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Influence of longitudinal spin fluctuations on the phase transition features in chiral magnets
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Using the classical Monte Carlo calculations, we investigate the effects of longitudinal spin fluctuations on the
helimagnetic transition in a Heisenberg magnet with the Dzyaloshinskii-Moriya interaction. We use variable spin
amplitudes in the framework of the spin-lattice Hamiltonian. It is this kind of fluctuations that naturally occur
in an itinerant system. We show that the basic features of the helical phase transition are not changed much by
the longitudinal spin fluctuations though the transition temperature Tc and the fluctuation hump seen in specific
heat at T > Tc is significantly affected. We report thermodynamic and structural effects of these fluctuations.
By increasing the system size in the Monte Carlo modeling, we are able to reproduce the ring shape scattering
intensity above the helimagnetic transition temperature Tc, which transforms into the spiral spots seen below Tc

in the neutron scattering experiments.
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I. INTRODUCTION

Several examples of helimagnets—metallic MnSi, FeGe,
semiconductor Fe1−xCoxSi [1], and insulating Cu2OSeO3

[2]—demonstrate remarkable features in their physical proper-
ties at the magnetic phase transition. These features originate
from a first-order phase transition to the spiral state and the
notable hump of fluctuation origin at temperatures slightly
above Tc at zero magnetic field. They are clearly seen, e.g.,
in the heat capacity [3], thermal expansion [4], and ultrasound
propagation and absorption [5] at the transition temperature
Tc. In an applied magnetic field, these materials host chiral
skyrmion lattices detected both by neutron scattering experi-
ments [6] and the Lorentz transmission microscopy [7].

The mentioned magnetic materials crystallize in the non-
centrosymmetric cubic space group P 213, which results in
the chiral Dzyaloshinskii-Moriya (DM) interaction. In the
absence of the magnetic field, a competition between the
ferromagnetic exchange J and the DM interaction D leads
to a spiral magnetic order with the pitch axis aligned along the
[111] crystallographic direction.

Apart from sharp anomalies connected with the helimag-
netic transition, there are indications that strong spin fluctu-
ations persist well above the helimagnetic transition temper-
ature Tc. These are seen both in specific heat and magnetic
susceptibility measurements and show up as well in neutron
scattering experiments [8–12]. At high T , the neutron small
angle scattering reveals ferromagnetic-like fluctuations that are
well distributed over the whole q space. Close to Tc, strong
chiral fluctuations that are localized in the spherical layer of a
radius equal to the helix wave vector qh are observed. Finally,
at Tc, sharp magnetic Bragg spots appear in the 〈111〉 direction,
signalizing the occurrence of a helical state [10,12].

Specific heat and susceptibility measurements in zero mag-
netic field [13–17] clarified the following nontrivial features
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of the phase transition in helimagnets. As the temperature
decreases in the paramagnetic region, one observes a well-
developed hump region in the specific heat, followed by a
sharp spike at the onset of the helimagnetic order at Tc.
Simultaneously, the magnetic susceptibility displays the Curie-
Weiss law up to the hump region, then it reaches an inflection
point followed by a maximum at Tc.

We report the results of Monte Carlo simulations of the
classical spin system with variable spin amplitudes, which
below we refer to as longitudinal spin fluctuations. So as
opposed to other numerical works on this matter [18–22],
we consider the spin length as a fluctuating variable. This is
of special relevance to the itinerant electron system where
magnetic and delocalized electron degrees of freedom are
mutually interrelated [2,23]. Calculations with variable spin
amplitudes complement results found in Ref. [24] for the
spin-lattice model with unit spins.

The itinerant nature of magnetism in MnSi is most clearly
seen in the difference of the magnetic moments per atom Mn
in the magnetically ordered and paramagnetic phases. The
magnetic moment per Mn atom in MnSi at low temperature
was found to be 0.4μB , whereas the susceptibility data for
the paramagnetic phase give an effective moment of 2.2μB

per Mn [25]. The importance of itinerant spin fluctuations
was also demonstrated by the small-angle neutron scattering
study of spin-wave dynamics of the full-polarized state of the
Dzyaloshinskii-Moriya helimagnets [26]. It was found that
the spin-wave stiffness for the MnSi helimagnet decreased
twice as the temperature increased from zero to the critical
temperature Tc.

