscillations in Eq. (115).

The reader may be unsatisfied that the above conclusions
relied on the existence of a special gauge. A more general
proof of λ1 = −λ2 is provided in Sec. VI D [see the paragraph
surrounding Eq. (146)].

c. Topological band subspaces protected
by crystalline symmetries

One next case study demonstrates that a topological ob-
struction may exist for band subspaces, where the obstruction
is protected solely by crystalline symmetries. 3D insulators
having an improper spatial symmetry (i.e., det[ǧ] = −1) have
a quantized magnetoelectric response [69]; i.e., the θ angle
occurring in the axion Lagrangian [185] is symmetry-fixed
to 0 or π . For inversion-symmetric (i) bands, θ/2π may be
expressed as half the winding number of ĭ (the sewing matrix
for i) [68,186]:

θ

2π
= − 1

48π2

∫
d3kεαβγ Tr[(ĭ∇α ĭ

−1
)(ĭ∇β ĭ

−1
)(ĭ∇γ ĭ

−1
)].

(C42)

θ = π thus implies a topological obstruction against H1

transforming covariantly under i.

d. Wigner-Dyson class A

Having described the anomalous symmetry transformation
of H1 for symmetry-protected topological phases, we might
ask if there is an analogous topological obstruction for charge-
conserving band subspaces having no other symmetries; they
fall into Wigner-Dyson class A. Even though the Bloch Hamil-
tonian is completely unconstrained, one always has, at the basic
level, a “gauge symmetry,” which reflects the ambiguity in
how we label our bands in P ; a gauge transformation such
as in Eq. (22) might be viewed as a “do-nothing” symmetry
operation.

Class-A band subspaces in 2D are classified by the TKNN
invariant [117], or equivalently, the first Chern number (C1).
We would like to show that a nonzero C1 necessarily implies
that H1 is not gauge-covariant. Indeed, it was already noted
in Eq. (61) that the Berry term l−2εαβX

βvα generally results
in a loss of covariance for any band subspace, trivial or
nontrivial; the Roth and Zeeman terms are gauge-invariant
(resp. -covariant) in the one-band (resp. multiband) case.
We are led to ask whether HB

1 can be made to vanish by
basis transformations within P . For a band with a generic
dispersion, this amounts to asking whether there exists a
gauge where X(k) = 0 at each k; this gauge does not exist if
the Berry curvature F z(k) := ∇k × Tr[X] �= 0. Since the net
Berry curvature for a Chern band is nonzero, we conclude that
H1 (for a generically dispersing Chern band) must transform
non-covariantly [187].

APPENDIX D: APPENDIX TO SEC. VII:
“INTRABAND BREAKDOWN”

1. Derivation of the intraband scattering matrix

a. Review of connection formula in the lowest order

Let us pedagogically review the derivation of the connection
formula in the lowest order in l−2, with the eventual goal of
generalizing the formula to the next order (to be carried out in
the next subsection). The lowest-order problem was first stud-
ied by Azbel [11,109] and has reappeared in similar contexts
[130,131,188], as more generally reviewed in Ref. [111].

The Hamiltonian in the breakdown region is approximated
by the Peierls-Onsager Hamiltonian, which is in Weyl corre-
spondence with Eq. (171):

H0(K ) = K2
x

2m1
− K2

y

2m2
, [H0(K ) − E]fkE = 0. (D1)

We have further defined fkE as the eigenfunction correspond-
ing to eigenvalue E. Working in the Landau electromagnetic
gauge [recall Eq. (77)], we perform a gauge transformation

f = eiqxky l
2
f̄ ; (D2)

the resultant differential equation for f̄ becomes independent
of kx , and is equivalent to the time-independent Schrödinger
equation for a particle in an inverted parabolic potential,
with coordinate ky , as was first studied by Kemble [132].
Introducing the dimensionless variable

z = e−iπ/4 (kyl)

(
4m1

m2

)1/4

, (D3)

we obtain a Weber differential equation [189](
∂2
z − 1

4z
2 + iμ

)
f̄ = 0, (D4)

withμ defined in Eq. (174). From Eq. (12.2.2) in Ref. [189], the
solutions are linear combinations of two independent parabolic
cylinder functions (PCFs):

f̄ (z) = c̄↗EU (−iμ,z) + c̄↙EU (−iμ,−z), (D5)

with newly introduced coefficients c̄νE that are to be deter-
mined. In the limit z � 1, the PCFs may be matched with the
Zilberman functions [Eq. (179) without theH1 correction]. We
will assume some conditions on the zero-field band parame-
ters, such that beyond-quadratic terms in H0(K ) can still be
neglected in this matching region. Employing the asymptotic
expansion in 12.9.1 and 12.9.3 of [189],

(i) ky → +∞,

f̄ → [
c(0)

↗E
eπμ/2 − i c(0)

↙E
e−πμ/2

]
× eiμ log |μ|−iμ �(1/2 − iμ)√

2π
� + c(0)

↙E
� ∗,

(ii) ky → −∞,

f̄ → [−i c(0)
↗E
e−πμ/2 + c(0)

↙E
eπμ/2

]
× eiμ log |μ|−iμ �(1/2 − iμ)√

2π
� + c(0)

↗E
� ∗, (D6)

where we have introduced the coefficients {c(0)

νE} which differ
from {c̄νE} only by a ν-independent proportionality constant;
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we have additionally defined

� (ky,E) = e−z2/4+iμ/2

[
2|ky |
b

]iμ−1/2

,

� ∗(ky,E) = ez
2/4−iμ/2

[
2|ky |
b

]−iμ−1/2

, (D7)

which may be identified with the Zilberman functions in the
limit |ky | � |b| [recall the definition of b in Eq. (173)]:

g
↖+
kE

ky�|b|

∝ eikxky l
2
� (ky,E),

g
↘−
kE

ky�−|b|

∝ eikxky l
2
� (ky,E),

g
↙+
kE

ky�|b|

∝ eikxky l
2
� ∗(ky,E),

g
↗−
kE

ky�−|b|

∝ eikxky l
2
� ∗(ky,E). (D8)

We emphasize that these identifications are made for uniquely
defined Zilberman functions, for which the lower limits of the
classical action integrals are specified as in Eq. (179) (with
H1 = 0). Following the discussion surrounding Eqs. (175)–
(180), we may then identify

c(0)
↖E

= [
c(0)

↗E
eπμ/2 − i c(0)

↙E
e−πμ/2

]
× eiμ log |μ|−iμ �(1/2 − iμ)√

2π
,

c(0)
↘E

= [−i c(0)
↗E
e−πμ/2 + c(0)

↙E
eπμ/2]

× eiμ log |μ|−iμ �(1/2 − iμ)√
2π

, (D9)

which can be expressed as a matrix equation relating incoming
to outgoing states(

c(0)
↖E

c(0)
↘E

)
= S(0)(E,kz)

(
c(0)

↗E

c(0)
↙E

)
, (D10)

with the lowest-order scattering matrix defined in Eq. (182).
To summarize the results of this review, the eigenfunctions of
Eq. (D1) in the limit ky → ±∞ are

f ±
kE = eikxky l

2
∑
ν

±
c

(0)

νE

1√∣∣vxν ∣∣e
−il2 ∫ ky

kν
y0(E)

kνx (z,E)dz
, (D11)

where the superscript on f ± corresponds to the sign in ky →
±∞; kνy0 is the coordinate of closest approach to the saddle

point for the edge ν;
∑±

ν runs over ↖ and ↙ for f + (the two
edges above the breakdown interval), and over ↗ and ↘ for
f −; the various c(0)

νE are related as in Eqs. (D9), (D10), and
(182).

b. Derivation of first-order-corrected connection formula

It is useful to estimate the size of the region in k space
(�kx�ky), in the vicinity of the saddle point, where the
Zilberman-Fischbeck wave functions are invalid; equivalently,
this is where the asymptotic limits of the PCFs would not
apply; we have called this the breakdown region. This is
the region where z, the dimensionless variable entering the

Weber differential equation [cf. Eq. (D3)], is of order one.
Further assuming m1/m2 = O(1), we obtain �ky = O(l−1).
Utilizing the hyperbolic asymptotes ky = ±(b/a)kx and as-
suming (b/a) = O(1), we estimate �kx = O(l−1); note that
�kx�ky = O(l−2).

