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Gauge-independent decoherence models for solids in external fields
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We demonstrate gauge-invariant modeling of an open system of electrons in a periodic potential interacting
with an optical field. For this purpose, we adapt the covariant derivative to the case of mixed states and put
forward a decoherence model that has simple analytical forms in the length and velocity gauges. We demonstrate
our methods by calculating harmonic spectra in the strong-field regime and numerically verifying the equivalence
of the deterministic master equation to the stochastic Monte Carlo wave-function method.
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I. INTRODUCTION

Real-time numerical modeling of light-solid interaction is
one of the key theoretical tools for studying novel nonlinear
phenomena, such as high-harmonic generation [1,2]. One of
the challenges here is modeling decoherence caused by the
interaction of electrons with their environment. Especially for
highly nonlinear processes, an ab initio description of this
interaction is currently out of reach, and a phenomenological
description of decoherence is therefore common. Care has to be
taken when it is used in conjunction with ab initio electronic-
structure data, and the nature of the problems that need to be
addressed depends on the chosen electromagnetic gauge. The
two most popular choices are the length and velocity gauges.

In the length gauge, the interaction Hamiltonian contains
the coordinate operator. In the basis of stationary Bloch states,
this operator becomes what is known as the crystal-coordinate
operator, which involves differentiation with respect to crystal
momentum [3]. Evaluating this derivative is problematic when
Bloch states are obtained numerically because eigenstates of
a Hamiltonian are defined only up to random phase factors.
For pure states, this problem was successfully solved by the
so-called covariant derivative [4—6] (related methods include
link operators [7] and a generalized derivative [8—10]). This
method, however, cannot be directly applied to mixed states—
the covariant derivative needs to be adapted for simulations
with decoherence.

The velocity gauge obviates the necessity to differentiate
with respect to crystal momentum. However, it is important
to consider gauge invariance while implementing a particular
decoherence model in the velocity gauge [11,12]. On the one
hand, gauge invariance is frequently used as an essential test in
numerical simulations. On the other hand, phenomenological
relaxation terms that are known to work well in the length
gauge may lead to unphysical results when they are used
verbatim in the velocity gauge [13]. A brute-force solution
to this problem is to combine velocity-gauge propagation
with length-gauge decoherence, performing gauge transfor-
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mations at each step of numerical propagation [11]. Because
these transformations are time consuming, and also because
velocity-gauge simulations usually require a large basis set for
convergence [10,14,15], it is desirable to have more efficient
gauge-independent decoherence models.

In this paper, we examine gauge-invariant modeling of
optical excitations in the presence of decoherence. For length-
gauge calculations, we generalize the derivative operator for
mixed states. We then consider a subclass of Lindblad-type
dephasing models that are well suited for gauge-invariant
numerical modeling. Addressing the issue of high computa-
tional costs of density-matrix calculations, we demonstrate a
successful velocity-gauge implementation of the Monte Carlo
wave-function (MCWF) method [16]. As a practical example,
we apply our methods to the problem of high-harmonic
generation in a one-dimensional periodic potential.

II. MASTER EQUATION

We start by considering the Hamiltonian of a particle of
mass m and charge ¢ in a local potential subject to a classical,
homogeneous electric field:

[p — gA®)]?
2m

The gauge-dependent potentials are related to the electric field
via

H@) = + V(®) + qp(®,1). (D

@)

E() — —(V«p(r,z) + aA(”),

at

where the potentials in the length and velocity gauges can be
expressed as four-vectors:

(¢rG,ALc) = (—E@) - £,0), 3)
(Sve.Ave) = (o, - f E(ﬂ)dﬂ). 4

The unitary operator U = exp[igA(t) - /1] transforms the
Hamiltonian from the length gauge to the velocity gauge, i.e.,
U(Hl¢rc,ALcl —ihd)U" = Hl¢vc,Avcl.
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We now denote the field-free Hamiltonian as FIO and
introduce the crystal momentum k:

ﬁO,k = e_ik'fﬁoeik'f. (5)

The eigenstates Ho|u%,) = Eix|u’)) constitute a convenient
basis of spatially periodic functions in which we can expand
time-dependent solutions:

