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Thermoelastic enhancement of the magnonic spin Seebeck effect in thin films and bulk samples
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A nonuniform temperature profile may generate a pure spin current in magnetic films, as observed, for instance,
in the spin Seebeck effect. In addition, thermally induced elastic deformations may set in that could affect
the spin current. A self-consistent theory of the magnonic spin Seebeck effect including thermally activated
magnetoelastic effects is presented, and analytical expressions for the thermally activated deformation tensor
and dispersion relations for coupled magnetoelastic modes are obtained. We derive analytical results for bulk
(three-dimensional) systems and thin magnetic (two-dimensional) films. We observe that the displacement vector
and the deformation tensor in bulk systems decay asymptotically as u ∼ 1/R2 and ε ∼ 1/R3, respectively, while
the decays in thin magnetic films proceed slower, following u ∼ 1/R and ε ∼ 1/R2. The dispersion relations
evidence a strong anisotropy in the magnetic excitations. We observe that a thermoelastic steady-state deformation
may lead to both an enchantment and a reduction of the gap in the magnonic spectrum. The reduction of the
gap increases the number of magnons contributing to the spin Seebeck effect and offers new possibilities for the
thermoelastic control of the spin Seebeck effect.
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I. INTRODUCTION

By virtue of magnetoelastic coupling elastic deformations
may trigger a magnetization dynamics, and (magneto)elastic
waves maybe launched due to spin motion. The study of
elastically activated magnetic dynamics in ferro- and antifer-
romagnetic materials dates back to the late 1950s, starting
with seminal independent works by Akhlezer et al. [1] and
Kittel [2]. Further findings came from the discovery of the
magnetoelastic gap [3–5] that bears some resemblance to spon-
taneous symmetry breaking [6]. Since the magnetically excited
elastic waves affect in turn the magnetization dynamics, the
established magnetoelastic gap, being a second-order effect,
is proportional to the square of the magnetoelastic coupling
constant. Thus, the magnetoelastic gap is usually quite small
compared to the gap in the magnonic spectrum which is
induced, for instance, by a magnetocrystalline anisotropy or
by external field terms.

A thermal heating leading to a steady-state elastic deforma-
tion may serve as an alternative for activating (magneto)elastic
modes that occur in ferromagnetic films and heterostructures
[7–17]. Elasticity involving nonisothermal deformations is part
of the well-established field of thermoelasticity [18,19]. An
important question in the context of the present paper is to what
extent a steady-state thermoelastic deformation influences the
magnetoacoustic effect. Due to the grossly different timescales
of the dynamics, a steady-state thermoelastic deformation is
swiftly established (meaning equilibrated with the external
thermal bath) and is basically unaffected by the much slower
magnetization dynamics. The magnetization dynamics may
well be sensitive to thermoelastic deformation, however. We
will investigate here the theoretical aspects of thermal mag-
netoacoustics, i.e., thermally activated magnetoelastic effects
with a special focus on phenomena of interest to the active field

of spin caloritronics [20–36]. Experimentally, the utilization
of elasticity to steer the magnetic dynamics is meanwhile
accessible in a variety of settings. For instance, Rayleigh
surface acoustic waves that may couple to spin ordering can
be generated by irradiation with laser pulses [37]. This process
may well be accompanied by local heating spreading away
from the laser spot, which in turn may launch temporally a
spin Seebeck current. Heating by laser pulses was employed for
experiments concerning the time-resolved spin Seebeck effect
[38]. Simulations of the time-resolved spin Seebeck effect were
presented in Ref. [39].

A comprehensive study of the thermal magnetoacoustic
effect should encompass both heating and elasticity aspects.
Heating, for instance, by laser pulses leads to a buildup of a
nonuniform temperature distribution and possibly a temporal
magnonic spin Seebeck effect. Nonisothermal deformations
may also contribute to magnetoelastic activation of magnonic
spin current. For example, considering that nonisothermal
deformation of the thin film may reduce the gap in the
magnonic spectrum, the spin Seebeck effect may well be
modified, for a reduction in the magnonic gap increases the
number of magnons contributing to the spin Seebeck effect. In
what follows we explore the link between the nonisothermal
deformation (R) tensor εξζ (R) and the magnonic energy
spectrum ω2(q,R,εξζ (R)) at the wave vector q. We derive
analytical solutions for the deformation tensor and implement
them for the thermally activated magnetoelastic dynamics. We
analyze in detail the three-dimensional (3D) case of a bulk
sample and compare it with a two-dimensional (2D) case
of a thin film. Analytical results are complemented by full
numerical micromagnetic simulations.

This paper is organized as follows: in Sec. II we introduce
the model, and in Sec. III we discuss the generalities of the mag-
netothermal effect and derive explicit analytical expressions
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for the displacement vector and for the deformation tensor for
local and nonlocal heat sources. Section IV is dedicated to
the dispersion relations for thermally excited magnetoelastic
magnonic modes. In Sec. V we present analytical results for
the spin-wave dispersion in thin films, and in Sec. VI we ana-
lyze the results of the micromagnetic numerical calculations,
followed by a summary and conclusions.