Our understanding the itinerant-electron spin fluctuations
was considerably advanced by Moriya [27] and Lonzarich
and Taillefer [28], who explained quantitatively the magnetic
properties of weak ferromagnets. While the account of longitu-
dinal fluctuations is essential for understanding the properties
of itinerant magnets like MnSi, the question how they affect
magnetic phase transition is not fully clear [29]. In particular,
the specific heat and magnetic susceptibility measured in the
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itinerant magnet MnSi and the insulating magnetic material
Cu2OSeO3 show quite a remarkable resemblance [2]. More-
over, both compounds host skyrmion phases and have similar
magnetic phase diagrams [30].

Simulations of the thermodynamic properties of magnetic
systems with an account of the temperature-induced longitu-
dinal spin fluctuations have been elaborated previously in a
number of works. The generalized Langevin spin dynamics al-
gorithms treating both the longitudinal and transverse degrees
of freedom of magnetic moments as dynamical variables on
equal footing were developed in Refs. [31,32]. In Ref. [33], the
authors studied the thermodynamics of itinerant magnets using
a classical spin-fluctuation model with one parameter charac-
terizing the degree of itineracy. They found that the magnetic
short-range order, which is influenced by the presence of lon-
gitudinal spin fluctuations, is weak and almost independent on
the degree of itineracy up to the strongly itinerant limit where
the paramagnetic susceptibility is dominated by longitudinal
fluctuations. The other procedure for calculating parameters
of a high-temperature magnetic Hamiltonian, which utilizes
transverse and longitudinal magnetic excitation spectra from
first-principles calculations was developed in Ref. [34]. The
calculated paramagnetic susceptibility and magnetic specific
heat showed that the temperature-induced longitudinal spin
fluctuations are essential for the correct explanation of high-
temperature magnetism in Fe and Ni. Density functional
calculations for multicomponent systems with weak and strong
magnetic moments were further elaborated in Ref. [35].

In our model, we focus on the general features of the
thermodynamics in helimagnets and use MnSi as an illustrative
example. Our results show that longitudinal spin fluctuations
do not change much the character of the helimagnetic phase
transition but considerably affect the profile of the hump seen in
the specific heat. We show that the essential contribution to the
weight of the hump comes from the longitudinal fluctuations.
It turns out that a distribution of chiral fluctuations that are built
up in the hump region are consistent very well with the ring-
shape structure of the Bragg intensity patterns seen in q space.

The outline of this paper is the following: the Hamiltonian
for the spin lattice model and the details of MC simulation
that includes variable spin amplitudes are given in Sec. II. In
Sec. III, we show the results of calculations for the specific heat,
magnetic susceptibility, and Bragg intensity patterns. Relevant
comparisons with those measured in neutron scattering exper-
iments are presented. Finally, Sec. IV, contains a conclusion.

II. MODEL AND SIMULATION BACKGROUND

A. Model

An accurate description of the full B20 structure of MnSi
should include a calculation of magnetic interactions at the
atomic level [36–40]. Nevertheless, for a description of slowly
varying magnetic textures, one can treat the magnetic degrees
of freedom as effective localized moments [41,42]. The volume
of the system is partitioned into cells of linear size a, each cell
is identified with classical Heisenberg spins Si = (Sx

i ,S
y

i ,Sz
i ).

The lengths of spins in standard spin lattice models are fixed
to unity. Instead, in our approach, we introduce variable spin
amplitudes Si = |Si | fluctuating in a some range dS around

|Si | = 1. The spins are arranged into a simple cubic lattice
L×L×L, the lattice spacing is taken to be unity, a = 1.

The simplest Hamiltonian of this kind includes interaction
between the nearest-neighbor and next-nearest neighbor spins,
H = HJ + HD [18–21]. The first term,

HJ = −J
∑

r

Sr · (Sr+x̂ + Sr+ŷ + Sr+ẑ)

− J ′ ∑

r

Sr · (Sr+2x̂ + Sr+2ŷ + Sr+2ẑ), (1)

describes the ferromagnetic exchange interaction. The second
term,

HD =−D
∑

r

[Sr×Sr+x̂ · x̂+Sr×Sr+ŷ · ŷ+Sr×Sr+ẑ · ẑ]

−D′ ∑

r

[Sr×Sr+2x̂ · x̂+Sr×Sr+2ŷ · ŷ+Sr×Sr+2ẑ · ẑ],

(2)

describes the DM interaction with the DM vector directed
along the corresponding bond direction. The summation is over
the sites of the cubic lattice spanned by the vectors x̂, ŷ, and ẑ.