Ny
i) = Y [uf)ejm@). 6)
J

We describe interactions with the environment using the
Lindblad superoperator,

Lpy=LpL" — J(LTLp + pL'L), (7)
and solve the master equation:
ihd:p = [H®),p1 + i L(p). ®)

The Lindblad formalism has the advantage of preserving the
trace and positiveness of the density matrix. We are interested
in modeling decoherence using a Lindblad operator that can be
expressed analytically irrespective of the gauge. To this end,
we can use operators of the form

Lic = f(p.Ho). ©)
where f is an arbitrary operator function. For a homogeneous
electric field, we can use p = —i/iV to express the Lindblad

operator in the velocity gauge as

~

Lvg = f(UPUT,UHU")

2
q—Az(t)>. (10)

A 2 q A
= f(p—qA(t),Ho ——A-p+
m 2m
Having a Lindblad operator that is exact in both gauges
simplifies the analysis of gauge invariance. We will use the

following simple form of the decoherence operator:
g = 7 Ho. (1n

Since this expression does not depend on P, it commutes with
Hy; consequently, this type of decoherence does not have a
direct effect on the energy of the system. By combining Eqs. (7)
and (11), we get

Li6(Pkrc)ij = —(v/2)(Eix — Eji)*(ok16)ij- (12)

This expression describes the decay of off-diagonal elements
of the density matrix at rates that depend on the difference
between the energies. Although we do not attempt to describe
the physical origin of decoherence rates with this particular
scaling, energy-dependent decoherence is, in general, to be ex-
pected [17]. Energy-dependent dephasing rates were employed
to obtain better agreement with experimental results [18,19].
Note that coherence between degenerate states does not decay
in our case.

In the velocity gauge, the decoherence operator (11) reads

2
Lvg = «/?(Ho,k - %A i+ ;—mAz(t))- (13)

Correspondingly, the master equation (8) becomes

ihd; pxve = [Hox + qA() - Pk, p.vGl

+i<y/2)[Ho,k - %A(:) P

x [pk,vo,Ho,k - %A(r) : pkﬂ. (14)

Here and in the following, we drop the hat above operators
whenever the meaning is clear. We note that terms proportional
to A%(t) disappear since scalars commute with operators. An
attractive feature of the velocity gauge is that density matrices
at different k points are independent of one another.

The master equation in the length gauge reads

ihdpxrc = [Hox + igE@) - 3. ok 1G]
+i(y/2D[Hox,ox,.L6, Hoxll, (15)

where £ — 70k upon transformation to reciprocal space [3].
Care has to be taken when calculating the derivative because
Bloch functions are not necessarily smooth functions of k. For
a set of pure states uniformly occupying the valence bands,
one can define the covariant derivative [4,5] by considering
parallel transport of a single nondegenerate Bloch function or
a subspace of degenerate Bloch functions from one Kk point to a
neighboring one. The covariant derivative, herewith denoted as
Ok, can also be used for explicitly evaluating dipole transition
elements between nondegenerate Bloch functions:

0 0
(d ) _/,,0 |5 ‘ 0 _ Sk,k"!‘Akaij Sk,k—Aku,ij (16)
kij,o = (uik k ujk>at - S0 - S0 ’
k. k+AK, jj k. k—Aky jj

where (Sl?’kJrAka )ij = (u?k |u(j).k+Aka ). Later on, we will also use
the notation (Sk k+ak,)ij = (#ik|U jk+ak, ). We note that these
matrix elements are consistent with dipole transition elements
evaluated as (dk)ij,« = (iq7t/me)(Pk)ija/(Eix — Ejk).

Generalizations of parallel transport for mixed systems
were discussed by Uhlmann [20] and Sjoquist [21]. For a
system of mixed states of Bloch functions, as considered here,
a decomposition into orthogonal states at every k point can
be conducted: px = Y_;; Cijklud) (U | = 3=, pukclitnk) (k.
Since p,x is a continuous variable, it is in principle possible
to track changes in every of state as it varies over k and
calculate the parallel transport between a pair of states at
neighboring k points, i.e., between |ii,k) and |ii,k+ak,). This
approach, however, is straightforward only as long as the
decomposition is unique, which is not the case if degenerate
values of p,x occur. For practical calculations, we instead
propose to approximate the derivative as

