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Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising technology for the next
generation of data storage devices. The main bottleneck of this technology is the high reversal current density
threshold. This outstanding problem is now solved by a new strategy in which the magnitude of the driven current
density is fixed while the current direction varies with time. The theoretical limit of minimal reversal current density
is only a fraction (the Gilbert damping coefficient) of the threshold current density of the conventional strategy.
The Euler-Lagrange equation for the fastest magnetization reversal path and the optimal current pulse is derived
for an arbitrary magnetic cell and arbitrary spin-orbit torque. The theoretical limit of minimal reversal current
density and current density for a GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are,
respectively, of the order of 105 A/cm2 and 106 A/cm2 far below 107 A/cm2 and 108 A/cm2 in the conventional
strategy. Furthermore, no external magnetic field is needed for a deterministic reversal in the new strategy.
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I. INTRODUCTION

Fast and efficient magnetization reversal is not only fun-
damentally interesting, but also technologically important for
high-density data storage and massive information processing.
Magnetization reversal can be induced by a magnetic field
[1–3], by an electric current through direct [4–9] and/or indi-
rect [10–22] spin angular momentum transfer from polarized
itinerant electrons to magnetization, by a microwave [23], by
a laser light [24], or even by an electric field [25]. While
the magnetic-field-induced magnetization reversal is a mature
technology, it suffers from scalability and field localization
problems [8,26] for nanoscale devices. Spin-transfer-torque
magnetic random access memory is an attractive technology
in spintronics [26] although Joule heating, device durability,
and reliability are challenging issues [11,26]. In a spin-orbit-
torque magnetic random access memory (SOT-MRAM) whose
central component is a heavy-metal/ferromagnet bilayer, an
electric current in the heavy-metal layer generates a pure
spin current through the spin-Hall effect [10,11] that flows
perpendicularly into the magnetic layer. The spin current, in
turn, produces spin-orbit torques (SOTs) through spin angular
momentum transfer [4,5] and/or Rashba effect [16–22]. SOT-
MRAM is a promising technology because writing charge
current does not pass through the memory cells so that the cells
do not suffer from the Joule heating and associated device dam-
aging. In principle, such devices are infinitely durable due to
negligible heating from spin current [11]. However, the reversal
current density threshold (above 107 A/cm2 [14,15] for real-
istic materials) in the present SOT-MRAM architecture is too
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high. To have a reasonable switching rate (order of GHz), the
current density should be much larger than 108 A/cm2 [14,15],
which is too high for devices. In order to lower the minimal
reversal current density as well as to switch magnetization
states at GHz rate at a tolerable current density in SOT-MRAM,
it is interesting to find new reversal schemes (strategies) that
can achieve the above goals. In this paper, we show that a
proper current density pulse of time-dependent flow direction
and constant magnitude, much lower than the conventional
threshold, can switch a SOT-MRAM at GHz rate. Such a
time-dependent current pulse can be realized by using two
perpendicular currents passing through the heavy-metal layer.
The theoretical limit of minimal reversal current density of
the new reversal strategy for realistic materials can be of the
order of 105 A/cm2, far below 107 A/cm2 in the conventional
strategy that uses a direct current (dc), both based on macrospin
approximation. The validity of the macrospin model is also
verified by micromagnetic simulations.

II. MACROSPIN MODEL AND RESULTS

A. Model

Our SOT-MRAM model consists of a ferromagnetic/heavy-
metal bilayer lying in the x ′y ′ plane, as shown in Fig. 1(a). In
the absence of an electric current, the system has two stable
states m = m0 and m = −m0 where m is the unit direction of
magnetization M = Mm of magnitude M . An xyz coordinate
is defined in Fig. 1(b) where the z axis is along m0 and the y