Let us derive a first-order-corrected effective Hamiltonian
(H = H0 +H1) in the breakdown region. We first expand
the symbol H1 around the saddle point as in Eq. (194). The
terms (δH1) which we neglect to write explicitly are bounded
by their values at the boundary of the breakdown region as
δH1(�k) = O(l−4), with our estimates of �k in the above
paragraph. In other words, the explicit terms in Eq. (194), when
evaluated on the boundary, are larger in magnitude thanO(l−4)
and therefore expected to be relevant in the limit of small field.
When these explicit terms are added to H0, the result is an
effective Hamiltonian that is identical in form to Eq. (D1):

H = H0(K ) +H1(K ) = H0( Q) +H1(0) +O(l−4), (D12)

but shifted by an energy constant H1(0), and with shifted
momentum variables

qx = kx +m1H1x, qy = ky −m2H1y ↔
Qx = Kx +mH1x, Qy = Ky −m2H1y. (D13)

It is useful to know which of the Roth, Berry, or Zeeman terms
contribute to the effective Hamiltonian; let us individually
expand HR

1 ,H
B
1 , and HZ

1 as in Eq. (194), keeping only the
linear terms, which we define by HR

1j kj , etc. For example, the
Berry term is expanded as

l2HB
1 (k) = Xy(k)vx(k) − Xx(k)vy(k)

= Xy(0)
kx

m1
+ Xx(0)

ky

m2
+ · · ·

:= l2
(
HB

1xkx +HB
1yky

)+ · · · , (D14)

and vanishes when evaluated at the saddle point, where the
band velocity v⊥ vanishes. Therefore the shift in the energy
constant is only contributed by the gauge-invariant Roth and
Zeeman terms:

H1(0) = HR
1 (0) +HZ

1 (0). (D15)

We further deduce from Eq. (D14) that the shifts in the
momentum variables kx and ky are, respectively,

m1H1x = l−2Xy(0) +m1
(
HR

1x +HZ
1x

)
,

m2H1y = l−2Xx(0) +m2
(
HR

1y +HZ
1y

)
. (D16)

The similarity of H with the inverted-harmonic-oscillator
Hamiltonian implies that it may be solved with the same
techniques, with some small modifications. We assume here the
reader has some familiarity with the “same techniques,” which
we have reviewed in the previous subsection (Appendix D 1 a)
and will presently extend.
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Let us then define the eigenfunction of H, with the O(l−4)
correction henceforth truncated, as

0 = [H(K ) − E]fkE = [H0( Q) +H1(0) − E]fkE

= [H0( Q) − Ẽ]fkE,

Ẽ := E −H1(0). (D17)

Performing a gauge transformation,

f = eiqxky l
2
f̄ , (D18)

we see that f̄ satisfies the Weber differential equation in the
modified variable qy and with modified eigenvalue Ẽ. Let us
define f ±

kE to be the asymptotic limits of f in the limit ky →
±∞. Utilizing results from our review in Appendix D 1 a,
especially Eq. (D11), we obtain

e−iqxky l2f ±
kE

=
∑
ν

±
⎧⎨
⎩c(0)

νE

1√∣∣vxν ∣∣e
−il2 ∫ ky

kν
y0(E)

kνx (z,E)dz

⎫⎬
⎭

(ky ,E)→(qy,Ẽ)

,

(D19)

with {c(0)

νE} related as in Eqs. (D9), (D10), and (182); kν0 is the
wave vector of closest approach to the saddle point for the
edge ν;

∑±
ν runs over ↖ and ↙ for f + (the two edges above

the breakdown interval), and over ↗ and ↘ for f −. Upon
substituting ky → qy = ky −m2H1y in the curly brackets of
Eq. (D19), Eq. (D19) is expressible as

f ±
k,E =

∑
ν

±
c

(0)

νẼ
eim1l

2H1xk
ν
y0(Ẽ)+im2l

2H1yk
ν
x0(Ẽ) e

ikxky l
2√∣∣vνx ∣∣

× e
−il2 ∫ ky

kν
y0(E)

(kνx−
Hν

1 −H1(0)

vxν
)dz∣∣

E→Ẽ
+O(l−2), (D20)

as we prove at the end of this subsection. We may identify
the last line of Eq. (D20) as the Zilberman-Fischbeck function
defined in Eq. (177). Further defining

cνE := c
(0)

νẼ
υνE,

υνE := eim1l
2H1xk

ν
y0(Ẽ)+im2l

2H1yk
ν
x0(Ẽ), (D21)

we cast Eq. (D20) in the simple form

f ±
k,E =

∑
ν

±
cνEg̃

ν
kE, (D22)

which may be identified with Eqs. (175)–(180). We are finally
ready to derive the scattering matrix defined in Eq. (181) and
expressed in Eqs. (187) and (190). Combining Eq. (D21) with
(D10) and (182),

S(E,l2) =
(
υ↖E 0
0 υ↘E

)
S(0)(Ẽ,l2)

(
υ∗

↗E
0

0 υ∗
↙E

)

=
(
T (μ̃)υ↖Eυ

∗
↗E

R(μ̃)υ↖Eυ
∗
↙E

R(μ̃)υ↘Eυ
∗
↗E

T (μ̃)υ↘Eυ
∗
↙E

)
. (D23)

Inserting the integral expression for υ [from Eq. (D21)], and
further applying the definition of kν0, we obtain Eq. (190). If
we neglect the Roth and Zeeman corrections, we find that the

Berry term is sufficient to restore gauge covariance:

S(E,l2)

H1=HB
1

=
(
T (μ)eiX

y (0)2b(E) R(μ)e−iXx (0)2a(E)

R(μ)eiX
x (0)2a(E) T (μ)e−iXy (0)2b(E)

)
+O(l−2)

=
(
T (μ)ei

∫ b
−b X

y (0,ky )dky R(μ)e−i ∫ a−a Xx (kx ,0)dkx

R(μ)ei
∫ a
−a X

x (kx ,0)dkx T (μ)e−i ∫ b−b Xy (0,ky )dky

)

+ O

(
l−2,

(
b

G

)2

,

(
a

G

)2)
. (D24)

In the first equality, we have made use of the expansion of HB
1

in Eq. (D14); the second equality follows from

∫ b

−b
Xy(0,ky)dky = 2Xy(0)b +O((b/G)2), (D25)

where the correction is of order (b/G)2, with G a typical
reciprocal period.

Up toO(l−2,(b/G)2,(a/G)2), theO(1) phases in Eq. (190)
may be creatively interpreted as the Roth-Berry-Zeeman phase
averaged over all possible tunneling trajectories in the classi-
cally forbidden region. For example, the phase acquired for the
tunneling trajectory in the �y direction may be expressed as

ei2m1H1xb(Ẽ)l2 ≈ exp

[
i

∫ b

−b

{
H̃1

vx

}
ky

dky

]
, (D26)

where {·̄}ky denotes the kx average of the quantity · over a
fixed-ky cross section of the forbidden region:

{
H̃1

vx

}
ky

= l

2

∫ 1/l

−1/l

H1(k) −H1(0)

vx(k)
dkx

≈ m1l

2

∫ 1/l

−1/l

H1xkx +H1yky

kx
dkx = m1H1x. (D27)

In the last equality, we have used the Cauchy principal value
for the integral

∫
dkx/kx .