II. GENERAL FORMULATION

We study the transversal magnetic dynamics of a magne-
toelastically coupled system as described by the deformation-
dependent time evolution of the unit vector field M. We will
work along a Landau-Ginzburg approach starting from the
energy functional

H = Hm + Umel(R). (1)

The magnetic part Hm can be broken down essentially into the
exchange, magnetocrystalline anisotropy, and Zeeman terms
(summation over repeated indexes is assumed),

Hm = Aξζ

∂M
∂xξ

∂M
∂xζ

+ Kξζ Mξ Mζ − B · M, (2)

where Aξζ is the exchange stiffness, Kξζ quantifies the mag-
netocrystalline anisotropy energy contribution, and B is an
external magnetic field. The magnetoacoustic energy density
Umel(R) reads

Umel(R) = B1

M2
s

M2
ξ εξξ + B2

M2
s

MξMζεξζ . (3)

Here MS is the saturation magnetization; Mξ (R),Mζ (R) are
the magnetization components along the ξ,ζ = x,y,z axes;
and B1,B2 are the magnetoelastic constants. The deformation
tensor has the explicit form

εξζ (R) = 1

2

(
∂uξ (R)

∂xζ

+ ∂uζ (R)

∂xξ

)
, (4)

where uξ (R) is the component of the displacement vector.
The stress tensor of the system σξζ satisfies the relation
Fξ = ∂σξζ

∂xζ
, where Fξ is the component of the external force

which is applied to the system. In the absence of an external
force, equilibrium requires that ∂σξζ

∂xζ
= 0. The stress and the

deformation tensors are interrelated via the algebraic relation

σξζ = E

1 + σ

(
εξζ + σ

1 − 2σ
εξξ δξζ

)
. (5)

Here E is the elasticity modulus, and σ is Poisson’s constant.

III. MAGNETOTHERMAL EFFECTS
IN THE 3D BULK SYSTEM

We will be dealing with small-amplitude displacements in
the 3D bulk system. Proceeding in a standard way, the equation
of motion for elastic waves without an applied thermal bias is
[19]

ρ
d2u
dt2

= E

2(1 + σ )
�u + E

2(1 + σ )(1 − 2σ )
∇(∇ · u). (6)

In the presence of an applied thermal bias ∇T , one derives the
equation of motion for the thermoelastic waves by adding the
temperature term,

ρ
d2u
dt2

= E

2(1 + σ )
�u

+ E

2(1 + σ )(1 − 2σ )
∇(∇ · u) − Eκ∇T

3(1 − 2σ )
. (7)

Here κ is the thermal expansion coefficient, and ∇T is a
temperature gradient which is due to laser heating, for instance.
Equation (7) describes the dynamics of the elastic modes
coupled to the magnetization dynamics via magnetoelastic
coupling Umel(R) [see Eq. (3)]. Classically, the magnetization
dynamics follows the stochastic Landau-Lifshitz-Gilbert equa-
tion

∂M(R,t)

∂t
= −γ M(R,t) × (Heff + h)

− A

h̄MS

M(R,t) × ∇2M(R,t)

+ α

Ms

M(R,t) × ∂M(R,t)

∂t
, (8)

with the deterministic effective field Heff = − δH
δM and H =

Hm + Umel(R) complemented by a random field h(R,t) due to
a Gaussian white noise with the autocorrelation function

〈hi(t,R)hj (t ′,R′)〉 = 2kBT (R)α

γMSa3
δij δ(R − R′)δ(t − t ′). (9)

Here α is the Gilbert damping, γ = 1.76×1011 (T s)−1 is the
gyromagnetic ratio, T (R) is the local temperature formed in the
system, and MS is the saturation magnetization. The magnonic
spin current tensor is evaluated as

J
Mξ

j = A

h̄MS

εξμνMμ∇j Mν . (10)

Latin indices refer to the spatial components, while Greek
indices refer to the spin projections. Since the magnetoelectric
term is part of the effective field in Eq. (8), it is expected
to contribute to the spin current (10). The temporal, spatially
nonuniform temperature profile ∇T (R,t) can be inferred from
the solution of the heat equation with the appropriate source
term I (R,t). Explicitly, this equation reads [39]

∂T (R,t)

∂t
= kph

ρC
∇2T (R,t) + I (R,t). (11)

C is the phonon heat capacity, kph is the phononic thermal
conductivity, and ρ is the mass density. The imparted energy,
e.g., by laser pulses is usually not completely absorbed by
the system but is partially dissipated. Thermal losses can
be incorporated in a realistic modeling of the laser heating
process. For more details we refer readers to Ref. [39].
It is important to consider the relevant timescales. When
the characteristic timescale of the heating process is faster
than the magnetization dynamics (i.e., the phonon relaxation
timescale and the time interval between laser pulses are shorter
than the precession time τ < 1/γHeff ), the magnetic system
experiences an effective temperature which is deduced from an
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average over the much faster timescales. In this case, instead of
the coupled set of equations (7), (8), and (11), we can explore
a steady-state problem. After some algebra, we derive for this
case the solution of the elasticity equation for the displacement
vector valid for an arbitrary averaged, nonuniform effective
temperature as

u(R) = − κ(1 + σ )

12π (1 − σ )
∇R

∫
T (R1) − T0

|R − R1| d3R1. (12)

The spatial temperature profile T (R) is arbitrary, satisfying
the asymptotic boundary condition T0 = T (|R − R0| → ∞),
where R0 defines the region where the heat source is localized.
In what follows we consider two different temperature profiles
formed in the system due to the laser heating.