axis is in the x ′y ′ plane. θ0 and φ0 are the polar and azimuthal
angles of m0 in the x ′y ′z′ coordinate. Two time-dependent
electric currents flow along the +x ′ and +y ′ directions such
that the magnitudes of the total current density J is a constant.
Thus the electric current density vector is J = J cos �x̂ ′ +
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FIG. 1. (a) Schematic illustration of new reversal scheme for
SOT-MRAMs. Two perpendicular currents flow in the heavy-metal
layer of a ferromagnet/heavy-metal bilayer to generate a current
whose direction can vary in the x ′y ′ plane. (b) and (c) Definitions
of coordinates. The x ′ and y ′ axes are the two currents flow directions
in the heavy-metal layer. The xyz is a moving coordinate with the z

axis along M0, and the y axis in the x ′y ′ plane. θ0 and φ0 are the polar
and azimuthal angles of M0 in the x ′y ′z′ coordinate, while θ and φ

are the polar and azimuthal angles of M in the xyz coordinate.

J sin �ŷ ′, here � is a time-dependent angle between J and the
x ′ axis. The electric current generates a transverse spin current
perpendicularly flowing into the ferromagnetic layer via the
spin-Hall effect [10], and then produces an effective SOT on
the magnetization [4,5,16], i.e.,

�τ = −am × (m × ŝ) + βam × ŝ, (1)

where the first term on the right-hand side is the Slonczewski-
like torque while the second term is the fieldlike torque. The
spin-polarization direction is ŝ = Ĵ × ẑ′ (for other type of spin-
Hall effect, see Ref. [27]) with Ĵ being the unit vector of current
density. a = h̄

2ed
θSHJ is proportional to J where h̄, e, and d

are respectively the Plank constant, the electron charge, and the
sample thickness. θSH is the spin Hall angle, which measures
the conversion efficiency between the spin current and charge
current. β measures the fieldlike torque and can be an arbitrary
real number since this torque may also be directly generated
from the Rashba effect [16].

The magnetization dynamics under an in-plane current den-
sity J is governed by the generalized dimensionless Landau-
Lifshitz-Gilbert (LLG) equation,

∂m
∂t

= −m × heff + αm × ∂m
∂t

+ �τ , (2)

where α is the Gilbert damping constant that is typically much
smaller than unity. The effective field is heff = −∇mε from
energy density ε. Time, magnetic field, and energy density are

respectively in units of (γM)−1, M , and μ0M
2, where γ and μ0

are, respectively, the gyromagnetic ratio and vacuum magnetic
permeability. In this unit system, a = h̄

2edμ0M2 θSHJ becomes
dimensionless.

The magnetization m can be conveniently described by a
polar angle θ and an azimuthal angle φ in the xyz coordinate
[shown in Fig. 1(c)]. In terms of θ and φ, the generalized LLG
equation (2) becomes

(1 + α2)θ̇ = heff,φ + asθ − βasφ

+α(heff,θ − asφ − βasθ ) ≡ F1, (3a)

(1 + α2)φ̇ sin θ = −heff,θ + asφ + βasθ

+α(heff,φ + asθ − βasφ) ≡ F2, (3b)

where heff,θ = ∂ε
∂θ

, heff,φ = − ∂ε
∂φ

, and sθ and sφ are

sθ = cos θ0 sin(� − φ0) cos θ cos φ

− cos(� − φ0) cos θ sin φ − sin θ0 sin(� − φ0) sin θ,

sφ = − cos θ0 sin(� − φ0) sin φ − cos(� − φ0) cos φ.

B. Derivation of the Euler-Lagrange equation

The goal is to reverse the initial state θ = 0 (m = m0)
to the target state θ = π (m = −m0) by SOT. There are an
infinite number of paths that connect the initial state θ = 0
with the target state θ = π , and each of these paths can be
used as a magnetization reversal route. For a given reversal
route, there are an infinite number of current pulses that can
reverse the magnetization. The theoretical limit of minimal
current density Jc is defined as the smallest values of minimal
reversal current densities of all possible reversal routes. Then
come two interesting and important questions: (i) What is Jc

above which there is at least one reversal route that the current
density can reverse the magnetization along it? (ii) For a given
J > Jc, what are the optimal reversal route and the optimal
current pulse �(t) that can reverse the magnetization at the
highest speed?