Proof of identification of Eq. (D19) with Eq. (D20). From
the exponent in the second line of Eq. (D20),

∫ ky

kνy0(Ẽ)

Hν
1 −H1(0)

vxν
dt

= m1H1x
(
ky − kνy0(Ẽ)

)
+ m2H1y

(
kνx (ky,Ẽ) − kνx0(Ẽ)

) +O(l−4), (D28)

where, as a reminder, we have kνx (ky,E) as the kx coordinate
of the section sν at wave vector ky and energy E. In deriving
Eq. (D28), we employed Hν

1 (k) −H1(0) = kxH1x + kyH1y +
· · · from Eq. (193), and the identity dky/vx = −dkx/vy along
a constant-energy contour. The uncertaintyO(l−4) in Eq. (D28)
is estimated by evaluating the neglected terms at the boundary
of the breakdown region, where k = O(l−1). Substituting
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Eq. (D28) into Eq. (D20), we obtain

f ±
k,E = eikxky l

2
∑
ν

±
c

(0)

νẼ
eil

2m1H1xky+il2m2H1yk
ν
x (ky ,Ẽ)

× 1√∣∣vνx ∣∣ exp

{
−il2

∫ ky

kνy0(E)
kνxdz

}∣∣∣∣∣
E→Ẽ

+ O(l−2). (D29)

To complete the identification of this expression with
Eq. (D19), we apply the following three observations:

(i) eikxky l
2
eil

2m1H1xky = eiqxky l
2
, (D30)

from the fundamental theorem of calculus,

(ii) m2H1yk
ν
x (ky,Ẽ) +

∫ ky

kνy0(Ẽ)
kνx (z,Ẽ)dz

=
∫ qy

kνy0(Ẽ)
kνx (z,E)dz +O(l−4), (D31)

and finally, (iii) bearing in mind that the expressions are to
be identified with an uncertainty of O(l−2), we might directly
replace |vxν (qy,Ẽ)| ≈ |vxν (ky,Ẽ)| in the square-root prefactor.

c. Equivalence of two Zilberman-Fischbeck functions

We would like to prove in the semiclassical region (sm) that

For k ∈ sm, gνkE = g̃νkẼ +O(l−2). (D32)

We need the following three identities: (i) In the semiclassical
region where the Zilberman-Fischbeck functions are valid, we
may assume kνx = O(1) and therefore

2m1H1(0)/kνx (ky,E)2 = O(l−2); (D33)

combining this assumption with Eq. (80), we derive

kνx (ky,Ẽ) = kνx (ky,E) −H1(0)/vxν +O(l−4). (D34)

(ii) The same assumption in Eq. (D33) implies, with vxν =
kνx/m1, that

vxν (ky,Ẽ) = vxν (ky,E) −H1(0)/m1v
x
ν +O(l−4). (D35)

(iii) Lastly, applying the fundamental theorem of calculus,∫ ky

kνy0(Ẽ)

[
kνx (z,E) − Hν

1

vxν

]
dz

=
∫ ky

kνy0(E)

[
kνx (z,E) − Hν

1

vxν

]
dz

+ [
kνy0(Ẽ) − kνy0(E)

]
kνx0(E) +O(l−4)

=
∫ ky

kνy0(E)

[
kνx (z,E) − Hν

1

vxν

]
dz +O((a/G)l−2,l−4).

In the last equality, we applied that the coordinate of closest
approach kx0 = ±a(E) (the hyperbolic parameter) for E > 0
and is otherwise zero. Substituting (i)–(iii) into Eq. (177), we
derive Eq. (D32) as desired.

APPENDIX E: APPENDIX TO SEC. VIII: “EFFECTIVE
HAMILTONIAN FOR GENERAL BAND TOUCHINGS”

1. Calculus with Weyl-symmetrized operators

Here we collect several identities which are useful in the
calculus of Weyl-symmetrized operators.

We are interested in kinetic quasimomentum operators with
the noncommutative relation:

[Kx,Ky] = il−2. (E1)

It immediately follows that

[f (Kx),ky] = il−2f ′(Kx), (E2)

with f ′ denoting a derivative with respect to Kx .
We are very often interested in symmetrized functions of

K . Besides our definition of symmetrization with the Fourier
formula in Eq. (50), a more elementary definition exists for
polynomials [73]: given a monomial kmx k

n
y , its symmetrized

form is obtained from extracting all terms withm powers ofKx

andn powers ofKy in the noncommutative binomial expansion

m!n!

(m+ n)!
(Kx +Ky)m+n. (E3)

One may verify that this symmetrization preserves the structure
of products:

[(skx + tky + u)v] = (sKx + tKy + u)v,

s,t,u ∈ C, v ∈ Z, (E4)

which implies that the exponential structure is also preserved:

eiK ·R =
∞∑
n=0

(iK · R)n

n!
=

∞∑
n=0

[
(ik · R)n

n!

]
= [eik·r ]. (E5)

This identify underlies the Fourier definition of symmetrization
in Eq. (50).

For any function of Kx :

[ky,f (Kx)] = (1/2)[kyf (Kx) + f (Kx)ky]

:= (1/2){ky,f (Kx)}, (E6)

as may be proven by Taylor-expanding f and symmetrizing
individual terms (e.g., [kyKn

x ]) with the rule in Eq. (E3).
Symmetrization of a symbol commutes with addition:

[f (k)] + [g(k)] = [f (k) + g(k)]. (E7)

Like many basic identities, it may be proven by Fourier
analysis: ∫

dRf̌ (R)eiK ·R +
∫

dR′ǧ(R′)eiK ·R′

=
∫

dR(f̌ (R)eiK ·R + ǧ(R)eiK ·R)

=
∫

dR(f̌ (R) + ǧ(R))eiK ·R.

The product rule for two symmetrized operators is described in
Eq. (229); its nontriviality originates from the noncommutivity
of Eq. (E1). We review the proof of the multiplication rule by
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Roth [24], which combines Fourier analysis, and the Baker-
Campbell-Hausdorff identity eAeB = eA+Be[A,B]/2:∫

d r
∫

d r ′Ǎ(r)B̌(r ′)e−iK ·re−iK ·r ′

=
∫

d r
∫

d r ′Ǎ(r)B̌(r ′)e−iK ·(r+r ′)e−il−2εαβ rαr
′
β/2

=
[∫

d r
∫

d r ′Ǎ(r)B̌(r ′)e−ik·(r+r ′)e−il−2εαβ rαr
′
β/2

]

=
[
e(i/2)l−2εαβ∇α

k∇β

k′
∫

d r
∫

d r ′Ǎ(r)B̌(r ′)

× e−ik·re−ik′·r ′
∣∣∣∣

k=k′

]
. (E8)

An application of this product rule to a commutator of two
symmetrized operators leads to

[A(K ),B(K )]

= [[A(k),B(k)]] + i

2l2
εαβ

[{∇α
kA,∇β

kB
}]+O(l−4),

(E9)

where [[a,b]] = [ab − ba] and [{a,b}] = [ab + ba].

a. Symmetrized operators which are independent of ky

A particularization of the Roth product rule [cf. Eq. (229)]
for functions independent of ky is

A(Kx)B(Kx) = [A(kx)B(kx)]kx→Kx
. (E10)

An operator acting in r space (or more generally, an operator
acting in both r and kx space) commutes with the operation
[·]kx→Kx

, i.e.,

F̂ (r̂,∇r )A(Kx,r) = [F̂ (r̂,∇r )A(kx,r)]kx→Kx
, (E11)

Ĝ(Kx,r̂,∇r )A(Kx,r) = [Ĝ(kx,r̂,∇r )A(kx,r)]kx→Kx
,

(E12)

which may also be proven from Fourier analysis.

2. Relating our ansatz to Slutskin’s function

To lowest order in l−2, our ansatz for the wave function
takes the form

�(r) = 1√
N

∑
k

α(k,r),

α(k,r) :=
∑
n

eik·runKx0(r)fnk, (E13)

with
∑

k shorthand for a continuous integral over the Brillouin
torus. We would like our ansatz to be independent of the choice
of unit cell in k space, i.e.,

α(k,r) = α(k + G,r), (E14)

for any reciprocal vector G. This is ensured if we impose the
following boundary conditions on the wave function in the

(Kx,0) representation:

fnk = fnk+Gx
, (E15)

fmk =
∑
n

S̃mn(Kx,0; Gy)fnk+Gy
, (E16)

S̃mn(Kx,0; G) :=
∫

dτ
[
u∗
mkx0(τ )

]
eiG·τunKx0(τ ). (E17)

Here, S̃ is formally an infinite-dimensional matrix,
∫
dτ

denotes an integration over the real-space unit cell, and Gx

and Gy are the primitive reciprocal vectors of a rectangular
lattice:

Gx := 2π �x/ax, Gx := 2π/ax,

Gy := 2π �y/ay, Gy := 2π/ay ; (E18)

the choice of a rectangular lattice is merely for notational
simplicity.α(k,r) = α(k + Gx,r) follows from the periodicity
in kx of both (i) the wave function [Eq. (E15)], and (ii) the
operator that acts on the wave function:

eik·runKx0 = ei(k+Gx )·run,Kx+Gx,0 (E19)

[cf. Eq. (213)]. The same operator is, however, not periodic
in ky , and therefore the corresponding boundary condition
on the wave function is more complicated. To verify that
this boundary condition produces the desired periodicity,
α(k,r) = α(k + Gy,r), apply the operation

∑
m e

ik·rumKx0(r)
on both sides of Eq. (E16) and apply the completeness relation
in Eq. (216).