In this effective model, the true microscopic spin dis-
tribution is smeared within a cell of lattice size ∼a. The
pitch length of the helices, λh, formed by the effective spins
in a low-temperature phase is governed by the ratio D/J ,
tan 2πa/λh = D/J . The values of effective parameters D

and J can be essentially renormalized comparing with the
microscopic ones, in particular the value of D can be the same
order of magnitude as the exchange interaction J [18,19].

The Hamiltonian H , given by Eqs. (1) and (2), also in-
cludes interactions between the next-nearest neighbors, the
corresponding amplitudes are J ′ and D′. It turns out that
to map correctly the continuum model into a discrete one
requires to include interactions with next-nearest neighbor
spins. This compensates induced anisotropies originating from
the discretization of the corresponding continuum spin model,
as was first proposed by Buhrandt and Fritz [19]. Setting
J ′ = −J/16 and D′ = −D/8 allows to compensate these
anisotropies in the Fourier transform of H up to fourth-order
terms in momentum [19].

B. Monte Carlo simulation details

Classical Monte Carlo (MC) simulation with a standard
single-site Metropolis algorithm is performed on a L×L×L

cubic lattice with periodic boundary conditions. In the calcu-
lations, we hold the parameter J = 1 fixed, serving as a unit
of temperature. To implement the longitudinal spin fluctuation,
we introduce spin amplitude variables Si . The allowed range of
fluctuations is limited by an amplitude dS, so that (1 − dS) <

Si � 1.
MC sweeps over the lattice are implemented differently for

odd and even sweeps. For odd sweeps, only spin directions are
allowed to be changed, as in the standard algorithm with unit
spins. To update spin directions, we used two algorithms. In
our main algorithm, a new spin direction is chosen within a
cone with small angle �θ near the direction of a given spin
Si [43]. During the equilibration, a value of �θ is adjusted
to keep, when possible, the acceptance rate around one-half.
For some runs (for example, presented in Fig. 2 below) we
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used uniform update algorithm, when a new spin direction is
distributed uniformly over the unit sphere’s surface [44]. At
even MC sweeps, we update consecutively spin amplitudes at
each lattice site as S ′

i = 1 − hdS, where h is a random number
from the interval [0,1).

The simulation starts at some temperature well above Tc

from some ordered, or random state. After the equilibration, we
gradually decrease the temperature by sufficiently small steps
�T = 10−2, near the transition temperature, the temperature
steps were lowered to �T = 5×10−3 (and in some runs to
�T = 10−3). The equilibrated spin configuration is used as
the initial spin configuration for the next run with lower
temperature. At each temperature, we use 5×105 MC steps
per spin (MCS) for equilibration and 106 MCS per spin to
acquire the statistics. Most of results for the specific heat are
obtained for lattice size L = 30. To check the dependence of
data on the lattice size, some runs were carried out with L = 60
(correspondingly, with enlarged number of MCS). To minimize
the finite size effects in the reciprocal space, we present Bragg
intensity profiles calculated for the lattice size L = 60.

Energy and magnetization were recorded after each MC
sweep to find MC thermal averages. The specific heat (per spin)
was calculated by two ways, (i) from direct differentiation of
the energy density E(T ) = 〈H 〉/N , where N = L3, and (ii) in
terms of energy fluctuations, C = N〈(�E)2〉/T 2. These two
methods give consistent results, the only discrepancy is seen
at the transition temperature Tc, at which the energy E(T )
displays a finite jump. In the presented results we show the
specific heat calculated from the differentiation of energy.
Comparison of two ways of calculation is presented in Fig. 2
below. The magnetic susceptibility (per spin) is calculated
in the usual way, χ (T ) = N (〈M2〉 − 〈M〉2)/T , where M =
(1/N )

∑
i Si .

Apart from the mean value of lattice spin, given by 〈M〉,
we also find at each T the thermal averaged lattice spin
configuration 〈Si〉. This is used to find the thermal averaged
Fourier components, 〈Sq〉 = 1/N

∑
i〈Si〉e−iq·Ri , and subse-

quently, the Bragg intensity profile I (q) ∝ |〈Sq〉|2. We present
function I (qx,qy,qz) by corresponding sections in (qx,qy) and
(qx,qz) planes of the q space.