A. Pointlike heat sources

Let us assume that the energy pumped, for instance, via
laser irradiation is localized such that T (R1) − T0 = Q

C
δ(R1),

where Q is the heat released by the laser and C is the heat
capacity of the material. The displacement vector u(R) reads
for this case

u
(
R

) = κ(1 + σ )Q

12π (1 − σ )C

R
R3

. (13)

With Eq. (13) we obtain the explicit form of the deformation
tensor

εξζ (R) = κ(1 + σ )

12π (1 − σ )

Q

C

1

R3

{
δξζ − xξxζ

R2

}
. (14)

Point heat sources are an idealization. In reality for thin films
the temperature profile decays exponentially, as proved by the
exact numerical solution of Eq. (11). Therefore, we explore an
exponential temperature profile.

B. Extended heat sources

Let us consider an exponential temperature profile matching
the numerical solutions of the heat equation with a nonlocal,
i.e., extended, heating source I . T (R1) = Q1

C
exp(−β|R1|) +

T0, where β is the characteristic decay length and Q1 is
the density of the heat released by the laser in the vicinity
of the point R1 = 0. The temperature in the heating point
T (0) = Q1/C + T0, and the asymptotic T (|R1| → ∞) = T0.
Following some involved calculations for the displacement
vector, we infer

u(R) = −κ(1 + σ )Q1

3(1 − σ )C
∇R

×
{

2

β3R
− e−βR

(
2

β3R
+ 1

β2

)}
. (15)

With this relation we obtain an explicit form of the deformation
tensor as

εξζ (R) = −κ(1 + σ )Q1

3(1 − σ )C

×
{
δξζ F1(βR) + xξxζ

R2
F2(βR)

}
. (16)

For brevity we introduced the notations

F1(y) = {exp(−y)(1 + 2/y) − 2/y2[1 − exp(−y)]}/y
and

F2(y) = [6 − 6 exp(−y) − y exp(−y)(6 + 3y + y2)]/y3.

Formally, Eqs. (13)–(16) exhibit a nonphysical divergence in
the limit R → 0. We note however, in a coarse-grained ap-
proach the unit cell is nondeformable. Therefore, the minimal
R → 0 for which the study of the deformation makes sense
is larger than the size of the coarse-grained cell |R → 0| > a,
and a ≈ 10 nm.

While in the general case the expression for the displace-
ment vector (15) is quite involved, it is easy to see that in the
asymptotic limit of the large R �→ ∞ we have a decay 1/R2.

C. Linear temperature profile

A linear temperature profile has played a central role
in the spin Seebeck experiments [40–42]. Thus, we con-
sider a temperature profile of the following form: T (R) =
−(T ′ − T0)R/Rmax + T ′, where T ′ > T0 and the temperature
at the edges is equal to T (0) = T ′, T (Rmax) = T0. Implement-
ing this linear temperature profile, we infer for the displace-
ment vector

u(R) = κ(1 + σ )(T ′ − T0)R
9(1 − σ )

(
1 − 3R

4Rmax

)
, (17)

and for the deformation tensor we have

εξζ = κ(1 + σ )(T ′ − T0)

9(1 − σ )

×
[
δξζ (1 − 3R/4Rmax) − 3xξxζ

4RmaxR

]
. (18)

As we see in the case of a linear temperature gradient,
the asymptotic behaviors of the displacement vector and the
deformation tensor are different and are nonmonotonic in
R =

√
x2 + y2 + z2. The maximum of the absolute value of

the displacement vector corresponds to the case |u(R)| =
2Rmax/3.

IV. DISPERSION RELATIONS FOR THERMAL
MAGNETOELASTIC SPIN WAVES IN BULK SYSTEMS

Taking into account Eqs. (8) and (13)–(16) and assuming
that the ground-state magnetization is aligned parallel to the z

axis, we derive the following dispersion relation for the coupled
magnetoelastic magnonic modes in the 3D bulk system:

ω2(q,R) =
[

2γAex

M2
s

q2 + K + γH0 − 2γB12

M2
s

(εzz − εxx)

]

×
[

2γAex

M2
s

q2 + K + γH0 − 2γB12

M2
s

(εzz − εyy)

]

−
(

2γB12

M2
s

εxy

)2

. (19)

Here B1 = B2 = B12 are the magnetoelastic coupling con-
stants.

Obviously, in the absence of the magnetoelastic effect
εξζ (R) = 0, the obtained result falls back to the well-known
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magnonic dispersion relation. Depending on the values of the
components of deformation tensor εξζ (R), the magnetoelastic
contribution in the magnonic dispersion relations can be posi-
tive or negative. A negative contribution − 2γB12

μ0Ms
(εzz−εxx)<0

or − 2γB12

μ0Ms
(εzz − εyy) < 0 decreases the magnonic gap, while

a positive contribution leads to an enhancement. Thus, the
thermal magnetoelastic effect can be used as a tool to reduce the
magnonic gap imposed by the magnetocrystalline anisotropy
or by an external magnetic field. A reduction in the gap
naturally increases the spin Seebeck effect since it enhances the
number of magnons contributing to the spin current. We note
that εξζ (R) is a local quantity and can be different for different
R. In some particular cases the magnonic gap can be enhanced,
and this naturally decreases the spin Seebeck current. After
inserting the explicit expression for the deformation tensor
εξζ (R) in Eq. (19), we deduce

ω(q,R) = 1

h̄

√(
Aq2 + f

(1)
R

)(
Aq2 + f

(2)
R

) − f
(3)
R . (20)

The particular values of the introduced functions f
(1,2,3)
R are

different for the exponential heat source, for the pointlike heat
source, and for the linear temperature profile.