Our discussion about boundary conditions may seem more
formal than practical, since in many applications we would
only be interested in fnk for k in the vicinity of a point; the
area of interest is typically much smaller than the Brillouin
torus. On the other hand, assuming such formalities, we would
show that our ansatz is equivalent to an expansion in Slutskin’s
basis functions [12] (denoted χnk):

�(r) = 1√
N

∑
nk

eik·runKx0fnk = 1√
N

∑
nk

fnkχnk, (E20)

χnk(r) := un,kx+y/l2,0(r)eik·r . (E21)

While eik·runKx0 is a differential operator acting on fnk, χnk

acts on fnk by multiplication, and therefore has a more intuitive
interpretation as a wave function over real space.

The first step to proving Eq. (E20) is to equivalently express
Slutskin’s function as

un,kx+y/l2,0(r)eik·r

= 1√
N

∑
R

e−i[kx−(i/ l2)(∂/∂ky )](rx−Rx )Wn(r − R)eik·r

= un,K∗
x ,0e

ik·r ,

K∗
x := kx − i

l2

∂

∂ky
, (E22)

with help from the identity Eq. (213). What remains is to prove

�(r) =
∑
nk

fnkunK∗
x 0e

ik·r =
∑
nk

eik·runKx0fnk, (E23)
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which is analogous to an integration by parts; for notational
simplicity, we shall no longer write out normalization factors.
As an intermediate step, we will further identify the above
quantity as equal to an expansion

�(r) =
∑
Rx,ky

h(x − Rx,y,ky),

h(x − Rx,y,ky) :=
∑
n

hn(x − Rx,y,ky)f̌nRxky , (E24)

in the basis functions

hn(x − Rx,y,ky) := ei{ky−(x−Rx )/l2}y ∑
Ry

Wn(r − R), (E25)

with expansion coefficients

f̌nRxky :=
∑
kx

eikxRx fn,k. (E26)

We may identify these expansion coefficients as the Fourier
coefficients of the periodic function fnk [cf. Eq. (E15)]. hn may
be viewed as the magnetic analog of a “hybrid” function, which
is spatially extended in �y (as a Luttinger-Kohn function) but
exponentially localized in �x (as a Wannier function). Indeed,
setting l−2 = 0 in Eq. (E25),

hn(x − Rx,y,ky) l−2=0

= eikyy
∑
Ry

Wn(r − R)

=
∑
kx

e−ikxRxχ
(0)

nk, (E27)

with the Luttinger-Kohn function defined as

χ
(0)

nk(r) = eik·runkx0(r). (E28)

It is known that the Luttinger-Kohn functions form a complete
orthonormal basis in which any function can be expanded
[72]; we thus expect for small fields that {hn} forms a linearly
independent basis, though we avoid assuming orthogonality.
Furthermore, we insist that the expansion Eq. (E24) is in-
dependent of the choice of unit cell in the Brillouin circle
parametrized by ky , i.e., for each Rx ,

h(x − Rx,y,ky) = h(x − Rx,y,ky +Gy); (E29)

this imposes a boundary condition on the wave function f̌nRxky ,
in close analogy with Eqs. (E14)–(E16). We may exploit this
periodicity to express Eq. (E24) as

�(r) =
∑
Rx

∑
ky

h(x − Rx,y,ky)

=
∑
Rx

∑
ky

h(x − Rx,y,ky + (x − Rx)/l2)

=
∑
Rxky

eikyy
∑
nRy

Wn(r − R)
∑
kx

eikxRx fnkxky+(x−Rx )/l2 .

This quantity is equal to the right-hand side of Eq. (E23), as
we now demonstrate:∑

nk

eik·runKx0fnk

=
∑
nk

eik·r ∑
R

Wn(r − R)e−iKx (x−Rx )fnk

=
∑
nk

eik·r ∑
R

Wn(r − R)e−i(kx+il−2∂y )(x−Rx )fnk

=
∑
nky

eikyy
∑

R

Wn(r − R)
∑
kx

eikxRx fnkxky+(x−Rx )/l2 .

(E30)

The left-hand side of Eq. (E23) may be expressed as∑
nk

fnkunK∗
x
eik·r

=
∑
nk

fnk

∑
R

Wn(r − R)e−i(kx−il−2∂y )(x−Rx )eik·r

=
∑
nk

fnk

∑
R

Wn(r − R)e−ikx (x−Rx )e−iy(x−Rx )/l2eik·r

=
∑
kyRx

ei{ky−(x−Rx )/l2}y ∑
nRy

Wn(r − R)
∑
kx

eikxRx fnk,

which may be identified with Eq. (E24).

3. Alternative derivation of the infinite-band
effective Hamiltonian

We offer a derivation of Eq. (226) and its equivalent, sym-
metrized form in Eq. (245); these are effective-Hamiltonian
equations which formally act on the wave functions over all
bands. Equation (245) was previously derived in Sec. VIII C
utilizing the Roth product rule of two symmetrized operators
[cf. Eq. (229)]; the following, alternative derivation does not
rely on this rule.

From Eq. (240),∑
n

H̃mn(K )fnk

=
∫

dτ
∑
n

u
†
mKx0(τ )Ĥ0(K )unKx0(τ )fnk

=
∫

dτ
∑
n

u
†
mKx0(τ )

{
[Ĥ0(kx,0)] + ky
̂y + k2

y

2m

}

× unKx0(τ )fnk. (E31)

To derive the last equality in Eq. (E31), we need the following
identity:

Ĥ0(K ) = [Ĥ0(k)] =
[
Ĥ0(kx,0) + 
̂yky + k2

y

2m

]

= [Ĥ0(kx,0)] + 
̂yky + k2
y

2m
. (E32)

The second equality follows from Eq. (11), and the last equality
assumed the Landau gauge for the kinetic quasimomentum
operators: Kx = kx + il−2∂y,Ky = ky .
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We separately consider each of the three terms in the last
line of Eq. (E31). The first term is simply evaluated as∫

dτu
†
mKx0(τ )Ĥ0(Kx,0)unKx0(τ )

=
[∫

dτu∗
mkx0(τ )Ĥ0(kx,0)unkx0(τ )

]
= H̃0(Kx,0)mn.

(E33)

Here we have made use of the basic identities Eq. (E10) and

Ĥ0(Kx,0)unKx0(τ ) = [
Ĥ0(kx,0)unkx0(τ )

]
; (E34)

the latter follows from Eq. (E12). It should be emphasized that
the right-hand side of Eq. (E33) corresponds to the symbol
〈umkx0|Ĥ0(kx,0)|unkx0〉, with cell-periodic functions which are
smooth with respect to kx ; this assumption of smoothness is
justified in Sec. VIII A.

For the second and third terms, a few basic identities for
noncommuting operators [cf. Eq. (E2)] are helpful:

[
u
†
mKx0,ky

] = il−2
[
∂kxu

∗
mkx0

]
, (E35)[

u
†
mKx0,k

2
y

] = 2il−2ky
[
∂kxu

∗
mkx0

]− l−4
[
∂2
kx
u∗
mkx0

]
. (E36)

We remind the reader that [·,·] is a commutator, while [·] is a
Weyl symmetrization of ·. We also need the identity

i

∫
dτ
[
∂kxu

∗
mkx0(τ )

]
unKx0(τ )

=
[
i

∫
dτ∂kxu

∗
mkx0(τ )unkx0(τ )

]
= −X̃

x

mn(Kx,0),

with X̃ defined in Eq. (15). Employing the above identity,
Eq. (E11), and Eq. (E35), the second term is evaluated as∫

dτ
∑
n

u
†
mKx0(τ )(ky
̂

y)unKx0(τ )fnk

=
∑
n,o

[
kyδm,o − l−2X̃

x

mo(Kx,0)
]

̃y

on(Kx,0)fnk. (E37)

Here, it was also necessary to insert a complete set of cell-
periodic operators [cf. Eq. (216)].

