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Dipolar interaction induced band gaps and flat modes in surface-modulated magnonic crystals
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Theoretical results for the magnetization dynamics of a magnonic crystal formed by grooves on the surface of a
ferromagnetic film, called a surface-modulated magnonic crystal, are presented. For such a system, the role of the
periodic dipolar field induced by the geometrical modulation is addressed by using the plane-wave method. The
results reveal that, under the increasing of the depth of the grooves, zones with magnetizing and demagnetizing
fields act on the system in such a way that magnonic band gaps are observed in both Damon-Eshbach and backward
volume geometries. Particularly, in the backward volume configuration, high-frequency band gaps and low-
frequency flat modes are obtained. By taking into account the properties of the internal field induced by the grooves,
the flattening of the modes and their shift towards low frequencies are discussed and explained. To test the validity
of the model, the theoretical results of this work are confirmed by micromagnetic simulations, and good agreement
between both methods is achieved. The theoretical model allows for a detailed understanding of the physics
underlying these kinds of systems, thereby providing an outlook for potential applications on magnonic devices.
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I. INTRODUCTION

Spin waves (SWs) at microwave frequencies are of current
interest for the field of nanomagnetism and spintronics. From a
practical point of view, experimental techniques involving SWs
allow us to determine the fundamental parameters of magnetic
materials, while from the application viewpoint, such waves
operate at gigahertz frequencies with nanometric wavelengths,
which encourages the development of miniaturized microwave
signal processing SW-based devices [1,2]. One of the potential
aspects of SW-based technologies is that both the amplitude
and the phase of spin waves may encode information [3,4].
In addition, SWs have further been proposed as building
blocks for computational architectures allowing us to perform
logic operations [5–7]. In the field of magnonics, artificial
magnetic media with periodic properties, called magnonic
crystals (MCs) [1,2,8], are of great interest for magnon-based
applications since their dynamic behavior significantly differs
from those of non-periodic magnetic systems [9–17]. SWs in
MCs exhibit adjustable frequency band gaps (BGs), which
can be optimized by modulating the magnetic parameters or
changing the geometry and arrangement of periodic scattering
centers [9–33]. The design of MCs has wide versatility since
these media can be created by artificial modulation of the
magnetic properties, either in the form of dipolarly cou-
pled nanowires [21], bicomponent magnonic crystals [12–14],
width-modulated waveguides [30,32], antidot lattices [34,35],
or modulated thickness films [36–41] or by means of ion
implantation [42,43]. Also, reconfigurable magnonic crystals
with a periodic induction of perpendicular magnetic anisotropy
have been designed [44].

The broadband vector network analyzer ferromagnetic res-
onance (VNA-FMR) technique has been used to study the
dynamic properties of magnonic crystals [38,41,45,46], where
additional modes have been observed in the backward-volume
(BV) configuration due to the coupling of the coherent FMR
mode with standing spin waves that have a wavelength that
is an integer multiple of the periodicity. On the other hand,
a large number of studies based on Brillouin light scattering
have been carried out on MCs [11–14], where the presence of
frequency band gaps has been confirmed, in full agreement
with theoretical results. Moreover, bicomponent MCs have
been widely studied [12–14,47–49], where periodic proper-
ties originate from a different saturation magnetization Ms,
anisotropy K , or exchange constant A. Thus, modification of
these parameters allows for controlling the BG position and
the localization of SWs. For instance, increasing the contrast
of Ms of a bicomponent MC can lead to a broadening of
the BG frequency range and enable the concentration of a
spin-wave excitation within the zone of lower or higher satura-
tion magnetization. However, experimentally defining material
parameters such as magnetization or exchange length with
laterally well defined periodicities often is not straightforward
and suffers from limitations of the range in which variations are
possible for a given material. A periodic surface modulation of
a ferromagnetic (FM) thin film is an interesting alternative to
creating magnonic structures and devices, where the periodic
properties are attributed to the size of the modulation [38–
41,45,46,50–55]. For instance, yttrium iron garnet (YIG)
films with periodic arrays of micrometer-sized etched grooves
have been synthesized [45,46,50,51,53–55], while FM films
with nanometric grooves have been created by means of ion
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implantation [42,43] and electron-beam lithography [40]. In
these kinds of systems, it is shown that the periodic pattern
influences the SW dynamics in both Damon-Eshbach (DE)
and BV geometries. Particularly, for BV spin waves, rejection
bands have been observed [45,51,55] which are almost inde-
pendent of the wave vector [55]. These nearly flat modes were
attributed to the fact that spins became dynamically pinned as a
result of the demagnetizing field, which is expected to increase
in the BV configuration [55].

