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Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in generic systems.
However, they can also show interesting behavior in integrable models, resembling the OTOC in chaotic systems in
some aspects. Here we study the OTOC for different operators in the exactly-solvable one-dimensional quantum
Ising spin chain. The OTOC for spin operators that are local in terms of the Jordan-Wigner fermions has a
“shell-like” structure: After the wavefront passes, the OTOC approaches its original value in the long-time limit,
showing no signature of scrambling; the approach is described by a t−1 power law at long time t . On the other
hand, the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a “ball-like” structure,
with its value reaching zero in the long-time limit, looking like a signature of scrambling; the approach to zero,
however, is described by a slow power law t−1/4 for the Ising model at the critical coupling. These long-time
power-law behaviors in the lattice model are not captured by conformal field theory calculations. The mixed
OTOC with both local and nonlocal operators in the Jordan-Wigner fermions also has a “ball-like” structure, but
the limiting values and the decay behavior appear to be nonuniversal. In all cases, we are not able to define a
parametrically large window around the wavefront to extract the Lyapunov exponent.
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I. INTRODUCTION

First discussed by Larkin and Ovchinnikov [1] and recently
revived by Kitaev [2,3], the out-of-time-ordered correlator
(OTOC) has attracted a lot of attention in the physics com-
munity across many different fields, including quantum infor-
mation, high-energy physics, and condensed matter physics.
Consider

CWV (t) ≡ 1
2 〈[W (t),V ]†[W (t),V ]〉

= 1
2 [〈V †W (t)†W (t)V 〉 + 〈W (t)†V †V W (t)〉
− 〈W (t)†V †W (t)V 〉 − 〈V †W (t)†V W (t)〉],

where 〈O〉 ≡ Tr[e−βH O]/Tr[e−βH ] denotes the thermal aver-
age and W (t) ≡ eiHtWe−iH t is the Heisenberg evolution of
the operator W . We see that the last line involves operators
with unusual time ordering, hence the name “OTOC.” In
particular, if W and V are Hermitian and unitary (e.g., Pauli
matrices), then CWV (t) = 1 − ReFWV (t), where FWV (t) ≡
〈W (t)V W (t)V 〉.

There are several aspects about this object which make it
interesting to study. First of all, such C(t) is a possible diag-
nostic for quantum chaos. In classical physics, one hallmark of
chaos is that a small difference in the initial condition results
in an exponential deviation of the trajectory—the famous
“butterfly effect.” Denoting q as the generalized coordinate of
the classical system in the language of Hamiltonian dynamics,
the butterfly effect can be diagnosed from the behavior | ∂q(t)

∂q(0) | ∼
eλLt , where λL is the Lyapunov exponent. The object ∂q(t)

∂q(0) can
be calculated from the Poisson bracket {q(t),p}P.B. [4,5]. A
natural generalization of this diagnostic to quantum systems is
by promoting the Poisson bracket to a commutator. Therefore,
the behavior of the object C(t) = 〈|[x(t),p]|2〉 ∼ e2λLt is an

immediate generalization of the classical chaos to quantum
systems, where using |A|2 ≡ A†A removes the effect of phase
cancellations when averaging. Unlike classical systems where
λL can be arbitrarily large, in quantum systems it was argued
[4,6] that under some natural assumptions λL is bounded
by 2π/β (assuming the unit h̄ = 1), where β is the inverse
temperature of the system.

Several works have used this diagnostic to argue for the
existence of quantum butterfly effect [7–10] and extract the
Lyapunov exponent, with examples including the O(N ) model
[11], fermionic models with critical Fermi surface [12], and
weakly diffusive metals [13]. On the other hand, some systems,
for example Luttinger liquids [14] and many-body localized
systems [15–19], do not show the Lyapunov behavior and
are hence characterized as less chaotic or as slow scramblers.
Also, some works have shown that in certain Hamiltonians, the
exponent extracted from OTOC does not match the classical
counterpart of the semiclassical limit [20,21]. For systems
with bounded local Hilbert space and Hamiltonians with local
interactions, a work [22] proposed that the density OTOC is a
more suitable diagnostic.

Another perspective on the OTOC is that it demonstrates
the instability of the “thermal field double state” and the
scrambling of information [4,23,24]. It is expected that if F (t)
is small [or C(t) is large] in the long-time limit, the system
is scrambled; while large F (t) [small C(t)] signals absence of
scrambling. This also leads to a more sophisticated quantum
information-theoretical definition of scrambling [25]. There
are also some considerations regarding the quasiprobability
behind the OTOC [26,27]. Several works used holographic
description to show the nontriviality of the OTOC [23,28]. A
conformal field theory calculation showed agreement with the
holographic calculations [24].
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From the operator point of view, C(t) is a measure of
operator spreading. Let us consider a 1d quantum spin-1/2
chain for concreteness, and assume W operates on site i

(denoted as Wi) while V operates on site j (denoted as Vj )
which we will treat as a “probe” and will vary its position. The
Heisenberg-evolved operator Wi(t) can be written in the basis
of Pauli-string operators, Wi(t) = ∑

S aS(t)S, where S runs
over all Pauli strings (e.g., . . . σ x

0 σ z
1 σ z

2 . . . ) and aS(t) denotes
the corresponding amplitudes. Then, at infinite temperature,
C(t) = 2

∑′
S |aS(t)|2, where the primed summation is over

the Pauli strings with nontrivial commutation with Vj , or
[S,Vj ] �= 0, and for concreteness we assumed that such [S,Vj ]
is a Pauli string itself (times 2), as is the case where the
“probing” Vj is a single-site Pauli operator. Therefore, by
examining Vj at different positions, one can quantify to some
degree how Wi(t) is spread over the space. Recent calculations
in the case of the time evolution given by local random quantum
gates show nontrivial operator spreading and OTOC growth
[29–34].

While most of the works focus on the OTOC diagnosing
scrambling in chaotic systems, it is also interesting to consider
its behavior in nonchaotic or integrable systems. From the
operator spreading and information scrambling point of view,
the OTOC in integrable systems could still be interesting and
reveal some nontrivial aspects. We therefore study in detail the
OTOC in the quantum Ising chain

H = −J

2

⎛
⎝L−1∑

j=0

σ z
j σ z

j+1 + g

L−1∑
j=0

σx
j

⎞
⎠, (1)

with periodic boundary condition. The specific choice of
couplings is such that at the T = 0 quantum critical point,
g = 1, the maximal quasiparticle velocity is c = J , and we
will also set J = 1. We will focus on the case where W and
V are single-site Pauli matrices whose positions we can vary.
We will be interested in the quantities

Cμν(�,t) ≡ 1
2

〈∣∣[σμ

� (t),σ ν
0

]∣∣2〉 = 1 − ReFμν(�,t), (2)

where μ,ν = x,y,z, and Fμν(�,t) = 〈σμ

� (t)σ ν
0 σ

μ

� (t)σ ν
0 〉. Using

lattice translation and mirror (i.e., j → −j ) symmetries, one
can easily show that Cμν(�,t) = 1

2 〈|[σμ
0 (t),σ ν

� ]|2〉. In some
occasions, it is more natural to consider the latter expression.

In particular, we will focus on Fxx(�,t), Fzz(�,t), and
Fzx(�,t), as they represent three different types of behavior
of the OTOC in the quantum Ising chain. The model is solved
using Jordan-Wigner (JW) fermions. In terms of these, some
spin operators are local and some become nonlocal (i.e.,
contain string operator), and the three OTOCs correspond
to different combinations of local and nonlocal operators.
Previous studies [35] have shown that there is a qualitative
distinction between the dynamical correlation functions in the
two cases. For operators that are local in terms of the JW
fermions, the correlations show power-law decay in time at
any temperature. On the other hand, correlations of nonlocal
operators decay exponentially in time. Thus, the nonlocal
operators exhibit behavior that is closer to generic (i.e., nonin-
tegrable) “thermal” behavior, in contrast to the local operators.
Similar distinction has also been observed in quench settings
[36–38], where operators that are local in the JW fermions

approach their limiting values in a power-law fashion (“slow
thermalization”), while for the nonlocal operators the approach
is exponential in time (“fast thermalization”); in both cases, the
limiting values are described by a generalized Gibbs ensemble
appropriate for this integrable model. It is therefore interesting
to see if such qualitatively different behavior has any nontrivial
correspondence in the OTOC calculations. Indeed, we observe
that the OTOC composed with local operators shows no sign of
scrambling, namely limt→∞ Fxx(�,t) = 1 (which is the same
as the value at t = 0) and the approach is t−1 power law. On
the other hand, the OTOC composed with nonlocal operators
shows the signature of scrambling, limt→∞ Fzz(�,t) → 0.
However, we find that the long-time behavior of Fzz(�,t) is
a very slow t−1/4 power law; this is a departure from the
exponential decays found in the dynamical correlation and
quench settings described above and shows that the OTOC
encodes some different aspects; the very slow decay is also
highly unusual and not fully understood.

The paper is organized as follows. In Sec. II, we briefly state
the procedure of diagonalizing the Hamiltonian and establish
some basic notations. In Secs. III, IV, and V, we present the
results for Cxx(�,t), Czz(�,t), and Czx(�,t), respectively (details
of the calculations are in Appendices B, C, and D, respectively).
In each case, we discuss the behavior at short time (spacelike
region), behavior around the wavefront, and behavior at long
time (timelike region). In Appendix E, we provide additional
intuition about the Cxx(�,t) and Czx(�,t) directly from the
operator spreading picture by extracting these from the σx(t)
operator. Finally, in Sec. VI, we summarize and discuss some
outstanding questions and future directions.