The third term in Eq. (E31) is evaluated with aid from
Eq. (E36) and the orthonormality condition in Eq. (217):∫

dτu
†
mKx0

k2
y

2m
unKx0(τ )

= k2
y

2m
δmn − ky

ml2
X̃
x

mn(Kx,0)

− 1

2ml4
[〈
∂2
kx
umkx0

∣∣unkx0
〉]
. (E38)

We remind the reader of our Dirac notation:〈
∂2
kx
umkx0

∣∣unkx0
〉

:=
∫

dτ
[{
∂2
kx
u∗
mkx0(τ )

}
unkx0(τ )

]
. (E39)

Applying the identity

〈um|un〉 = δmn

⇒ 〈∂2um|un〉 + 2〈∂um|∂un〉 + 〈um|∂2un〉 = 0, (E40)

we may express the symbol of the last term in Eq. (E38) as
proportional to

〈
∂2
kx
umkx0

∣∣unkx0
〉 = i∂kx X̃

x

mn −
∑
o

X̃
x

moX̃
x

on

∣∣∣∣∣
kx ,0

. (E41)

Inserting Eqs. (E33), (E37), (E38), and (E41) into Eq. (E31),
we finally obtain

1

N

∫
d ru†mKx0(r)e−ik·rĤ�(r)

=
∑
n

[(
H̃0 + ky
̃

y − l−2X̃
x

̃y + k2

y

2m
− ky

ml2
X̃
x

)
mn

− 1

2ml4

(
i∂kx X̃

x

mn −
∑

o
X̃
x

moX̃
x

on

)]
Kx,0

fnk, (E42)

from which we may identify the effective Hamiltonian acting
on fnk as that of Eq. (226).

We may symmetrize the above Hamiltonian with respect to
K to obtain Eq. (245). The identity in Eq. (E6) is useful for
this purpose. Let us tackle Eq. (E42) term by term:

ky
̃
y = 1

2
{ky,
̃y} − i

2l2
∂Kx


̃y

= 1

2
{ky,
̃y} + 1

2l2
[X̃

x
,
̃y]. (E43)

Therefore, the sum of following two terms is symmetric:

ky
̃
y − l−2X̃

x

̃y = 1

2
{ky,
̃y} − 1

2l2
{X̃x

,
̃y}. (E44)

Consider another term in Eq. (E42):

− ky

ml2
X̃
x = − 1

2ml2
({ky,X̃x} + [ky,X̃

x
])

= − 1

2ml2
{ky,X̃x} + 1

2ml4
i∂Kx

X̃
x
. (E45)

The last term here cancels a term in Eq. (E42). Finally, note
that the (X̃

x
)2 is already symmetric, trivially.

4. Comparison with the effective Hamiltonian in the
representation of field-modified Bloch functions

We have claimed that the effective Hamiltonian of Eq. (230)
validly describes any band dispersion; when particularized to
the case of (i) a single nondegenerate band, or (ii) a subspace
of degenerate bands, we may make an instructive comparison
with the effective Hamiltonians derived by Roth [24] (reviewed
in Secs. IV A and IV B).

In both cases (i) and (ii), the full velocity matrix �̃ and
its diagonal component ṽ [recall their definitions in Eqs. (13)
and (16)] satisfy (�̃ − ṽ)mn = 0, or equivalently � = v; this
follows from Eqs. (14) and (16). This property and the
diagonality of ṽ imply that

(X̊
β

̃α)mn =

∑
l̄

X̃
β

ml̄
̃
α
l̄n

=
∑
l̄

X̃
β

ml̄(
̃
α − ṽα)l̄n

+
∑
l

X̃
β

ml(
̃
α − ṽα)ln
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= [X̃
β
(
̃α − ṽα)]mn,

(ϒ̃y
̃x)mn = [ϒ̃y(
̃x − ṽx)]mn. (E46)

Furthermore, the assumption of nondegeneracy in the band
energies (for at least a local region in k) implies the existence
of energy functions (εnk) and cell-periodic functions (unk)
which are both smooth with respect to k. In such a smooth
energy basis, Xy(k) is well defined, and its off-block-diagonal
component X̊

y
(k) satisfies

iX̊
y

mn̄(k) = − 
̃
y
mn̄(k)

εmk − εn̄k
, (E47)

which is, for k = (kx,0), also the defining relation for ϒ̃(kx)
[cf. Eq. (235)]. When this identification is made in Eq. (232),
as well as those in Eq. (E46), we obtain

HR
1 = 1

2l2
[εαβ{X̃β

,(
̃α − ṽα)}]Kx,0, (E48)

which is almost identical to the original Roth term [cf. Eq. (59)
and HR

1 in Eq. (64)]; the sole difference is that HR
1 is indepen-

dent of ky . This difference originates from the different repre-
sentations for the wave functions: � = ∑

nk e
ik·runKx0fnk in

the basis of field-modified Luttinger-Kohn functions, and� =∑
nk e

ik·runKfnk for field-modified Bloch functions. Finally,
� = v also implies that

HB
1 = − 1

2l2
{Xx,vy}Kx,0, (E49)

which may be compared to the original Berry term [cf. Eq. (58)
and HB

1 in Eq. (64)]. Since the cell-periodic function is inde-
pendent [resp. dependent] of ky in the (Kx,0) representation
[resp. (Kx,ky) representation], the Berry term proportional to
Xy is absent in Eq. (E48), but present in Eqs. (58) and (64).

APPENDIX F: APPENDIX TO SEC. IX:
“INTERBAND BREAKDOWN”

1. Connection to Weber’s differential equation
and Landau-Zener dynamics

Our aim is to derive Weber’s differential equation from
the effective Hamiltonian equation [Eq. (275)]. To begin, let
us elaborate on the basis of field-modified Luttinger-Kohn
functions in which Eq. (275) is represented. We have presup-
posed a basis where ũnkx0 are energy bands along ky = 0; this
fixes the basis up to U(1) × U(1) gauge transformations; i.e.,
each energy band may be multiplied by a kx-dependent phase.
This arbitrariness is partially removed by insisting that the
diagonal elements ofXx(kx,0) (a 2×2 matrix) vanish; this is the
parallel-transport condition within each band. The off-diagonal
elements of Xx(kx,0) vanish because they represent a coupling
between distinct representations of g2 [cf. Eq. (270)] [125].
The vanishing of Xx(0) (as a 2×2 matrix) justifies the neglect
of the third O(l−2) term in Eq. (237), from which we have
derived Eq. (275).

We remove the kx dependence of Eq. (275) by the transfor-
mation

f̃nk = eikxky l
2
φnk, (F1)

0 = e−ikxky l2 (H0(K ) − E) ∗ f̃k

= ([ε0 − E]I + ky

y) ∗ φ + i

l2

x ∂

∂ky
∗ φ. (F2)

Here, we introduce ε0 as the energy at the II-Dirac point
(ε0 = 0 in the main text);
x is a diagonal matrix with elements

x

11 := u+ v and 
x
22 := u− v. Assuming that u2 > v2, one

can find a nonunitary transformation to a two-component wave
function f̄ which satisfies a differential equation that has
been well-studied in the Landau-Zener scattering problem.
Each component of f̄ satisfies Weber’s differential equation,
which is solved by parabolic cylinder functions (PCFs). The
transformation has the form

f̃nk = α(k,E)β(ky)
2∑

m̄=1

T̄nm̄f̄m̄(ky), (F3)

α(k,E) = exp

[
i

(
kx − 1

2
sgn

[

x

11

]
Tr[(
̃x)−1]E

)
kyl

2

]

= exp [i(kx − kxc)kyl
2],

β(ky) = exp

[
i
1

2
sgn

[

x

11

]
Tr[(
̃x)−1] ε0kyl

2

+ 1

4
sgn

[

x

11

]( 

y

11∣∣
x
11

∣∣ + 

y

22∣∣
x
22

∣∣
)
k2
yl

2

]
,

T̄ = (
̃x)−1/2V, with 
̃x := sgn
[

x

11

]

x, (F4)

and V ∈ SU(2). Note that kxc in the second line is the coordi-
nate of the hyperbolic center, 
̃x (defined above) is positive-
definite, and T̄ is independent of {kx,ky,E}. This transforma-
tion was first derived in Ref. [12], with the assumption that

y is real owing to spacetime-inversion symmetry [190]. The
more general proof that is presented here demonstrates that
solubility by PCFs does not require this symmetry.