Dividing Eq. (3b) by Eq. (3a), one can obtain the following
constraint,

G ≡ ∂φ

∂θ
sin θF1 − F2 = 0. (4)

The magnetization reversal time T is

T =
∫ π

0

dθ

θ̇
=

∫ π

0

1 + α2

F1
dθ. (5)

The optimization problem here is to find the optimal reversal
route φ(θ ) and the optimal current pulse �(t) such that T is
minimum under constraint (4). Using the Lagrange multiplier
method, the optimal reversal route and the optimal current
pulse satisfy the Euler-Lagrange equations [28,29],

∂F

∂φ
= d

dθ

(
∂F

∂(∂φ/∂θ )

)
,
∂F

∂�
= d

dθ

(
∂F

∂(∂�/∂θ )

)
, (6)

where F = (1 + α2)/F1 + λG and λ is the Lagrange multipli-
ers, which can be determined self-consistently by Eq. (6) and
constrain (4). Given a current density of constant magnitude
J , Eq. (6) may or may not have a solution of φ(θ ) that
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continuously passing through θ = 0 and θ = π . If such a
solution exists, then φ(θ ) is the optimal path for the fastest
magnetization reversal and the corresponding solution of �(t)
is the optimal current pulse. The theoretical limit of minimal
reversal current density is then the smallest current density Jc

below which the optimal reversal path does not exist.

C. Optimal current pulse and theoretical limit of minimal
reversal current density

As an example, we consider a uniaxial system with
the easy axis along the z′ axis so that xyz and x ′y ′z′
coordinates are the same and ε = −K cos2 θ where
K is the anisotropy coefficient. This is the case of
many recent experiments [13,14,18]. Thus, we have
F1 = −αK sin 2θ + a(1 − αβ) cos θ sin(�J − φ) + a(α +
β) cos(�J − φ), F2 = K sin 2θ − a(1 − αβ) cos(�J − φ) +
a(α + β) cos θ sin(�J − φ), and G = (∂φ/∂θ ) sin θF1 − F2.
Obviously, ∂F1

∂φ
= − ∂F1

∂�
, ∂F2

∂φ
= − ∂F2

∂�
, and ∂G

∂φ
= − ∂G

∂�
. Then

the Euler-Lagrange equation of (6) becomes

λ
d

dθ
(F1 sin θ ) = 0, (7a)

1 + α2

F 2
1

∂F1

∂φ
− λ

∂G

∂φ
= −1 + α2

F 2
1

∂F1

∂�
+ λ

∂G

∂�
= 0. (7b)

From Eq. (7a), one has λ �= 0 or λ = 0. If λ �= 0, F1 must
be F1 = C/ sin θ (C �= 0) so that (1 + α2)θ̇ = C/ sin θ → ∞
as θ → 0 or π . This solution is not physical, and should be
discarded. Therefore, the only allowed solution must be λ = 0,
and one has ∂F1/∂� = 0 according to Eq. (7b). Interestingly,
this is exactly the condition of maximal θ̇ = F1/(1 + α2) as �

varies. � satisfies tan(� − φ) = 1−αβ

α+β
cos θ , or

� = tan−1

(
1 − αβ

α + β
cos θ

)
+ φ + π (β < −α) (8a)

� = tan−1

(
1 − αβ

α + β
cos θ

)
+ φ (β > −α). (8b)

Substituting Eq. (8) into the LLG equation (3), θ (t) and φ(t)
are determined by the following equations:

θ̇ = 1

1 + α2
[aP (θ ) − αK sin 2θ ], (9a)

φ̇ = 1

1 + α2

[
2K cos θ − a(α + β)(1 − αβ)

sin θ

P (θ )