II. DIAGONALIZING THE HAMILTONIAN AND SETTING
UP OTOC CALCULATIONS

We consider the quantum Ising model, Eq. (1), on a finite
chain with periodic boundary conditions used to minimize
boundary effects. We diagonalize the model via Jordan-
Wigner transformation and subsequent Bogoliubov transfor-
mation [35]. In the fermionic representation, the spin oper-
ators are written as σx

j = 1 − 2c
†
j cj and σ z

j = −∏
j ′<j (1 −

2c
†
j ′cj ′ )(cj + c

†
j ). We therefore obtain

H = HNSP+ + HRP−, (3)

HNS/R = −J

2

L−1∑
j=0

(c†j cj+1 + c
†
j+1cj + c

†
j c

†
j+1 + cj+1cj

− 2gc
†
j cj + g), (4)

where P± = [1 ± (−1)Ntot ]/2 are the projectors to even/odd
fermion number parity sectors, with Ntot = ∑L−1

j=0 c
†
j cj the

total fermion number; HNS is understood with cj+L =
−cj boundary conditions (Neveu-Schwarz boundary condi-
tions), while in HR we have cj+L = cj (Ramond bound-
ary conditions). We then use appropriate Fourier transform
ck = 1√

L

∑
j cj e

−ikj for each Hamiltonian HNS/R and Bo-

goliubov transformation γk = ukck − iwkc
†
−k , diagonalizing
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HNS/R = ∑
k∈KNS/R

εk(γ †
k γk − 1

2 ), where KNS = { (2n+1)π
L

|n=
0, . . . ,(L−1)} and KR = { 2nπ

L
|n=0, . . . ,(L−1)}; the quasi-

particle dispersion is εk = J (1 + g2 − 2g cos k)1/2. This di-
agonalization is achieved by choosing the coherence fac-
tors as uk = cos(θk/2) and wk = sin(θk/2), where tan(θk) =
sin(k)/[g − cos(k)].

When making connections with the spin model, particularly
when dealing with the string operators, it will be convenient
to use Majorana representation. We will follow Ref. [35] and
introduce Majorana fermions Aj ≡ c

†
j + cj and Bj = c

†
j − cj .

The OTOCs can thus be expressed as fermionic correlation
functions. The thermal ensemble grants the Wick’s theorem,
which allows us to express all the correlation functions us-
ing two-point correlation functions. However, the different
fermion boundary conditions in the different fermion-number-
parity sectors results in some complications in the calculation
of dynamical correlation functions, and a more sophisticated
treatment is needed. We will carefully state the procedure
below and in the subsequent sections for the specific OTOCs.
To prepare for such discussion, we here introduce some
notations which will be useful later.

To enable free-fermion calculations, we introduce
thermal ensembles corresponding to the two types
of boundary conditions, ZNS/R ≡ Tr(e−βHNS/R ) and
〈O〉NS/R ≡ Tr(e−βHNS/RO)/ZNS/R. Note that the trace in
each case is defined over the full Fock space, i.e., including
both parity sectors, even though HNS/R originally arose in
the even/odd parity sectors. These ensembles are introduced
because the Wick’s theorem only holds for an ensemble
defined with respect to a quadratic Hamiltonian that is fixed
over the full Fock space. To evaluate the thermal average with
respect to the spin Hamiltonian H , we recall Eq. (3) and use

〈O〉 = ZNS

Z
〈OP+〉NS + ZR

Z
〈OP−〉R. (5)

Since P± = [1 ± (−1)Ntot ]/2, we will have to calculate
〈O〉NS/R and 〈O(−1)Ntot〉NS/R.

We are interested in situations where O in Eq. (5)
is composed of several time evolved operators, O =
Q1(t1)Q2(t2) . . . , where Q(t) = eiHtQe−iH t . To be able
to use free-fermion calculations and Wick’s theorem, it is
crucial to require that each Q1,Q2, . . . , does not change the
fermion parity. In this case, considering, e.g., the operator in the
first term in Eq. (5), we have: OP+ = Q1(t1)Q2(t2) . . . P+ =
QNS

1 (t1)QNS
2 (t2) . . . P+, where QNS(t) ≡ eiHNStQe−iHNSt .

At this point, we can evaluate 〈OP+〉NS =
〈QNS

1 (t1)QNS
2 (t2) . . . P+〉NS = [〈QNS

1 (t1)QNS
2 (t2) . . . 〉NS +

〈QNS
1 (t1)QNS

2 (t2) . . . (−1)Ntot〉NS]/2. For each term in the last
expression, both the density matrix and the time evolution
are determined by HNS viewed over the full Fock space (i.e.,
including both parity sectors), thus enabling free-fermion
calculations. Similar considerations apply to the calculation
of 〈OP−〉R, which can be expressed entirely in terms of free
fermions with Hamiltonian HR over the full Fock space. We
will often abuse the notation by dropping the labels “NS” or
“R” in QNS(t) or QR(t) for brevity where the precise meaning
can be recovered from the context.

In the thermodynamic limit, one in fact expects
〈O(−1)Ntot〉NS/R → 0 and 〈O〉NS = 〈O〉R = 〈O〉. While for

all the calculations one can in principle just evaluate 〈O〉NS

or 〈O〉R and take the thermodynamical limit, in this paper
we calculate exact finite-size Fμν(�,t) [and hence Cμν(�,t)]
using Eq. (5) so that we can compare the results against exact
diagonalization of the spin system at small system sizes to
ensure the correctness.

To study the behavior of Cμν(�,t) around the wavefront in
more detail, or more specifically, to examine if the wavefront
has the functional form Cμν(�,t) ∼ e−λ(�−ct), we will also study
the function Gμν(�,t) = ∂ ln Cμν(�,t)/∂t , which characterizes
the onset of the scrambling [4] if there is one and the spreading
of the operator wavefront [29,31,32]. When discussing the
analytical results and the calculation of Gμν(�,t), we consider
only the part 〈O〉NS.

The crucial ingredients to obtain all the correlation functions
are the two-point Majorana correlation functions, which we
list in Appendix A. In all the calculations of the OTOC, we
will need to use the numerical values of Z, ZNS, and ZR. The
partition sums ZNS and ZR can be calculated easily by ZNS/R =∑

ENS/R
e−βENS/R , where ENS/R denotes the eigenenergies of

HNS/R. Note again that here we consider HNS acting on the full
fermion Fock space including both even and odd parity sectors
and performs free-fermion calculation of ZNS, and similarly
treats HR to calculate ZR. On the other hand, the calculation
of Z is nontrivial as it involves the projectors to the different
sectors, and its details are presented in Appendix A.

III. XX OTOC

First, we discuss the commutator function Cxx(�,t) =
1 − ReFxx(�,t). In the fermionic representation, σx

� = A�B�.
Therefore we have

Fxx(�,t) = 〈A�(t)B�(t)A0B0A�(t)B�(t)A0B0〉. (6)

Note that we need to use Eq. (5) and evaluate both 〈OP+〉NS

and 〈OP−〉R. While these expectation values can be evaluated
using Wick’s theorem, the calculation is simplified when cast
in the form of Pfaffians of antisymmetric matrices. We present
details in Appendix B.

Figure 1 shows the numerical results for Cxx(�,t) at various
time slices. We can immediately identify the velocity of the
wavefront as c = 1, which is the maximum of the quasiparticle
group velocity vk = ∂εk/∂k. In the present case, the OTOC
function is “shell-like.” That is, inside the timelike region, in
the long-time limit, Cxx(�,t) → 0, indicating no scrambling.
More precisely, as far as characterizing the operator spreading
of σx(t), the vanishing of the Cxx OTOC in the long-time limit
suggests that expansion of σx(t) in terms of Pauli strings does
not contain many σy or σ z operators “in the middle” of the
strings. This can be indeed seen from the explicit expressions
for σx(t) in Appendix E.

A. “Universal” early-time growth with separation-dependent
power law

Before the light cone reaches, we can argue that there is a
“universal” power-law growth of Cxx(�,t) ∼ t2(2�−1). Indeed,
considerW = σx

0 andV = σx
� . The Heisenberg evolutionW (t)

at short time can be expanded via Hausdorff-Baker-Campbell
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FIG. 1. The function Cxx(�,t) for the quantum Ising chain at the
critical point, g = 1, at infinite temperature (inverse temperature β =
0); the system size is L = 512. We show data as a function of � at
fixed time t , for t in steps of �t = 2 marked along the right border;
here and in all figures, the energy unit J in Eq. (1) is set to 1. The
traces at fixed t are shifted in the y direction by 0.025t thus offering
three-dimensional-like visualization. For every t that is a multiple of
10, we mark the trace with red color for easier reading of the data. The
light cone can be readily identified and corresponds to the maximal
quasiparticle group velocity c = maxk

dεk

dk
= J = 1. In the timelike

region, Cxx(�,t) approaches zero in the long-time limit, indicating the
absence of “scrambling.”

