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Thermal conductivity of three high purity synthetic single crystalline diamonds has been measured with high
accuracy at temperatures from 6 to 410 K. The crystals grown by chemical vapor deposition and by high-pressure
high-temperature technique demonstrate almost identical temperature dependencies κ(T ) and high values of ther-
mal conductivity, up to 24 W cm−1 K−1 at room temperature. At conductivity maximum near 63 K, the magnitude
of thermal conductivity reaches 285 W cm−1 K−1, the highest value ever measured for diamonds with the natural
carbon isotope composition. Experimental data were fitted with the classical Callaway model for the lattice
thermal conductivity. A set of expressions for the anharmonic phonon scattering processes (normal and umklapp)
has been proposed which gives an excellent fit to the experimental κ(T ) data over almost the whole temperature
range explored. The model provides the strong isotope effect, nearly 45%, and the high thermal conductivity
(>24 W cm−1 K−1) for the defect-free diamond with the natural isotopic abundance at room temperature.
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I. INTRODUCTION

Diamond in the form of a bulk crystal has a very high
thermal conductivity κ(T ) at room temperature, however,
its value depends strongly on impurity content and crystal
lattice imperfections. For example, nitrogen, which can present
in a large concentration in diamonds [1], up to 0.25 at.%,
reduces the thermal conductivity by several times [2–9]. Also,
diamond shows a strong isotope effect in thermal conductivity:
eliminating of isotopic mass disorder in the crystal lattice
with the natural carbon isotopes abundance (98.93% 12C and
1.07% 13C) by using the isotopically enriched carbon-12 for the
diamond synthesis increases the value of thermal conductivity
up to 50% at room temperature [10–13,15]. The highest
observed value of thermal conductivity for natural high-quality
type IIa diamond, 25 W cm−1 K−1, was reported by Berman
and Martinez [16] in 1976, and has not been confirmed until
now. In most publications on thermal conductivity of pure
single crystalline diamonds [2–4,7–10,12,13,15], the values of
κ are 10%–20% below the Berman and Martinez value. This
discrepancy means that a significant uncertainty exists in the
magnitude and temperature dependence of thermal conductiv-
ity for highly pure and low-defect single crystal of diamond
that results in a corresponding inaccuracy in assessment of
intrinsic phonon scattering processes in diamond.
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The key reasons for the high diamond thermal conductivity
are well known: the small carbon atomic mass, the strong
interatomic bonding in a simple diamond crystal lattice, and
low anharmonicity of the interatomic potential [3]. Several
theoretical approaches have been used in an attempt to describe
the temperature dependence of the thermal conductivity κ(T )
of single crystalline diamond. Among them are different mod-
ifications of the Callaway theory [17] (see the brief review by
Berman [18], and Refs. [19,20]), ab initio numerical solutions
of the Boltzmann transport equation [21–25], and the kinetic-
collective model [26]. The high sensitivity of thermal con-
ductivity of diamond to the lattice defects originates from the
unusually weak umklapp three-phonon scattering processes
near the room temperature [22]. Besides, the interaction of
acoustic heat-carrying phonons with optical phonons plays a
very important role in thermal conductivity at room and higher
temperatures. Recent calculations [27] using ab initio Green’s
function approach show that nitrogen impurities and vacancies
are very effective phonon scatterers in diamond, whereas
estimations based on the Born approximation underestimate
the rate of phonon scattering by nitrogen impurities and
vacancies by factors of 3 and 10, respectively.

To test modern theories of heat conduction in crystals,
which provide with numerical data for thermal conductivity, a
comparison of theoretical results with accurate experimental
data in the most simple case of chemically pure and structurally
perfect crystals is one of the best ways. In the last decade, the di-
amond growth techniques demonstrated a remarkable progress
[28] resulting in synthesis of chemically very pure bulk single
crystals with nitrogen content below 1 ppb (Ref. [29]) and
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superior crystal lattice perfection [30]. However, the accurate
measurements of κ(T ) for high-quality diamond from very
low to high temperatures are still rear. In this work, we
revisit experimental study of thermal conductivity in highly
pure state-of-the-art synthetic single crystalline diamonds and
present precise experimental data in a wide temperature range
from 6 to 410 K. Three different crystals, all of type IIa, were
investigated: two chemical vapor deposition (CVD) and one
high-pressure high-temperature (HPHT) crystal. The data ob-
tained are analyzed within the single-mode phonon relaxation
time approximation using the phenomenological Callaway the-
ory of low-temperature thermal conductivity [17] in its simple
original form. We have achieved a very well fit of the theoretical
model to experimental data over the entire temperature range
using refined parameters for the phonon-phonon scattering
processes. This model predicts very high magnitude of thermal
conductivity κ(T ), about 700 W cm−1 K−1 in maximum at
T ≈ 70 K, for the perfect defect-free diamond enriched with
12C to 99.9%.