[9k, k161 = QN ™! Z NoR,

X (Pktak, LG — Pk—Ak,,LG) Pk,LG — H.c.,
)

where R, denotes lattice vectors, N, is the number of k
points along the corresponding reciprocal vector, Ny = [ [, N
is the total number of k points in the Brillouin zone, and
where we have introduced px = ), /Puklitnk) (iinc| Which
ensures linearity of the commutator in the limit Ak — 0. In our
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numerical calculations, we evaluated gk using singular-value
decomposition. The changes in the coefficients of the density
matrices CijkLc = (u?k|pk,m|u(}k) in the basis of field-free
eigenstates are then calculated as

(el sk P ]

0 = 0f =~
= (Skk+ak, Ck+ak, LG Sgksak, Ckic).  (18)

where Cijkrc = (uf|Pkrcluy). The dipole transition ele-
ments that can be derived from Eq. (17) coincide with those
derived from Eq. (16) in the case of a complete basis set where
(Spxar,) = (Spksar,) " In the limit Ak, — 0, the terms
(¥ LAk, |u(j).k> approach Kronecker deltas up to irrelevant phase
factors if none of the Bloch states are degenerate.

Having laid out the formalism for determining the dynamics
using deterministic equations in both gauges, we note that
decoherence can also be modeled by means of the Monte Carlo
wave-function method (MCWF) [16]. This method replaces
the problem of propagating all N bz elements of a density matrix
by propagating N, valence-band functions, each containing N,
elements. This scaling makes it computationally efficient for
systems where the number of conduction bands is significantly
larger than the number of valence bands. As velocity-gauge
simulations typically require a large number of bands for
convergence, the MCWF method is particularly attractive for
these simulations. When applying this method, the Bloch
functions are propagated from |u;x(¢)) to |u;x(t + At)) using
the non-Hermitian Hamiltonian:

- ih
Ay = H(1) — %LL(f)Lkm. (19)

The solution is then accepted with probability (u;x(t +
At)|ux(t + At)) < 1 and normalized; otherwise, a quantum
jump occurs: the propagated function is taken to be |u;k(z +
At)) = Lg|u;k(¢)) and normalized. As quantum jumps occur
independently at different k points, they cause discontinuities
in the excitation densities with respect to k. The velocity
gauge is therefore preferable for the MCWF method as Bloch
functions at different k points are propagated independently.

Evaluation of the current

The electric current induced by an external electric field
is the key macroscopic observable in the linear and nonlinear
optics. The current can be evaluated from the expectation value
of the velocity operator:

30 = % ; Tr{viepi]. (20)

where vy = [px — qA(t)]/m, and V is the unit-cell volume.
Alternatively, we can construct the current as the temporal
derivative of the polarization obtained from the geometric
phase. For each Bloch function, or set of degenerate Bloch
functions, the modern theory of polarization [22] provides the
following expression:

q

P(t) =
( ) ZJTVNk

> > NeR,Imf{lndet Sgxiak,}.  (21)
o k

For partially occupied bands, it is necessary to generalize
Eq. (21) by introducing weights at each k point:

q
P(r) = NoRg nk Pn
(1) 27VN; Ek En v/ Pnk Prk+Ak,

X Im{ln det Sk,k-&-Aka } (22)

While the polarization is ambiguously defined, the current can
be uniquely calculated by taking the temporal derivative of
Eq. (21):

_ q -1 9
Jop(t) = VN ; ; NaRaTr|:Sk,k+Aka Esk,kﬂ—Aka]'

(23)

Equations (20) and (23) are equivalent in the continuum limit
(Ak, — 0), which can easily be shown for pure states. The
evaluation of Eq. (23) requires calculating S, . +Ak,» Which is
readily done for pure systems. For mixed systems, Sk k+ak, can
be singular due to unoccupied states. We therefore evaluate
S . +ak, in Eq. (23) as a normalized pseudoinverse by first
performing the singular value decomposition S = UX V1 and
then normalizing the singular values with respect to the
k-dependent densities:

if (Zk ktak,)ii 0

(Y, )i = 1//(Zk k+ Ak, i »
ke kt-Ake i 0, otherwise.
(24)
The normalized pseudoinverse is then constructed as
Sl:,l]H—Aka = Vi k+ak, Yk k+Ak, UlikJrAka . (25)