(HBC) formula

W (t) =
∞∑

n=0

tn

n!
Ln(W ), (7)

where L(W ) ≡ i[H,W ]. It is easy to check that for these
W and V , the smallest n such that [Ln(W ),V ] �= 0 is
n = 2�−1, and the nonzero contribution to the commutator
comes from the piece in Ln(W ) that reaches site �, namely
J 2�−1g�−1σ

y

0 σx
1 . . . σ x

�−1σ
z
� . Therefore, the leading order be-

havior is

Cxx(�,t) ≈ 2(J t)4�−2g2�−2

[(2� − 1)!]2
, (8)

which is also shown in Fig. 2 and captures well the exact
calculation in this regime. We expect that such an argument
based on the HBC formula is in fact very general and not
related to any integrability of the model [14,39,40]. We thus
expect such power-law growth with position-dependent power
to be “universal,” present also in nonintegrable systems, as
long as one is considering systems with bounded on-site
Hilbert spaces and Hamiltonians with local interactions. Such
a power-law growth is indeed also observed in the XXZ model
[14]. However, we emphasize that this is just a quantum
mechanical effect before the light cone reaches and should
not be identified as a signature of scrambling or lack of it.
Lastly, we note that if we fix time t and take the separation
� to large values, the commutator function Cxx(�,t) decays
faster than the exponential function in �, namely Cxx(�,t) ∼
exp[a(t)� − 4� ln �], where a(t) is some number that depends
on t .

0.1 1 1010−10

10−8

10−6

10−4

0.01

1  
 
 
 
 
 
 
 
 
 
 
 

FIG. 2. The function Cxx(�,t) for several fixed separations � at
short time before the light cone reaches (i.e., spacelike separation
between the operators). The growth of the commutator is compared to
the “universal” power-law behavior given by ≈2t2(2�−1)/[(2�−1)!]2;
note that there is essentially no temperature dependence in this regime.

B. Behavior around the wavefront

To examine the behavior of Cxx(�,t) around the wavefront
more closely, we study the function

Gxx(�,t) ≡ ∂ ln Cxx(�,t)

∂t
. (9)

We can calculate this in a way that avoids numerical differen-
tiation (see Appendix B for details) and present the results in
Fig. 3. We see that before the oscillation sets in, Gxx(�,t) shows
very strong � dependence. On the other hand, the inset in Fig. 3
demonstrates that Gxx(�,t) shows essentially no temperature

−5 0 5 10
−5

0

5

10

15

20

25  
 
 
 
 
 
 
 
 

FIG. 3. The derivative function Gxx(�,t) ≡ ∂ ln Cxx(�,t)/∂t

around the wavefront. Before the oscillation sets in, Gxx(�,t) has
very strong � dependence, for which we do not know any universal
description. Inset: Gxx(�,t) for fixed � = 40 and several different in-
verse temperatures β, illustrating that there is basically no temperature
dependence around the wavefront.
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dependence. We conclude that the behavior near this wavefront
does not show the “exponential divergence” that could be
associated with the “butterfly effect,” and we can exclude the
possibility of any temperature-dependent description of the
wavefront. Thinking about possible other descriptions of the
wavefront, we do not clearly see a parametrically large time
window where we could sharply distinguish this transition
region behavior from the short-time and long-time behaviors.
While we see that the onset of oscillations (more precisely,
onset of nonmonotonic behavior) happens at larger t − �/c

when � is increased, at present we do not know if there is
any asymptotic functional form in a well-defined window to
describe the wavefront. Thus we also note that the frequency
of oscillations vanishes as one approaches the �/t = c ray, so
the later “onset” of oscillations for larger � could be related
to this. In any case, we can definitely tell that any “universal”
description needs to be essentially temperature independent.

C. Universal long-time decay with t−1 power law

The limiting value of Fxx(�,t) for fixed � but t → ∞ can
be easily shown to be one. Indeed, considering all the Wick
contractions in Eq. (6), we see that if the contraction has any
nonequal time correlation function, this term will be zero since
all the fermionic correlation functions go to zero in the t → ∞
limit. We therefore have

Fxx(�,∞) = 〈A�(∞)B�(∞)A�(∞)B�(∞)〉〈A0B0A0B0〉
= (〈A0B0〉2 + 1 + 〈A0B0〉〈B0A0〉)2 = 1.

We conclude that Cxx(�,∞) = 0, which is a signature of no
scrambling.

The long time behavior of Cxx(�,t) is shown in Fig. 4 for
different separations � and different inverse temperatures β.
The data suggests universal t−1 behavior independent of �

and β. We can indeed understand this from the stationary
phase approximation for the fermionic correlation functions.
The standard stationary phase approximation applied to the
fermionic correlation functions gives t−1/2 decay at long times.
The full Wick contraction for Eq. (6) is complicated but can
be obtained by simplifying the calculation of the Pfaffian, see
Appendix B for details. From this, we can identify the dominant
behavior at fixed � and long time:

Czz(�,t) ∼ (1 − 〈A0B0〉2)
2

π |ε′′
π |t , (10)

where ε′′
k is the second derivative of εk with respect to k

(for g = 1 considered here, |ε′′
π | = J/2 = 1/2). Note that in

this expression the temperature dependence enters only in the
expectation value 〈A0B0〉 = 〈σx

0 〉, which is zero at infinite
temperature and approaches value 0.7698 at zero temperature
(so that the coefficient of the t−1 decay is always nonzero).
We can recognize that the t−1 decay comes from two pairs
of unequal-time contractions and two pairs of equal-time
contractions. Appendix E provides qualitative understanding
of this long-time behavior directly from the operator spreading
picture. We also note that the above calculations and qualitative
results hold for all g and nonzero temperatures.

It is interesting to compare the OTOC behavior with
results for dynamical correlation functions as well as for
thermalization of such spin observable in quench settings. The

1 10 10010−4

10−3

0.01

0.1

1  

 
 
 
 

(a)

1 10 10010−3

0.01

0.1

1

 
 
 
 
 

(b)

FIG. 4. Long-time behavior of Cxx(�,t) in the timelike region;
note the log-log scale. The data is shown as a function of t at fixed
�, where on the horizontal axis we show the time elapsed after the
wavefront passes. Panel (a) shows several different separations � and
is at infinite temperature; the inset shows the same data on the linear-
linear scale. Panel (b) shows several different temperatures at fixed
separation � = 20. In all cases, we observe power-law decay t−1,
which can be understood from the long-time behavior of the fermion
correlation functions.

dynamical correlation function 〈σx
� (t)σx

0 〉=〈A�(t)B�(t)A0B0〉
approaches 〈σx

0 〉2 in the long time with t−1 power law. Indeed,
this power law comes from simple calculation, 〈σx

� (t)σx
0 〉 −

〈σx
0 〉2 = 〈A�(t)B0〉〈B�(t)A0〉 − 〈A�(t)A0〉〈B�(t)B0〉, and is ul-

timately related to the long-time behavior of the fermion
dynamical correlation function. However, we note that details
of the contraction pieces (i.e., how “fractions” of the spin
operator get contracted) is different here compared to the
OTOC calculation, even though the long-time t−1 power law
is similar. Let us now consider quench setting where one
starts with some initial state |ψini〉 (e.g., a product state or
a ground state at some other parameter g′ �= g) and then
evolves under the present Hamiltonian. Here one finds that
〈ψini|σx

0 (t)|ψini〉 decays as t−3/2 to its equilibrium value in
the long-time limit [38]. Generally, it is clear that the OTOC,
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dynamical correlation function, and behavior under quench,
probe different aspects of the Heisenberg-evolved operator
σx

0 (t) (see also Appendix E).

IV. ZZ OTOC

In this section, we discuss the commutator function
Czz(�,t) = 1 − ReFzz(�,t). The new feature here is that σ z

�

is nonlocal in terms of the JW fermions and furthermore
changes the fermion parity. While one can write σ z

� =
−(
∏

j<� AjBj )A�, its Heisenberg evolution σ z
� (t) cannot be

obtained from the simple free-fermion Heisenberg evolution
of the fermions Aj (t) and Bj (t). The reason is that the original
spin Hamiltonian in the fermionic language is in fact composed
of projections into two different fermion-parity sectors, with
different free-fermion Hamiltonian used in each sector. The
operator σ z

� , however, changes the fermion parity, while the
Heisenberg evolution of the fermion operators are simple only
when working with a fixed free-fermion Hamiltonian over
the full Fock space. Therefore, we need a more sophisticated
treatment when calculating the dynamical quantities.

Following McCoy and Abraham [41], we “double” the
OTOC and consider the following quantity

�zz(�,t ; L) ≡
〈
σ z

L
2
(t)σ z

L−�(t)σ z
0 σ z

L
2−�

σ z
L
2
(t)σ z

L−�(t)σ z
0 σ z

L
2−�

〉
,

(11)

where by periodic boundary conditions site L − � ≡ −� will
be “close” to site 0 (and site L/2 − � will be “close” to
site L/2). Consider large enough L such that L/2 
 � and
L/2 
 vt for some characteristic velocity v (here v � c = 1).
Invoking the Lieb-Robinson bound and the cluster property
[41], we have

�zz(�,t ; L) ≈
〈
σ z

L
2
(t)σ z

L
2−�

σ z
L
2
(t)σ z

L
2−�

〉〈σ z
L−�(t)σ z

0 σ z
L−�(t)σ z

0

〉
= Fzz(�,t)Fzz(−�,t) = F 2

zz(�,t), (12)

where we have used the mirror symmetry Fzz(−�,t) =
Fzz(�,t). The advantage of introducing the function �zz(�,t ; L)
is that σ z(t) operators come in pairs that do not change the
fermion parity, which allows expressing the evolution using
fixed free-fermion Hamiltonians, so the full function can be
calculated via Wick’s theorem in terms of the JW fermions.
Again, the evaluations of the Wick’s theorem can be conve-
niently formulated as Pfaffians of appropriate antisymmetric
matrices. We present the details in Appendix C.