Proof of transformation to Weber’s differential equation.
(i) In the nonunitarily transformed basis

φ̄ = ṽ1/2
x φ, (F5)

the eigenvalue equation [Eq. (F2)] takes the form

0 = ([εk̄ − E](
̃x)−1 + ky(
̃x)−1/2
y(
̃x)−1/2) ∗ φ̄

+ sgn
[

x

11

] i
l2

∂

∂ky
∗ φ̄. (F6)

(ii) We can remove the terms proportional to identity by

φ̃ = exp

{
−sgn

[

x

11

][ i
2
l2(εk̄ − E)Tr[(
̃x)−1]ky

+ i

4
l2
(



y

11∣∣
x
11

∣∣ + 

y

22∣∣
x
22

∣∣
)
k2
y

]}
(
̃x)1/2φ. (F7)

In our model,

E

2
Tr[(
̃x)−1] = E

(

x

11 +
x
22

)
2
x

11

x
22

= Eu

u2 − v2
= kxc. (F8)
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The operator on φ̃ has the generic form

mσ3 + kyv · σ + sgn
[

x

11

] i
l2

∂

∂ky
. (F9)

In the next steps, we will find a basis where the coefficient of σ3

is linear in ky , and that of σ1 is independent of ky . Indeed, given
any two three-vectors a and v [in our context a = (0,0,m)],
we can always find a basis where

a · σ + kyv · σ (F10)

is transformed to

a′
1σ1 + a′

3σ3 + ky |v|σ3. (F11)

This follows from the homomorphism between SU(2) and
SO(3) [114]. From a geometrical perspective, we are looking
for a plane in R3 that is spanned by two vectors a and v; we
parametrize this plane by (x,z), such that �z = v/|v|. Let us
show this explicitly:

(iii) We rotate to a basis where the matrix multiplying ky is
diagonal:

m · σ + ky |v|σ3 + sgn
[

x

11

] i
l2

∂

∂ky
. (F12)

(iv) Shifting the origin of ky to absorb the m3 term,

m1σ1 +m2σ2 + ky |v|σ3 + sgn
[

x

11

] i
l2

∂

∂ky
. (F13)

(v) Performing a rotation with exp iσ3θ ,√
m2

1 +m2
2σ1 + ky |v|σ3 + sgn

[

x

11

] i
l2

∂

∂ky
. (F14)

Henceforth assuming
x
11 > 0, we obtain the first-order matrix

differential equation in Eq. (277), which is expressed with the
hyperbolic parameters ā and b̄ defined in Eq. (268).

The general procedure outlined above, when applied to our
minimal model, leads to the particular forms V = e−iσ2π/4σ3

and T̄ of Eq. (276).
The case of ā = 0 was previously discussed in Sec. IX C 2.

Henceforth assuming ā �= 0, and changing variables as

z = 2
√−i

√
μ̄

b̄
ky, (F15)

with μ̄ defined in Eq. (271), each component of f̄ now satisfies
a second-order differential equation:[

∂2
z − z2

4
+ 1

2
+ iμ̄

]
f̄1̄ = 0,

[
∂2
z − z2

4
+ 1

2
+ (iμ̄− 1)

]
f̄2̄ = 0. (F16)

The above equations may be identified with Weber’s differen-
tial equation: [

∂2
z − z2

4
+ 1

2
+ ν

]
ψ = 0, (F17)

which is solved generally by parabolic cylinder functions (or
Weber-Hermite functions)

ψ = p1Dν(z) + p2D̄ν(z), where D̄ν(z) = Dν(−z).

(F18)

Dν(z) is an entire function of both ν and z [189] and satisfies
the recurrence relation

∂Dν |z + z

2
Dν(z) = νDν−1(z). (F19)

Note that [189] employs a different notation for the PCF:
Dν(z) = U (−1/2 − ν,z). f̄1̄ and f̄2̄ are related as

f̄2̄ = −
√
i√
μ̄

(
∂ + z

2

)
f̄1̄, (F20)

which implies, via the recurrence relation, that

f̄1̄(z) = p1Diμ̄(z) + p2D̄iμ̄(z),

f̄2̄(z) =
√
μ̄√
i

[p1Diμ̄−1(z) − p2D̄iμ̄−1(z)]. (F21)

Combining these equations with the asymptotic limits of the
PCFs (Eqs. (12.9.1) and (12.9.3) of [188]), we obtain the
leading-order terms for f̄ in the limits ky → ±∞ (denoted
by ± in the argument):

for b̄ > 0, f̄1̄(+) ≈ ϕ(|ky/b̄|)[p1Z + p2 Z
−3],

f̄1̄(−) ≈ ϕ(|ky/b̄|)[p1Z
−3 + p2 Z],

f̄2̄(+) ≈ −p2 ϕ
∗(|ky/b̄|)G Z−1,

f̄2̄(−) ≈ p1 ϕ
∗(|ky/b̄|)G Z−1, (F22)

where we have introduced the variables

ϕ(|ky/b̄|) := exp iμ̄

[
k2
y

b̄2
+ ln

∣∣∣∣2kyb̄
∣∣∣∣+ 1

2
ln μ̄

]
, (F23)

Z := eπμ̄/4, and

G :=
√−i√2πμ̄

�(1 − iμ̄)

=
√
Z4 − Z−4ei arg�(1+iμ̄)−iπ/4. (F24)

2. Derivation of connection formula for |E| > 0

The goal of this section is to derive the connection formula
[cf. Eq. (284)] for interband breakdown at finite energy away
from the II-Dirac point.

Let us assume that the semiclassical interval [where we
apply the (Kx,ky) representation] overlaps with the breakdown
interval [the (Kx,0) representation]; this overlap region is an
interval in ky satisfying

|ky | � l−1,|b̄|,l−1

√
b̄

ā
and |ky | � Gy, (F25)

with ky originating from the II-Dirac point, and Gy the
reciprocal period. In this overlap region, will apply the general
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transformation [Eq. (273)] that relates wave functions in the
two representations. Combining Eq. (273) with the WKB form
of the (Kx,ky) wave function in Eq. (283), we obtain that

for ky > 0, f̃lk =
2∑

n=1

c+
n wnkMln(ky) +O

(
l−2,

ky
Gy

)
,

for ky < 0, f̃lk =
2∑

n=1

c−
n wnkMln(ky) +O

(
l−2,

ky
Gy

)
,

(F26)

withwnk a Zilberman-Fischbeck function defined in Eqs. (281)
and (282), and the overlap matrix defined as

Mln(ky) = 〈
ũl,knx (ky ),0

∣∣un,knx (ky ),ky

〉
. (F27)

Here, ũl,kx ,0 and un,kx ,ky are classical symbols of operators
occurring in the basis functions of the (Kx,0) and (Kx,ky)
representations [cf. Eqs. (A3) and (272)]. Take care in defining
M that the band index n appears in both bra and ket.

To make progress, we would need the asymptotic forms of
the quantities w,M,f̃ as ky → ±∞:

{w±
nk,M

±(E), f̃ ±
lk } := lim

ky→±∞
{wnk,M(ky,E),f̃lk}. (F28)

We consider them in turn:

w±
nk = 1√|v̄x |

α(k,E)[ϕ(|ky/b|)λ−1/2]∓(−1)nWn±(ky), (F29)

λ := eiμ̄(ln μ̄−1), λ±1/2 = e±iμ̄/2(ln μ̄−1), (F30)

withα defined in Eq. (F4) andϕ in Eq. (F23);Wn± is the single-
band Wilson line defined in Eq. (282). For both n ∈ {1,2}, |vnx |
approaches the same value (denoted as |v̄x |) as ky → ±∞.
This asymptotic form of the overlap matrix M is derived in
Appendix F 3 to be

for E > 0,

M+
l1 = e−iθ1W−1

1+ T̄l1̄, M+
l2 = −e−iθ2W−1

2+ T̄l2̄,

M−
l1 = e−iθ1W−1

1− T̄l2̄, M−
l2 = e−iθ2W−1

2− T̄l1̄,

for E < 0,

M+
l1 = e−iθ1W−1

1+ T̄l1̄, M+
l2 = e−iθ2W−1

2+ T̄l2̄,

M−
l1 = −e−iθ1W−1

1− T̄l2̄, M−
l2 = e−iθ2W−1

2− T̄l1̄, (F31)

with T̄ a k-independent, nonunitary transformation matrix
defined in Eq. (276); θn are band-dependent phases that should
be present on principle (see discussion in Appendix F 3) but
do not ultimately affect the quantization condition.

