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Nonsymmorphic symmetry-protected topological modes in plasmonic nanoribbon lattices
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Using a dynamic eigenresponse theory, we study the topological edge plasmon modes in dispersive plasmonic
lattices constructed by unit cells of multiple nanoribbons. In dipole approximation, the bulk-edge correspondence
in the lattices made of dimerized unit cell and one of its square-root daughter with nonsymmorphic symmetry
are demonstrated. Calculations with consideration of dynamic long-range effects and retardation are compared
to those given by nearest-neighbor approximations. It is shown that nonsymmorphic symmetry opens up two
symmetric gaps where versatile topological edge plasmon modes are found. Unprecedented spectral shifts of
the edge states with respect to the zero modes due to long-range coupling are found. The proposed ribbon
structure is favorable to electrical gating and thus could serve as an on-chip platform for electrically controllable
subwavelength edge states at optical wavelengths. Our eigenresponse approach provides a powerful tool for the
radiative topological mode analysis in strongly coupled plasmonic lattices.
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I. INTRODUCTION

Bulk-edge correspondence of crystals explained by topo-
logical band theory have been an area of intense study in
condensed matter theory [1–4]. Recently, topological modes
protected by various global or crystalline space group sym-
metries have attracted a lot of interest in the field of photonics
because they could offer new opportunities in controlling light,
such as robust transport of electromagnetic waves which are
immune from backscattering due to disorder or defect [5–7].
Many interesting topological edge modes in periodic photonic
systems with symmorphic symmetries have been designed and
realized in the past few years [8–17].

The search for new confined topological photonic modes at
higher frequencies is important for actual photonic applications
due to the demand of high data rate and strong light-matter
interaction. In the optical subwavelength region, it has been
shown that topological edge states can be realized in one-
dimensional (1D) biparticle chains [18–23], two-dimensional
(2D) honeycomb lattices of plasmonic nanoparticles [24], and
2D plasmonic materials [25]. Owing to the ability of confining
optical energy into the nanometer scale, topological plasmon
modes provide a ubiquitous platform to enhance light-matter
interaction in deep subwavelength volume.

Nonsymmorphic symmetry plays an important role in
the prediction of new phases of matter, such as 2D Dirac
semimetals [26] and symmetry-protected topological modes
in three dimensions [14]. Recently, it is shown that new
topological modes can be derived from taking nontrivial square
roots for the tight binding Hamiltonian [27], which can lead
to nonsymmorphic symmetry-protected topological modes.
Realizations of these complex topological modes may require
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more bulky designs due to more complex unit cells. Low
dimensional plasmonic systems based on nanoribbons may
offer opportunities to maintain these topological systems in
the optical subwavelength regimes. In this paper, we study the
radiative topological plasmon modes on plasmonic nanoribbon
lattices protected by nonsymmorphic symmetry using the 2D
version of eigenresponse theory [28]. The proposed nanorib-
bon array in three dimensions has a continuous translational
symmetry along the y axis (see Fig. 1) and a discrete trans-
lational symmetry along the x axis. Since we only discuss
the structure of the cross sections (as a 2D space in the
xz plane), we will refer to the array as a 2D system. The
ultrathin nanoribbon design supports plasmonic resonances in
the visible and near infrared (vis-NIR) region, which could be
favorable to fast dynamical tunability upon realistic electrical
doping compared to the other geometries. Moreover, our
eigenresponse theory provides spectral information for the
band structure and edge states supported by the lattices with
realistic effects such as the dynamic long-range interaction
with retardation taken into account. For a comparison, we
first calculate the band structures and the edge states of 1D
biparticle lattices of both Su-Schriffer-Heeger (SSH) [29] and
Rice-Mele (RM) models [30,31]. Different from the other
plasmonic geometries with multiple particles per unit cell
[32,33], the SSH chain is the simplest model supporting
the topological edge state. It is found that the edge state
by including long-range coupling is blue-shifted from the
zero mode predicted with only nearest-neighbor coupling.
We further consider a nonsymmorphic extension of the RM
lattice. The nonsymmorphic RM lattice can be obtained as
the square root of the tight binding Hamiltonian of the parent
RM lattice. Owing to the nonsymmorphic symmetry, two new
gaps emerge symmetrically in the positive and negative bands
of the parent lattice, which support multiple topological edges
states [27]. Compared with the biparticle lattice, the edge states
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FIG. 1. (a) Schematic illustration of 1D array of nanoribbons.
(b) Cross sections in the xz plane of SSH, RM, and nonsymmorphic
extension of RM lattices. The thicknesses are enlarged for better
illustration.

with long-range coupling in the nonsymmorphic, square rooted
lattices can either blue-shift or keep invariant depending on
the resident gaps. These results indicate the important role of
long-range coupling on the spectral properties of the plasmonic
arrays.