In this paper, a surface-modulated magnonic crystal
(SMMC), which is formed by an array of grooves placed on one
of the surfaces of a FM film, is theoretically addressed by using
the plane-wave method and micromagnetic simulations. The
dipolar fields created by the trenches are analytically described,
and both the static and dynamic dipolar magnetic fields are
taken into account. It is shown that the periodic dipolar fields
open frequency band gaps in both DE and BV configurations.
Particularly, in the BV geometry flat bands are obtained, which
reveal a notorious frequency separation between them. The
nature of the flatness of the modes and their shift towards low
frequencies are explained by taking into account the spatial
distribution of the internal field and the spin-wave localization.
By controlling the depth of the grooves, the mode frequencies,
spatial profiles, and forbidden frequency gaps of spin waves
can be manipulated.

II. THEORETICAL DESCRIPTION

In a bicomponent MC, the periodic properties originate
from the contrast between two ferromagnetic materials with
different magnetic parameters, for instance, the saturation
magnetization Ms or exchange constant A. Nevertheless, in
an surface-modulated MC the periodic properties arise mainly
from the magnetic charges created at the edges of the stripelike
grooves, as shown Fig. 1(b) for a one-dimensional SMMC.
For a periodic magnetic system with infinite sides, some
theoretical approaches have been used, such as the plane-
wave method [22], the Green’s function method [56], the
multiple-scattering theory [57], the two-magnon scattering
approach [36,38], and the Kronig-Penney model [18], among
others. For finite periodic structures, where the boundary
conditions at the system’s edges are relevant, some theoretical
approaches have also been developed [54,58–60]. For the
system shown in Fig. 1, the plane-wave method will be applied.

The temporal evolution of the system can be described using
the Landau-Lifshitz (LL) equation Ṁ(r; t) = −γ M(r; t) ×
He(r; t). Here, γ is the absolute value of the gyromagnetic
ratio, M(r; t) is the magnetization, and He(r; t) is the effective
field. For small deviations around the equilibrium, both the
magnetization and the effective field are written as M(r; t) =
MsẐ + m(r; t) and He(r; t) = He0(r) + he(r; t), respectively.
Note that Ẑ points along the equilibrium orientation of the
magnetization, which lies in plane, and he(r; t) is proportional
to the dynamic magnetization m(r; t). Thus, in the linear
regime, the LL equation reads

i�mX(r) = −mY (r)H e0
Z (r) + Msh

e
Y (r), (1a)

i�mY (r) = mX(r)H e0
Z (r) − Msh

e
X(r), (1b)

FIG. 1. In (a) the top view of the surface-modulated MC is shown,
where two coordinate systems are depicted. The coordinates (x,y,z)
are defined by the periodic structure’s geometry, while (X,Y,Z) are
defined according to the equilibrium orientation of the magnetization,
which points along Z, with X lying in the film’s plane. In (b) the cross
section is shown, where d denotes the thickness of the nominal film,
δ is the depth of the grooves, az is the lattice parameter along the z

direction, and wz is the width of the thicker part of the film. The red
curve in (c) shows the periodic dipolar field [see Eqs. (7) and (8)]
created by the static magnetic charges at the edges of the grooves for
δ = 2 nm and ϕ = 0. Additional magnetic parameters are given in
Sec. III.

where it has been assumed he(r; t) = he(r)eiωt and m(r; t) =
m(r)eiωt , and it is also defined � = ω/γ . Moreover, note
that H e0