Inserting Eqs. (F29)–(F31) on the right-hand side of Eq. (F26), the cancellation of the Wilson lines leads to

for E > 0,
∑
n

c+
n w

+
nkM

+
ln = α(k)√|v̄x |

{c+
1 (e−iθ1 T̄l1̄)(λ−1/2ϕ) + c+

2 (−e−iθ2 T̄l2̄)(λ1/2ϕ∗)},

∑
n

c−
n w

−
nkM

−
ln = α(k)√|v̄x |

{c−
1 (e−iθ1 T̄l2̄)(λ1/2ϕ∗) + c−

2 (e−iθ2 T̄l1̄)(λ−1/2ϕ)};

for E < 0,
∑
n

c+
n w

+
nkM

+
ln = α(k)√|v̄x |

{c+
1 (e−iθ1 T̄l1̄)(λ−1/2ϕ) + c+

2 (e−iθ2 T̄l2̄)(λ1/2ϕ∗)},

∑
n

c−
n w

−
nkM

−
ln = α(k)√|v̄x |

{c−
1 (−e−iθ1 T̄l2̄)(λ1/2ϕ∗) + c−

2 (e−iθ2 T̄l1̄)(λ−1/2ϕ)}. (F32)

From Eq. (F3), and applying that β = 0 in our minimal model (since 
y is off-diagonal and ε0 = 0),

f̃ ±
lk = α(k)

2̄∑
m̄=1̄

T̄lm̄f̄
±
m̄ (ky), (F33)

where m̄ labels the diabatic basis vectors, and f̄ satisfies the matrix differential equation in Eq. (277). Let us relate f̄ above and
below the Dirac point. Both ā and b̄ change sign across E = 0, but ā/b̄ does not. We will exploit a symmetry of Eq. (277): if f̄ is
a solution for ā > 0, r̄(ky) = f̄ (−ky) is a solution for ā < 0. Therefore, the asymptotic forms above and below the Dirac point
are related by r̄±

ī
(ky) = f̄ ∓

ī
(−ky). Further employing that f̄ only depends on ky through ϕ(|ky/b̄|),

r̄±
ī

(|ky/b̄|) = f̄ ∓
ī

(|ky/b̄|). (F34)

Utilizing the asymptotic forms of f̄ in Eqs. (F22)–(F24) forE > 0 (recall that the sign ofE and b̄ are identical with our assumption
that u,v,w > 0), in combination with Eq. (F34), we derive

for E > 0, f̃ +
lk = α(k){T̄l1̄ϕ(p1Z + p2Z

−3) + T̄l2̄ϕ
∗(−p2GZ−1)},

f̃ −
lk = α(k){T̄l1̄ϕ(p1Z

−3 + p2Z) + T̄l2̄ϕ
∗(p1GZ−1)};

for E < 0, f̃ −
lk = α(k){T̄l1̄ϕ(p1Z + p2Z

−3) + T̄l2̄ϕ
∗(−p2GZ−1)},

f̃ +
lk = α(k){T̄l1̄ϕ(p1Z

−3 + p2Z) + T̄l2̄ϕ
∗(p1GZ−1)}. (F35)
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Comparing this with Eq. (F32), we identify

1√|v̄x |
(
c−

1 e
−iθ1

c−
2 e

−iθ2

)
=
(
λ−1/2 G Z−1 0
λ1/2 Z−3 λ1/2 Z

)
σ (1−sgn[E])/2

1

(
p1

p2

)
,

1√|v̄x |
(
c+

1 e
−iθ1

c+
2 e

−iθ2

)
=
(
λ1/2 Z λ1/2 Z−3

0 λ−1/2 G Z−1

)
σ (1−sgn[E])/2

1

(
p1

p2

)
, (F36)

with σ 1
1 := σ1 a Pauli matrix, and σ 0

1 := I the 2×2 identity.
Since the expressions for positive and negative energy differ
only in the relabeling of dummy variables p1 ↔ p2, the
scattering matrix is independent of the sign of the energy.
Removing the p1 and p2 from our equations, we finally relate
c− to c+ by the scattering matrix in Eq. (284).

3. Asymptotic form of overlap matrix M

The overlap matrixM defined in Eq. (F27) may be viewed as
a basis transformation between the Luttinger-Kohn and crystal-
momentum representations, as we have reviewed in Sec. III E.
M is determined, with an accuracy of O(ky/Gy), from the
following eigenvalue equation:[−E + knx (ky,E)
x(0) + ky


y(0)
]
ml
Mln(ky,E) = 0. (F37)

It is assumed that unknx (ky ,E)ky [occurring in Eq. (F27)] are
energy eigenfunctions of Ĥ0(k) with eigenvalue εnknx ky = E.
The goal of this section is to derive the asymptotic form of M
[denoted by M± in Eq. (F31)] as ky → ±∞.

Before a detailed proof of Eq. (F31), we argue for the form
of M±:

(i) In the limit ky → ±∞, the adiabatic basis of energy
bands (labeled by n) coincides with the diabatic basis (labeled
by n̄) up to a phase, as we have argued in the caption of Fig. 8.
Each column of M± is therefore proportional to a column of
the matrix T̄nn̄ defined in Eq. (276), which transforms between
adiabatic and diabatic bases.

(ii) What remains is to argue for the proportionality phase
factors. If we ignore W and eiθj , there remains a −1 phase
factor which reflects the π Berry phase acquired in the 2π
rotation of pseudospin-half. Indeed, we might view āτ1 +
ā

b̄
kyτ3 as the Hamiltonian of a pseudospin coupled to a pseudo-

magnetic field, and label the diabatic basis |±1〉 according to
its eigenvalue under τ3. The diabatic basis coincides, modulo
a phase factor, with the adiabatic basis in the two limits
ky � |b̄| and ky � −|b̄|. As ky is varied from +∞ to −∞,
the adiabatic basis is parallel-transported along knx (ky,E) as
|+〉 → eiφ+−|−〉 and |−〉 → eiφ−+|+〉. The product of the two
phases ei(φ+−+φ−+) = −1 is independent of phase redefinitions
of the diabatic basis: |±〉 → |±〉eiϕ± . To explain this inde-
pendence, we may view the combined parallel transport of
|+〉 → eiφ+−|−〉 → ei(φ+−+φ−+)|+〉 as the adiabatic rotation of
a pseudospin-half by 2π within a plane. ei(φ+−+φ−+) = −1 may
then be identified with the Berry phase, which is half the solid
angle [20] subtended by the rotation.

(iii) In the Bloch problem, there is an intrinsic ambiguity
in the definition of nondegenerate energy bands |unk〉, which
may arbitrarily be redefined by a k-dependent phase. This
phase ambiguity may be separated into two contributions:
(ii-a) the single-band Berry connection Xn(k) encodes the

phase relationship between infinitesimally separated wave
vectors k and k + δk. (ii-b) In addition, there remains, for
each band labeled by n = 1,2, a global phase ambiguity
encoded by eiθn , which explains their presence in Eq. (F31).
That is, given a fixed connection, there remains a gauge
freedom in redefining each band by a k-independent phase.
The ambiguity described in (ii-a) is expressed in Eq. (F31)
as the integral of the connection along the constant-energy
band contour in Eq. (282). We remark that there is no sense in
which Wn± asymptotically converges to a unique phase factor;
reassuringly, the final expression for the quantization condition
involves only closed-loop integrals of Xn.