III. NUMERICAL RESULTS

Having defined all the necessary equations of motion and
the procedures for evaluating observables, we now provide a
numerical demonstration of our methods [23]. In the following,
we use Hartree atomic units unless stated otherwise. We
consider a one-dimensional potential defined as

oo
vy =— Y Vosech(w) (26)
n=-—00 o

We calculated Bloch functions by numerical diagonalization of
the Hamiltonian in the basis of plane waves. For electrons, we
have m = —q = 1. Setting the lattice parameters to Vy = 1.0,
a = 5.0, and ag = 0.2 leads to a band gap between the two
lowest bands of 7.3 eV. The lowest band is taken to be a fully
occupied valence band, and the rest are regarded as empty
conduction bands. For y = 0.1, we get a decoherence time of
6.7 fs at the position of the fundamental band gap. To ensure
convergence, we use up to eight bands and up to 800 & points.
The electric field is taken to be a single-cycle Gaussian pulse
defined such that the definite integral of the electric field over

all times vanishes:

Emax i

E(@) =
@ wo dt

(e722C i) sin(wgr)).  (27)
Throughout this paper, the electric-field parameters are taken
to be iwg = 1.6 eV and tpwpm = 2 15, so that wolpwam ~
7. Field strengths up to Eny = 1.5 V/A are used, which
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FIG. 1. (a) Time-resolved induced current for the ground state
subjected to a pulse with a peak electric-field strength of 1.5 V//DX.
(b) Power spectrum of the acceleration for pulses of varying peak field
strength. In both plots, the results for the length gauge (LG) (blue, red)
and velocity gauge (VG) (green, black) and for currents obtained via
the velocity operator (v) (blue, green) and the geometric phase (GP)
(red, black) are practically identical.

is sufficiently strong to accelerate electrons across half the
Brillouin zone, i.e., € Epax @t /iy ~ 7.

Figure 1 shows the optical nonlinear response evaluated
using four different methods: we propagated the density matrix
using the length and velocity gauges and, in both cases,
we evaluated the electric current density once with Eq. (20)
and once with Eq. (23). All four models shown in Fig. 1
give visually indistinguishable responses for all of the field
strengths used.

Figure 1(a) shows that the current oscillates rapidly during
the laser pulse and decays to a constant value after the external
field vanishes. The oscillations after the laser pulse are due to
the coherent superpositions of conduction- and valence-band
states. The visibly more rapid oscillations during the laser pulse
are due to the interaction of excitations with the external field.
This high-frequency content of the polarization response is
clearly visible in Fig. 1(b), where we show optical spectra as
the Fourier transform of the time derivative of the current. The
single-cycle laser pulse that we chose for this numerical exam-
ple does not generate distinct harmonic peaks. Nevertheless,
the spectra in Fig. 1(b) show several features characteristic
to high harmonics in solids. For example, several plateaus
emerge due to the presence of multiple conduction bands [24];
the plateau between 15w and 25w, in the calculation with
Enxx =0.5 V/;\ disappears if we use only one conduction
band in our length-gauge simulations (not shown).

Figure 2 shows the distributions of electrons in the lowest
three conduction bands at the end of the laser pulse. This figure
further confirms the gauge independence of our calculations.

0.100

0.075

)ii

£ 0.050

0.025

0.000 i i i
0.0 0.5 1.0 1.5 2.0
Crystal momentum (7/ajat)

FIG. 2. Distributions of electrons in the conduction bands (CBs)
after excitation by a pulse with E, = 1.5 V/A according to a
velocity gauge calculation (colored, solid lines) and length gauge
calculation (black, dashed lines).