(a) In case of a pointlike heat source we find

f
(1)
R = γ h̄

{
κ(1 + σ )

6πM2
s (1 − σ )

1

R2

Q

C
B1(z2 − x2) + H0

}
, (21)

f
(2)
R = γ h̄

{
κ(1 + σ )

6πM2
s (1 − σ )

1

R2

Q

C
B1(z2 − y2) + H0

}
, (22)

f
(3)
R =

{
γ h̄

κ(1 + σ )

6πM2
s (1 − σ )

1

R2

Q

C
B2xy

}2

. (23)

(b) In the case of an exponential temperature profile we find

f
(1)
R = γ h̄

{
2κ(1 + σ )Q1(z2 − x2)

3M2
s R2(1 − σ )C

B1F2(βR) + H0

}
, (24)

FIG. 1. The temperature profile in the 3D bulk system T (R1) =
Q1
C

exp(−β|R1|), formed due to the effect of the extended heat source.
The density of the heat released by the laser in the vicinity of the point
R1 = 0 is equal to Q1/C = 50 K, and the heat capacity of the nickel
C = 502 J/(kg K). For convenience we present the projection of the
temperature profile on the XOY plane by setting z = 0.

f
(2)
R = γ h̄

{
2κ(1 + σ )Q1(z2 − y2)

3M2
s R2(1 − σ )C

B1F2(βR) + H0

}
, (25)

f
(3)
R =

{
γ h̄

2κ(1 + σ )Q1xy

3M2
s R2(1 − σ )C

B2F2(βR)

}2

. (26)

(c) In the case linear temperature profile we deduce

f
(1)
R = h̄γ

{
B1

6RmaxRM2
s

κ(1 + σ )(T0 − T ′)
(1 − σ )

(x2 − z2) + H0

}
,

(27)

f
(2)
R = h̄γ

{
B1

6RmaxRM2
s

κ(1 + σ )(T0 − T ′)
(1 − σ )

(y2 − z2) + H0

}
,

(28)

f
(3)
R =

{
h̄γ

B2

6RmaxRM2
s

κ(1 + σ )(T0 − T ′)
(1 − σ )

xy

}2

. (29)

FIG. 2. Displacement tensors (a) ux and (b) uy in the 3D bulk
system, induced by the exponential temperature profile. The sym-
metry properties of the displacement tensors ux and uy are shown.
In particular, the ux component manifests a mirror symmetry with
respect to the reflection y → −y and antisymmetry with respect to
the reflection x → −x. Concerning the component uy , the behavior
is opposite: we find symmetry with respect to the reflection x → −x

and antisymmetry with respect to the reflection y → −y.
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FIG. 3. The displacement vectors in the 3D bulk system ux and
uy , induced by a linear temperature profile. The temperature in the
center is equal to T (0) = 50 K, and that at the edges is T (Rmax) = 0.

As we see from Eqs. (20)–(29), the dispersion relation for
mixed magnon-phonon modes are rather complex. The de-
pendence on the spatial variable R is nonuniform, with an
anisotropic character of the magnonic modes. Note that ob-
tained analytical results correspond to the 3D model, while for
the sake of simplicity in numerical calculations we consider
the 2D model.

Prior to the numerical calculations, we present illustrations
to support the involved analytical findings. We adopted the
material parameters of nickel: the saturation magnetization
is Ms = 4.8×105 A/m, the exchange constant is Aex =
4.6×10−12 A/m, the damping constant is α = 0.01, the
mass density is ρ = 8908 kg/m3, the heat capacity is C =
502 J/(kg K), the thermal conductivity is kph = 91 W/(m K),
Young’s modulus is E = 200 GPa, Poisson’s ratio is σ =
0.31, and the linear thermal expansion coefficient is κ =
1.3×10−5 K −1. For an exponential temperature profile we set
the decay length as β = 5×106 m−1, T0 = 0, and Q1/C =
50 K. The result for the exponential temperature profile
T (R1) = q

C
exp (−β|R1|) + T0 is shown in Fig. 1. As we

can see, the temperature profile is isotropic and symmetric
in the xy plane. The temperature is maximal in the area

FIG. 4. The deformation tensor in the 3D bulk system εxx in-
duced by an exponential temperature profile (extended heat source)
T (R1) = Q1

C
exp(−β|R1|). The density of the heat released by

the laser Q1/C = 50 K, and the heat capacity of the nickel
C = 502 J/(kg K).