II. EXPERIMENT

All single crystalline diamonds studied in this work were
synthetic ones with natural isotopic composition of carbon.
One specimen (denoted NE6) in the form of a rectangular
parallelepiped with dimensions 4.20 × 4.10 × 0.50 mm3 was
the commercial electronic-grade CVD crystal from Element
Six LLC with the concentration of substitutional neutral
nitrogen [Ns] < 5 ppb and boron [B] < 1 ppb according
to producer information [29]. Two large faces were {100}
oriented: the long edges had orientation along [110] axis. The
single crystal HPHT diamond was produced by New Diamond
Technology Company Ltd. (St. Petersburg, Russia) [31]. The
sample NDT from this crystal in the form of rectangular plate
had dimensions 4.51 × 4.50 × 0.54 mm3 with polished large
{100} faces, and the same orientation as NE6. It contained
nitrogen and boron in concentrations below 5 ppb each, as
was evaluated from optical absorption spectra in UV and IR
ranges. The third crystal was grown homoepitaxially on a
HPHT substrate at General Physics Institute RAS (Moscow,
Russia) using a microwave plasma-assisted CVD process
[32]. The bar-shaped specimen GPI had the length 7.25 mm
with orientation along [110] crystal axis, average thickness
0.32 mm, and two large {100} faces with the width 1.54 mm.
The concentrations of nitrogen and boron were estimated from
optical absorption spectra (according to procedure described in
Refs. [33,34]) to be less than 110 and 5 ppb, respectively. The
large {100} faces were polished to the roughness of Ra < 5 nm
(NDT and NE6 samples) and Ra < 7 nm (GPI). The small
faces were laser cut surfaces for all three samples; they were
not polished.

The thermal conductivity was measured by a steady-state
longitudinal heat flow method. A constant heat current was
directed along the long axis of a sample, the resulting temper-
ature gradient was measured with a thermopile consisting of
10 type E (chromel/constantan) thermocouples. The chromel
and constantan wires (from OMEGA Engineering, Inc.) had
a diameter of 25 μm. The thermocouple has been calibrated
by us with using a couple of calibrated Cernox thermometers
(LakeShore CX-1050-SD). The thermopower S(T ) of this

thermocouple relative to the standard dependence for the type
E thermocouple amounts to about 0.95 at T > 273 K, 0.96
in the range from 35 to 273 K, and 0.9 at 4 K < T < 12 K.
The thermopile was attached to the large face of the sample
with a U-shaped spring clip. The distance (along the sample
surface) between the thermopile legs was about 2.5 mm with
uncertainty of ±50 μm, which represented the major source of
systematic experimental error (±2%) in thermal conductivity.

The heat was generated in the chip-resistor mounted to one
end of the sample with a GE7031 varnish. The opposite end
of the sample was contacted to a heat sink, a copper block
with regulated temperature. The mechanical connection was
achieved by pressing the sample to the copper block with a
force applied by a flat bronze spring to the sample end that
carried the heater. To improve the contact thermal conductance,
a thin indium metal foil was placed in-between the sample
end and the heat sink. The sample GPI in the form of long
bar was attached to the heat sink with a crocodile clip. To
measure the temperature gradient in the sample, the two-step
procedure similar to that proposed by Cappelletti and Ishikawa
[35] was used. At the first step with the sample heater off
and at the second with the heater on, the temperature of the
heat sink was controlled to be the same within ∼10−5T .
The temperature gradient was determined from the difference
between thermopile voltages measured at the heater on and
off. The temperature drop over the contact sample/sink was
measured with a separate type E thermocouple. In the case
of the heater on, the contact temperature drop increased from
about 0.1 K at lowest temperatures to about 0.3 K at 50 K
and kept almost constant above. The temperature difference
between the thermopile legs upon the heat flow through the
sample ranged from a few millikelvin (for temperatures from
6 K to conductivity maximum temperatures) to several tens
millikelvin (at T > 150 K). The magnitude of this temperature
difference was restricted from above by the relatively high
thermal resistance between the heat sink and the liquid helium
bath at low temperatures. So small temperature gradient makes
the measurements for millimeter-scale sample very difficult;
this could explain why the accurate experimental data for κ(T )
are still scarce. We used the Keithley 2002 multimeter with
Keithley 1801 preamplifier to measure the thermopile voltage
within 1 nV (standard deviation), which corresponds to the
temperature noise of approximately 0.05 mK at 5 K, 0.01 mK at
30 K, and 0.003 mK above 100 K. However, the fluctuating and
drifting spurious voltage in the thermopile extension wires and
the finite-temperature fluctuations of the heat sink increased the
temperature noise very much. The temperature difference was
determined as an average over the 200 readings, so the random
error was reduced by about one order of magnitude. The drift-
ing spurious voltage was the main source which determined
the random error of conductivity measurements. To reduce
this error at T ≤ 10 K, the conductivity measurements were
performed up to 10 times at a given temperature. The following
random errors in the thermal conductivity measurements were
achieved: 10% at 6 K, 2% at 10 K, then the error decreased to
1% at 100 and 0.1% at T > 300 K.