Figure 5 shows Czz(�,t) at g = 1.0, β = 0, calculated using
the above procedure on a system of size L = 512. Note that
since we can only calculate F 2

zz(�,t), we recover the sign
of ReFzz(�,t) by requiring “continuity” of the “derivative”
D�Fzz(�,t) ≡ Fzz(� + 1,t) − Fzz(�,t) and the known value of
ReFzz(�,t) ≈ 1 in the spacelike region � 
 ct . We have veri-
fied such recovery of the sign also by examining continuity of
∂tFzz(�,t) as we vary t . As in our study of Cxx(�,t) in Fig. 1, we
can immediately identify the light cone velocity as the maximal
group velocity of the quasiparticles. On the other hand, we also
observe that Czz(�,t) approaches a nonzero value inside the
light cone at long times. In fact, in the inset of Fig. 8(a), we can
see that ReFzz(�,t) approaches zero in the long-time limit, and
hence Czz(�,t) approaches 1. Thus Czz(�,t) has a “ball-like”

FIG. 5. The function Czz(�,t) = 1 − ReFzz(�,t) for the critical
Ising chain (g = 1) at infinite temperature (β = 0), evaluated using
the “doubling trick,” Eq. (12), on a periodic chain of length L = 512.
Here we restore the sign of ReFzz(�,t) from Re

√
�zz(�,t ; L) by

requiring “continuity” of the “derivative” D�ReFzz(�,t) = ReFzz(� +
1,t) − ReFzz(�,t) (see text for details). We show data as a function of
� at fixed t , with time steps �t = 2. The traces at fixed t are shifted
by 0.1t in the y direction for 3D-like visualization; every t that is a
multiple of 10 is marked with red color for easier tracing. Similarly to
Cxx(�,t) in Fig. 1, we can readily identify the light cone and associate
it with the maximal quasiparticle velocity c = 1. Unlike Cxx(�,t), in
the timelike region Czz(�,t) approaches a nonzero value close to 1 at
long times. In other words, Fzz(�,t) approaches a value close to zero,
which suggests scrambling of the information.

structure, in contrast to the “shell-like” Cxx(�,t). We interpret
this property of Czz(�,t) as a signature of some scrambling
of the information in the system. From the operator spreading
point of view, this behavior corresponds to σ z

0 (t) having a lot
of weight on Pauli strings with “random” σ

μ

� in the middle
of the strings; more precisely, the infinite-temperature Czz(�,t)
approaching 1 corresponds to the weight of the strings that
have σ

μ

� = σx or σy approaching 1/2 of the total weight, a
kind of “scrambling.”

A. Early-time behavior of Czz(�,t)

The early-time growth of Czz(�,t) can be also understood
by the argument employing the HBC expansion, Eq. (7). In
this case, for W = σ z

0 and V = σ z
� , the smallest n such that

[Ln(W ),V ] �= 0 is n = 2� + 1; the corresponding piece in
Ln[W ] is −J 2�+1g�+1σx

0 σx
1 . . . σ x

�−1σ
y

� . This gives us

Czz(�,t) ≈ 2
(J t)2(2�+1)g2(�+1)

[(2� + 1)!]2
. (13)

In Fig. 6, we compare the above formula and the numerical
results for Czz(�,t). We see that the short-time behavior is well
captured by this argument.
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FIG. 6. The short-time behavior of Czz(�,t) examined for several
separations � and different inverse temperatures β; the system is the
same as in Fig. 5. The early-time growth of Czz(�,t) is well described
by the “universal” power law given by ≈2t4�+2/[(2� + 1)!]2.

B. Behavior of Czz(�,t) around the wavefront

Here we investigate the behavior of Czz(�,t) around the
wavefront. Again, we study the derivative function

Gzz(�,t) ≡ ∂ ln Czz(�,t)

∂t
. (14)

Details of the calculation that avoids numerical differentiation
are presented in Appendix C. In principle, if Czz(�,t) has the
Lyapunov behavior, namely the exponential growth around the
wavefront, we should be able to extract this from Gzz(�,t = t0),
where t0 = �/c is the characteristic wavefront passage time
defined using analytically known maximal group velocity c =
1. In Fig. 7, we see that Gzz(�,t) is well described by a linear
function λ0 + λ1(t − �/c) around the wave front. However, the
parameters λ0(�) and λ1(�) have a strong dependence on � but
very weak dependence on β. It is therefore not clear if we
should view this functional form as a well-defined asymptotic
description and identify λ0 as the Lyapunov exponent. One
possibility is that when � is large, λ0 approaches a finite value
while λ1 approaches zero, therefore it is well defined when
� → ∞ with �/t ∼ c fixed. In this case, around the wavefront,
we could say that Czz(�,t) ∼ exp[λ0(t − �/c)]. However, we
do not seem to have a parametrically large window exhibiting
such behavior that could be clearly separated from the short-
time and long-time regimes. Furthermore, any such Lyapunov
exponent extracted from our data would be essentially temper-
ature independent, which would not be consistent with existing
proposals. We do see that the onset of oscillations (which in
our mind cuts off any asymptotic description of the wavefront
behavior) is pushed to larger t − �/c for larger �, but we do
not know if there is any asymptotic functional description to
this. If there is, then similarly to the Cxx wavefront in Fig. 3,
the description should be essentially temperature independent.

C. Unusual slow t−1/4 power law at long time

An analytical treatment of Czz(�,t) is very difficult since
it involves analyzing the Pfaffian of a large matrix with
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FIG. 7. The derivative function Gzz(�,t) ≡ ∂ ln Czz(�,t)/∂t

around the wavefront. (a) Gzz(�,t) as a function of time for several
different separations �, where the horizontal axis shows time
measured relative to the “exact” wavefront passage time defined from
the known maximal group velocity c = 1; this data shows strong �

dependence. Around t − �/c = 0, the behavior of Gzz(�,t) is well
approximated by a linear function. We fit Gzz(�,t) to λ0 + λ1(t − �/c)
in the region t − �/c ∈ [−3,3] and show the resulting parameters
g0 and g1 for different � in the inset. (b) Gzz(�,t) for fixed � = 40
at different inverse temperatures β; we see that such wavefront
characterization does not show strong temperature dependence.

essentially infinite dimension in the thermodynamic limit L →
∞. Here, we analyze it by examining the numerical results
in Fig. 8. As before, the data is for the critical Ising chain
coupling, g = 1, and the calculations are done for system
size L = 512. The horizontal axis shows t−�/c. We focus
on the long-time behavior of the OTOC Fzz(�,t) after the
wavefront passes. We discover that, while Fzz(�,t) approaches
zero in the long-time limit, the approach is described by an
oscillating function with a slow power-law envelope t−1/4. This
long-time power-law behavior is independent of the separation
� or the inverse temperature β. It is worth mentioning that
the finite-temperature calculation for the Ising conformal
field theory [24] gives the same limiting value as our lattice
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FIG. 8. Long-time behavior of |ReFzz(�,t)| in the timelike region
(i.e., after the wavefront passes) at (a) different separations and (b)
different inverse temperatures. (a) For different separations and β =
0, in the long-time limit, |ReFzz(�,t)| shows t− 1

4 decay. Inset: Linear
plot of ReFzz(�,t), where we fixed the sign by requiring continuity
of the derivative DtFzz(�,t) ≡ Fzz(�,t + �t) − Fzz(�,t), where �t is
the time step in the numerical calculation. (b) The temperature only
affects the coefficient of the power-law decay; in the long-time limit,
the decay is still t−1/4. (c) ReFzz(�,t) along several different rays �/t =
v = const inside the timelike region, where for each v we observe
single oscillation frequency that depends on v. Inset: Comparison of
the frequency fitted from the numerical calculations (red dots) and
from the “stationary phase” conjecture (blue line) ω(v) = εk0 − k0v,
∂kε|k0 = v, described in the main text.

calculation. However, our t−1/4 power-law approach behavior
is not described by the conformal field theory.

We can further examine the oscillations by following a
specific ray t = �/v for varying v. We show this in Fig. 8(c),
where we find a single oscillation frequency for each such
ray and show its dependence on v in the inset. We conjecture
that the frequency is determined by some “stationary phase”
approximation on a propagation factor exp(ik� − iεkt). This
would give the oscillation frequency as ω(v) = εk0 − k0v,
where k0 is the momentum such that the quasiparticle group
velocity ∂εk/∂k|k=k0 = v. For v = 0, this gives ω(v = 0) =
εk=π = 2, which is the frequency where the quasiparticle
group velocity is zero. The oscillations in panels Fig. 8(a)
and 8(b), where we analyze the limit t → ∞ at fixed �

which corresponds to v = 0, indeed appear to approach this
frequency. However, at present we do not have an analytical
understanding of this “stationary phase” conjecture and of the
observed t−1/4 power law. We leave this most interesting and
mysterious observation as an open question.

In contrast, the dynamical correlation function 〈σ z
� (t)σ z

0 〉
decays exponentially in t and � as long as the tempera-
ture is nonzero [35,42–46]. The decay length and coherence
time depend on the parameter regime (g and β). At infinite
temperature, the correlation function has a singular behavior
〈σ z

� (t)σ z
0 〉 = δ�,0e

−t2
[47], consistent with vanishing corre-

lation length and coherence time. Similarly, calculations in
quench settings found that 〈ψini|σ z

0 (t)|ψini〉 decays exponen-
tially as well [37,38]. We thus see that there is a qualitative
difference between the long-time behaviors of the OTOC and
of the dynamical correlations as well as thermalization of
the σ z operator. This indicates that the OTOC captures some
different aspects of the physics, and this finding deserved
further understanding.