To correctly present the spin spiral state

S(Ri) = SQ cos(Q · Ri)e1 + SQ sin(Q · Ri)e2 (3)

with unit vectors e1 and e2 being perpendicular to the spiral
vector Q, it is convenient to introduce a Bragg intensity
profile projected onto the (qx,qy) plane, namely a function
I ∗(qx,qy) = ∑

qz
I (qx,qy,qz). Such a single spiral results in

two Bragg peaks at Q and −Q, seen as two separate spots in
I ∗(qx,qy). We set 2π/L as a unit length in the reciprocal space,
and the vectors q are scaled accordingly.

III. RESULTS AND DISCUSSION

To track the importance of longitudinal spin fluctuations,
we examined three different series for variable spin amplitudes
with dS = 0,0.5, and 1. In Fig. 1, we show the specific heat
and magnetic susceptibility as functions of temperature for
several values of DM interaction D and amplitudes dS. The
specific heat features a smooth characteristic hump, which
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FIG. 1. Temperature dependence of the specific heat C(T ) for
different values of the DM interaction D = 0.4 (a), 0.75 (b), and
1.1 (c) and spin amplitude fluctuation dS. (Inset) The corresponding
dependencies of the magnetic susceptibility χ (T ).

is substantially enhanced with increasing the dS amplitudes.
The hump region is followed by an abrupt spike showing that
the phase transition is first order, and signaling the onset of
helimagnetic order seen in the Bragg intensity map in the form
of two or four spots (see Figs. 3 and 4 below).

The spike in the specific heat at Tc shows a gradual develop-
ment with increasing the parameter D. At small D [as D = 0.4
at panel (a)], the spike comes about in the form of fluctuations
on the lower-temperature side of the hump. With increasing
D, it gradually evolves into the sharp spikes at D = 0.75
[panel (b)] and D = 1.1 [panel (c)]. These spikes are seen both
for rigid spins (dS = 0) and soft spins (dS > 0). Most notably,
an inclusion of the spin amplitude fluctuations considerably
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deforms the form of the C(T ) curve, namely, such fluctuations
enhance the hump and shift it to lower temperatures.

A similar shift of the specific heat maximum due to longi-
tudinal fluctuations was found in Ref. [32] from spin-dynamic
simulations of the second-order phase transition in iron. The
energy of the longitudinal spin fluctuations was used in the
form of the Landau expansion HL = ∑

i(AS2
i + BS4

i + CS6
i ),

which does not impose an upper limit on the magnitude of the
on-site spin. In our simulation, on-site spins are less than unit,
and in this regard the Landau expansion is approximated by
hard-wall function, HL = E0,Si � 1, HL = +∞,Si > 1. An
additional enhancement of the specific heat at low temperatures
comes from the additional longitudinal degree of freedom
included into the Hamiltonian. With increasing temperature,
longitudinal fluctuations become saturated in our model and
the behavior of C(T ) is entirely due to transverse spin fluctu-
ations.

Comparing with the experimental results for the specific
heat in MnSi and Cu2OSeO3 [2,5], one should note that the
experimental C(T ) dependencies show a pronounced increase
for T < Tc and a well-developed hump for T > Tc. Our
simulation results showing relatively flat dependencies of C(T )
for dS = 0 become closer to the experimental ones with an
inclusion of spin amplitude fluctuations. This is particularly
well seen for the dependencies C(T ) with dS = 0.5 and dS =
1.0 presented in Figs. 1(b) and 1(c).

Although the amplitude of longitudinal spin fluctuations
can be as large as dS = 1, the resulting thermal average 〈S〉 =
〈|Si |〉 very close, in fact, to 〈S〉 = 0.9 at low temperatures
(T < Tc) and 〈S〉 = 0.7 − 0.8 in the hump region. This can
be foreseen from energy considerations, too small values of
|Si | lead to considerable increase in the exchange and DM
energy.

The magnetic susceptibility as a function of temperature for
different values of dS is presented in the insets of Fig. 1. At
T > Tc, the behavior of χ (T ) shows a reasonable agreement
with the experiment, namely for different values of D it bears
a resemblance with the Curie-Weiss dependence, which is
most clearly seen for larger values of dS. On approaching Tc,
the susceptibility χ exhibits a well-defined peak, and finally,
at T < Tc, a plateau is developed which is consistent with
the measurements [15]. The amplitude of the peak strongly
depends on parameter D and is nearly independent of the
amplitude dS. However, the position of the peak depends on
dS, and gradually shifts to lower temperatures with increasing
dS, showing a resemblance with the corresponding behavior
of Tc seen in the specific heat data.