To minimize the systematic errors of measurements, the
following measures were realized. The measurements were
carried out in vacuum (the pressure was typically <5 ×
10−6 mbar) to exclude the conduction through the residual
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FIG. 1. Thermal conductivity of type IIa single crystalline dia-
monds versus temperature. This work: circles and triangles. Slack73:
experimental data [3] for two HPHT diamonds with cross sections
3.4 × 3.4 mm2 (open squares) and 1.0 × 1.0 mm2 (open diamonds),
and with [N] = 0.1 and 50 ppm, respectively. BHM75 (stars): mea-
sured data [4] for natural diamond with cross section about 1 × 1 mm2

and length ≈6 mm. The error bars are larger than the symbols size
only at temperatures below 9 K.

gas. The sample was placed inside a multilayer radiation shield
to minimize radiation losses at T > 90 K. All electrical leads
and the sample clamp were made from low thermal conductive
materials with small cross section to minimize the conduction
through them. We estimate that the heat lost due to the residual
gas and electrical leads was negligible, <0.1%. The heat lost
through the sample clamp (used in measurements of samples
NE6 and NDT) was about 1% at 6 K and decreased to below
0.4% at T > 10 K. The error due to radiation losses could be
about 0.5% at 410 K and varied nearly as T 3 with temperature.
The systematic errors in calibration of our chromel/constantan
thermocouple amounted to 2% at 5 K, reduced to 0.3% at 10 K,
and then to 0.1% at T > 100 K. The total experimental error
in determination of absolute value of thermal conductivity
is estimated to be 2%–3%, except the lowest and highest
temperatures where it is noticeably higher due to a reduced
sensitivity of the thermocouple at liquid helium temperatures
and a dramatic rise of radiation heat loss from the sample with
temperature at T > 300 K.

III. RESULTS AND DISCUSSION

A. Experimental data

The experimental data for the samples studied in this work
at temperatures from 6 to 410 K are presented in log-log
scale in Fig. 1. The data for type IIa high-quality single
crystalline diamonds from other works [3,4] are also shown
here for comparison purposes. The observed dependencies

FIG. 2. The temperature dependence of thermal conductivity of
diamonds at high temperatures. Symbol designation is as in Fig. 1.

κ(T ) are characteristic for the phonon thermal conductivity
of dielectric crystals. At high temperatures, it is dominated by
the anharmonic phonon-phonon scattering processes. These
processes weaken with temperature decrease, giving rise to
the phonon mean-free path. The phonon free path becomes
comparable with sample dimensions at low enough temper-
ature, where κ(T ) reaches a maximum. The conductivity
value near the maximum depends strongly on the impurity
content and the concentration of crystal structure defects. At
temperatures below the maximum, the behavior of κ(T ) is
determined by the phonon interaction with sample surfaces
and subsurface damage layer if the latter exists. For example,
if phonons scatter diffusively off the surfaces, the phonon free
path is temperature independent and equals approximately to
the sample cross-section dimension [36]. In this case, the κ(T )
varies with temperature as the phonon heat capacity does, i.e.,
as T 3.

To highlight the dependencies κ(T ) at high temperatures,
above 230 K, the data are reproduced in a linear scale in Fig. 2.
It is seen at high temperatures our data are in a good agreement
with the data of Berman et al. [4]. At moderate and low
temperatures, our data are systematically higher than the
literature data [3,4]. These observations unambiguously point
to the lower concentration of structural defects and impurities
in the samples studied in this work.

The measured κ(T ) curves for HPHT and CVD samples
(NDT and NE6) of similar orientation, surface treatment, and
close dimensions practically coincide, within experimental
errors, in the whole measurement temperature range, except
the low temperatures (<30 K). At conductivity maximum
at 63 K, where crystal lattice defects strongly influence the
magnitude of thermal conductivity, the almost identical values
κmax of 285 and 278 W cm−1 K−1 are found for these two
samples, respectively (see Table I). Since the concentration
of chemical impurities and structural defects may be very
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TABLE I. The measured values of thermal conductivity at room
temperature RT = 298.15 K and in maximum with corresponding
values of Tmax.

κ (RT) κmax Tmax

Sample (W cm−1K−1) (W cm−1K−1) (K)

GPI (CVD) 23.8 ± 0.5 235 ± 7 70.0
NDT (HPHT) 22.3 ± 0.5 285 ± 7 63.6
NE6 (CVD) 22.1 ± 0.5 278 ± 7 62.1
Slack73a (HPHT) 20.0 ± 1b 175 ± 9 65

aData from Ref. [3].
bThe value for T = 300 K.

different, but are low, and the samples have similar form and
sizes, this identity in κmax indicates that the rates of point-defect
scattering are nearly the same in these samples. The common
for both samples scattering from impurity isotope 13C is,
evidently, much stronger than scattering processes from any
other point defects, and determines the value of κmax. It is worth
noting that the measured κmax values are the record high for
diamonds with the natural isotopic composition, demonstrating
a more than 60% gain with respect to the data reported
by Slack [3].