This paper is organized as follows. Section II devotes the
general elements of the theory used in this work and in partic-
ular the dipolar response of the individual gold nanoribbon in
the vis-NIR range and the eigenresponse theory in 2D space.
The general results of this section are then applied in Sec. III,
where the plasmonic band structure as well as the edge states of
biparticle lattices, including both SSH and RM geometries are
obtained. In Sec. IV, we discuss the band structure and the edge
states in nonsymmorphic, square rooted lattices. Section V is
devoted to discussions and conclusions.

II. THEORETICAL MODEL

A. LSP resonance of the individual nanoribbon

We begin by considering an array of thin metal nanoribbons
located along the x axis as shown in Fig. 1(a). In the long
wavelength limit in which a nanoribbon is close to its dipolar
resonance, its near and far field responses are dominated by the
electric dipole distribution. Within the dipole approximation,
the nth effective dipole moment is related to the external
applied electric field by pn(ω) = αn(ω)En(ω) where αn(ω)
is the dipolar polarizability tensor of the nth anisotropic
particle. For the nanoribbon considered here whose thickness
t is much smaller than the width D, the spectral location
of the longitudinal dipolar resonance pn‖x̂ is far away from
the transverse dipole pn‖ẑ. If we restrict our attention on
the x-polarization mode, it is reasonable to ignore the cross
coupling from the z-component scattered fields by the other
particles. In this case, the quasistatic longitudinal polarizability
per unit length of the nanoribbon can be written as

α(ω) = D2

16

ε(ω) − 1

ε(ω) + χ
, (1)
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FIG. 2. Normalized extinction spectra of the individual Au
nanoribbons with thickness. (a) t = 2.4 nm and (b) t = 9.6 nm for
different widths. The dashed green line represents the dipolar resonant
frequency calculated based on the polarizability Eq. (1).

where χ = D/t � 1 is the aspect ratio, and ε(ω) is the relative
permittivity of the metal. This expression is obtained from
the infinite aspect ratio limit of the elliptical cylinder, and is
similar to the expression of Ref. [34]. In the electrostatic case
ω → 0 under normal incidence, the polarizability turns to be
α0 = D2/16 which is consistent with the perfect conductor
limit of metal sheet [35]. We consider the nanoribbon of width
D extracted from a single (111) atomic layer of gold [36].
By assuming the thickness of the gold monolayer is equal to
a single (111) atomic layer a0 = 0.236 nm, we choose the
thickness of the nanoribbon to be t = 2.4 nm (about 10 atomic
layers). For the dielectric property of the metal, we adopt the
Drude model in order to obtain a semianalytical calculation:

ε(ω) = ε∞ − ω2
p

ω(ω + iτ−1)
, (2)

where ε∞ is the high frequency limit of the dielectric constant
which accounts for background screening due to bound elec-
trons, ωp is the bulk plasma frequency, and τ−1 relates to the
electron damping rate in the material. In the vis-NIR region, the
following set of parameters is used to fit the experimental data
for gold [37]: ε∞ = 9, h̄ωp = 8.95 eV, and h̄τ−1 = 65.8 meV.

From the dipolar polarizability α(ω), the extinction cross
section of the individual nanoribbon is given by σ ext =
(8π2/λ0)Im{α} [38]. Figures 2(a) and 2(b) show the de-
pendence of the extinction cross section spectra σ ext of the
nanoribbon on the width D for t = 2.4 nm and 9.6 nm,
respectively. The green dashed lines are calculated based on
α(ω). The density plots are numerically simulated with a full
wave finite difference time domain (FDTD) solver Lumerical
FDTD Solutions with x-polarized normal incidence. From the
figure, we can find (1) the dipolar polarizability based on
Eq. (1) for t = 2.4 nm is in good agreement with the lowest
order dipole resonance from FDTD simulation. While for the
thicker nanoribbon t = 9.6 nm, a blue-shift for the analytical
calculation is observed especially for larger D. The discrep-
ancy indicates that the influence of the nonvanishing thickness
t for finite χ can’t be ignored at the operating wavelengths.
However, the quasistatic polarizability is accurate enough for
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ultrathin nanoribbons considered here. (2) The dipolar plasmon
wavelength increases monotonically with increasing width D,
exhibiting an approximate ∝ χ (=√

D/t) dependence [34]. A
qualitative estimation can be established by neglecting the
background screening (ε∞ = 1), thereafter the polarizability
can be simplified to

α(ω) ≈ D2

16

ω2
p

ω2
p − χω(ω + iτ−1)

. (3)

There appears a geometric resonant frequency ωg = χ−1/2ωp

in Eq. (3) which indicates the geometric dependence of the LSP.
Owing to the geometric dependence, the resonant wavelength
can be engineered by simply tailoring the ribbon’s aspect ratio.
As an example, the LSP resonance lies in the visible region for
the nanoribbon t = 2.4 nm with width ranging from ∼10 nm to
70 nm. Moreover, the bulk plasma frequency ωp =

√
ne2/ε0m

for the nanoribbon can be effectively tuned by injecting
charge carriers with conventional electric gating technology
as in graphene nanostructures [39]. Thus electrically doped
nanoribbons with a realistic doping level allow the LSP mode to
be dynamically tuned across a broader spectral band, enabling
potential applications for dynamic sensing and integrated on-
chip information processing.