η (he
η) is the η component of the static (dynamic)

effective magnetic field. The effective field is defined as
He(r) = H + Hex(r) + Hd(r) + HI(r), where H is the external
field and Hex(r) = 4πλ2

ex∇2M(r) is the exchange field with
λex = √

2A/4πM2
s , where A is the exchange stiffness con-

stant. Furthermore, Hd(r) is the dipolar field of the flat film,
and HI(r) is the dipolar field induced by the periodic magnetic
charges that reside at the edges of the grooves d < y < d + δ,
where d is the thickness of the nominal film and δ defines
the depth of the grooves (see Fig. 1). According to Fig. 1,
the periodic distribution of the top surface induces a periodic
stray field that interacts with the magnetization of the nominal
film. In this way, according to Bloch’s theorem, the dynamic
components of the magnetization can be expanded into Fourier
series as m(r) = ∑

G m(G)ei(G+k)·r, where G = Gqx̂ + Gnẑ

denotes a reciprocal lattice vector, with Gq = (2π/ax)q, Gn =
(2π/az)n, and both n and q being integer numbers. Note that
ax (az) represents the lattice constant, or lattice parameter,
along the x axis (z axis). The above picture considers a general
two-dimensional periodic modulation of the grooves, which
can easily be adapted to one-dimensional periodic structures
by setting Gq = 0. The dynamic components of the dipolar
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field averaged over the film’s thickness are

hd
Y (r) = −4π

∑
G

mY (G)ζ (G + k,d)ei(G+k)·r (2)

and

hd
X(r) = 4π

∑
G

mX(G)ξ (G,k)2 ζ (G + k,d) − 1

|G + k|2 ei(G+k)·r,

(3)
where

ζ (Q,d) = 2 sinh[|Q|d/2]e−|Q|d/2

|Q|d (4)

and

ξ (G,k) = (Gn + kz) sin ϕ − (Gq + kx) cos ϕ. (5)

Likewise, the dynamic exchange field components are

hex
X,Y (r) = −4πλ2

ex

∑
G

(G + k)2mX,Y (G)ei(G+k)·r. (6)

The Z component of the static dipolar field created by the
edges of the etched zones can be written as H I0

Z (r) = H I0
1Z(r) +

H I0
2Z(r), with H I0

1Z(r) [H I0
2Z(r)] being the static field inside the

zone d > y > 0 [d + δ > y > d]. These components are (see
details in Appendix A)

H I0
1Z(r) = −2πMs

∑
G

CGχ (G)2 η(G)d

|G|2(d + δ)
eiG·r (7)

and

H I0
2Z(r) = 4πMs

∑
G

CGχ (G)2δ
ζ (G,δ) − 1

|G|2(d + δ)
eiG·r, (8)

where

η(G) = e−|G|(d+δ)

|G|d (e|G|d − 1)(e|G|δ − 1). (9)

Also, the dynamic components of the field HI(r) are

hI
Y (r) = 2π

∑
G,G′

CG′ei(G+G′+k)·r
{
mY (G)η(G + G′ + k)

− imX(G)ξ (G + G′,k)
η(G + G′ + k)

|G + G′ + k|
}

(10)

and

hI
X(r) = −2π

∑
G,G′

CG′ei(G+G′+k)·r

×
{
mX(G)ξ (G + G′,k)2 η(G + G′ + k)

|G + G′ + k|2

+ imY (G)ξ (G + G′,k)
η(G + G′ + k)

|G + G′ + k|
}
. (11)

In Eqs. (7), (8), (10), and (11) the coefficients CG account
for the geometry of the periodic structure, which may be in
the form of stripes, circular dots, squares, etc. [38]. In general,
the static field component H I0

Z (r) and the dynamic one hI
X,Y

enter directly in the dynamics of the system through Eq. (1),
while the H I0

X (r) and H I0
Y (r) components affect only the static

properties of the system. Now, inserting all field contributions
into Eq. (1), the following eigenvalue problem is obtained:

Ã mG = i� mG, (12)

where mT
G = [mX(G1), . . . ,mX(GN ),mY (G1), . . . ,mY (GN )]

is the eigenvector and Ã is given by

Ã =
(

ÃXX ÃXY

ÃYX ÃYY

)
. (13)

Explicit expressions of the matrix elements of Eq. (13) can be
found in Appendix B. Now, by using standard numerical meth-
ods and a convergence test to check the reliability of the results,
the eigenvalues and eigenvectors of Eq. (12) can be obtained.