The κ(T ) for sample NE6 varies steeper than for NDT
at temperatures below 20 K. The temperature exponent n, in
dependence κ(T ) ∼ T n, is about 2.75 for NE6 in the interval
10–20 K. These values are very close to 3, the value expected
for the exponent in the boundary scattering regime with the
scattering rate independent of phonon frequency, this being
characteristic to κ(T ) for temperatures below Tmax. For sample
NDT, the mean value of n is lower, 2.33 at temperatures from
10 to 20 K. We ascribe tentatively the different behavior of
κ(T ) for these two samples at low temperatures to a difference
in the phonon boundary scattering due to specific polishing
procedures of the diamond producers. Indeed, not only the
surface roughness, but also the properties of the subsurface
damaged layer induced by the polishing, the thickness of which
can be of the order of 1 μm [37], may play a role in the
phonon scattering. It seems that the contribution of the specular
scattering of phonons at the sample surface is much more
significant in the case of specimen NDT. For the sample GPI,
the exponent n is 2.50 in this temperature range, in-between
values for the samples NDT and NE6.

The sample GPI has the κ(RT) = 23.8 W cm−1 K−1, about
7% exceeding those for our other two samples. This value
is one of the highest for thermal conductivity of synthetic
diamonds at room temperature. Note that for single crys-
talline CVD diamonds, the thermal conductivity as high as
23.0 ± 3.3 W cm−1 K−1 at RT (Ref. [32]) and even 25 ±
2.5 W cm−1 K−1 (Ref. [38]) have been reported, but in both
those works a laser-flash technique was used for the mea-
surements, with accuracy five to six times worse compared to
our steady-state method. Since the sample GPI exhibited the
enhanced nitrogen content compared to other two samples, its
superior conductivity looks surprising. It has a smaller cross
section. For smaller cross-sectional dimensions, the bound-
ary scattering rate is higher, and, consequently, the thermal
conductivity is lower in the boundary scattering regime [36].

TABLE II. Dimensions of the samples and their Casimir lengths.
Lth is a sample thermal length (the length over which the temperature
gradient is nonzero), c1 is the correction factor due to deviation of the
sample cross section from the square shape, c2 is the correction factor
due to finite length of the sample, l0

C = 1.115 (d1 × d2)1/2, lC is the
corrected Casimir length.

d1 d2 L Lth l
(0)
C lC

Sample (mm) (mm) (mm) (mm) (mm) c1 c2 (mm)

GPI 0.32 1.54 7.25 6.2 0.79 0.871 0.906 0.62
NDT 0.54 4.50 4.51 4.51 1.74 0.781 0.778 1.06
NE6 0.50 4.10 4.20 4.20 1.60 0.784 0.780 0.98

It is for this reason the κ(T ) for GPI is systematically lower
than for our other two samples below conductivity maximum.
However, at room temperature for samples of millimeter size
the boundary scattering does not contribute sizably to the
thermal conductivity. The higher κ(RT) for sample GPI may
originate from the lower concentration of lattice defects in it,
such as vacancies, stacking faults, dislocations, etc., in spite
of rather high impurity abundance. Therefore, we suggest
that ultimate value of κ(RT) for perfect diamond with natural
isotope composition should exceed 24 W cm−1 K−1.

B. Modeling

At low temperatures, where the phonon scattering due to
anharmonic phonon-phonon interactions and phonon interac-
tions with lattice defects and impurities is negligible comparing
to the scattering from sample boundaries, the phonon free
path becomes of the order of sample dimensions. Casimir
[36] has found that in a case of elastically isotropic, infinitely
long rod, having a square cross section, and diffusive phonon
scattering from the sample surface, the thermal conductivity is
given by

κ(T ) = 1
3C vC lC, (1)

where C is the volume specific heat; vC is the Casimir veloc-
ity, which is an average phonon velocity (vC = 〈s−2〉/〈s−3〉,
〈s−k〉 = 1/3

∑
i s

−k
i , k = 2,3, si is the directional average

phase velocity for polarization i); and lC is the phonon mean-
free path equal to Casimir length. For the rod with square
cross section lC = 1.115 d, d is the side dimension. For the
rectangular rod with length L and cross section d1 × d2, lC =
c1c2 × 1.115 (d1d2)1/2, where c1 < 1 is a correction factor [39]
depending on the ratio d1/d2, and the correction factor c2 < 1
for the finite-length rod is ≈1 − lC/L in the first approximation
[40,41]. The dimensions of the studied samples and parameters
of the boundary scattering are listed in Table II. Debye velocity
vD = 13.36 × 105 cm/s and Debye temperature TD = 2230 K
for diamond were calculated by us from the room-temperature
elastic moduli of Vogelgesang et al. [42]. The temperature
variation of the elastic moduli and density ρ is so small that
the changes of vD and TD upon cooling to low temperatures
are negligible (about 0.1%). Note also that Casimir velocity
vC = 12.98 × 105 cm/s, only slightly (≈3%) lower than
vD , so we used vD instead of vC and other mean phonon
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velocities (having omitted the subscript) in our calculations
below.