B. Eigenresponse theory in 2D space

A widely applied approach toward the topological eigen-
mode analysis is built on the coupled dipole method with
quasistatic nearest-neighbor coupling. For example, plasmonic
edge modes are analytically predicted at the zero mode
frequencies associated with the single particle plasmon res-
onances in plasmonic SSH lattices [29] from both classical
[18–22] or quantum [23] approaches. Unlike most electric
systems, optical systems in general have inherent frequency
dispersion together with radiative and absorption damping.
Thus, it is highly desirable to develop an exactly solvable
approach for the edge states in optical systems analysis with
long-range coupling, especially for strongly coupled lattices
of plasmonic or dielectric resonators.

In the following, we introduce the eigenresponse theory
in 2D space with which we can calculate the plasmonic band
structures as well as the edge states supported by the lattice. The
eigenresponse theory is based on the coupled dipole method
which has been applied for the optical properties of various
plasmonic lattices. As previously shown, the nanoribbons in
the lattices are well approximated as point dipoles in the long
wave region. Hence, the local electric field at the position of a
specific dipole inside the lattice is given by the external incident
field and the fields produced by all the other dipoles. Dipole-
dipole interaction among the particles leads to the following
self-consistent coupled dipole equations [40–42]:

pn = αn

⎛
⎝Eext

n + 4πk2
0

∑
m
=n

Gnmpm

⎞
⎠, (4)

where αn is the polarizability of the nth ribbon, Eext
n is the

incident electric field at the nth dipole, the sum yields the
electric field produced on site n by the rest of particles,

mediated by the 2D free space Green dyadics [43]:

Gnm =
(
I + 1

k2
0

∇⊥∇⊥

)
g0(k0ρnm). (5)

Here I is the 2 × 2 identity matrix, k0 = 2π/λ0 is the wave
vector in vacuum, ∇⊥ = (∂/∂x,∂/∂z) is the 2D derivative
operator, ρnm = |ρn − ρm| is the interparticle spacing in the xz

plane between sites n and m, and g0(k0ρ) = (i/4)H (1)
0 (k0ρ) de-

notes the 2D scalar Green function, where H
(1)
0 is the zero order

Hankel function of the first kind. Because we are only inter-
ested in the longitudinal coupling, the Green dyadics becomes
a scalar function G(ρ) := (G)xx(k0ρ) = (i/4k0ρ)H (1)

1 (k0ρ)
where H

(1)
1 is the first-order Hankel function of the first kind.

From the asymptotic expansion ofH (1)
1 along thex axis, we find

that the dipole-dipole interaction in the quasistatic near field
limit behaves as an inverse-square function of the distance,

G(ρ) = 1

2πk2
0ρ

2
, (ρ → 0). (6)

Compared with the near field behavior of Green dyadics in
three-dimensional (3D) space ∼(k0r)−3, the near field of the
dipole decays slowly in 2D space. In the coupled dipole theory,
Eq. (4) can be rearranged to the eigenvalue problem,

α−1
n pn − 4πk2

0

∑
m
=n

Gnmpm = Eext
n , (7)

which relates the dipole moment distribution on the lattice with
the external field. Here the polarization state is the eigenvector
associated for the effective polarizability matrix M(ω) [left
side of Eq. (7)] with a specific driving field. However, all
the spectral information of the system are contained in M. In
the eigenresponse theory, we consider the eigenvalue problem
for the M(ω) matrix without specifying the driving field by
which we can obtain all the possible eigenmodes of a finite or
infinite lattice. To be specific, we solve the algebraic eigenvalue
problem [20,28],

M(ω)p = λ(ω)p, (8)

where M is given by

[M(ω)]nm =
{
α−1

n , n = m;
−(iπk0/ρ)H (1)

1 (k0ρ), n 
= m,

and the eigenvector p(ω) = [p1, . . . ,pN ]T where N denotes
the total particle number. So that the M matrix can be regarded
as the effective Hamiltonian for the plasmonic chain in which
the diagonal term α−1

n is analogous to the on-site energy for the
nth particle, the off-diagonal Green functions are the hopping
terms between the nth and mth sites. It should be noted that
the effective Hamiltonian for the coupled optical system is
inherently dispersive with loss, which makes it difficult to solve
the eigenstates similar to the electronic counterpart.

For an infinite periodic lattice with M sites per unit cell,
we seek the solution of the Bloch wave form pn = peinka with
k ∈ [−π/a,π/a] the Bloch wave vector. Inserting the Bloch
ansatz into the coupled dipole equations (8) leads to the Bloch
eigenvalue problem:

M(ω,k)p = λ(ω,k)p, (9)
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where the elements of the M dimensional M matrix in the pn

basis are given by

[M(ω,k)]nm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α−1
n − iπk0

ρ

∑
p 
=0

H
(1)
1 (k0ρ)eipka, n = m;

− iπk0
ρ

∞∑
p=−∞

H
(1)
1 (k0ρ)eipka. n 
= m;

Here ρ = |pa + dnm| with dnm is the spacing between the
nth and mth particles in the unit cell and the eigenvector is
p = [p1, · · · ,pM ]T with M sites per unit cell.