V. ZX OTOC

Lastly, we discuss the function Czx(�,t). In the JW fermion
language, here we have both a nonlocal operator and a local
operator. As in the case of Czz(�,t), σ z changes the fermion
parity sector. Therefore, we need to use the “doubling trick.”
We consider the following function

�zx(�,t ; L) ≡
〈
σ z

L
2
(t)σ z

L−�(t)σx
0 σx

L
2−�

σ z
L
2
(t)σ z

L−�(t)σx
0 σx

L
2−�

〉
.

For large enough system size such that L/2 
 �, L/2 
 ct ,
and using the cluster property and invoking the Lieb-Robinson
bound, we have

�zx(�,t ; L) ≈
〈
σ z

L
2
(t)σx

L
2−�

σ z
L
2
(t)σx

L
2−�

〉〈σ z
L−�(t)σx

0 σ z
L−�(t)σx

0

〉
= Fzx(�,t)Fzx(−�,t) = F 2

zx(�,t). (15)

In the last line, we have used translational invariance and
the mirror symmetry which gives Fzx(−�,t) = Fzx(�,t). We
can now express �zx(�,t ; L) in terms of the JW fermions
evolving under fixed free-fermion Hamiltonians and reduce
the calculations to Pfaffians as detailed in Appendix D.

Figure 9 shows Czx(�,t) at g = 1.0, β = 0, calculated using
system size L = 512. After the wavefront passes, Czx(�,t)
approaches a nonzero value in the long-time limit. In fact,
ReFzx(�,t) approaches a negative value. We identify this
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FIG. 9. The function Czx(�,t) for the same critical Ising chain
as in Figs. 1 and 5. The traces at fixed t are shifted by 0.025t in
the y direction for 3D-like visualization; every t that is a multiple
of 10 is marked with red color for easier tracing. We can readily
identify the light cone and the corresponding velocity c = 1. In the
timelike region, Czx(�,t) approaches a nonzero value larger than 1 in
the long-time limit, i.e., Fzx(�,t) approaches a negative value.

behavior as some “partial scrambling,” since ReFzx does not
approach 1 (“absence of scrambling”) or 0 (“total scram-
bling”).

A. Early-time behavior of Czx(�,t)

The short-time behavior of Czx(�,t) before the wavefront
reaches is again described by the “universal” power law
with position-dependent exponent. In this case with W =
σx

0 and V = σ z
� , the smallest n such that [Ln(W ),V ] �=

0 is n = 2�, and the corresponding term in Ln[W ] is
−J 2�g�σ

y

0 σx
1 . . . σ x

�−1σ
y

� . We thus have the leading behavior

Czx(�,t) ≈ 2(J t)4�g2�

[(2�)!]2
. (16)

In Fig. 10, we compare the exact numerical results with this
leading-order prediction at short time and find good agreement.

B. Behavior of Czx(�,t) around the wavefront

Here we also investigate the behavior of Czx(�,t) around
the wavefront. We study the derivative function

Gzx(�,t) ≡ ∂ ln Czx(�,t)

∂t
; (17)

the details of the calculation are presented in Appendix D.
Figure 11 shows the results around the wavefront defined
by c = 1. Similarly to our earlier findings for Gxx(�,t) and
Gzz(�,t), we see that Gzx(�,t) has strong � dependence but
essentially no β dependence. Again, we do not seem to have a
parametrically large window around the wavefront that can be
sharply separated from the short-time and long-time behaviors,
and we definitely do not have any temperature-dependent
asymptotic functional description.
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FIG. 10. The short-time behavior of Czx(�,t) for several separa-
tions � and different inverse temperatures β; the system is the same
as in Fig. 9. The early-time growth of Czx(�,t) is well described by
the “universal” power law ≈2t4�/[(2�)!]2.

C. Long-time behavior of Czx(�,t)

Figure 12 shows the long-time behavior of the OTOC
Fzx(�,t). We can see that Fzx approaches some nonzero value.
Unlike our results for Fxx or Fzz, the approach of the Fzx to
the limiting value has a very strong � dependence, and we have
not been able to identify a “universal” long-time description of
this behavior. Furthermore, the limiting value of Fzx(�,t) when
t → ∞ appears to have strong β dependence, contributing to
our difficulty of finding universal description.

−4 −2 0 2 4 6 8
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10  
 
 
 
 
 
 
 
 

FIG. 11. The derivative function Gzx(�,t) ≡ ∂ ln Czx(�,t)/∂t

around the wavefront. Gzx(�,t) has very strong � dependence and no
apparent universal description. Inset: Gzx(�,t) for fixed � = 40 and
several inverse temperatures β; there is essentially no temperature
dependence.
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FIG. 12. Long-time behavior of ReFzx(�,t) after the wavefront
passes. (a) For different separations � at β = 0, the limiting value
as t → ∞ appears to be the same, but the approach behavior has
a strong � dependence becoming more slow for larger �. (b) For
different inverse temperatures β at fixed � = 20, we see that both the
limiting value and the approach behavior have significant temperature
dependence.

VI. CONCLUSION

In this paper, we studied the behavior of the OTOC in the
integrable quantum Ising model. We focused on three different
OTOCs, which are representative of different combinations of
two different types of operators in terms of the JW fermions. In
all cases, we can clearly identify the light cone velocity, which
is given by the maximum group velocity of the quasiparticles.
We also argued that before the wavefront reaches, the OTOCs
have “universal” power-law growth with position-dependent
power. This can be understood from the Hausdorff-Baker-
Campbell expansion of the Heisenberg evolution of the opera-
tors. We expect that such early-time power-law growth should
also hold in nonintegrable models, as long as one has bounded
local Hilbert space and local Hamiltonian.

On the other hand, the long-time behaviors are different
for the different OTOC types. The first type is represented
by Cxx(�,t), which involves only operators that are local in
terms of the JW fermions. The OTOC can be calculated

using a finite number of Wick contractions in the fermionic
language. The limiting value of Cxx(�,t) is zero when t → ∞,
which is a hallmark of absence of information scrambling. The
approach is given by t−1 power law at long time, which can
be understood from the stationary phase approximation for the
fermion correlation function. This power law persists at any
temperature and also at any parameter g of the Ising model.
We expect that OTOCs composed of operators that are local in
JW fermions will have similar behavior.

The second type is represented by Czz(�,t), which involves
only operators that are nonlocal in terms of the JW fermions
(these operators contain “string” operator when fermionizing
the spin model). Due to this nonlocal character, the OTOC
calculation involves O(L) Wick contractions. In the long-time
limit, Fzz(�,t) approaches zero [Czz(�,t) approaches 1], which
is a signature of scrambling. Interestingly, the approach is a
very slow power-law t−1/4. While we can tentatively identify
the frequency of oscillations that are present in the long-time
behavior as coming from the stationary phase approximation,
it is not clear how the t−1/4 arises.

The aforementioned t−1/4 behavior of Fzz(�,t) is found at
g = 1 and any β. One immediate question is whether this
behavior depends on g. We performed such studies, although
the results are not easy to interpret with available system
sizes. For g > 1, Fzz(�,t) appears to approach zero with a
faster decay than t−1/4. We observe oscillations with multiple
frequencies, which makes it difficult to identify the precise
power-law decay. On the other hand, for g < 1, the decay
has both oscillating and nonoscillating components, which
makes the identification of the long-time behavior even more
difficult, but the decay appears to be also faster than t−1/4.
Thus, for both g > 1 and g < 1 we seem to find power-law
decay faster than for the “critical” coupling g = 1. At present,
we do not understand the origin of this qualitative difference,
which persists all the way to infinite temperature. We can only
speculate that the full many-body spectrum of the g = 1 Ising
chain has something special about it compared to g �= 1, even
though the thermodynamic phase transition occurs only at zero
temperature.

The last type of the OTOC behavior is represented by
Czx(�,t) and involves both local and nonlocal operators in
terms of the JW fermions. However, the long-time behavior
of Czx(�,t) has a very strong � dependence, while the limiting
value also has a β dependence. Because of this, we have not
been able to find a “universal” (�-independent) description for
Czx(�,t) in the long-time limit.

For each of the three types of OTOCs, we tried to study
the behavior around the wavefront by considering the time
derivative of the logarithm of the corresponding Cμν(�,t)
function. In all cases, we found a strong � dependence and very
weak β dependence. Incidentally, such derivative Gzz(�,t) can
be well described by a linear function around the wavefront,
but we do not know if there is some significance to this.
However, we cannot find any parametrically large time window
that would enable the exponential-growth description of the
wavefront, and we can confidently exclude possibility of any
temperature-dependent asymptotic description.

We conclude with some open questions and future direc-
tions. The main unresolved issue in the present paper is finding
better physical understanding of the long-time behavior of the
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Czz(�,t) commutator function. Recent studies [30,32] argued
that OTOCs in random quantum circuit models with a con-
served charge have a power-law approach in the long-time limit
due to a diffusive charge spreading. Our quantum Ising chain,
besides the globalZ2 symmetry, is also integrable and has many
integrals of motion, and it would be interesting to understand
if there is a more direct relation between the long-time OTOC
behaviors and the integrals of motion. We would also like to
study OTOCs in other spin models that map to free fermions,
in particular, with U (1) global symmetry [48]. More generally,
we would like to understand OTOCs in other integrable models
that do not map to free fermions, and also effects of weak
integrability breaking. Another interesting direction is to study
integrable models with long-range interactions. The model in
this paper is short ranged and does not show any Lyapunov
growth behavior near the wavefront. There appears to be
mounting evidence that even nonintegrable models but with
local interactions and bounded on-site Hilbert spaces do not
have a precisely-defined exponential Lyapunov growth regime
near the wavefront. A very recent study [40] proposed that such
an exponential growth behavior can be found in nonintegrable
models with long-range interactions. It would be interesting to
explore if integrable models with long-range couplings may
also exhibit the exponential growth regime.