FIG. 5. The deformation tensor in the 3D bulk system εyy ,
induced by an exponential temperature profile (extended heat
source) T (R1) = Q1

C
exp(−β|R1|). The density of the heat released

by the laser Q1/C = 50 K, and the heat capacity of the nickel
C = 502 J/(kg K).

heated by the laser and decays exponentially with increasing
distance from the laser spot. The symmetry properties of the
displacement tensors ux and uy for an exponential temperature
profile are quite intriguing (see Fig. 2). We clearly observe
that the ux component possesses a mirror symmetry with
respect to reflection y → −y and is antisymmetric with respect
to the reflection x → −x. Concerning the component uy ,
the situation is the opposite: it is symmetric with respect
to the reflection x → −x and antisymmetric with respect to
y → −y. In the case of the linear temperature gradient (see
Fig. 3) the symmetry properties of the displacement vector
are preserved, but the maximum is slightly shifted to the
edges of the sample |u(R)| = 2Rmax/3. The components of
the deformation tensor εxx , εyy , and εxy for the extended heat
source are shown in Figs. 4, 5, and 6, and those for the
linear temperature profile are shown in Fig. 7. The diagonal
components εxx and εyy are larger but localized, while the

FIG. 6. The deformation tensor in the 3D bulk system εxy ,
induced by an exponential temperature profile (extended heat
source) T (R1) = Q1

C
exp(−β|R1|). The density of the heat released

by the laser Q1/C = 50 K, and the heat capacity of the nickel
C = 502 J/(kg K).
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FIG. 7. The deformation tensors in the 3D bulk system εxx , εyy ,
and εxy , induced by a linear temperature profile. The temperature in the
center is equal to T (0) = 50 K, and that at the edges is T (Rmax) = 0.

nondiagonal component of the deformation tensor εxy decays
slower with distance and is finite in the whole sample.

The reduction in the magnonic gap can be illustrated as fol-
lows: The magnonic frequency ω(q,R,εξζ (R)) increases with
q. Suppose the following equation holds: ω(q1,R1,εξζ (R1)) =
ω(q2,R2,εξζ (R2)) for q1 > q2. This means that in the vicinity
of R1 the magnetoelastic coupling degrades the magnonic
frequency and around R2 increases it. Thus, by the constraint
ω(q,R,εξζ (R)) = const we can explore the function q(R) or
its inverse function. Using the exponential temperature profile
and the analytically derived deformation tensor εξζ (R), the
dispersion relation is calculated based on Eq. (20) with H0 =
3×105 A/m. For a fixed frequency f = ω/(2π ) = 15 GHz,
the profile of q(x,y) is shown in Fig. 8(a). Similar to the
temperature profile T (x,y) the symmetry features of the
magnon profile manifest isotropy in the xy plane. In the center
(x = 0,y = 0), q reaches a minimum. The value of q in-
creases gradually with distance from the center, reaching a
maximum and beginning to decrease near to the boundary.
Since ω(q,R,εξζ (R)) is fixed, an increase in the wave vector
is compensated by a negative contribution of the deformation
tensor εξζ (R) in the magnon dispersion relation. Therefore,
the maximum of q for a given fixed frequency ω(q,R,εξζ (R))
corresponds to a minimum in the magnonic gap. We further
calculate the elastic shift of the dispersion relations for different
values of the coordinate x and a fixed value of the y = 0
coordinate, as shown in Fig. 8(b). As we see, the magnetoelastic
effect either can increase the magnonic gap [Fig. 8(b)] or may
decrease depending on the geometry of the sample and on the
parameters. We note that the value of the gap is a local quantity
that depends on R.

V. THERMOELASTIC DISPERSION RELATIONS
IN THIN MAGNETIC FILMS

Having explored the 3D case of a bulk system, we derive the
thermoelastic dispersion relations for a thin 2D magnetic film.

FIG. 8. (a) The profile of the wave vector q(x,y) in the 3D bulk
system f = ω(q,R)/(2π ). The spatial distribution of magnons with
the same fixed frequency f = ω(q,R)/(2π ) = 15 GHz but different
wave vectors q is plotted. (b) For selectively chosen areas, x =
5,50,200 nm, z = 0, and y = 0, the dispersion relation of magnons is
calculated using the analytical result (20). Values of the parameters are
Aex = 4.6×10−12 J/m, γ = 1.76×1011 (T s)−1, Ms = 4.8×105 A/m,
H0 = 3×105 A/m, B1 = B2 = 7.85×108 J/m3.

The solution of the elasticity equation for the displacement
vector reads

u(R) = χ

∫
[T (R1) − T0]

R − R1

(R − R1)2
d2R1,

χ = κ(1 + σ )

6π (1 − σ )
. (30)

Similar to the 3D case, for a 2D thin film we consider pointlike
and extended heat sources.

A. Pointlike heat source

In particular for the pointlike heat source T (R1) − T0 =
Q

C
δ(R1) we infer

u(R) = χ
QR
CR2

, (31)

while for the deformation tensor we obtain

εξζ = χQ

C

(
δξζ

R2
− 2xξxζ

R4

)
. (32)
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We note that the plane deformation tensor εξζ has three
independent components: εxx,εyy,εxy = εyx .

We already see the difference from the bulk system. Instead
of 1/|R2| for the bulk system [Eq. (13)], for the 2D thin
magnetic film the displacement vector decays slower 1/|R|.
The same applies to the deformation tensor (32).