In Fig. 2(a), we compare two specific heat curves, one
obtained by differentiation of the energy and the other one
by calculating thermal fluctuations of the energy. They show
a remarkable coincidence almost at all temperatures. The only
discrepancy appears around the transition temperature Tc and
comes from a finite jump of energy E(T ) at Tc. A simulation
with increased system size L = 60 is presented in Fig. 2(b).
We see almost perfect agreement with the results for L = 30,
the only mismatch is observed in the position of the specific
heat peak and comes from the finite temperature steps used in
the simulation.

To confirm unambiguously that the sharp spike seen in
the specific heat comes from the first-order transition, we
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FIG. 2. (a) Specific heat obtained by differentiation of energy
(curve 1) and from the fluctuation of energy (curve 2). (b) The specific
heat for different system sizes, L = 30 (curves with markers) and
L = 60 (presented by thick curves 1, 2, and 3 in limited temperature
intervals).

examined the energy distribution function P (E) at the corre-
sponding transition temperatures. As is known, P (E) demon-
strates a two-peak structure at Tc if a transition is of first order.
In Fig. 3, we show P (E) calculated for various values of
D and dS. First, in Fig. 3(a), we present P (E) obtained by
two different MC update algorithms used for the generation
of a new spin configuration. The curves 1 corresponds to the
algorithm when a new trial spin direction was generated within
a cone of some fixed aperture angle, while curve 2 corresponds
to the uniform algorithm at which the new trial direction was
distributed uniformly. In these two cases, the transition from
the paramagnet state to the helical ones passes through different
intermediate states and the two curves excellently complement
each other.

In Fig. 3(b), we compare energy distributions obtained for
different dS. With increasing dS, the shape of P (E) curve
gradually tends to transform into a one-peak form. While the
two-peak structure is still seen for a lower value D = 0.75 with
dS = 0 [see inset Fig. 3(b)], two peaks are not resolved for
larger dS although our data clearly demonstrate a small jump
in the energy at Tc for dS = 0.5 and 1.0 (that jump leads to
the spike in corresponding C(T )-dependance). The two-peak
structure in P (E) is not resolved also for small D = 0.4 [the
corresponding P (E) are not shown]. This is most probably
due to the fact that the structure of function P (E) becomes
extremely sensitive in the proximity of Tc to resolve two-peaks
at small D.
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FIG. 3. [(a) and (b)] Energy distribution function P (E) at Tc for
different values of D and dS. Curves 1 and 2 in (a) correspond
to the two different MC updates used for generation of new spin
configurations.
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FIG. 4. Spin configuration 〈Si〉 in an xy plane (left) and a profile
I ∗ of the Bragg intensity projected onto the (qx,qy) plane (right) for
dS = 0.0, D = 1.1 (a), and D = 0.75 (b). Spins with positive Sz are
marked as red and negative Sz as blue.

We now turn to the analysis of Bragg intensity (BI) patterns
I (q) in reciprocal space and their dependence on temperature,
the corresponding results are given for system size L = 60.
We also show the corresponding distributions of spins 〈Si〉
in xy plane z = L/2 (for clarity, only spins with coordinates
xi,yi � L/2 are shown). To present BI spots in the reciprocal
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FIG. 5. Spin configuration 〈Si〉 and projected Bragg intensity
profile I ∗ for dS = 1.0, D = 1.1 (a) and D = 0.75 (b). Designations
are the same as in Fig. 4.
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FIG. 6. Spin configuration 〈Si〉 in an xy plane (left) and cuts of
Bragg intensity I (q) by planes qx = 0 (upper right) and qz = 0 (lower
right) for D = 1.1,dS = 0.0.