Note: Recently, two papers [49,50] appeared that proposed
a universal functional form for the OTOC around the wavefront

in integrable models, which was conjectured based on the free-
fermion calculation for observables that are local in terms of
fermions. This pertains to our discussion of Figs. 3 and 7, where
we left the possibility of universal description of the wavefront
as an open question. We have actually verified that the proposed
wavefront description [50] indeed holds for both Fxx(�,t) and
Fzz(�,t), which includes also nonlocal observables that contain
the string operator in terms of fermions. Specifically, on rays
with fixed velocity outside the light cone, (x = vt,t) with v >

c, we have verified that the OTOC has exponential decay ∼
exp[−λ(v)t] at long times, with λ(v) vanishing as (v − c)3/2

as v → c. Furthermore, the broadening we observed near the
wavefront (seen, e.g., in the movement of the first oscillation
feature inside the light cone for increasing � in Figs. 3 and 7)
is also consistent with the proposed broadening ∼t1/3 ∼ �1/3.
We thank the authors of Ref. [50] for communications about
these points.
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APPENDIX A: MAJORANA TWO-POINT FUNCTIONS AND PARTITION SUM OF THE SPIN MODEL

Before we proceed, we remind the reader that in this appendix and in Appendices B, C, and D, the time-dependent operators
are understood as evolved under the corresponding free-fermion Hamiltonians HNS/R as explained in the main text after Eq. (5)
and determined by the label of the ensemble used, 〈. . . 〉NS/R.

We now list the Majorana two-point correlation functions, which are ingredients in the applications of the Wick’s theorem:

〈Am(t)An〉NS/R = 1

L

∑
k∈KNS/R

e−ik(m−n)

[
cos(εkt) − i sin(εkt) tanh

(
βεk

2

)]
,

〈Am(t)Bn〉NS/R = 1

L

∑
k∈KNS/R

e−ik(m−n)e−iθk

[
cos(εkt) tanh

(
βεk

2

)
− i sin(εkt)

]
,

〈Bm(t)An〉NS/R = −1

L

∑
k∈KNS/R

e−ik(m−n)eiθk

[
cos(εkt) tanh

(
βεk

2

)
− i sin(εkt)

]
,

〈Bm(t)Bn〉NS/R = −1

L

∑
k∈KNS/R

e−ik(m−n)

[
cos(εkt) − i sin(εkt) tanh

(
βεk

2

)]
.

The equal-time correlations are thus 〈AmAn〉NS/R = −〈BmBn〉NS/R = δmn, 〈AmBn〉NS/R = 1
L

∑
k∈KNS/R

e−ik(m−n)e−iθk tanh(βεk/2),
and 〈BmAn〉NS/R = −〈AnBm〉NS/R.

We define matrices [AANS/R](t) with matrix elements [AANS/R]mn (t) ≡ 〈Am(t)An〉NS/R and analogously for [ABNS/R]mn (t),
[BANS/R]mn (t) and [BBNS/R]mn (t). We also use [I] and [0] to denote identity and zero matrices. For simplicity, the equal-time
correlators are denoted by omitting the time argument. We also use [AANS/R]m=i:j

n=k:l (t) to represent the submatrix of [AANS/R](t) with
row index from i to j and column index from k to l. We will frequently omit NS/R in [AANS/R](t) and other matrices since it will
be clear from the context which matrix is used.

As we mentioned in the main text, the calculation of the partition function Z of the spin model is less straightforward as it
involves the projectors. Specifically, we have

Z = Tr(e−βHNSP+) + Tr(e−βHRP−), (A1)
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where P± = [1 ± (−1)Ntot ]/2. We therefore have

Z = ZNS
1 + 〈(−1)Ntot〉NS

2
+ ZR

1 − 〈(−1)Ntot〉R

2
. (A2)

In the Majorana fermion language,

(−1)Ntot = (−1)L(L−1)/2
L−1∏
j=0

Aj

L−1∏
j=0

Bj . (A3)

Defining DNS/R = [ABNS/R]m=0:L−1
n=0:L−1 and

FNS/R =
(

0 DNS/R

−DT
NS/R 0

)
, (A4)

we have by Wick’s theorem (recalling that equal-time contractions 〈AmAn〉NS/R and 〈BmBn〉NS/R vanish for m �= n):

〈(−1)Ntot〉NS/R = (−1)L(L−1)/2Pf(FNS/R) = det(DNS/R). (A5)

APPENDIX B: PFAFFIAN CALCULATION OF Fxx(�,t)

In this appendix, we present details of the calculation of Fxx(�,t) for the spin chain with periodic boundary conditions using
the Pfaffian method. We define 2 × 2 matrices

Rxx
NS/R =

(
0 [AB]0

0

−[AB]0
0 0

)
, Sxx

NS/R =
(

[AA]�0(t) [AB]�0(t)

[BA]�0(t) [BB]�0(t)

)
, Uxx

NS/R =
(

[AA]0
�(−t) [BA]0

�(−t)

[AB]0
�(−t) [BB]0

�(−t)

)
, J xx =

(
1 0

0 −1

)
;

4 × 4 matrices

Mxx
NS/R =

(
Rxx

NS/R Sxx
NS/R

−(Sxx
NS/R)T Rxx

NS/R

)
, Nxx

NS/R =
(

J xx +Rxx
NS/R Sxx

NS/R

(Uxx
NS/R)T J xx +Rxx

NS/R

)
;

8 × 8 matrix

�xx
NS/R =

(
Mxx

NS/R Nxx
NS/R

−(Nxx
NS/R)T Mxx

NS/R

)
;

and 4 × 2L matrix

Qxx
NS/R =

⎛
⎜⎜⎜⎝

[AA]�n=0:L−1(t) [AB]�n=0:L−1(t)

[BA]�n=0:L−1(t) [BB]�n=0:L−1(t)

[I]0
n=0:L−1 [0]0

n=0:L−1

[0]0
n=0:L−1 −[I]0

n=0:L−1

⎞
⎟⎟⎟⎠.

Applying Wick’s theorem, we have〈
σx

� (t)σx
0 σx

� (t)σx
0

〉
NS/R = Pf

(
�xx

NS/R

)
,

〈
σx

� (t)σx
0 σx

� (t)σx
0 (−1)Ntot

〉
NS/R = (−1)

L(L−1)
2 Pf

⎛
⎜⎝

Mxx
NS/R Nxx

NS/R Qxx
NS/R

−(Nxx
NS/R)T Mxx

NS/R Qxx
NS/R

−(Qxx
NS/R)T −(Qxx

NS/R)T FNS/R

⎞
⎟⎠.

In the thermodynamic limit, we expect 〈σx
� (t)σx

0 σx
� (t)σx

0 〉 = 〈σx
� (t)σx

0 σx
� (t)σx

0 〉NS/R.
To obtain a compact analytical result, we focus on 〈σx

� (t)σx
0 σx

� (t)σx
0 〉NS. The Pfaffian can be simplified as follows (we omit

the labels “xx” and “NS” for brevity):

Pf

⎛
⎜⎜⎜⎝

R S J +R S

−ST R UT J +R

−J +R −U R S

−ST −J +R −ST R

⎞
⎟⎟⎟⎠ = Pf

⎛
⎜⎜⎜⎝

R S J +R 0

−ST R UT J

−J +R −U R S+U

0 −J −(ST+UT) 0

⎞
⎟⎟⎟⎠
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= Pf

⎛
⎜⎜⎜⎝

R S J 0

−ST R ST+UT J

−J −(S+U ) 0 S+U

0 −J −(ST+UT) 0

⎞
⎟⎟⎟⎠ = Pf

⎛
⎜⎜⎜⎝

R S J 0

−ST R 0 J

−J 0 0 S+U

0 −J −(ST+UT) 0

⎞
⎟⎟⎟⎠.

The matrix S + U is

S + U = 2

(
Re〈A�(t)A0〉 i Im〈A�(t)B0〉
i Im〈B�(t)A0〉 Re〈B�(t)B0〉

)
,

and we therefore obtain

Fxx(�,t) = 1 + 2i 〈B�(t)A0〉 Im〈B�(t)A0〉 + 2i 〈A�(t)B0〉 Im〈A�(t)B0〉 − 2〈A�(t)A0〉 Re〈A�(t)A0〉 − 2〈B�(t)B0〉 Re〈B�(t)B0〉
− 4〈A0B0〉2 Re〈A�(t)A0〉 Re〈B�(t)B0〉 + 4〈A�(t)A0〉 〈B�(t)B0〉 Im〈A�(t)B0〉 Im〈B�(t)A0〉
+ 4〈A�(t)A0〉 〈B�(t)B0〉 Re〈A�(t)A0〉 Re〈B�(t)B0〉 − 4〈A�(t)B0〉 〈B�(t)A0〉 Im〈A�(t)B0〉 Im〈B�(t)A0〉
− 4〈A�(t)B0〉 〈B�(t)A0〉 Re〈A�(t)A0〉 Re〈B�(t)B0〉.