The magnetoacoustic energy density of the thin film has the
form

Umel(R) = B1

M2
s

(
M2

x εxx + M2
y εyy

) + 2B2

M2
s

MxMyεxy, (33)

and the effective magnetoacoustic field is

Hxeff = −2B1

M2
s

εxxMx − 2B2

M2
s

εxyMy,

Hyeff = −2B2

M2
s

εyxMx − 2B1

M2
s

εxxMx. (34)

Utilizing Eqs. (8), (33), and (34) and assuming that the ground-
state magnetization is aligned parallel to the z axis, we derive
the following dispersion relation of the coupled magnetoelastic
magnonic modes in the thin films:

ω(q,R) = 1

h̄

√(
Aq2 + g

(1)
D

)(
Aq2 + g

(2)
D

) − g
(3)
D ,

g
(1)
D = h̄γ

(
H0 + 2B1

M2
s

εxx

)
,

g
(2)
D = h̄γ

(
H0 + 2B1

M2
s

εyy

)
,

g
(3)
D =

(
h̄γ

2B2

M2
s

εxy

)2

. (35)

As we see from Eq. (35), the dispersion relation is defined by
the external field H0 and the deformation tensor εξζ .

B. Extended heat source

In order to explore the effect of the extended heat source
we solve the heat equation (11):

∂2T (x,y)

∂x2
+ ∂2T (x,y)

∂y2
= −aI (x,y), a = ρC

kph

. (36)

We adopt the source term I = I0e
−α(x+y), with a positive

characteristic decay constant α > 0 and the following bound-
ary conditions: x > 0,y > 0. Then, the stationary solution of
Eq. (36) reads

T (x,y) = − aI0

2α2
e−α(x+y) + T0,

α > 0, x > 0, y > 0. (37)

Taking into account Eq. (37) for the displacement vector and
the deformation tensor, we deduce the following solutions:

ux(x,y) = −χ
aI0

2α2

∫ ∞

0

∫ ∞

0
e−α(x1+y1) (x − x1)dx1dy1

(R − R1)2
,

uy(x,y) = −χ
aI0

2α2

∫ ∞

0

∫ ∞

0
e−α(x1+y1) (y − y1)dx1dy1

(R − R1)2

(38)

and

εxx = −εyy

= χ
aI0

2α2

∫ ∞

0

∫ ∞

0
e−α(x1+y1) (x−x1)2 − (y−y1)2

(R − R1)4
dx1dy1,

εxy = εyx

= χ
aI0

α2

∫ ∞

0

∫ ∞

0
e−α(x1+y1) (x − x1)(y − y1)

(R − R1)4
dx1dy1,

(R − R1)2 = (x − x1)2 + (y − y1)2. (39)

The obtained result is quite involved in general and can be made
transparent by numerical simulations. In the isotropic case, the
problem simplifies, and we obtain an analytical solution in a
closed form.

C. Extended isotropic heat source

We assume that the source term is isotropic I = I0e
−αR

and the temperature is a function of only R. Utilizing polar
coordinates and performing the integration over the angle, we
obtain from Eq. (36)

1

R

∂

∂R

(
R

∂T (R)

∂R

)
= −aI (R). (40)

We adopt the boundary condition T (R → ∞) = T0 and find
the stationary solution of the heat equation in the following
form:

T (R) − T0 = − I0

α2
[�(0,αR) + e−αR]. (41)

Here �(α,z) = ∫ ∞
z

tα−1e−t dt is the incomplete gamma func-
tion.

Taking into account the temperature profile (41), for the
displacement vector and the deformation tensor we deduce the
following solutions:

ux = −χ
I0

α2

∫ ∞

0

∫ 2π

0
[�(0,αR′) + e−αR′

]

× R cos θ − R′ cos θ ′

R2 + R′2 − 2RR′ cos(θ − θ ′)
R′dR′dθ ′, (42)

uy = −χ
I0

α2

∫ ∞

0

∫ 2π

0
[�(0,αR′) + e−αR′

]

× R sin θ − R′ sin θ ′

R2 + R′2 − 2RR′ cos(θ − θ ′)
R′dR′dθ ′. (43)

After performing the integration for the displacement vector
and the deformation tensor, we arrive at the expressions

ux = −χ
3πI0

2α4

x

R2
, (44)

uy = −χ
3πI0

2α4

y

R2
(45)

and

εxx = −εyy = χ
3πI0

2α4

x2 − y2

R4
, (46)

εxy = εyx = χ
3πI0

α4

xy

R4
. (47)
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FIG. 9. For the 2D thin magnetic film andx = 5,50 nm andy = 0,
the dispersion relation calculated using Eq. (35) and the following val-
ues of the parameters: Aex = 4.6×10−12 J/m, γ = 1.76×1011 (T s)−1,
Ms = 4.8×105 A/m, H0 =3×105 A/m, B1 =B2 =7.85×108 J/m3,
−I0/α=0.01 K, α=5×106 m−1, κ =1.3×10−5 K−1, and σ =0.31.

Here R2 = x2 + y2 is the in-plane radius vector. In order
to obtain the dispersion relations in a closed form, we use
Eqs. (44)–(46) in Eq. (35). Plots of the displacement vector,
the deformation tensor, and the dispersion relation in the case
of a 2D extended heat source are presented in Fig. 9. As we
can see, the magnon dispersion relation is local and is different
in the different areas of the film.