]
, (9b)

where P (θ ) =
√

(α + β)2 + (1 − αβ)2 cos2 θ . To reverse
magnetization from θ = 0 to θ = π , a must satisfy a >

αK sin(2θ )/P (θ ) according to Eq. (9a) so that θ̇ is no negative
for all θ . Obviously, θ̇ = 0 at θ = π/2 when β = −α. The
magnetization reversal is not possible in this case, and β = −α

is a singular point. The theoretical limit of minimal reversal
current density Jc for β �= −α is

Jc = 2αeKd

θSHh̄
Q, (10)

where Q ≡ max{sin 2θ/P (θ )} for θ ∈ [0,π ].

FIG. 2. The log α dependence of Jc for various β are plotted as the
solid curves for model parameters of M = 3.7 × 105 A/m, K = 5.0 ×
103 J/m3, θSH = 0.084, and d = 0.6 nm. As a comparison, J dc

c is also
plotted as the dashed lines.

In comparison with the current density threshold [13,14,18]
(J dc

c ) in the conventional strategy for β = 0,

J dc
c = 2eKd

θSHh̄

(
1 − H√

2K

)
, (11)

the minimal reversal current density is reduced by more than
a factor of α. Here H (
 22 Oe in experiments [15]) is a
small external magnetic needed for a deterministic reversal
in conventional strategy. Using CoFeB/Ta parameters of M =
3.7 × 105 A/m, K = 5.0 × 103 J/m3, θSH = 0.084, and d =
0.6 nm [11,14,15], Fig. 2 shows log α dependence of Jc (solid
lines) and J dc

c (dashed lines) for β = 0 (black), 0.3 (red), and
−0.3 (blue), respectively. Both J dc

c and Jc depend on β. The
lower the damping of a magnetic material is, the smaller our
minimum switching current density will be. For a magnetic
material of α = 10−5, the theoretical limit of minimal reversal
current density can be five orders of magnitude smaller than
the value in the conventional strategy.

For a given J > Jc, the shortest reversal time is given by
Eqs. (5) and (9a):

T =
∫ π

0

1 + α2

aP (θ ) − αK sin 2θ
dθ. (12)

The optimal reversal path is given by φ(θ ) = ∫ θ

0
φ̇

θ̇
dθ ′ where

θ̇ and φ̇ are given by Eqs. (9a) and (9b). Equation (9a)
gives t(θ ) = ∫ θ

0 (1 + α2)/[aP (θ ) − αK sin 2θ ]dθ ′ and then
θ (t) is just θ (t) = t−1(θ ). Thus, �(θ,φ), φ(θ ) and θ (t) give
φ(t) = φ(θ (t)) and �(t) = �(θ (t),φ(t)). Using the same pa-
rameters as those for Fig. 2 with α = 0.008 and various β,
Figure 3 shows the optimal current pulses [Figs. 3(a)–3(c)]
and the corresponding fastest magnetization reversal routes
[Figs. 3(d)–3(f)] for β = 0.3 and J = 1.92 × 106 A/cm2 ≈
15Jc [Figs. 3(a) and 3(d)], for β = 0.1 and J = 9.0 × 106

A/cm2 ≈ 58Jc [Figs. 3(b) and 3(e)], and for β = 0.3 and
J = 9.0 × 106 A/cm2 ≈ 70Jc [Figs. 3(c) and 3(f)]. It is known
that Ta has less effect on α [11]. The minimal reversal current
density Jc under the optimal current pulse is 1.56 × 105

A/cm2 for β = 0.1 and 1.28 × 105 A/cm2 for β = 0.3, which
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FIG. 3. Model parameters of M = 3.7 × 105 A/m, K = 5.0 × 103 J/m3, θSH = 0.084, α = 0.008, and d = 0.6 nm are used to mimic
CoFeB/Ta bilayer, and β = 0.3 for (a), (c), (d), and (f) while β = 0.1 for (b) and (e). The theoretical limit of minimum reversal current density
is Jc = 1.56 × 105 A/cm2 for β = 0.1 and Jc = 1.28 × 105 A/cm2 for β = 0.3. Optimal current pulses [(a)–(c)] and fastest reversal routes
[(d)–(f)] are for J = 1.92 × 106 A/cm2 [(a) and (d)], and for J = 9.0 × 106 A/cm2 [(b), (c), (e), and (f)].