Additionally, to get insight into both the frequency depen-
dence of the modes and the SW profiles in the long-wavelength
limit, micromagnetic simulations have been carried out using
the MUMAX3 code [61]. Here, a magnetic film was built up in
the (64; y; 4096) cells with total dimensions of (256 nm; Yc;
5.3 μm) and a mesh size of (4.0 nm; Yc; 3.74 nm). Next, a
140-nm-wide wire with thicknesses of 1–5 nm was centrally
put on top of the film, forming the intact film part. The wire was
repeated 51 times with a spacing of az = 300 nm. To consider
the reality of an extended surface-modulated film, periodic
boundary conditions were chosen along the x and z directions.
The number of y cells and the corresponding cell size Yc were
chosen according to the ratio of the wire thickness and the film
thickness. The external field was applied in the z direction,
whereas the excitation field was chosen in the y direction. Two
different kinds of simulations were carried out using the system
described above. First, the spin-wave dispersion relation was
calculated similarly to the approach presented in Ref. [62], but
the homogeneous excitation field was replaced by a localized rf
field of approximately 140 nm width. The spin-wave dispersion
was extracted using a spatial fast Fourier transform (FFT)
approach along the z direction. Furthermore, FMR simulations
based on the approach given in Ref. [63] were carried out. The
dynamic magnetization m(r,ω) was extracted by employing
a FFT in time for all cells. To obtain the SW profiles for a
given frequency f0 the transformed amplitude and phase were
filtered and then transformed back into real space. Especially in
the backward-volume geometry, this approach is very useful in
the system presented here due to the more or less flat spin-wave
branches. In Fig. 2(f) it is clearly visible that the main intensity
is held by the flat branches, making the analysis of higher-order
spin waves complicated. In the FMR approach this issue is
solved due to the fact that only kz = 0 modes are excited. For
the field-frequency dependence shown in Fig. 4, this approach
was repeated for magnetic fields from 0 Oe to 2 kOe in 10-Oe
steps. For this purpose the FFT of the average magnetization
component was considered. The magnetic parameters are the
same as those used in the analytical approach, with a damping
constant α = 10−2.

III. RESULTS AND DISCUSSION

The theoretical model will now be applied to thin films
with one-dimensional stripelike modulations, as shown in
Fig. 1. For such geometry, the Fourier coefficients are given
by CGn

= (wz/az)sinc[(wz/az)πn]. Also, at 50 reciprocal
lattice vectors, a convergence of the numerical solutions of
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(a) (b) (c)

(d) (e) (f)

FIG. 2. (a), (b), and (c) show the dispersion relation in the DE geometry for H = 1.5 kOe and δ = 0, 2, and 4 nm, respectively. (d), (e),
and (f) depict the dispersion in the BV configuration. The lines correspond to the theoretical results, while the micromagnetic simulations are
represented by the color code, where the lighter (darker) color represents a maximum (minimum) of the response intensity. The modes are
labeled Sν and Aν

s , with ν = 1,2,3, . . . . The label Sν (Aν
s ) is defined according to the symmetric (antisymmetric) character of the spin-wave

profiles around z = 0 at kz = 0. In the insets, the increasing of the depth δ is represented as a darker color in the grooves. Due to the finite
window size in the FFT additional higher harmonics can be observed in (d)–(f).

Eq. (12) is reached. Typical permalloy (Py) parameters are
used, namely, a saturation magnetization Ms = 797 emu/cm3,
stiffness constant λex = 4.96 nm, and gyromagnetic ratio γ =
0.0185556 GHz/G. The thickness of the thicker part (d + δ) of
the SMMC will be assumed to be constant, d + δ = 10 nm
[see Fig. 1(b)]. So the thinner part of the film is given by
d = 10 nm − δ. Also az = 300 nm, and wz = 140 nm. Unless
otherwise stated, the external field is H = 1.5 kOe. Note that
this field is strong enough to satisfy the condition ϕ ≈ ϕH .
These parameters have been chosen in concordance with the
micromagnetic simulations.