From the M matrix we can solve the complex eigenvalue
λ(ω) for each ω in a finite lattice or (ω,k) in a periodic
lattice. We note that λ−1(ω), which contains all the spectral
information of the collective eigenmodes, represents the in-
verse eigenpolarizability of the lattice [28]. Furthermore, the
imaginary part Im[λ−1(ω)] is proportional to the density states
of the lattice and its peak gives rise to the eigenmode frequency
and resonance width of the system.

C. General considerations

Let us have a look at the general features of the proposed
nanoribbon lattices in the framework of the coupled dipole
model where M plays the same role as the Hamiltonian
in the electronic system. In spite of the various analogies,
optical systems are certainly significantly different from the
condensed matter systems. In general, any optical material
must include loss and dispersion to satisfy the causality
principle. Consequently, one typically encounters decaying
quasinormal modes related to a non-Hermitian algebraic eigen-
value problem with complex eigenvalues, that is, M 
= M†. In
the coupled dipole approximation, the time reversal symmetry
is broken because M 
= M∗ in the presence of material and
radiation loss. However, it is usually believed that optical
systems with weak damping still sustain the topological char-
acteristics. Actually, the M matrix considered in this work is
symmetric by construction. This special feature leads to the
observation of topological phases in several 1D and 2D lattices
of dielectric [18] or plasmonic resonators [19–21,23] with
similar sublattice geometry as in their electronic counterparts.
In addition, most optical resonant modes are featured with a
finite band width which characterizes the mode’s quality factor.
This leads to the difficulty in spectrally resolving the exact
band structure in plasmonic structures. In typically reported
topological plasmonic systems mentioned above, the material
and/or the radiation loss are neglected to obtain analytically
real dispersion relations. Moreover, the material dispersion
together with the long range dipole-dipole interaction gives
rise to the asymmetry between the different bands protected
by the global symmetries. In this work, however, we include
both the material and radiation loss within the eigenresponse
approach.

III. EDGE STATES IN BIPARTICLE LATTICES

A. Modal dispersion of biparticle lattices

In Sec. II, we have studied the spectral feature of the
dipolar LSP mode of an isolated nanoribbon and introduced
the eigenresponse theory in 2D space. In this section, we

apply the established method on the simple but instructive
case of the arrays consisting of a biparticle lattice with two
sites per unit cell. The biparticle lattice can mimic either the
SSH model for polyacetylnene which has been studied in
topological photonics [9,12,13,16,20–23] or the RM model for
conjugated diatomic polymers depending on the parameters.
For a periodic lattice with two sites per unit cell, the M matrix
is given by

M(ω,k) =
[
α−1

1 − GAA −GAB

−GBA α−1
2 − GBB

]
, (10)

where GAA = GBB and

GAA = iπk0/ρ
∑
p 
=0

H
(1)
1 (k0ρ)eipka,

GAB =
∑
p�0

(
GdA+pae

ipka + GdB+pae
−ik(p+1)a

)
,

GBA =
∑
p�0

(
GdA+pae

−ipka + GdB+pae
ik(p+1)a

)
.

When the inverse on-site polarizabilities of the two sites are
tuned to be equal (α−1

1 = α−1
2 ), the above model describes the

plasmonic analogy of the SSH chain [Fig. 1(b)]. In this case,
it is known that the bulk M exhibits two distinct topological
phases for d1 < d2 and d1 > d2, separated by a topological
transition point at d1 = d2. As a result, band inversion occurs
across the transition point by which the Zak phase θZak change
from 0 to π . When the on-site polarizabilities are tuned to
be different α−1

1 
= α−1
2 , the system models the RM lattice

which describes a linearly conjugated diatomic polymer; in
this case, there is no inversion center in the unit cell and θZak

takes a fractional value, indicating no topological transition
point corresponding to gap closure.

In order to gain analytical understanding similar to the
standard tight binding model, we first consider the nearest
neighboring coupling for Eq. (10). For the sake of simplic-
ity, we introduce the parameters α−1

0 = (α−1
1 + α−1

2 )/2, =
(α−1

1 − α−1
2 )/2 and regard α−1

0 as a reference point (zero mode)
for the eigenvalue problem. With these terms, M reads

M(ω,k) =
[

 −(t1 + t2e
−ika)

−(t1 + t2e
ika) −

]
, (11)

where ti = Gdi
= −(iπk0/di)H

(1)
1 (k0di), (i = 1,2). In Fig. 3,

we have compared the polarizability difference  with the near
field hopping interaction based on Eq. (6). Here, the staggered
nanoribbons are chosen to be 50 and 60 nm in width. Obviously,
the hopping term for distance larger than 50 nm is comparable
with , leading to the formation of the band gap structure
which can be confirmed with the rigorous calculations. For the
biparticle lattice considered here, the dispersion relation ω(k)
can be explicitly solved. However, the analytical solutions are
very difficult to find for complex geometries such as the lattice
with four sites per unit cell considered in the next section. Since
what is important is the critical condition for band inversion,
we regard , t1, and t2 as independent parameters by which we
yield the formal solution for λ(ω,k), giving rise to information
on the band structure.
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FIG. 3. Comparison between the on-site energy difference (ρ)
with the near field dipole-dipole hopping interaction.