A comparison of MCWF results to those obtained using the
deterministic methods is shown in Fig. 3. For the chosen field
strength of 1.5 V/A, the spectrum in Fig. 3(b) converges fast
for photon energies up to ~20wy. Because of the high field
strength, the peak at the fundamental frequency splits into two
separate peaks [25]. As quantum jumps lead to discontinuities

(a)
50 F

TR
—— Master equation

<

2 i
— 0
N

~

—50

-5.0 —-25 0.0 2.5 5.0 7.5 10.0
Time (fs)

1(]5:-""|""|""|""|""
: — MCWF

)
) [
i I v v —— Master equation

v oy

£
= 10'F 3

i | 1 1
8 100 10t 102
Nrun

FIG. 3. (a) Current obtained from MCWF method and the exact
solution obtained by solving the master equation for a field strength
of 1.5 V/A. Currents obtained from individual runs are shown in gray.
(b) Spectrum of the acceleration with arrows indicating the expected
location of the odd harmonics. (¢) Root-mean-square deviation from
the exact result as a function of the number of individual runs.
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in the observables or their derivatives, their frequency spectra
contain noisy components. Consequently, itis necessary to take
an average over many runs, and we average the optical response
over 200 runs to obtain a reasonably converged spectrum. As
expected, the results converge as /N, and this behavior
is observed in Fig. 3(c). The method is therefore less suited
for analyzing low-magnitude high-frequency components. As
only eight bands were necessary for convergence in our one-
dimensional example, the MCWF method did not outperform
the master equation approach in terms of computational time.

IV. DISCUSSION

The excellent agreement between the results obtained in
the length and velocity gauges confirms the validity of our
proposed method for differentiating mixed states in reciprocal
space [see Eq. (17)]. The method can readily be applied to
two- and three-dimensional solids and is therefore applicable
to ab initio data obtained from, e.g., density-functional-theory
calculations. Furthermore, our numerical results confirm that
constructing decoherence (and relaxation) operators as func-
tions of p and H is beneficial as it alleviates issues with gauge
transformations. This, however, requires a sufficiently com-
plete basis, where the sum rules are satisfied and Eq. (10) holds.

Our approach can also be generalized to approximate
experimentally observed excitation-dependent decoherence
rates [26]. Whenever an external electric field is present,
(pve)ii # (pLg)ii and itis therefore more convenient to express
the excitation in terms of absorbed energy. For a ground
state with energy Ey and band gap Eg, the density can
be approximated as nexe & [)  (Hk(?)) — Egl/Ey. In this
approach, there is no reference to gauge-dependent quantities,
and no transformation between gauges is necessary. In order
to make decoherence rates scale with the cubic root of the
conduction-band density, one can use the following Lindblad
operator: Ly = 7[>, (Hx(t)) — Egs]"/? Hx(1).

Further work is, however, necessary to define a universal
scheme that treats nonlocal potentials [27,28], inhomogeneous
fields, as well as corrections to the single-particle equation of
motion arising from scattering and many-body effects on equal
footing in all gauges. Our demonstration of the equivalence
of the two gauges in systems subject to decoherence can be
used for testing the validity of approximations that may break
gauge invariance. Finally, we note that, in our implementation,
velocity-gauge calculations are faster than the length-gauge
ones, while evaluating the current from the expectation value
of the velocity operator is faster than evaluating it from
the geometric phase. For parallelization over k points, it is
preferable to perform simulations in the velocity gauge and
evaluate the current density using the velocity operator.

We have also shown that the Monte Carlo wave-function
method is very well suited for determining optical properties
of condensed matter in the velocity gauge, except for resolving
very high-frequency components.
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APPENDIX A: PHYSICAL MEANING OF THE
INVESTIGATED DECOHERENCE OPERATOR

With Eq. (9), we introduced a class of decoherence (relax-
ation) operators that possess convenient numerical properties.
We did not derive this form of a Lindblad operator from first
principles. Nevertheless, it should be possible to approximate
a particular microscopic model of dephasing with a model that
complies with Eq. (9). For simplicity, we considered the case
L  Hy. In this section, we examine the physical meaning of
this choice.

Let us consider a system of electrons interacting with a
bath of bosons described by an annihilation operator b, and
a creation operator bi. In the absence of an external electric
field, the Hamiltonian of the combined system is then

H=Hy+ Y Ebiby+ Y Ho(yub] + v, bu).

where H; describes Bloch electrons, Zn Snbz,bn governs

the dynamics of the bath, and H; =), Ho(ys b + Vb))
describes the interaction of electrons with the bosonic bath.
We will assume that the bath is sufficiently large to neglect the
influence of electrons on it. Transforming the Hamiltonian into
the interaction picture with respect to the bath yields