Nepsha et al. [43] and Berman [44] have found that normal
processes play an important role in thermal conductivity of
diamond with natural isotopic composition. Therefore, to
analyze experimental data, we used the Callaway expression
for thermal conductivity in its original full form [17], which
takes into consideration the specific role of normal scattering
processes. In this theory, no distinction is made between
phonon polarization modes, and the isotropic phonon spectrum
with linear dispersion (Debye model) is assumed. The phonon
thermal conductivity is a sum of two terms, the Debye (kinetic)
term κ1 and Ziman (drift) term κ2:

κ(T ) = κ1 + κ2, (2)

where

κ1 = GT 3〈τC〉, (3)

κ2 = GT 3 〈τC/τN 〉2

〈τC/(τNτR)〉 , (4)

G = kB
4

2π2h̄3v
. (5)

Here, v is a mean phonon velocity, kB is the Boltzmann
constant. The combined relaxation rate τ−1

C is defined by

τ−1
C = τ−1

R + τ−1
N , (6)

where τ−1
R is the total scattering rate of all resistive processes,

and τ−1
N is the rate of the normal processes. The angled brackets

〈f 〉 represent the following operation:

〈f 〉 =
∫ TD/T

0

x4ex

(ex − 1)2
f (x) dx, (7)

where x = h̄ω/kBT , ω is the phonon frequency.
In the fitting of the model to the experimental data, the

limited number of phonon scattering processes were taken
into consideration: the boundary scattering, the point-defect
scattering, and the three-phonon scattering processes. The
boundary scattering has the rate τ−1

b = v/lb. The adjustable
parameter lb is obtained from the fitting procedure: it measures
the phonon free path in the boundary scattering regime. The
point-defect scattering rate is given by τ−1

pd ,

τ−1
pd = Ãpdω

4 = Apdx
4T 4, (8)

where Apd is determined by the point-defect properties and
their concentration. In the simplest case of isotopic impurity
in the long-wavelength approximation [45]

Ãpd = Ãiso = g2
V0

4πv3
, (9)

g2 =
∑

i

fi(�Mi/M)2. (10)

Here, fi is the concentration of ith isotope with mass Mi ,
which differs from the mean mass M = ∑

i fi Mi by �Mi =
Mi − M , V0 is the volume per atom (5.6736 × 10−24 cm3

here). For diamond with the natural mixture of carbon isotopes
natC, g(nat)

2 = 7.39 × 10−5, and A
(nat)
iso = 4.109 × 10−3 s−1K−4.

Evidently, this isotope scattering represents the minimal pos-
sible scattering of phonons from point defects, and Apd cannot
be less than A

(nat)
iso in real crystal.

The following expressions were used to calculate the scat-
tering rates for N and U processes:

τ−1
N = ÃNωnT m = ANxnT n+m, (11)

τ−1
U = ÃUωpT re−TD/αT = AUxpT p+re−TD/αT , (12)

where AN , AU , and α are adjustable parameters, and n, m,
p, r are integers. For real crystal, it is practically impossible
to derive exact analytical expressions for three-phonon scat-
tering due to complicated nature of the phonon dispersion
relations and a number of contributions from processes in-
volving various polarization combinations (see, for example,
Refs. [46–50]). Different expressions for phonon-phonon
scattering rates have been used in analysis of experimen-
tal data in the frame of the Callaway theory (see, e.g.,
Refs. [13,19,43,51,52]). Morelli, Heremans, and Slack [19]
discussed in detail the anharmonic scattering processes and
proposed a simple model for numerical calculations of the
phonon-phonon scattering rates. Within the Debye-Callaway
model modified to include both transverse (T) and longitudinal
(L) phonon modes explicitly, the quantitative account for
the observed isotope effect in diamond [12] was obtained
using (n,m|p,r) = (1,4|2,1) and (2,3|2,1) for T and L modes,
respectively. The combination (1,3|2,1) has been used by Wei
et al. [13] for isotopically modified single crystal diamond.
They have found that a single set of values, AN = 1.50 s−1K−4,
AU = 487 s−1K−3, and TD/α = 670 K, well describes their
experimental dependence κ(T ) and the observed isotope effect
at temperatures above 100 K. This combination has been also
used by Graebner et al. [53] and Inyushkin et al. [54] for fitting
κ(T ) measured for polycrystalline diamonds.

The experimental data for diamonds with natural and
enriched isotopic compositions from different experiments
[11–13] (symbols), and our calculations of κ(T ) (dotted lines)
using the above-mentioned Wei’s model for the phonon-
phonon scattering rates are displayed in Fig. 3. Also shown
here are our experimental data for the CVD sample NE6 (blue
triangles) and the theoretical curve calculated with Wei’s set
of parameters for AN and AU , but with adjusted value for lb,
are also shown here (blue dotted line). The calculations have
been performed with the parameter of point-defect scattering
Apd = A

(nat)
iso , which corresponds to the perfect crystal without

chemical impurities and structural defects. These curves denote
the upper limit for thermal conductivity of crystals with speci-
fied isotope compositions within the frame of this model. It is
seen from Fig. 3 that the Wei’s set of parameters is inadequate
to describe the κ(T ) for the sample NE6 at temperatures near
the conductivity maximum and up to approximately 150 K:
the calculated data are much lower than the experimental. It
is noteworthy, however, that this set provides a good fit to
the κ(T ) data of different experiments [11–14] in the range
200 < T < 1200 K, a high value for the isotope effect, 35%
at room temperature, close to the experimental value (45%–
50%), and κ(RT) ≈ 24 W cm−1 K−1. We think that it is not
surprising that the single set of expressions for three-phonon
scattering processes can not account for experimental κ(T )

144305-5



A. V. INYUSHKIN et al. PHYSICAL REVIEW B 97, 144305 (2018)

FIG. 3. The temperature dependence of thermal conductivity of
single crystalline diamonds: experimental (symbols) and theoretical
(lines) data. The dashed lines are calculation results of the Wei’s model
for their experiment [13] with diamonds with natural natC and enriched
12C(99.9%) isotopic compositions; the dotted line is the Wei’s model
result for our sample NE6; solid lines are the fits to experimental data
with our model.

in a very wide temperature interval, from boundary scattering
regime to 1200 K for diamond. It is well known (see, e.g.,
Refs. [49,50,55,56]) that the low- and high-temperature limits
for anharmonic scattering rates have different temperature and
frequency dependencies.