Formally solving the eigenvalue problem, we obtain the
following solutions for λ:

λ(ω,k) = ±
√

2 + t2
1 + t2

2 + 2t1t2 cos ka. (12)

As a result, there appears two symmetric bands which are
separated by a frequency gap due to the staggered on-site
polarizabilities and interparticle spacings. At the edge of
the Brilliouin zone k = ±π

d
(d = d1 + d2), the gap width is

given by

λ = 2
√

2 + (t1 − t2)2 � 2||. (13)

The above band width becomes λ = 2|t1 − t2| for the SSH
lattice when  = 0, which gives rise to the topological band
inversion condition t1 = t2, i.e., d1 = d2, in the SSH lattice.
In contrast, the parameter space (,t1,t2) cannot be divided to
disconnected patches by the line  = 0,t1 = t2. As a result,
the edge states in the RM lattice are not topological since they
can be moved to the continuum continuously without having
the gap closure.

Special attention is the spectral positions where k =
±π/a (a = 2d) for further reference. k = ±π/a define one-
half of the first Brillouin zone of the dimered lattice, corre-
sponding to the Brillouin zone with four sites per unit cell
which is considered in the next section. In fact, we find
λ± π

a
= ±

√
2 + t2

1 + t2
2 from Eq. (13), indicating that both

bands are continuous at this k point.
Figure 4(a) presents the band structure for the SSH lattice

by directly solving the eigenvalue for the matrix given in
Eq. (10). The geometric parameters are shown in Table I.
In the figure, we plot Max[Im(λ−1(ω,k))] for each (ω,k)
pair in the vis-NIR region. To make a comparison with the
nonsymmorphic RM lattice with four sites per unit cell [shown
in Fig. 1(b)], we have used the composite unit cell with four
sites for the biparticle lattices. As a result, there appears four
branches in each geometry where the centered two branches
are folded from the original larger Brillouin zone. The left
and right parts of the band structure correspond to the nearest
neighbor and long-range coupling calculations, respectively.
From the nearest-neighbor calculations, it is found that the

wave vector [π/a]
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FIG. 4. Band structures for (a) SSH lattice and (b) RM lattice. To
compare the band structures for the extended nonsymmorphic lattices,
we choose four nanoribbons per unit cell in all the geometries. In both
figures, the left part for k ∈ [−0.5,0] and the right part for k ∈ [0,0.5]
correspond to the nearest neighboring and full coupling calculations,
respectively.

two bands are symmetric with respect to the single particle
resonant frequency which is consistent with the above formal
analysis. However, the low frequency bright band is weaker
and broader than the high frequency dark band. The relative
weakness and broadness arises from the symmetric nature of
the bright mode: The electronic dipoles in the two ribbons per
unit cell are aligned along the same direction and decrease
the dipolar restoring force associated with the lower band.
At the same time, the bright modes are strongly coupled to
radiation, especially for the lower part below the light cone. On
the contrary, the dipole moments in the high frequency dark
band are in opposite directions in the same unit cell which are
weakly coupled to radiation and increase the restoring force,
leading to an increase in the frequency compared with a single
ribbon.

For the band structures with long-range coupling, a strong
asymmetry between the bands is found for both the SSH and
RM lattices: The high frequency band becomes narrower while
the low frequency band is broadened when long-range coupling
is accounted; as a result, the gap width decreases and shifts

TABLE I. Geometric parameters corresponding to the represen-
tative lattices of dimers (SSH and RM) and nonsymmorphic dimers
whose band structures are shown in Figs. 4 and 8.

Geometric parameters D1 (nm) D2 (nm) d1 (nm) d2 (nm)

SSH 50 50 80 60
RM 50 60 80 60
Nonsymmorphic RM I 50 60 60 80
Nonsymmorphic RM II 50 55 70 60
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towards high frequency globally. In the next section, we will
discuss the consequence of the blue-shift of the gap on the
spectral location of the edge state in the biparticle lattice. To
explain the band gap behaviors with long-range coupling, it
is useful to consider the dipole distributions for modes near
the band edges. For modes near the upper band edge of the
high frequency band, the dipole distributions in adjacent unit
cells are aligned with the reference unit cell, which decrease
the dipolar restoring force, thus leading to a lower frequency.
In contrast, the dipole moments in the adjacent unit cell at
frequency near the lower band edge of the dark band are
opposite the dipoles in the reference unit cell, which leads to
blue-shift towards higher frequency. A similar argument can
explain the reversal behavior for the low frequency band with
long-range coupling when the opposite dipole moments in the
unit cells are noticed.