D. Linear temperature profile in thin magnetic films

We consider again a linear temperature profile of the fol-
lowing form: T (R) = −(T ′ − T0)R/Rmax+T ′, where T ′ >T0

and the temperature at the edges is equal to T (0) = T ′,

FIG. 10. For the 2D thin magnetic film, the steady-state spatial
temperature profile formed in the system due to laser heating. The
result is obtained via a numerical solution of the heat equation. The
maximum temperature in the area heated by laser pulses is T0 = 40 K
in the vicinity of the point x = 0 and y = 0 and decays gradually to
zero with the distance.

FIG. 11. For the 2D thin magnetic film, the projective plot of the
steady-state spatial temperature profile formed in the system due to
laser heating following the numerical solution of the heat equation.

T (Rmax) = T0. The displacement vector behaves as

ux = −χ (T0 − T ′)
πR2

max

6

x

R2
, (48)

uy = −χ (T0 − T ′)
πR2

max

6

y

R2
, (49)

FIG. 12. For the 2D thin magnetic film, the steady-state spatial
profile of the displacement vectors (a) ux and (b) uy .
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and the deformation tensor reads

εxx = −εyy = χ (T0 − T ′)
πR2

max

6

x2 − y2

R4
, (50)

εxy = εyx = χ (T0 − T ′)
πR2

max

6

xy

R4
. (51)

As is evident, a linear temperature profile in thin magnetic films
leads to asymptotic decay: 1/R for the displacement vector and
1/R2 for the deformation tensor.

VI. NUMERICAL RESULTS

The numerical simulations are performed for a two-
dimensional nickel film. The external field with Hz = 4.5×105

A/m is applied along the x axis, leading to a uniform ground
state. A two-dimensional ferromagnetic thin film with a length
of 1000 nm is aligned along the x axis and has a width of
1000 nm in the y direction. We also assume that the source
term that enters in the heat equation and describes the effect
of the laser heating is a local function, I (R,t) = δ(R − R0),
corresponding to the case when the intensity of the laser field
is spatially localized. This approximation is similar to the
local heat source model discussed analytically in the previous
sections. We assume the heating laser spot is around (x = 0 nm,
y = 0 nm). The thermal effect of the laser heating is described

FIG. 13. For the 2D thin magnetic film, the steady-state spatial
profile of the displacement vectors (a) ux at y = 0 and (b) uy at x = 0.

by the heat equation (11) using the fixed boundary conditions

T (x = 500 nm) = 0,

T (x = −500 nm) = 0,

T (y = 500 nm) = 0, T (y = −500 nm) = 0. (52)

The value of the temperature T0 formed in the area of
the heating laser depends on the laser intensity I . For the
boundary conditions (52) implemented numerically in the heat
equation (11) we obtain the stable spatial temperature profile.
As inferred from Fig. 10, the temperature profile T (x,y) shows
an exponential decay with the distance from T0(x = 0,y = 0).
This numerical result for the temperature profile is in good
agreement with the assumptions used for the analytical solu-
tion. The exponential character of the decay of the temperature
profile is more evident from Fig. 11.

The heat diffusion induces a thermal gradient ∇T and
an elastic deformation in the system. Using the equation of
elasticity (7), we find numerically the temperature profile
T (x,y) and calculate the components of the displacement
vector for the following fixed boundary conditions:

u(x = 500 nm) = (0,0,0),

u(x = −500 nm) = (0,0,0),

u(y = −500 nm) = (0,0,0),

u(y = 500 nm) = (0,0,0). (53)

FIG. 14. For the 2D thin magnetic film, the steady-state spatial
profile of the components of the magnonic spin current tensors (a)
J Mx

x and (b) J Mx
y with an elastic term when T0 = 80 K.
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The steady-state components of the elastic displacement
vectors ux and uy are shown in Figs. 12 and 13. We recognize
a certain similarity with the previously obtained analytical
results. Namely, we clearly see that the ux component exhibits
mirror symmetry with respect to the reflection y → −y and
is antisymmetric with respect to the reflection x → −x. Con-
cerning the component uy , the situation is reversed: symmetry
is given for x → −x, and antisymmetry is given for y → −y.
The components of the deformation tensor εxx , εyy , and εxy are
shown in Figs. 4, 5, and 6. The diagonal components εxx and
εyy are larger but localized, while the nondiagonal component
of the deformation tensor εxy decays slower and remains finite
in the whole sample.

We implement the numerically deduced temperature profile
T (x,y) and the elastic displacement profile u(x,y) in the
stochastic Landau-Lifshitz-Gilbert equation (8). The existence
of the thermal gradient formed in the system due to the laser
heating may lead to the emergence of magnonic spin current
and a longitudinal spin Seebeck effect. However, on top of this
standard effect, the thermal heating leads to a thermal activation
of the deformation tensor. Due to the magnetoelastic interac-
tion the thermally activated deformation tensor contributes to
the magnetization dynamics and modifies the net magnonic
current. For T0 = 80 K, the components of the magnonic spin
current tensor JMx

x = 2γAex

μ0M2
s

(My∂xMz − Mz∂xMy) and JMx
y =

2γAex

μ0M2
s

(My∂yMz − Mz∂yMy) are plotted in Fig. 14.

FIG. 15. For the 2D thin magnetic film, the steady-state spatial
profile of the components of the magnonic spin current tensors in
the absence of a magnetoelastic effect (a) J Mx

x and (b) J Mx
y when

T0 = 80 K.