Proof of Eq. (F31). Let us make the argument of (i) precise.
One may verify that

0 =
[
−kxc + āτ1 + k̄nx + ā

b̄
kyτ3

]
ml

[T̄ −1M]ln. (F38)

For large |ky/b̄| � 1, we may neglect āτ1 relative to ākyτ3/b̄:

0 ≈
[
−kxc + k̄nx (ky,E) + ā

b̄
kyτ3

]
ml

[T̄ −1M]ln (F39)

which determines the columns of M± up to a phase (denoted
as γ below):

M+
l1 = eiγ1+ T̄l1̄, M−

l2 = eiγ2− T̄l1̄,

M−
l2 = eiγ2+ T̄l2̄, M−

l1 = eiγ1− T̄l2̄. (F40)

The first line follows from setting [T̄ −1M]ln ∝ δl,1 in
Eq. (F39), which leads to 0 ≈ −kxc + k̄nx + āky/b̄; for ky �
|b̄|, this corresponds to the left band contour (n = 1), and for
ky � −|b̄| to the right (n = 2).

Our next step is to derive the phases γn±. As an intermediate
step, we determine γn± in a special basis for the energy bands
which we denote as{

ŭnk̄x (ky ,E),ky

∣∣n ∈ {1,2}, ky ∈ R
}
. (F41)

Up to a relabeling of band indices, ŭ and ũ are defined to
be continuous where their domains (in k space) overlap—at
the two hyberbolic vertices. Explicitly, if we define the 2 × 2
overlap matrix,

M̆ln(ky,E) = 〈
ũl,k̄nx (ky ,E),0

∣∣ŭn,k̄nx (ky ,E),ky

〉
,

then M̆(0,E) = σ (1−sgn[E])/2
1 . (F42)

The reason for this dependence on the sign of E: we have
defined ũ1 to have a larger velocity (∂ε/∂kx) than ũ2, so
ũ1 corresponds to the left hyperbolic vertex (ŭ1) at positive
energy, and to the right hyperbolic vertex (ŭ2) at negative
energy. We further insist that ŭ satisfies the parallel-transport
condition, i.e., for any segment of a hyperbolic arm, 0 =
exp(−∫ 〈ŭn|∇kŭn〉 · dk). This condition, combined with the
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reality of the pseudospin Hamiltonian (āτ1 + ā

b̄
kyτ3), ensures

the reality of M̆ for all ky . It is simple to find a real function
that interpolates between the known values of M̆ at ky = 0 [cf.
Eq. (F42)] and at ±∞ (each column of M̆ must be proportional
to a column of the real matrix T̄ ). The result is

for E > 0, M̆l1(+) = T̄l1̄, M̆l2(+) = −T̄l2̄,
M̆l1(−) = T̄l2̄, M̆l2(−) = T̄l1̄;

for E < 0, M̆l1(+) = T̄l1̄, M̆l2(+) = T̄l2̄,

M̆l1(−) = −T̄l2̄, M̆l2(−) = T̄l1̄. (F43)

Given that Eq. (F43) holds for the special basis ŭ, it follows
that Eq. (F31) holds for any basis

{
unk̄nx (ky ),ky

∣∣ky ∈ R
}

(F44)

that is differentiable with respect to ky . Indeed, we may define
the phase mismatch between un and ŭn at the hyperbolic vertex
(k̄nx (0),0) as

unk̄nx (0),0 = e−iθn ŭnk̄nx (0),0. (F45)

Finally, the Wilson line [Wn±, as defined in Eq. (282)]
accounts for the additional phase mismatch between un and ŭn,
which originates from un not satisfying the parallel-transport
condition. To recapitulate,

ŭn,knx ,ky→±∞ = eiθn Wn± un,knx ,ky→±∞, (F46)

which may be substituted into Eq. (F43) to derive Eq. (F31).

4. Perturbative treatment of quasirandom spectrum

a. Case study of interband breakdown:
Single II-Dirac graph with μ̄ ≈ 0

From Eq. (294), we identify

f (E,B; τ ) = f (E,B; 0) + δτ (E,B)f1(E,B),

f0(E,B) := f (E,B; 0) = cos

[
�1 +�2

2

∣∣∣∣
E,l2

]
,

f1(E,B) = − cos

[
�1 −�2

2

∣∣∣∣
E,l2

+ ω(μ̄)

]
,

δτ (E,B) =
√

1 − ρ2, ρ(μ̄) = e−πμ̄, τ0 = 0, (F47)

with μ̄ ∝ E2/B and ω defined in Eqs. (271) and (285),
respectively.

In the semiclassical limit μ̄ → 0, the Landau fan is deter-
mined by Eq. (295), and the first-order correction to the Landau
fan is given in Eq. (300). Just as in Eq. (300), we will employ
the shorthandO ′ = ∂O/∂E throughout this Appendix. Further
assuming that (S1 + S2) is slowly varying on the scale of
E0
n − E0

0 [i.e., (S1 + S2)′ = O(1)], and restricting ourselves

to n = O(1), Eqs. (295) and (300) particularize to

E0
n(B) = E0

0 + 2nπ

l2(S1 + S2)′|E0
0

+O(l−4),

δE1
n(B) = 2

√
π(−1)n+1

l(S1 + S2)′|E0
n

v√
w(u2 − v2)3/4

×
{
E0

0 + 2nπ

l2(S1 + S2)′|E0
0

}

× sin

[
ω + l2(S1 − S2)

2

]∣∣∣∣
E0
n

+O(μ̄3/2l−2,l−5).

(F48)

The validity of the last expression rests on a double constraint
on the field: it cannot be too large, as reflected in the O(l−5)
uncertainty; on the other hand for any nonzero energy, the
field also cannot be too small, since μ̄3/2l−2 ∝ E3l. With
these caveats in mind, we observe that the amplitude of δE1

n

goes as B1/2 at weak field; for n �= 0, this crosses over to a
B3/2 dependence at intermediate field. Equation (300) and the
second line of Eq. (F48) are derived at the end of this section
(Appendix F 4 b).

b. Derivation of first-order correction Eq. (300)

As defined in Eq. (291), the domain of �j does not include
E = 0. Due to the continuity of the quantization condition
Eq. (294) across E = 0 (as we had argued in Sec. IX D 1), we
may as well extend the domain by �j (0) := �j (0+), with 0+
an infinitesimally small positive quantity; our results would
be unchanged if we had instead chosen �j (0) := �j (0−). We
may then express the extended functions concisely as

�1 −�2

2
= l2(S1 − S2)

2
− π

2
+ π�+(E),

�1 +�2

2
= l2(S1 + S2)

2
+ π

2
, (F49)

with the step function defined by

�+(x) =
{

0 for x � 0,
1 for x < 0. (F50)

Inserting Eq. (F49) into Eq. (F47),

f0 = − sin

[
l2(S1 + S2)

2

]
, (F51)

∂f0

∂E

∣∣∣∣
E0
n

= (−1)n+1

2
l2(S1 + S2)′

∣∣∣∣
E0
n

, (F52)

f1 = − cos

[
ω + l2(S1 − S2)

2
− π

2
+ π�+(E)

]

= (−1)�
+(E)+1 sin

[
ω + l2(S1 − S2)

2

]
. (F53)

In the second equality, we applied that sin[�1/2 +�2/2] =
(−1)n when evaluated at E0

n, as deducible from Eq. (295).
Inserting Eqs. (F52) and (F53) into Eq. (299), the first-order
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correction in energy is then

δE1
n = −δτf1

∂f0

∂E

∣∣∣∣∣
E0
n(B)

= 2(−1)n+1+�+ δτ

l2(S1 + S2)′
sin

[
ω + l2(S1 − S2)

2

]∣∣∣∣
E0
n

. (F54)

Since we are in a parameter regime where μ̄ is small, δτ [defined in Eq. (F47)] is approximated by

δτ =
√

2πμ̄+O(μ̄3/2) = √
π

v√
w(u2 − v2)3/4

l |E| +O(μ̄3/2), (F55)

where we have utilized the definition of μ̄ in Eq. (271). Since

(−1)�
+(E)|E| = E = sgn[E]|E|, (F56)

we may just as well replace (−1)�
+

in Eq. (F54) by sgn[E], and finally obtain Eq. (300) as desired. For Landau levels indexed
by n = O(1), we may substitute Eqs. (F55) and (F48) into Eq. (300), and derive the second line of Eq. (F48).
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