We have tested several different forms for frequency and
temperature dependencies of three-phonon scattering rates in
order to obtain the best fit to (i) the experimental data on
κ(T ) for NE6, (ii) the isotope effect (45%–50%), and (iii) the
value near 25 W cm−1 K−1 for highest quality crystal of natural
isotopic abundance at room temperature. The following com-
binations (n,m|p,r) for N - and U -scattering rates have been
examined: (1,3|2,1), (2,2|2,1), (1,4|1,2), (1,4|1,3), (1,4|2,1),
(1,4|2,2), (2,3|2,1), (2,3|3,0), (2,3|3,1). It has been found that
a satisfactory matching can be obtained with the sets (1,4|1,2)
and (1,4|1,3). Both sets give a good fitting to the experimental
κ(T ) and the correct magnitude of isotope effect of about 45%
for the defect-free sample at room temperature. The former
combination (1,4|1,2) seems to be preferable since it provides
the higher value of κ(RT) as compared to the latter combina-
tion. The best fit to the experimental data for sample NE6 using
the combination (1,4|1,2) is shown by the solid line (red) in
Fig. 3. There is a good agreement between the experimental
and calculated data over almost entire temperature interval.
Only near the interval borders some deviations are seen. At
high temperatures, above approximately 400 K, our calculated
κ(T ) is steeper than the experimental one [57]. This can suggest
that the anharmonic scattering rates change their temperature
dependence significantly with temperature increase to this end

TABLE III. Adjustable parameters of best fittings for samples
of single crystal diamond. Parameters AN = 3.353 × 10−3 s−1 K−5,
AU = 1272 s−1 K−3, and TD/α = 560 K were obtained with fitting
to the data of NE6. The values of isotope scattering parameter Aiso

were calculated using Eq. (9). η is the root-mean-squared surface
roughness.

Apd Aiso lb η

Sample (10−3 s−1 K−4) (10−3 s−1 K−4) (mm) (nm) lb/ lC

GPI 4.41 4.109 1.54 4.1 2.48
NDT 4.47 4.109 2.57 3.5 2.42
NE6 4.88 4.109 2.62 10.1 2.67
natCa 5.80 4.109 3.3b

12Ca 0.59 0.388 3.3b

aSamples from Ref. [13], sample 12C had enrichment of 99.9%.
bTaken from Ref. [13].

[49,55,56]. A slight downward deviation of the theoretical
curve from the experimental κ(T ) below 10 K can be attributed
to the specular scattering of phonons from the sample bound-
aries; this contribution increases substantially with temperature
decrease but it was not accounted for in this version of our
model. Adding the dislocation scattering (∝ω or ω3) or the
scattering from stacking faults (∝ω2) has not improved notably
the fit. Note also that the model fit practically does not change
with the Debye temperature decrease from 2230 to 1820 K,
the cutoff energy of the longitudinal acoustic phonons [57].
The optimal fitting parameters to the data for the sample NE6
are listed in Table III. In fitting the model to the experimental
data for other samples, the parameters AN , AU , and α were
fixed. The model approximates well the experimental κ(T ); the
adjustable parameters for them are also presented in Table III
[57]. The sample GPI has the lowest rate of point-defect
scattering (in spite of higher nitrogen content) as follows from
Table III in accord with its highest conductivity at room temper-
ature. Therefore, the model is compatible with all three samples
simultaneously.

We applied our model to the experimental data from Wei
et al. [13] using our values for AN and AU , and the value
for lb from Ref. [13]; Apd was an adjustable parameter. The
best fitting results are shown in Fig. 3 by solid lines for the
samples with the natural isotope mixture (dark cyan line) and
enriched with 12C (black line) composition. It is seen that
the quality of this fitting is good, practically the same as that
achieved in Ref. [13]. Our results show, however, that the rate
of scattering from point defects is substantially higher than
that from isotopic defects in these two samples (see Table III).
This indicates the relatively high concentration of point defects
in the crystals in Ref. [13]: the sample NE6 demonstrates the
scattering rate from nonisotope point defects by more than two
times lower than for natC from Ref. [13], yet comparable with
that caused solely by isotopic contribution. Taking into account
the high chemical purity of the sample NE6 we have to look for
point defects other than nitrogen or boron impurity atoms. We
suggest the extra scattering in sample NE6 (aside from the 13C
isotope) to originate from vacancies in the crystal lattice. The
vacancies are known to be very effective phonon scatterers in
crystals [27,58]. According to Ref. [58], the phonon scattering
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rate from single vacancies is given by Eq. (8) with

Ãpd = ÃV = 9V0

4πv3
cV , (13)

where cV is the atomic concentration of vacancies. Using Apd

from Table III and taking into account the isotope scattering
we find that cV ≈ 1.5 ppm. Recent accurate theoretical cal-
culations of the phonon scattering from vacancies in diamond
[27] show that the scattering rate is about four times higher
than that obtained using Eq. (13). Thus, within this theory
the concentration of vacancies is estimated to be rather low,
0.4 ppm, the value reasonable for the high-quality diamond
crystals (see, e.g., Ref. [59]).