is far below J dc
c = 9.6 × 106 A/cm2 for the same material

parameters [15]. The multiple oscillations of mx and my

reveal that the reversal is a spinning process and optimal
reversal path winds around the two stable states many times.
Correspondingly, the driving current makes also many turns as
shown by the multiple oscillations of Jx ′ and Jy ′ . The number
of spinning turns depends on how far J is from Jc. The closer
J to Jc is, the number of turns is larger. The number of turns is
about five in Figs. 3(a) and 3(d) for J ≈ 15Jc and one turn for
J > 50Jc as shown in Figs. 3(b), 3(c), 3(e), and 3(f), so that the
reversal is almost ballistic. The reversal time for β = 0.3 and
J = 1.92 × 106 A/cm2 is about 10 nanoseconds, for β = 0.1

FIG. 4. Magnetization reversal time T under the optimal current
pulses as a function of J for various α and β.

and J = 9.0 × 106 A/cm2 is about 3.3 nanoseconds, and for
β = 0.3 and J = 9.0 × 106 A/cm2 is about 2.1 nanoseconds.
Figure 4 is the reversal time T as a function of current density
J under the optimal current pulse for the same parameters
as those for Fig. 2. The reversal time quickly decreases to
nanoseconds as current density increases. In a real experiment,
there are many uncertainties so that the current pulse may be
different from the optimal one. To check whether our strategy
is robust against small fluctuations, we let the current pulse
in Fig. 3(c) deviate from its exact value by as much as five
percent. Numerical simulations show that these current pulses
can still reverse the magnetization.

III. VERIFICATION OF MACROSPIN MODEL
BY MICROMAGNETIC SIMULATION

In our analysis, the memory cell is treated as a macrospin.
A natural question is how good the macrospin model is for a
realistic memory device. To answer this question, we carried
out micromagnetic simulations by using Newton-Raphson
algorithm [30] for two memory cells of 150 nm × 150 nm ×
0.6 nm [Figs. 5(a), 5(b) 5(d), and 5(e)] and 250 nm × 250 nm ×
0.6 nm [Figs. 5(c) and 5(f)]. To model the possible edge
pinning effect due to magnetic dipole-dipole interaction, we
consider square-shape devices instead of a cylinder-shape
device whose edge pinning is negligible. To make a quantitative
comparison, the material parameters are the same as those
used in Fig. 3. In our simulations, the exchange constant is
A = 1.3 × 10−11 J/m to mimic CoFeB, and the unit cell size
is 2 nm × 2 nm × 0.6 nm. For a fair comparison, the optimal
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FIG. 5. (a)–(c) Time evolution of the average magnetization:
cycles for micromagnetic simulations and solid lines are theoretical
predictions from macrospin model. (a) and (b) are for the memory
cell of 150 nm × 150 nm × 0.6 nm and optimal current pulse of
current density of J = 1.92 × 106 A/cm2 and J = 9.0 × 106 A/cm2,
respectively. (c) is for the memory cell of 250 nm × 250 nm × 0.6 nm
and optimal current pulse of current density of J = 9.0 × 106 A/cm2.
(d)–(f) Spin configurations respectively corresponding to (a)–(c)
in the middle of magnetization reversal at t = 5.5 ns and 1.2 ns.
The exchange constant is A = 1.3 × 10−11 J/m to mimic CoFeB,
and the cell size in micromagnetic simulation is 2 nm × 2 nm ×
0.6 nm.