H = Hy+ Z Ho()/nb,teig”t + )/:bneiig"t),

n

A H0|:1 +2 " lyalyV/Ny cos(Ent + argy,,):|

= Ho[l +n(®)], (AD)
where 7n(¢) is a fluctuating function that depends on the
coupling strengths y,; we have denoted bath eigenvalues
with &, and occupation numbers with N, > 1. Within the
approximation encoded in Eq. (A1), the effect of the bath on
the system is to multiply the energies with A(f) = 1 4+ n().
Such a modulation can result from the uniform deformation of
a lattice potential:

—n?
Hyp = ﬁvf + A1)V (/A(D)r)

2
= A(t)[%vsz + V(s)], (A2)

where s = /A(¢)r. If Bloch functions adiabatically follow
changes of the lattice potential, their energies will be modulated
with A(f). This may serve as a very rough model of a breather
mode of lattice vibrations. It should, however, be kept in mind
that a Kohn-Sham potential V contains, in addition to the
bare lattice potential, the Hartree and exchange-correlation
potentials from the other electrons.

The function n(z) represents the time-dependent, stochastic
deformation of the potential, where the randomness arises
from the phase of the complex-valued coupling factors y,. In
the limiting case of a stochastic function with a white noise
spectrum, averaging over all possible realizations of (¢) yields
(n(t)), = 0and (n(t)n(t")), o é(t —t'). Foreachrealization of
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n(t), the wave functions can formally be propagated in time as

(Yt + A1) = Ut + AL, 1), (1)) (A3)
i i t+At
~ (1 — ﬁHoAt — gHo'/t dt'n(t)
1 t+Ar v
—ﬁHozf dt’/ dt”ﬁ(t')n(t”)>|¢n(t)),
(A4)

where we have kept only terms where At appears in the
first order. The evolution of the density matrix can then be
determined from

p(t + An) = <Z [Walt + AD) (Yt + Ar)|>

n
= Ut + AL.DP@U' (1 + A1),

i i t+At
~([1—-=HyAt — —H dt'n(t’
<< 7 Ho 7 0/[ n(t’)

1 t+At t
_ ?HOZ/ dl‘// dt”n(t/)n(t//)>
t t

l- i t+Ar
x ,o(t)(l + - HoAL + EHof dt'n(t")
t

1 t+At t
_ —2H02/ dt’/ dt”n(t’)n(t”)>>
h t t n

~ p(t) — %[Ho,p(mm

+ 2 Hop(ey Ho —
) 0P 0 )

1
Go(t) — EpmHé)Ar-
(AS)

At the last step, we dropped terms quadratic with respect to At
and assumed

t+Ar ' hzy
/ dt’/ dt"n(tm@")) = ——At.
‘ ‘ \ 4

Comparing Eq. (AS5) to master equations (14) and (15), we see
that the stochastic multiplicative perturbation of the Hamilto-
nian, encoded in Eq. (A1), leads to the decoherence operator
that we introduced with Eq. (11).

(A6)

(a) 100_—'""""""';'Ed('l'z)
. Const LG ]

S i\n

/ N

FIG. 4. Optical current Master equation evaluated with the de-
phasing rates given in Eq. (12) (blue), and evaluated using constant
dephasing rates in length gauge (red) and velocity gauge (green).
(a) Time domain and (b) spectral domain.

APPENDIX B: UNIFORM DECOHERENCE RATES

In this appendix, we illustrate the violation of gauge in-
variance when formally the same expression for decoherence
is used in the length and velocity gauges. For this example,
we chose the case where all states dephase at the same rate in
the length gauge: Lig(p)ij = vopij(1 — &;;) where §;; is the
Kronecker symbol. In the velocity gauge, we use the same
dephasing terms, Lyg(p) = Lig(p). The dephasing rate is
taken to be yy = (0.47 fs)~!, which corresponds to the energy-
dependent dephasing rate evaluated at the average energy
difference between the valence band and lowest conduction
band. As the dephasing terms are not gauge invariant, the
two master equations do not correspond to the same physical
system, so the dielectric response is expected to be visibly
different. The outcomes of solving the master equation with
these new terms are shown in Fig. 4. The time-dependent
electric currents are visibly different. In the spectral domain,
the two new energy-independent dephasing models produce
spectral intensities that significantly exceed that presented in
the main text, especially at the high frequencies (w > 25wy).
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