In Fig. 2, the spin-wave dispersion relations are depicted in
both Damon-Eshbach (DE) and backward-volume geometries,
in which the depth δ of the surface modulation is varied. The
color code visualizes the micromagnetic simulations, while the
lines are obtained from the theoretical model. In Figs. 2(a), 2(b)
and 2(c), dispersion relations in the DE geometry (ϕ = π/2)
are shown for δ = 0, 2, and 4 nm, respectively. Here, it is clearly
visible that the periodic stray fields created by the dynamic
magnetic charges [see Eqs. (10) and (11)] open frequency
BGs, whose strength can be controlled through the depth δ. In
Figs. 2(d)–2(f) the BV spin waves are shown. Unlike the results
of DE geometry, the SWs reveal a slightly dispersive branch
at δ = 0. Then, by increasing δ low-frequency flat modes are
observed, while the high-frequency ones have a clear periodic
dispersion. According to the calculations and micromagnetic
simulations, the flat modes should be detectable by experimen-

tal techniques such as ferromagnetic resonance (FMR), which
should be sufficient to determine the spin-wave modes and their
frequency-field dependence, similar to the periodic structures
created by ion irradiation [38,42]. Note that for δ � 4 nm in
Fig. 2(f) some deviations between simulations and calculations
can be noticed. These deviations can be attributed to the
nonuniform distribution of the dynamic magnetization along
the thickness. While δ increases, in the BV configuration the
creation of magnetostatic charges at the edges of the grooves
also increases, so that the magnetization in the corrugated area
tends to stay aligned along the stripelike surface modulation.
Nevertheless, the magnetic moments in the nominal film of
thickness d are more likely to follow the applied field, and
hence, they can be easily aligned with the field. Therefore,
under a noticeable increase in δ, the magnetization should
vary along the normal axis y due to the pinning conditions
at the edges of the grooves. Because this modulation is not
considered in the theoretical model, some deviations between
both methods are expected as δ increases. On the other hand,
due to the finite window size in the FFT, additional higher
harmonics can be observed in Figs. 2(d)–2(f). This leakage of
the main mode is strongly visible in the BV geometry due to
the log-scale plotting.

Figure 3(a) shows the evolution of the first four modes,
S1, S2, S3, and S4, as a function of δ at kz = 0. Here, it
is observed that the theoretical model (lines) matches very
well with the numerical simulations (symbols) in the range
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FIG. 3. In (a), the BV modes at kz = 0 are shown as a function of δ.
The lines (symbols) represent the theoretical (simulated) calculations.
In (b) and (c) the spin-wave profiles calculated with the simulations
and theoretical model are depicted, respectively. In (a)–(c), the
symmetric modes S1, S2, S3, and S4 are represented by solid, dashed,
dot-dashed, and dotted lines, respectively.

of δ → 0–3 nm. For higher depths, small deviations between
theory and simulations are observed, as explained above.
The simulated and calculated dynamic magnetization profiles
of mX at δ = 2 nm are illustrated in Figs. 3(b) and 3(c),
respectively. Here, there is very good agreement between the
two methods, thus corroborating the approximations used in
the theoretical model. Overall, it is observed that band gaps are
opened by the dynamic dipole fields created by the dynamic
magnetizations in the DE configuration, where the BG width
can be controlled via variation of δ since at higher δ the dipolar
field induced by dynamic magnetic charges becomes higher as
well. On the other hand, in the backward-volume configuration,
the high-frequency BGs and flat modes are mainly induced by
static magnetic charges. Because these static magnetic charges
are induced by the static magnetization (perpendicular to the
stripelike modulations), they have an appreciable effect on the
SW dynamics; that is, the SWs are practically confined to some
regions of the SMMC, as shown in Figs. 3(b) and 3(c).

Figure 4 shows a comparison between theory and numerical
simulations of the FMR response, where the evolution of the
modes as a function of the field H is shown. The simulated
calculations are given by the color code, whereas dashed lines
represent the theoretical results. Here, only the first four modes,
S1, S2, S3, and S4, are depicted since from the point of view
of the simulations, the excitation of antisymmetric modes
requires an inhomogeneous excitation, which is not included in
the micromagnetic code. Similar resonance spectra consisting
of the symmetric modes were previously obtained by using
linear response theory and two-magnon scattering in the limit
of perturbative modulation depths [36,38] but restricted to the
kz = 0 limit.