The phonon mean-free path lb in the boundary scattering
regime determined within the fitting to the experimental data
for the sample NE6 is 2.6 mm (Table III). This value is
substantially larger than the theoretical Casimir free path
lC = 0.98 mm calculated from the sample geometry. The same
is valid for the samples NDT and GPI. This result is similar
to that obtained by Vandersande [6] and Berman [16] for the
polished samples of natural diamond, which had not been
post-processed after polishing. It was proposed (Ref. [6] and
references therein) that the heat-carrying phonons do not reach
the sample boundaries, but specular reflected within a thin sub-
surface damaged layer. Since the observed κ(T ) shows nearly
T 3 dependence, the rate of this specific scattering is almost
independent from the phonon frequency. The mechanism re-
sponsible for such phonon specular reflection is still unknown.
The phonon focusing (PF) effect can increase substantially,
by 10%, the phonon mean-free path comparing with the
Casimir length in certain directions in elastically anisotropic
crystals below the thermal conductivity maximum [39]. For
example, for silicon the calculations of McCurdy, Maris, and
Elbaum [39] and recent ab initio calculations of Li and Mingo
[60] showed approximately 40% enhancement for the [100]
direction in comparison with [110] direction in agreement with
experimental results [39,61]. The calculations of Kuleyev et al.
[62] for silicon in the frame of generalized Callaway theory
represented very well the experimental data on κ(T ) below the
conductivity maximum. For diamond, the theory [39] predicts
about the same value of the PF effect, the conductivity in
the [110] direction being close to the Casimir value within
few percent in the case of diffuse boundary scattering. The
PF effect becomes weaker for finite length samples [63].
The only available experimental data [64] are in qualitative
agreement with the theoretical results for diamond. Therefore,
taking into account the PF effect in attempt to explain the
increased experimental lb does not reduce the discrepancy
between the theoretical and experimental values of free paths
in the boundary scattering regime for the samples studied in
this work. For all our samples the ratio lb/ lC falls in the narrow
range of 2.4 to 2.7, while Vandersande [6] has found that 2 <

lb/ lC < 3 for polished natural type IIa diamonds at T < 20
K. The good agreement between our model calculations and
our precise experimental data over a wide temperature domain
suggests that thermal phonons have a single elongate lb at tem-
peratures above ∼10 K up to the conductivity maximum at the
least.

Adding to our model the possibility for phonons to re-
flect specular from sample boundaries improves the fitting to

experimental data at lowest temperatures leaving lb practically
unchanged [57]. The scattering rate for this type of boundary
scattering is given by [41]

τ−1
b = v

lb

1 − P

1 + P
, (14)

where the probability P of specular reflection increases with
the decrease of phonon frequency and effective surface rough-
ness ηeff (see, e.g., Refs. [65,66]):

P = exp[−(2ηeffω/v)2] (15)

with ηeff = 2η/π , η is the root-mean-squared surface rough-
ness. The parameters of the best fitting for samples studied in
this work are presented in Table III. The values for η are rather
close (within factor of 2) to the average surface roughness
Ra < 5 nm specified by the manufactures. Noteworthy, Van-
dersande [6] has found that the specular reflection of phonons
from the polished sample boundaries becomes pronounced in
heat transport below about 2 K where the thermal phonon
wavelength exceeds 80 nm. This results in the further increase
of the phonon mean-free path over the Casimir value with the
temperature decrease.

The particular form of the N processes used in this work
is characteristic for the Landau-Rumer mechanism [67] of
TLL type, the interaction between transverse and longitudinal
phonons results in formation of longitudinal phonon. Herring
[46] has concluded the same dependence for the N processes
for transverse phonons at low temperatures in anisotropic
media. Kuleyev et al. [68] have suggested that in anisotropic
cubic crystals transverse phonons can participate also in the N

processes of TTT type, involving only transverse phonons, with
the high rate of scattering as compared with the Landau-Rumer
case. Since the transverse phonons contribute mostly to the
heat flow at low temperatures, one can expect that this form is
appropriate in our modeling. The xT 5 form for the N processes
has been used by Hass et al. [51] in the analysis of isotope effect
in thermal conductivity of single crystal diamond using the full
version of Callaway theory.

The form for U processes with linear frequency depen-
dence is rather unusual. The ω2 frequency dependence is
commonly assumed (see, for example, Refs. [13,18,19,69]),
however, the linear dependence is not excluded theoretically
(see Refs. [47,48]). Noteworthy, the usual representation of
the anharmonic scattering rate as a product of frequency- and
temperature-dependent terms can be considered as an approx-
imation for rather complicated function of phonon frequency
and temperature [50]. In this connection, we consider the
functional form of τU as an empirical one.