We can identify the leading behavior as

ReFxx(�,t) ∼ 1 − 2[(Im〈B�(t)A0〉)2 + (Im〈A�(t)B0〉)2 + (Re〈A�(t)A0〉)2 + (Re〈B�(t)B0〉)2]

− 4〈A0B0〉2[Im〈A�(t)B0〉 Im〈B�(t)A0〉 + Re〈A�(t)A0〉 Re〈B�(t)B0〉]. (B1)

If we follow the ray �/t = v, where |v| < c, in the long-time limit, we can use the stationary phase approximation and obtain

Re〈A�(t)A0〉 ∼
√

1

2πε′′
k0

t
cos

(
ω0t − π

4

)
,

Re〈B�(t)B0〉 ∼ −
√

1

2πε′′
k0

t
cos

(
ω0t − π

4

)
,

Im〈A�(t)B0〉 ∼ −
√

1

2πε′′
k0

t
sin

(
ω0t − θk0 − π

4

)
,

Im〈B�(t)A0〉 ∼
√

1

2πε′′
k0

t
sin

(
ω0t + θk0 − π

4

)
.

Here k0 is the wave vector satisfying dεk/dk|k0 = v, and ω0 ≡ εk0 − k0v is the frequency. In particular, if we fix � and consider
long-time limit, this effectively corresponds to v = 0 and gives k0 = π and θπ = 0. In this case we find that the limiting behavior
of ReFxx(�,t) is t−1 decay without oscillation, and we obtain Eq. (10) quoted in the main text.

To calculate Gxx(�,t) ≡ ∂ ln Cxx (�,t)
∂t

, we use

Gxx(�,t) = −1

1 − RePf[�xx
NS]

Re

(
dPf[�xx

NS]

dt

)
, (B2)

where the derivative of the Pfaffian can be calculated as

dPf[�xx
NS]

dt
= 1

2
Pf[�xx

NS] Tr

[
(�xx

NS)−1 d�xx
NS

dt

]
. (B3)

The difference between results obtained using “NS” and “R” boundary conditions is very small for large enough systems.

APPENDIX C: PFAFFIAN CALCULATION OF Fzz(�,t)

Here we present details of the calculation of Fzz(�,t). The “doubled” OTOC �zz(�,t ; L), Eq. (11), can be written in terms of
the JW fermions as

�zz(�,t ; L) =
〈⎛⎝L−�−1∏

j= L
2

Bj (t)Aj+1(t)

⎞
⎠
⎛
⎝ L

2−�−1∏
j=0

BjAj+1

⎞
⎠
⎛
⎝L−�−1∏

j= L
2

Bj (t)Aj+1(t)

⎞
⎠
⎛
⎝ L

2−�−1∏
j=0

BjAj+1

⎞
⎠〉.
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We again need to calculate both “RS” and “N” pieces. We define (L − 2�) × (L − 2�) matrices

Rzz
NS/R =

⎛
⎝ [0] [AB]

m=1: L
2−�

n=0: L
2−�−1

[BA]
m=0: L

2−�−1

n=1: L
2−�

[0]

⎞
⎠,

Szz
NS/R =

⎛
⎝[AA]

m= L
2 :L−�−1

n=0: L
2−�−1

(t) [AB]
m=1+ L

2 :L−�

n=0: L
2−�−1

(t)

[BA]
m= L

2 :L−�−1

n=1: L
2−�

(t) [BB]
m= L

2 :L−�−1

n=0: L
2−�−1

(t)

⎞
⎠,

Uzz
NS/R =

⎛
⎝[AA]

m= L
2 :L−�−1

n=0: L
2−�−1

(−t) [BA]
m=1+ L

2 :L−�

n=0: L
2−�−1

(−t)

[AB]
m= L

2 :L−�−1

n=1: L
2−�

(−t) [BB]
m= L

2 :L−�−1

n=0: L
2−�−1

(−t)

⎞
⎠,

J zz =
(

[I] [0]

[0] −[I]

)
,

where [I] and [0] are ( L
2 −�) × ( L

2 −�) unit and zero matrices, respectively. We then construct 2(L − 2�) × 2(L − 2�) matrices

Mzz
NS/R =

(
Rzz

NS/R Szz
NS/R

−(Szz
NS/R)T Rzz

NS/R

)
,

Nzz
NS/R =

(
J zz+Rzz

NS/R Szz
NS/R

(Uzz
NS/R)T J zz+Rzz

NS/R

)
,

and 4(L − 2�) × 4(L − 2�) matrix

�zz
NS/R =

(
Mzz

NS/R Nzz
NS/R

−(Nzz
NS/R)T Mzz

NS/R

)
.

Finally, we also define 2(L − 2�) × 2L matrix

Qzz
NS/R =

⎛
⎜⎜⎜⎜⎜⎜⎝

[AA]
m=1+L

2 :L−�

n=0:L−1 (t) [AB]
m=1+L

2 :L−�

n=0:L−1 (t)

[BA]
m= L

2 :L−�−1
n=0:L−1 (t) [BB]

m= L
2 :L−�−1

n=0:L−1 (t)

[I]
m=0: L

2−�−1
n=0:L−1 [AB]

m=1: L
2−�

n=0:L−1

[BA]
m=0: L

2−�−1
n=0:L−1 −[I]

m=0: L
2−�−1

n=0:L−1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We can now compactly write the results of applying the Wick’s theorem:

〈σ z
L
2
(t)σ z

L−�(t)σ z
0 σ z

L
2−�

σ z
L
2
(t)σ z

L−�(t)σ z
0 σ z

L
2−�

〉NS/R = Pf(�zz
NS/R),

〈σ z
L
2
(t)σ z

L−�(t)σ z
0 σ z

L
2−�

σ z
L
2
(t)σ z

L−�(t)σ z
0 σ z

L
2−�

(−1)Ntot〉NS/R = (−1)
L(L−1)

2 Pf

⎛
⎜⎝

Mzz
NS/R Nzz

NS/R Qzz
NS/R

−(Nzz
NS/R)T Mzz

NS/R Qzz
NS/R

−(Qzz
NS/R)T −(Qzz

NS/R)T FNS/R

⎞
⎟⎠.

We evaluate these numerically and combine to obtain the Czz results for the spin system with periodic boundary conditions
presented in the main text.

To calculate Gzz(�,t) ≡ ∂ ln Czz(�,t)
∂t

, we use

Gzz(�,t) = ∓1

1 ∓ Re
√

Pf
[
�zz

NS

]Re

(
d
√

Pf[�zz
NS]

dt

)
,

where the upper/lower sign corresponds to the upper/lower sign in ReFzz = ±Re
√

Pf[�zz
NS], respectively (recall from the main

text that we are calculating Pf[�zz
NS] ≈ F 2

zz and recover the sign when taking the square root by continuity in parameters t and �).
We calculate the derivative of the Pfaffian in the standard way,

dPf
[
�zz

NS

]
dt

= 1

2
Pf
[
�zz

NS

]
Tr

[(
�zz

NS

)−1 d�zz
NS

dt

]
.

Again, there is essentially no difference between results from NS sector and from both sectors in the thermodynamic limit.
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APPENDIX D: PFAFFIAN CALCULATION OF Fzx(�,t)

Here we present details of the calculation of Fzx(�,t). The “doubled” OTOC �zx(�,t ; L), Eq. (15), can be written in terms of
the JW fermions as

�zx(�,t ; L) =
〈⎛⎝ L−�−1∏

j=L/2

Bj (t)Aj+1(t)

⎞
⎠A0AL

2−�B0BL
2−�

⎛
⎝ L−�−1∏

j=L/2

Bj (t)Aj+1(t)

⎞
⎠A0AL

2−�B0BL
2−�

〉
.

We define (L − 2� + 4) × (L − 2� + 4) matrices

Mzx
NS/R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[0] [AB]
m=1: L

2−�

n=0: L
2−�−1

[AA]
m=1+L

2 :L−�

n=0 (t) [AA]
m=1+ L

2 :L−�

n= L
2−�

(t) [AB]
m=1+ L

2 :L−�

n=0 (t) [AB]
m=1+ L

2 :L−�

n= L
2−�

(t)

[BA]
m=0: L

2−�−1

n=1: L
2−�

[0] [BA]
m= L

2 :L−�−1
n=0 (t) [BA]

m= L
2 :L−�−1

n= L
2−�

(t) [BB]
m= L

2 :L−�−1
n=0 (t) [BB]

m= L
2 :L−�−1

n= L
2−�

(t)

−[AA]m=0
n=1+ L

2 :L−�
(t) −[BA]m=0

n= L
2 :L−�−1

(t) 0 0 [AB]m=0
n=0 [AB]m=0

n= L
2−�

−[AA]
m= L

2−�

n=1+ L
2 :L−�

(t) −[BA]
m= L

2−�

n= L
2 :L−�−1

(t) 0 0 [AB]
m= L

2−�

n=0 [AB]m=0
n=0

−[AB]m=0
n=1+ L

2 :L−�
(t) −[BB]m=0

n= L
2 :L−�−1

(t) −[AB]m=0
n=0 −[AB]

m= L
2−�

n=0 0 0

−[AB]
m= L

2−�

n=1+ L
2 :L−�

(t) −[BB]
m= L

2−�

n= L
2 :L−�−1

(t) −[AB]m=0
n= L

2−�
−[AB]m=0

n=0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Nzx
NS/R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[I] [AB]
m=1: L

2−�

n=0: L
2−�−1

[AA]
m=1+ L

2 :L−�

n=0 (t) [AA]
m=1+ L

2 :L−�

n= L
2−�

(t) [AB]
m=1+ L

2 :L−�

n=0 (t) [AB]
m=1+ L

2 :L−�

n= L
2−�

(t)