The flatness of the magnonic modes, the frequency separa-
tion between them, as well as their shift to low frequencies
represent some of the main findings of this paper. These
characteristics can be explained by analyzing the internal
field of the periodic structure. For spin waves traveling in
the DE geometry, the exchange energy is dominant in the
dispersion, and therefore, the frequency rapidly increases with
the increasing of the wave vector. Nevertheless, in the BV
geometry the spin waves are dominated by the exchange and

FIG. 4. Frequency as a function of the field for δ = 2 nm and
kz = 0. The color code illustrates the simulated data, where the lighter
(darker) color represents a maximum (minimum) of the response
intensity. The lines correspond to the theoretical results for the first
four symmetric modes.

dipolar interaction at small wave vectors, and a nearly flat
dispersion is obtained [see Fig. 2(d)]. One can observe that
this flatness of the low-frequency modes is enhanced with the
patterning. As a consequence of the divergent internal energy
landscape generated by the demagnetizing field [see Fig. 5(a)],
local maxima and minima lead to a confinement of the spin
waves in separated parts of the MC, where the internal energy
is minimal. Due to the natural connection of propagation and
dispersion, this leads to a spin-wave localization [standing
spin waves are depicted in Fig. 5(b)], which is the mechanism
causing the flatness of the f (k) dependence of such modes.

Regarding the shift towards low frequencies in the BV
geometry, this effect is attributed to the static internal field,
which in the case of an SMMC is H int = H I0

Z . Since the low-
frequency mode S1 is located at the center of the thicker part,
it experiences a demagnetizing internal field (H int < 0) that
reduces the energy of the mode [see Figs. 5(a) and 5(b)]. Thus,
the low-frequency mode in the BV configuration is shifted to
low frequencies, as shown in Figs. 5(c) and 5(d). Note that due
to this shift towards low frequencies, the flat modes are notably
separated in frequency. On the other side, the higher-frequency
modes are located partially in the thicker and thinner parts, and
hence, they are not shifted to low frequencies. These dynamic
properties obtained in an SMMC composed of stripelike
grooves can be notoriously different from those of other kinds
of MCs. For instance, in bicomponent MCs the static internal
field in the BV configuration consists of exchange fields that
are induced by the contrast between the exchange constant
between the materials and magnetizing/demagnetizing fields
that are superimposed on each other because both magnetic
materials create magnetic charges at the interfaces. In a
bicomponent MC (see Appendix C for details) composed of
Py/Co (for cobalt Ms = 1150 emu/cm3 and λex = 5.89 nm)
the resulting internal field does not manifest a demagnetizing
character in such a way that the low-frequency modes remain in
the same frequency position in both DE and BV configurations,
as shown in Fig. 5(g) and 5(h). Also, since the modes with
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FIG. 5. (a) and (b) show, respectively, the internal field H int and the SW profile of modes S1 and S2 evaluated at kz = 0 for an SMMC of
δ = 4 nm. DE and BV spin-wave configurations are depicted in (c) and (d), respectively. (e)–(h) show results for a bicomponent MC composed
of alternating Py/Co magnetic materials. The internal field is shown in (e), while the profiles of modes S1 and S2 evaluated at kz = 0 are
illustrated in (f). DE and BV spin-wave configurations are illustrated in (g) and (h), respectively. The dot in the dispersion relations illustrates
the low-frequency mode at kz = 0, which is shifted to low frequencies for an SMMC, while it remains in the same frequency position for a
bicomponent MC.

low frequencies are not able to decrease in energy, they are
relatively closer to each other [see Fig. 5(h)].

All the calculations presented in Sec. II show a symmetric
dispersion under the inversion of the wave vector, despite the
fact that the elements AXX

G,G′ and AYY
G,G′ [see Eq. (B1a)] are

dependent on the sign of the wave vector through function
ξ (G,k), defined in Eq. (5). Therefore, two counterpropagating
SWs exhibit a full frequency reciprocity, namely, f (k) =
f (−k). This is not surprising since if AXX

G,G′ = −AYY
G,G′ , the

dispersion relation of spin waves depends on the square
of ξ (G,k). Nevertheless, if the dynamic components of the
magnetization vary along the thickness, like for the so-called
first perpendicular standing SW mode, for instance, the SW
frequency becomes dependent on the wave-vector orientation,
and nonreciprocal features appear, i.e., f (k) �= f (−k), since
the condition AXX