B. Edge states in biparticle lattices

It is known that the truncated 1D lattice supports the edge
state on its boundary. In the nearest-neighbor coupling model
of the SSH lattices, these edge states correspond to the zero
modes of the systems. To better understand the edge states
in our system, we first consider a semifinite chain with one
boundary following Ref. [13]. The edge state can be solved
from the coupled equations:

−t2dn−1 + cn − t1dn = λcn,

−t1cn − dn − t2cn+1 = λdn,

where cn,dn are the dipole amplitudes at each site in the nth unit
cell. For the edge state which exponentially decays along the
lattice, we consider the following solutions: cn = c(−1)ne−κna ,
dn = d(−1)ne−κna . Inserting the decaying solution into the
above coupled equations, we find the dipole amplitude ratio
is given by

c

d
=  ±

√
2 + (t2e−κa − t1)(t2eκa − t1)

t2e−κa − t1
, (14)

associated with eigenvalues,

λ = ±
√

2 + (t2e−κa − t1)(t2eκa − t1)

= ±
√

2 + t2
1 + t2

2 − 2t1t2 cosh κa, (15)

where the positive and negative eigenvalue solutions have
a positive and a negative amplitude ratio, respectively. The
decay constant κ must lie in the range 0 � κ � κc where
κc = ln(t2/t1)/a. Special attention is the SSH model with
 = 0. In this case κ = κc is the mid-gap solution of the zero
eigenvalue, while the solution κ = 0 corresponds to the band
edge state.

We now consider the semi-infinite long lattice where the
first site is particle A with hopping t1. Then the lattice can be
described by the following coupled equations:

cn − t1dn − t2dn−1 = λcn, for n � 2
−dn − t1cn − t2cn+1 = λdn, for n � 1,

(16)

together with the boundary condition,

c1 − t1d1 = λc1.

FIG. 5. Band structures of finite lattices of the SSH model
[(a) and (b)] with 81 sites, and the RM model [(c) and (d)] with
82 sites. Here, (a) and (c) and (b) and (d) are based on nearest-neighbor
and long-range coupling calculations, respectively.

The solution of the coupled equation which satisfied with the
above boundary condition is

λ = , (17)

with the eigenstates of the following form:

cn = α(−1)n
(

t1

t2

)n

, dn = 0. (18)

The decaying solution for the edge state from the above
equation is finite as n → +∞ if t1 < t2. This solution becomes
the zero mode in the SSH model for  = 0.

The above analysis provides a qualitative estimate for the
edge state in our system. Figures 5(a) and 5(b) present the
band structure for a finite SSH lattice with odd number N =
81 nanoribbons by nearest-neighbor and long-range coupling
calculations, respectively. For each frequency, we plot the
imaginary parts ofλ−1. Because there are odd number particles,
the two boundaries of the lattice correspond to two different
bulk phases with t1 > t2 and t1 < t2. Therefore, a topological
edge state exists on the boundary with t1 < t2 with a zero mode
frequency as pointed out by the above analysis. This can be
verified by Fig. 5(a), where the edge state lies in the center of the
gap for the nearest neighboring coupling. However, Fig. 5(b)
indicates that the edge state shifts towards higher frequency
when long-range coupling is included. The blue-shift of the
topological edge state in the SSH model is a consequence of
the blue-shift of the gap. As is pointed out earlier, the observed
spectral shifts due to long-range coupling origins from the
symmetry of the dipole moments in the nearby unit cell. This
is verified by Fig. 6 where the long-range coupling increases
the restoring force for the edge state and lower band. For
comparison, we show in Fig. 5(c) the band structure for a finite
82 RM lattice with nearest-neighbor coupling. As predicted
by the analysis Eq. (16), there are two nontopological edge
states lying at the respective single particle resonances. It is
very interesting to note that in Fig. 5(d) the lower edge state
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(a)

(b)

20 40 60 80
Site

(c)

FIG. 6. Dipole moment distributions for states in (a) the upper
band, (c) lower band, and (b) the edge state corresponding to the band
structure in Fig. 5(b).

merges into the low frequency band when long-range coupling
is included.

In Fig. 7, we show the spectral shift of the corresponding
edge states with respect to the single particle resonance, using
the long-range coupling calculations for both SSH and RM
lattices. Here, d1 is fixed to 50 nm while d2 changes from
70 nm to 130 nm. It is found that the spectral shift decreases
monotonically when d2 increases in both lattices. This behavior
is in agreement with the above analysis for band structure based
on coupling strength.