space coming from the spiral state we show the projected Bragg
intensity I ∗(qx,qy), which has two spikes at points q = ±Q for
a single spiral state and four spikes at points q = ±Q1, ± Q2

for a two-spiral state.
Characteristic Bragg intensity profiles for the low-

temperature phase are shown for the amplitudes dS = 0 and
dS = 1 in Figs. 4 and 5, respectively. For the amplitude
dS = 0, there are two spikes in I ∗(qx,qy), which correspond
to a single spiral state of the helimagnet. The wave vector of
the spiral is directed approximately along the cube diagonal,
Q = 2π/L(−6,6,−5) for D = 1.1 and Q = 2π/L(−5,4,−3)
for D = 0.75. For dS = 1.0, as seen from Fig. 5, the sys-
tem exhibits a two-spiral state. There are four spikes in
I ∗(qx,qy) at wave vectors Q1 = 2π/L(−7,5,−5) and Q2 =
2π/L(−7,−5,−5) for D = 1.1 and Q1 = 2π/L(−6,1,−3)
and Q2 = 2π/L(−6,−1,−3) for D = 0.75. The spiral wave
vectors Q1 and Q2 depend on parameter D and merge with
each other with decreasing D. For low D, the corresponding
spiral wave vector is directed along the direction [100]. The
analysis of the corresponding spin configuration 〈Si〉 shows
that two domains are formed in the system. At the boundary
between domains, |〈Si〉| almost vanishes (most clearly it is seen
for D = 1.1).

We further illustrate results for the Bragg intensity corre-
sponding to the hump region in the C(T ) dependence. These
are presented in Figs. 6 and 7 for the amplitudes dS = 0
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FIG. 7. The same as in Fig. 6 for dS = 1.0.

and dS = 1, respectively. We picked up two temperatures, the
lower one approximately corresponds to the maximum of the
hump, and the larger one is within the right slope of the hump.
The left panel shows the averaged spin configuration 〈Si〉 at a
given temperature in a single (x,y) plane. The two right panels
show cuts of I (q) in the q space taken in qx = 0 (upper right
panel) and qz = 0 (bottom right panel) planes. The center of
the planes is in the q = 0 point and the cuts are limited by
−π/L � qx,qy,qz � π/L.

The key characteristic of the hump region is the ring-
shape form of the BI function I (q), which corresponds to the
randomly oriented chiral spin fluctuations that persist above
critical temperature Tc [8–10]. The ring is clearly seen at the
maximum of the hump, at temperature T = 0.9 for dS = 0
and T = 0.63 for dS = 1.0. The radius of the ring qh depends
on the parameter D, it shrinks to zero with decreasing D.

On approaching Tc, the parameter qh governs the pitch of
the helix in the low temperature phase. The nature of the chiral
fluctuations is most clearly seen from the inspection of the

corresponding plots of the spin configurations. The ring-shape
structure in the reciprocal space maps onto the vortexlike
patterns of spins Si in r space. On increasing the temperature,
the ring becomes broader and eventually is smeared over
the whole q space. The corresponding vortexlike patterns of
spins are gradually melt out into a homogeneous random
configuration. Such fluctuations are characteristic of the fer-
romagnetic systems with susceptibility χ (q) ∼ T/(q2 + κ2),
where κ is the inverse correlation length [10]. We note that our
calculations reproduce equally well the ring shape structure
of spin fluctuations in reciprocal space both for rigid spins
dS = 0 and with an inclusion of spin amplitude fluctuations
dS = 1.0. However, the thickness of the ring depends on
the amplitude of longitudinal fluctuations. For dS = 0, the
weight of the hump is distributed over a larger temperature
interval and the ring-shape structure of I (q) persists over a wide
temperature interval, while for dS = 1.0 it rapidly smears out
with increasing temperature. The rapid smearing of the ring
with increasing temperature in the MnSi experiments [8–10]
suggests that the case with dS = 1.0 probably corresponds to
the experimental situation.

IV. CONCLUSION

We presented a classical MC study of a helimagnet with
competing exchange and DM interactions. Our simulation
includes an additional degree of freedom, the variable spin
amplitudes |Si |, that takes into account the itinerant nature
of the magnetic moment in helimagnets like MnSi. The
itinerant magnetic moments are especially pronounced in
magnetic and thermodynamic measurements in MnSi [2,23].
Our study reveals that the behavior of the specific heat has
two key features: the occurrence of a first-order transition at
the helimagnetic transition temperature Tc seen as a spike in
the C(T ) dependence, and the hump region above Tc with
well-developed chiral fluctuations. The chiral fluctuation leads
to a ring-shape structure of the Bragg intensity patterns in
the reciprocal space. The results show that the amplitude
of the chiral fluctuations in the hump region substantially
depends on the amplitude of longitudinal fluctuations. In
particular, the hump is greatly enhanced with increasing spin
amplitude fluctuation dS. However, we have to conclude that
the basic features of the helical phase transition are not changed
drastically by the longitudinal spin fluctuations.
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