G,G′ = −AYY
G,G′ is broken. This effect has been

observed in Refs. [64,65] for FM films with different magnetic
(or geometrical) properties on top and bottom surfaces, where,
basically, the symmetry is broken along the thickness by
introducing different magnetic anisotropies at the surfaces [64]
and by considering antiferromagnetic states between the mag-
netization in the grooves (d + δ < y < d) and the bottom FM
film of thickness d [65]. Note that in the one-dimensional case
ξ (G,k) = (Gn + kz) sin ϕ, and therefore, the nonreciprocal
properties could be enhanced in the Damon-Eshbach geometry
(ϕ = 90◦), such as in the case of spin waves propagating
in FM/heavy-metal alloys, where the Dzyaloshinskii-Moriya
interaction is important [66–71].

IV. CONCLUSIONS

Spin waves in surface-modulated magnonic crystals were
theoretically modeled using the plane-wave method and micro-
magnetic simulations. The theory shows that the dipolar inter-
action produced by surface geometrical modulation is capable

of opening magnonic band gaps in either the backward-volume
or Damon-Eshbach configuration, where the magnitude of the
band gap can be controlled by the geometry of the grooves. An
interesting evolution of the modes is found in the backward-
volume configuration, in which flat modes at low frequencies
are obtained and whose frequency position can be controlled
by the depth of the grooves. Such nearly flat magnonic bands
are explained by analyzing the role of the internal field of the
SMMC and the spin-wave localization. The theoretical results
show that SMMCs can serve as interesting magnonic devices
capable of manipulating the spin-wave properties, such as band
gaps, spin-wave localization, flat modes, etc., by means of the
depth of the groove, in contrast to the typical bicomponent
magnonic crystals, where the magnetic properties vary over
the entire volume of the magnetic system with a constant film
thickness of the film. The approach agrees very well with nu-
merical simulations, which allows us to validate the theoretical
findings. Consequently, the model applied to FM films with
periodic grooves on top provides further key information about
band gap modification, spatial localization of the modes, and
the dispersion of the spin waves. Therefore, the results obtained
in this work offer a better understanding of such systems,
paving the way for further developments in MC-based devices.
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APPENDIX A: DIPOLAR FIELD INDUCED
BY THE GROOVES

In order to obtain the static periodic field HI0(r), it is noted
that the static magnetization components in the range d < y <

d + δ can be written as

Mz = Ms cos ϕ
∑

G

CG exp [iG · r] (A1)

and
Mx = Ms sin ϕ

∑
G

CG exp [iG · r]. (A2)

Note that these magnetization components are null for y ′ < d

and y > d + δ, which indicates that the magnetic charges will
be present only in the zone of the grooves. Then, following
Ref. [38], the magnetostatic potential is given by

φ(r) = −iMs

∑
G

χ (G)
∫

CG
eiG·r′

|r − r′|d3r′, (A3)

where χ (G) = Gn cos ϕ + Gq sin ϕ. Therefore, an analytical
expression can be derived for the magnetostatic potential,
which is

φ1(r) = i2πMs

∑
G

CGχ (G)
e|G|(y−d−δ)(1 − e|G|δ)

|G|2 eiG·r

for 0 < y < d and

φ2(r) = i4πMs

∑
G

CGχ (G)

×1 − cosh [|G|(d + δ/2 − y)]e|G|δ/2

|G|2 eiG·r

for the potential in the zone d < y < d + δ. Thus, the Z

component of the static magnetic field is H I0
Z (r) = H I0

1Z(r) +
H I0

2Z(r), with H I0
1Z(r) [H I0

2Z(r)] being the static field inside
the zone d > y > 0 [d + δ > y > d]. Then, the field can be
obtained from HI0

1 (r) = −∇rφ1 and HI0
2 (r) = −∇rφ2, whose

Z components are given in Eqs. (7) and (8).
In expressions (7) and (8), an average over the thickness

d + δ has been performed. Note that the magnetic field H I0
1Z(r)

dominates when the thickness δ is small; nevertheless, when
δ increases, the field H I0

2Z(r) becomes important. Thus, it is
expected to represent surface-modulated magnonic crystals
with significant depths. On the other hand, the dynamic
magnetization components in the zone d + δ > y > d can be
written as

mX,Y (r) =
∑
G,G′

mX,Y (G)CG′ei(G+G′+k)·r, (A4)

where it is assumed that this dynamic magnetization is uniform
along the thickness. This approximation is valid for small
values of depth δ; nevertheless, when δ increases, the boundary
conditions may produce a modulation of spin waves along
the thickness, and therefore, Eq. (A4) is not valid anymore.
By using the same procedure to derive Eqs. (7) and (8), the
dynamic components shown in Eqs. (10) and (11) are obtained.