current pulses shown in Figs. 3(a) and 3(c) of respective current
density J = 1.92 × 106 A/cm2 and J = 9.0 × 106 A/cm2

were applied to the memory cell of 150 nm × 150 nm × 0.6 nm.
The symbols in Figs. 5(a) and 5(b) are the time evolution of
averaged magnetization mx , my , and mz while the solid lines
are the theoretical predictions of macrospin model shown in
Figs. 3(d) and 3(f). The perfect agreements prove the validity
of the macrospin approximation for our device of such a size.
To further verify that the memory device can be treated as a
macrospin, Figs. 5(d) and 5(e) are the spin configurations in
the middle of the reversal at t = 5.5 ns for Fig. 5(a) and at
t = 1.2 ns for Fig. 5(b). The fact that all spins align almost
in the same direction verifies the validity of the macrospin
model. In real experiments, nonuniformity of current density is
inevitable. To demonstrate the macrospin model is still valid,
we let current density linearly vary from 9.5 × 106 A/cm2

on the leftmost column of cells to 8.5 × 106 A/cm2 on the
rightmost column of cells. As expected, there is no noticeable
difference with the data shown in Figs. 5(b) and 5(e).

For the large memory device of 250 nm × 250 nm × 0.6 nm,
the optimal current pulse shown in Fig. 3(c) of current density
J = 9.0 × 106 A/cm2 was considered. The time evolution
of averaged magnetization mx , my , and mz are plotted in
Fig. 5(c), with the symbols for simulations and solid lines for
the macrospin model. They agree very well although there is
a small deviation for a device of such a large size. Figure 5(f)
is the spin configurations in the middle of the reversal at
t = 1.2 ns for Fig. 5(c). The macrospin model is not too bad
although all spins are not perfectly aligned. The slightly bent
spin texture rotates coherently in this case.

In summary, for a normal SOT-MRAM device of size
less than 300 nm [11,15], the macrospin model describes

magnetization reversal well. However, for a larger sample
size and lower current density (J < 106 A/cm2 for the same
material parameters as those used in Fig. 3), only the spins
in the sample center can be reversed while the spins near the
sample edges are pinned.

IV. DISCUSSION

Obviously, the strategy present here can easily be general-
ized to the existing spin-transfer-torque MRAM. The mathe-
matics involved are very similar, and one expects a substantial
current density reduction is possible there if a proper optimal
current pulse is used. Of course, how to generate such a cur-
rent pulse should be much more challenging than that
for SOT-MRAM where two perpendicular currents can be
used.

In the conventional strategy that uses a dc current, a static
magnetic field along current flow is required for a deterministic
magnetization reversal [13,14,18]. Although several field-free
designs have been proposed [19,20], an antiferromagnet is
needed to create an exchange bias, which plays the role of an
applied magnetic field. As we have shown, such a requirement
or complication is not needed in our strategy. Our strategy
does not have another problem that exists in the conventional
strategy in which the magnetization can only be placed near
θ = π/2 [13,14,18] so that the system falls into the target
state by itself through the damping. Therefore, one would
like to use materials with larger damping in the conventional
strategy in order to speed up this falling process. In contrast,
our strategy prefers low-damping materials, and reversal is
almost ballistic when current density is large enough (>50Jc

in the current case). To reverse the magnetization from θ = π

to θ = 0, one only needs to reverse the current direction of
the optimal current pulse. One should notice that the Euler-
Lagrange equation allows us to easily obtain the optimal
reversal current pulse and theoretical limit of the minimal
reversal current density for an arbitrary magnetic cell such as
in-plane magnetized layer [11] and biaxial anisotropy.

V. CONCLUSION

In conclusion, we investigated the magnetization reversal
of SOT-MRAMs, and propose a new reversal strategy whose
minimal reversal current density is far below the existing
current density threshold. For the popular CoFeB/Ta system, it
is possible to use a current density of the order of 106 A/cm2

to reverse the magnetization at GHz rate, in comparison with
order of J ≈ 108 A/cm2 in the conventional strategy.
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