Figure 15 shows that the magnon current emerges in the
area heated by the laser pulses and propagates according to
the formed thermal bias (which has been established swiftly
on the magnon timescale). The JMx

x and JMx
y components

of the spin current tensor are negative for x > 0 and y > 0,
respectively, becoming positive in the rest of the sample. We
observe a similar abrupt switching of the displacement vectors
ux and uy in Fig. 12(b). To highlight the role of the elastic term
in the magnonic spin current we plot the magnonic current in
the presence and absence of the magnetoelastic contribution
for the same thermal gradient. Figure 15 shows the profile of
the magnonic spin current, in particular the tensor components
JMx

x and JMx
y . They have qualitatively the same behavior in the

presence and in the absence of the magnetoelastic coupling.
However, as shown in Fig. 16, the value of JMx

y obviously
becomes larger with the elastic term, while the change in JMx

x

due to the elastic term is marginal. We conclude that elasticity
leads to the enhancement of the magnonic spin Seebeck current
in certain directions. Also, the bias temperature is important.
Raising T0 and hence u, the increase in the magnonic spin
current JMx and the elastic enchantment of JMx

y are evident, as
shown in Fig. 17.

To understand the selective enhancement of the magnonic
spin current induced by the magnetoelastic coupling we in-
spect the x component of the magnetoelastic effective field

FIG. 16. For the 2D thin magnetic film, the steady-state spatial
profile of the components of magnonic spin current tensor (a) JMx

x

at y = 0 and (b) J Mx
y at x = 0 with and without the magnetoelastic

term.
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FIG. 17. For the 2D thin magnetic film, the averaged J Mx
x in

((−500) nm < x < 0,y = 0) and J Mx
y in (x = 0,(−500) nm<y <0)

with and without the magnetoelastic term.

H eff
ME−x = −[δUmel(R)/δM(R)]x in Fig. 18(a), which shows

that the effective magnetoelastic field is directed opposite
to the external field. Therefore, it reduces the gap in the
magnon spectrum. By changing the equilibrium magnetization
along +y, the distribution of the effective magnetoelastic

FIG. 18. For the 2D thin magnetic film, (a) the profile of the nu-
merically obtained x component of the magnetoelastic effective field
H eff

ME−x with the equilibrium magnetization in the +x direction and
(b) the profile of the y component of the magnetoelastic effective field
H eff

ME−y , calculated numerically with the equilibrium magnetization in
the +y direction.

FIG. 19. For the 2D thin magnetic film, the averaged J
My
x in

((−500) nm < x < 0,y = 0) and J
My
y in (x = 0,(−500) nm<y <0)

with and without the magnetoelastic term.

field is changed [Fig. 18(b)], and the corresponding magnonic
spin current, i.e., J

My

x , is selectively enhanced. This feature
is further proved by Fig. 19. The maximal temperature in
the center of the laser intensity is equal to T0 = 80 K. For
the experimental observation of the thermoelastic effect, we
suggest exploiting the magnetization-sensitive thermoelastic
effect and detecting the spin Seebeck effect for the different
directions of the equilibrium magnetization.

For a typical spin Seebeck experiment, the spin current
is measured by means of the inverse spin Hall effect using
an attached platinum detecting bar. The total net current
I = Isp + If l consists of two contributions: the spin pumping
current Isp flowing from the magnetic insulator towards the
detecting bar and a backward spin current If l = −Msm×h
injected from the detecting bar into the magnetic insulator
[42]. Here h is the random magnetic field related to the
platinum detecting bar. An interesting question is whether
thermoelasticity is important for the backward spin current. To

FIG. 20. For the 2D thin magnetic film, the x component of
the backward spin current Ix

f l in the presence and absence of the
thermoelastic effect. The temperature Td of the detecting bar is
uniform, while the temperature of the magnet is inhomogeneous. The
equilibrium magnetization is along +x.
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answer this question, we calculate the backward spin current
If l in the presence and absence of the thermoelastic effect. The
result of the numerical calculations is shown in Fig. 20. As we
can see, thermoelasticity has no influence on the backward spin
current.

VII. CONCLUSIONS

We studied the spin Seebeck effect in bulk samples and
thin ferromagnetic films and explored the influence of the
thermoelastic steady-state deformation on the magnonic spin
current. For a particular temperature profile in the system, we
obtained analytical expressions for the thermoelastic defor-
mation tensor. We derived analytical results for both the 3D
bulk system and 2D thin magnetic film. We observed that the
displacement vector and the deformation tensor in bulk systems
decay asymptotically as u ∼ 1/R2 and ε ∼ 1/R3, respectively.
The decay in thin magnetic films is slower, with u ∼ 1/R, and

ε ∼ 1/R2. We found that due to the magnetoelastic coupling,
the thermoelastic deformation tensor has a significant impact
on the magnetization dynamics. We derived analytical expres-
sions for the dispersion relations for thermoelastic magnons,
highlighting a principal difference between the thermoelastic
and magnetoelastic effects. Magnetoelastic effects always
enhance the magnetoelastic gap in the magnonic spectrum.
Thermoelastic steady-state deformation may lead either to an
enchantment or to a reduction in the gap of the magnonic
spectrum. A reduction in the gap increases the number of
magnons contributing to the spin Seebeck effect, offering a
thermoelastic control of the spin Seebeck effect.
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