The classical Callaway model makes no distinction be-
tween transverse and longitudinal phonons. To examine the
consequences of this simplification, we have performed ad-
ditional computations with the model of Morelli, Heremans,
and Slack [19], which treats the contributions of longitudinal
and transverse phonons explicitly [57]. We have found our
simple model to fit the experimental data very well through all
the investigated temperature range, not worse than the more
complex model.
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FIG. 4. Contributions of Debye and Ziman terms κ1(T ) and κ2(T )
to the thermal conductivity of diamond. Triangles are measured data
for the sample NE6, solid red and dashed red lines represent the best
fit to experimental data and the calculations for defect-free sample,
respectively. Two close pairs lines (black) depict κ1(T ) and κ2(T ),
respectively, for the best fit (solid) and for the defect-free (dashed)
cases.

Figure 4 shows the calculated temperature dependencies
of the Debye κ1(T ) and Ziman κ2(T ) terms to the total
thermal conductivity of the sample NE6. It is seen that κ1(T )
dominates over κ2(T ) at temperatures T < 400 K. However,
if point defects are eliminated, it is the increase of κ2(T ) that
determines mostly the increment in total thermal conductivity
at temperatures above the maximum. This result indicates the
very important role of normal processes of phonon-phonon
scattering in thermal conductivity of diamond with natural
isotope abundance [44], which leads to the strong isotope effect
in κ(T ).

It is interesting to note that the calculated dependence κ(T )
for perfect diamond crystal (dashed red line in Fig. 4) with
Apd = Aiso (the values for other parameters are taken from
Table III) lays only slightly above the best-fit curve (solid red
line in Fig. 4) by 8% to 5% at temperatures near and above
the maximum: κmax = 299 W cm−1 K−1 at Tmax = 63–64 K,
andκ(RT) = 24.2 W cm−1 K−1. Thus, our model indicates that
the thermal conductivity of the sample NE6 is close to that of
defect-free single crystalline diamond.

Our highest measured κ(RT) = 23.8 W cm−1 K−1 is very
close, but a bit exceeds by 4% the theoretical upper value of
22.9 W cm−1 K−1 from the ab initio calculations by Broido
et al. [23] for defect-free diamond with natural isotopic
composition. Interestingly, they considered a sample with
diameter of 1 mm, very close to the Casimir length for our
specimens measured, therefore, the direct comparison of their
modeling with the present experiment is justified. In addition,
our maximum conductivity κmax(63 K) = 285 W cm−1 K−1

noticeably exceeds also κmax ≈ 190 W cm−1 K−1, obtained

from the first principles by Fugallo et al. [24] for diamond
with the diameter of 3 mm. This may give grounds to further
refine the parameters of the ab initio models.

IV. CONCLUSIONS

Accurate data on thermal conductivity κ(T ) of highly
pure single crystals of HPHT and CVD diamond at tem-
peratures from 6 to 410 K have been obtained using newly
developed version of the steady-state heat flow method for
direct measuring thermal conductivity of extremely high heat
conduction materials. The precise data for κ(T ) with total
error less than 3% (random error ≈1%) were obtained also at
temperatures near the conductivity peak, where many previous
experiments failed to gather such data. The results, being in
general consistency with previously published experimental
data for high-quality natural and synthetic diamonds, show
one of the highest values for thermal conductivity at room
temperature (23.8 ± 0.5 W cm−1 K−1), and the record high
conductivity at low temperatures (285 ± 7 W cm−1 K−1 at the
peak). Paraphrasing Morelli [70], we have demonstrated that
state-of-the-art synthetic diamonds (both CVD and HPHT) are
“the final testing ground for determining the intrinsic thermal
conductivity of the best heat conductor known to man.”

We have analyzed our measurements of κ(T ) within the
original Callaway theory of thermal conductivity taking into
account the boundary scattering, point-defect scattering, and
anharmonic three-phonon scattering processes. It was found
that the previously widely used expressions for the N and
U processes of phonon scattering [13,53,54] cannot describe
adequately the obtained experimental extraordinarily high
κ(T ) near the conductivity peak. A set of expressions for
anharmonic scattering processes is proposed, that provides
a very good agreement of the model with a collection of
experimental data for κ(T ) for T < 400 K, presented in this
work, as well as reported by other authors, including the data
for isotopically enriched diamond. According to the modeling,
the values of thermal conductivity of diamonds measured in
this work are close to those predicted for a perfect single crystal
diamond with natural isotopic composition at temperatures
above the conductivity maximum, being only ≈5% below the
calculated κ(T ) for ideal crystal (no defects other than 13C
isotopes are present) at room temperature. In the boundary
scattering regime, the phonon mean-free path exceeds the
Casimir length by about 2.4–2.7 times for polished samples;
this is a remarkable narrow interval as compared with the
results (from 2 to 3 times) reported previously by Vandersande
[6] and Berman [16]. At lowest temperatures <10 K, the
specular reflection of phonons at the sample surface becomes
sizable on the background of frequency-independent boundary
scattering.
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