IV. NONSYMMORPHIC RM LATTICES

A. Modal dispersion of nonsymmorphic RM lattices

In Sec. III, we have studied the band structures for arrays
consisting of biparticle lattices and revealed the unexpected
blue-shift of the edge mode. Here we consider the nonsymmor-
phic extension of the plasmonic RM lattice with full dispersion
and loss, which has the same lattice geometry as the coupled
waveguide system in [27]. The nonsymmorphic symmetry is
a combination of point group operations with nonprimitive
lattice translations acting on the unit cell of the parent lattice.
Typical operations including glide or screw rotation with

70 80 90 100 110 120 130
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FIG. 7. Spectral shift of the edge state with respect to the single
particle resonance for SSH and RM lattices. Here, we fix the
interparticle spacing d1 = 60 nm and vary d2 from 70 to 130 nm.

fractional lattice translation. In electronic systems, it has been
shown that the presence of nonsymmorphic symmetry leads
to new topological phases which can be insulating [44,45] or
semimetallic with Dirac points protected by nonsymmorphic
symmetry [26,46]. Here, we apply nonsymmorphic symmetry
to the RM lattice. To realize nonsymmorphic symmetry, we
exchange the nanoribbons in the odd number unit cells while
keeping the interparticle spacings invariant. Thus the nanorib-
bon widths in a unit cell are D1, D2, D2, and D1 with a spatial
inversion center which is absent in the RM lattice, indicating
a one-half fractional lattice translation. We find that the
nonsymmorphic symmetry opens new gaps for both the higher
and lower frequency bands of the corresponding RM lattice.

As in the biparticle lattice, we first consider nearest-
neighbor coupling in order to gain an intuitive picture for
the overall band structure. For the nonsymmorphic lattice, the
corresponding M matrix is given by

M(ω,k) =

⎛
⎜⎝

 −t1 0 −t2e
−ika

−t1 − −t2 0
0 −t2 − −t1

−t2e
ika 0 −t1 

⎞
⎟⎠. (19)

Here ,t1, and t2 are the same as in the previous section.
We note that the M matrix is equivalent to the tight binding
Hamiltonian in Ref. [27]. In the following, we will revisit some
key results of [27] including the symmetric bands as well as
Zak phases which are indispensable for the analysis of the full
model with dispersion, loss, and long-range coupling. Solving
the eigenvalue problem for the M matrix, we yield the formal
solutions of the eigenvalue,

λ(ω,k) = ±
√

2 + t2
1 + t2

2 ± 2t1

√
2 + t2

2 cos2
ka

2
. (20)

This leads to four symmetric bands with two positive and two
negative eigenvalues. The two inner bands are given by√

2 + t2
2 − t1 < |λ| <

√
( − t1)2 + t2

2 ,

which are separated by an inner gap,

−
(√

2 + t2
2 − t1

)
< |λ| <

√
2 + t2

2 − t1. (21)

Similarly, there are two outer bands,√
( + t1)2 + t2

2 < |λ| <

√
2 + t2

2 + t1.

The outer bands are separated from the inner bands with two
symmetric outer gaps,√

( − t1)2 + β2 < |λ| <

√
( + t1)2 + t2

2 . (22)

Accordingly, the band edges are given by

E± =
√

2 + t2
2 ± t2

1 , inner edges;

E′
± =

√(
 ± t2

1

)2 + t2
2 , outer edges.

Here, we emphasize again that the above solutions are based
on a purely formal analysis. All the lattice parameters ,t1,t2
are complex functions of ω and the eigenvalue λ(ω,k) is a
complex function of (ω,k). The dispersion relation ω(k) could
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FIG. 8. Band structures for two representative nonsymmorphic
biparticle lattices hosting edge states in different gaps. The geometric
parameters are shown in Table I.

only be found by further calculation based on the above formal
solutions. However, we are interested in the conditions for band
inversion from which we can identify different topological
phases with the same band structure as in the SSH model. In this
respective, all the lattice parameters can be regarded as inde-
pendent parameters which determine the final band structure.

To verify the above analysis based on nearest-neighbor cal-
culations, Figs. 8(a) and 8(b) present the band structures for two
representative lattices. The corresponding geometric parame-
ters are given in box I. As previously, the left and right parts
in Figs. 8(a) and 8(b) are based on nearest-neighbor coupling
and long-range coupling, respectively. It is found that the four
bands are paired symmetric for the nearest-neighbor coupling
case, which is in agreement with the above formal analysis.
In Fig. 8(a), the lattice constants are the same as in Fig. 4,
and the corresponding locations of bands are very similar to
each other despite the opening of two symmetric outer gaps
at the edge of the Brillouin zone. Thus, the nonsymmorphic
symmetry gives rise to the emergent gaps. Another feature for
the nonsymmorphic lattice is that the two positive frequency
bands become narrower while the two negative bands become
broader when long-range coupling is considered. As a result,
the width of the central gap decreases and shifts towards
higher frequency similar to the biparticle lattice; the two new
outer gaps become narrower while keeping the gap centers
invariant. A similar band structure is also found for another
set of parameters shown in Fig. 8(b). Besides the similarities,
we should point out that the central gap in the nonsymmorphic
lattice vanishes if t1 =

√
2 + t2

2 , which is different from the
case of the RM lattice where the gap never closes.

B. Edge states in nonsymmorphic RM lattices

We now consider the edge states in the nonsymmorphic
RM lattices. Similar in the SSH model, both the inner and
outer gaps’ widths can vanish by tuning the lattice parameters.

TABLE II. Numerical calculated Zak phases for nonsymmorphic
lattices I and II.