[BA]
m=0: L

2−�−1

n=1: L
2−�

−[I] [BA]
m= L

2 :L−�−1
n=0 (t) [BA]

m= L
2 :L−�−1

n= L
2−�

(t) [BB]
m= L

2 :L−�−1
n=0 (t) [BB]

m= L
2 :L−�−1

n= L
2−�

(t)

[AA]m=0
n=1+ L

2 :L−�
(−t) [AB]m=0

n= L
2 :L−�−1

(−t) 1 0 [AB]m=0
n=0 [AB]m=0

n= L
2−�

[AA]
m= L

2−�

n=1+ L
2 :L−�

(−t) [AB]
m= L

2−�

n= L
2 :L−�−1

(−t) 0 1 [AB]
m= L

2−�

n=0 [AB]m=0
n=0

[BA]m=0
n=1+ L

2 :L−�
(−t) [BB]m=0

n= L
2 :L−�−1

(−t) [BA]m=0
n=0 [BA]

m= L
2−�

n=0 −1 0

[BA]
m= L

2−�

n=1+ L
2 :L−�

(−t) [BB]
m= L

2−�

n= L
2 :L−�−1

(−t) [BA]m=0
n= L

2−�
[BA]m=0

n=0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and combine these to form 2(L − 2� + 4) × 2(L − 2� + 4) matrix

�zx
NS/R =

(
Mzx

NS/R Nzx
NS/R

−(Nzx
NS/R)T Mzx

NS/R

)
;

finally, we also define (L − 2� + 4) × 2L matrix

Qzx
NS/R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[AA]
m=1+L

2 :L−�

n=0:L−1 (t) [AB]
m=1+L

2 :L−�

n=0:L−1 (t)

[BA]
m= L

2 :L−�−1
n=0:L−1 (t) [BB]

m= L
2 :L−�−1

n=0:L−1 (t)

[I]m=0
n=0:L−1 [AB]m=0

n=0:L−1

[I]
m= L

2−�

n=0:L−1 [AB]
m= L

2−�

n=0:L−1

[BA]m=0
n=0:L−1 −[I]m=0

n=0:L−1

[BA]
m= L

2−�

n=0:L−1 −[I]
m= L

2−�

n=0:L−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can now write the result of applying the Wick’s theorem to the calculation of �zx as

〈σ z
L
2
(t)σ z

L−�(t)σx
0 σx

L
2−�

σ z
L
2
(t)σ z

L−�(t)σx
0 σx

L
2−�

〉NS/R = Pf[�zx
NS/R],

〈σ z
L
2
(t)σ z

L−�(t)σx
0 σx

L
2−�

σ z
L
2
(t)σ z

L−�(t)σx
0 σx

L
2−�

(−1)Ntot〉NS/R = (−1)
L(L−1)

2 Pf

⎛
⎜⎝

Mzx
NS/R Nzx

NS/R Qzx
NS/R

−(Nzx
NS/R)T Mzx

NS/R Qzx
NS/R

−(Qzx
NS/R)T −(Qzx

NS/R)T FNS/R

⎞
⎟⎠.

To calculate Gzx(�,t) ≡ ∂ ln Czx (�,t)
∂t

, we use

Gzx(�,t) = ∓1

1 ∓ Re
√

Pf[�zx
NS]

Re

(
d
√

Pf[�zx
NS]

dt

)
,
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where the upper/lower signs correspond to the upper/lower sign in ReFzx = ±Re
√

Pf[�zx
NS], respectively (the correct sign is deter-

mined using continuity considerations). The derivative of the Pfaffian can be calculated as dPf[�zx
NS]

dt
= 1

2 Pf[�zx
NS]Tr[(�zx

NS)−1 d�zx
NS

dt
].

APPENDIX E: EXACT HEISENBERG EVOLUTION OF σ x(t)

Following Ref. [47], we can obtain a compact expression for the Heisenberg evolution of σx
j (t) under the quantum

Ising Hamiltonian, Eq. (1), at the critical coupling g = 1. With this in hand, we can in fact gain more intuition about the
commutator functions Cxx(�,t) and Czx(�,t) at β = 0 from the operator spreading point of view. We define Majorana fermions
P2j = (

∏j−1
j ′=−∞ σx

j ′)σ z
j and P2j+1 = −(

∏j−1
j ′=−∞ σx

j ′ )σ
y

j . (Note that these are simply related to the Majoranas in the main text and
the previous appendices by Aj = −P2j and Bj = iP2j+1; the convenience of Pn’s is that the critical Ising model gives a Majorana
chain that is invariant under translation by one Majorana, n → n+1.) We have [47]

Pn(t) =
∑

k

Pn+kJ−k(2t) =
∑
m

PmJn−m(2t), (E1)

σx
0 (t) =

∑
m,m′

iPmPm′J−m+1(2t)J−m′(2t), (E2)

where Jn is the nth order Bessel function of the first kind.
The summation is over all integers m and m′ and this expression holds in an infinite system. We can reorganize the summation

over m and m′ into a summation over ordered pairs,

σx
0 (t) =

∑
m<m′

iPmPm′Fm,m′ (2t), (E3)

where

Fm,m′ (2t) ≡ J−m+1(2t)J−m′(2t) − J−m′+1(2t)J−m(2t). (E4)

Note thatFm,m′ (2t) = −Fm′,m(2t) is antisymmetric. The summation terms in Eq. (E2) withm=m′ give zero since
∑

m J−m+1J−m =
−∑

m Jm−1Jm = −∑
m̃ J−m̃J−m̃+1 = 0, where we first used the property J−n = (−1)nJn and then changed the summation

variable.
Note that the operator iPmPm′ in terms of spin operators is basically a Pauli string of the form σy/zσ xσ x . . . σ xσ xσ y/z, i.e., with

σx in the middle and σy or σ z at the string ends depending on the parities of m and m′; the only exception is iP2jP2j+1 = −σx
j .

We can now easily see that the Heisenberg evolution of σx
0 (t) is composed of such Pauli strings iPmPm′ with amplitudes Fm,m′ (2t).

This already provides a rough idea of the “shape” of the commutator functions Cxx(�,t) and Czx(�,t). Indeed, since σx
� does not

commute with iPmPm′ only when � coincides with one of the ends of the string, we expect Cxx to have the “shell-like” structure
[39] described in the main text. On the other hand, σ z

� does not commute with iPmPm′ when � is anywhere inside the string, and
this explains the “dome-like” structure of Czx .

We can supplement these qualitative observations with precise calculations. The terms in the commutator [σx
0 (t),σ x

� ] are
nonzero when the boundary of the string iPmPm′ hits site �, which gives us m = 2� or m = 2�+1 or m′ = 2� or m′ = 2�+1,
excluding the case (m = 2�,m′ = 2�+1). The commutator function Cxx(�,t) at infinite temperature is easily obtained as the
Frobenius norm of [σx

0 (t),σ x
� ] (divided by 2). We therefore have

Cxx(�,t) = 2

[ ∑
m′>2�+1

|F2�,m′(2t)|2 +
∑

m′>2�+1

|F2�+1,m′ (2t)|2 +
∑
m<2�

|Fm,2�(2t)|2 +
∑
m<2�

|Fm,2�+1(2t)|2]

]
.

With such an expression in hand, we can reproduce the qualitative behavior Cxx(�,t) ∼ 1/t at long times inside the timelike
region, t 
 �/c. Indeed, it is not difficult to see that

Fm,m′(2t) ≈ 1

πt
cos

[
π

2
(m − m′ − 1)

]
, for |m|,|m′| � t, (E5)

while Fm,m′ (2t) decays quickly once |m| or |m′| exceeds number of order t . This means that the above expression for Cxx(�,t)
contains of order t terms of magnitude of order 1/t2, hence Cxx(�,t) ∼ 1/t . A more sophisticated analysis is needed to obtain
the amplitude as well as subleading terms, and the treatment in Appendix B provides an alternative derivation giving this data
more directly (with the additional benefit of being easily applicable also at finite temperature). Nevertheless, we find the operator
spreading analysis in the present appendix enlightening.

For the commutator function Czx(�,t), we can equivalently consider [σx
0 (t),σ z

� ]. The nonzero contributions come from the
iPmPm′ pieces of σx

0 (t) with (m � 2�,m′ � 2� + 1). This gives us

Czx(�,t) = 2
∑

m�2�,m′�2�+1

|Fm,m′(2t)|2. (E6)
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Using this expression, we can readily understand the finding in the main text that Czx(�,t) approaches a nonzero value at long
times inside the timelike region, t 
 �/c. Indeed, from the behavior of Fm,m′(2t) noted earlier, we can see that in the above sum
there are of order t2 terms of magnitude of order 1/t2, hence nonzero value of the sum in the long-time limit. Note that the
“operator spreading” derivation here is much simpler than the formal Pfaffian derivation in Appendix D and gives us almost a
closed-form expression for this commutator function at infinite temperature. On the other hand, the Pfaffian derivation has the
advantage of working readily also at finite temperature.

Lastly, we can see different information “extracted” from the σx(t) in other dynamical calculations discussed at the end of
Sec. III C. For example, the dynamical correlation function at infinite temperature is simply [47]〈

σx
0 (t) σx

�

〉 = −F2�,2�+1(2t) ≈ 1

πt
. (E7)

We see that the origin of the specific long-time power law behavior in the dynamical correlation function and the OTOC is indeed
very different from the operator spreading point of view.
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