APPENDIX B: MATRIX ELEMENTS FOR A SMMC

The matrix elements in Eq. (13) are given by

AXX
G,G′ = −AYY

G,G′ = −i2πMsCG−G′ξ (G,k)
η(G + k)

|G + k| , (B1a)

AXY
G,G′ = −[

4πMsλ
2
ex(G + k)2 + 4πMsζ (G + k,d) + H

]
δG,G′ + 2πMsCG−G′F I

XY + �(G′,G), (B1b)

AYX
G,G′ =

[
4πMsλ

2
ex(G + k)2 + 4πMsξ (G,k)2 1 − ζ (G + k,d)

|G + k|2 + H

]
δG,G′ + 2πMsCG−G′F I

YX − �(G′,G). (B1c)

Here, it has been assumed that the external field is strong enough to orient the magnetization parallel to it. Also, functions F I
XY

and F I
YX come from the dipolar interaction induced by the grooves and are given by

F I
XY = η(G + k) + χ (G − G′)

|G − G′|2
2
η(G − G′)d

d + δ
(B2)

and

F I
YX = ξ (G,k)2 η(G + k)

|G + k|2 − χ (G − G′)
|G − G′|2

2
η(G − G′)d

d + δ
, (B3)

while function �G′,G comes from the static stray field H I0
2Z(r) that interacts with the magnetization of the grooves. This function

is

�(G′,G) = 4πMsδ

d + δ

∑
G′′

CG′′−G′CG−G′′
χ (G′′ − G′)
|G′′ − G′|2

2

[1 − ζ (G′′ − G′,δ)]. (B4)
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APPENDIX C: MATRIX ELEMENTS FOR A BICOMPONENT MC

In the case of the bicomponent magnonic crystal depicted in Fig. 5, both the saturation magnetization and the exchange length
are periodic functions. If the saturation magnetization changes from Ms to M ′

s, then it can be written as

Ms(r) =
∑

G

Ms(G)eiG·r. (C1)

In the same way, the exchange length is

λex(r) =
∑

G

λex(G)eiG·r (C2)

since λex = √
2A/4πM2

s . Then, the matrix elements in Eq. (13) are given by AXX
G,G′ = AYY

G,G′ = 0,

AXY
G,G′ = −HδG,G′ + 4πMs(G − G′)

[
χ (G − G′)2 1 − ζ (G − G′,d)

|G − G′|2 − ζ (G′ + k,d)

]

− 4π
∑
G′′

Ms(G − G′′)[(G′ + k) · (G′′ + k) − (G − G′′) · (G − G′)][λex(G′′ − G′)]2, (C3a)

AYX
G,G′ = HδG,G′ − 4πMs(G − G′)

{
χ (G − G′)2 1 − ζ (G − G′,d)

|G − G′|2 + ξ (G′,k)2

[
ζ (G′ + k,d) − 1

|G′ + k|2
]}

+ 4π
∑
G′′

Ms(G − G′′)[(G′ + k) · (G′′ + k) − (G − G′′) · (G − G′)][λex(G′′ − G′)]2. (C3b)

Note that for the one-dimensional case depicted in this paper, the Fourier coefficient of the saturation magnetization is

Ms(Gn) = (Ms − M ′
s)

wz

az

sinc
(
Gn

wz

2

)
+ M ′

sδn,0. (C4)

The same structure was used for the exchange length coefficient, i.e.,

λex(Gn) = (λex − λ′
ex)

wz

az

sinc
(
Gn

wz

2

)
+ λ′

exδn,0, (C5)

where λ′
ex = √

2A/4π (M ′
s)

2.
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