θZak Band 1 Band 2 Band 3 Band 4

Nonsymmorphic I 0 0 −π −π

Nonsymmorphic II 0 π 0 −π

Thus we can define the following indices that characterize the
band inversion condition for the gaps. For the central gap, the
critical point for gap closure is t1 =

√
2 + t2

2 , by which we
can define

ξ = sgn
[
2 + t2

2 − t2
1

]
. (23)

This means band inversion for the central gap occurs when ξ

changes sign. For the outer gaps, the band inversion occurs
when  changes its sign as in the SSH model, leading to
another index,

ζ = sgn[]. (24)

The reason for introducing these indices is that the band
inversion from the sign change of the indices gives rise to the
same band structure but they belong to different topological
phases, which is completely analogous to the topological
analysis for the SSH model. The band inversion is an indication
of topological phase. In the following we will demonstrate
the existence of edge states in the gaps with the help of these
topological indices (ξ,ζ ). In fact, the topological indices for
band structures shown in Figs. 8(a) and 8(b) are (ξ,ζ ) = (+,±)
and (−,±). Here it is understood that exchanging the values
of D1 and D2 gives rise to the same band structure with
opposite ζ .

We can verify the topological classification of these bands,
by calculating the Zak phase for each band,

θZak = i

∮
BZ

〈p| d

dk
|p〉dk. (25)

The index Z = θZak/π takes the integer number for a topolog-
ical phase while it takes any value for nontopological phases.
To compute θk numerically, we adopt the following discrete
form:

θZak = Arg

(∏
i

〈pi+1|pi〉
|〈pi+1|pi〉|

)
, (26)

where pi = p(ki), ki ∈ [−π/a,π/a]. For lattices with param-
eters given in Table I, θZak associated with each band are given
in Table II. From the table, θZak for each band take the value
either 0 or ±π , indicating that the nonsymmorphic RM lattice
belongs to topological phases. Meanwhile, all the Zak phases
change signs when the sign of  changes, thereby supporting
edge states in the gaps.

In Fig. 9, we present the band structure for a finite lattice
containing N = 82 particles with long-range coupling. There
appears an edge state in each of the outer gaps which are de-
noted with red and green dots. The corresponding state vectors
are shown in Figs. 9(c) and 9(d). It is found the two edge states
reside on the opposite boundaries, indicating opposite signs for
. Hence, they are resulted from the band inversion relating to
the outer gaps with opposite ζ . Comparison with the nearest-
neighbor coupling calculation, there is no obvious spectral shift
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FIG. 9. (a) and (b) The band structure of the nonsymmorphic RM
lattice with indices (ξ,ζ ) = (+,±), where the colored dots denote the
spectral position of the edge states. (c) and (d) The polarization state
vectors for the two edge states.

for the edge states in the outer gaps when long-range coupling
is included. This is different from the blue-shift of the edge
state in the SSH lattice.

Figure 10 shows the band structure for another finite lattice
with N = 82 particles whose bulk band structure is shown in
Fig. 8(b). Comparing with lattice II shown in Fig. 9, there
are an edge state in both the central and outer gaps, and two
modes in the center gap. The eigenvectors for each edge state
are depicted in Figs. 10(c)–10(f). It is shown that the two higher
frequency modes reside on the left boundary while the lower
two modes are supported by the right boundary. As in Fig. 9,
we ascribe the two outer edge states to the band inversion from
the sign change of ζ , while the two inner edge states come
from the band inversion due to the sign change of ξ which
controls the central gap. It is interesting to note that, similar to
the case with ζ = +1, the edge states in outer gaps don’t show
obvious spectral shift when long-range coupling is considered.
In contrast, the edge states in the inner gap shift towards higher
frequencies largely with long-range coupling.

V. CONCLUSION

In summary, we have used the eigenresponse theory to study
the radiative topological edge plasmon modes in dispersive
arrays constructed by unit cells of multiple nanoribbons. The
bulk-edge correspondence for both dimerized unit cell and one
of its square-root daughter with nonsymmorphic symmetry
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FIG. 10. (a) and (b) The band structure of the nonsymmorphic
RM lattice with indices (ξ,ζ ) = (−,±), where the colored dots denote
the spectral position of the edge states. (c)–(f) The polarization state
vectors for the four edge states denoted in (b).

are studied with most realistic effects including the material
dispersion, absorption, retardation, and long-range coupling
being considered. The resonant frequency of the edge state in
the SSH model is blue-shifted from the theoretical prediction
of zero mode based on the nearest-neighboring approximation.
For the nonsymmorphic, square-root biparticle lattices, we
demonstrate that new gaps arise symmetrically in the presence
of the nonsymmorphic symmetry in which topological edge
states in different gaps exhibit different responses for the long-
range coupling. Our results clarify the crucial role of long-
range coupling on the real modal properties of the topological
plasmonic lattices. We believe that due to the simplicity and
strength of our approach, it offers a powerful paradigm for the
design and calculation of subwavelength topological phases
at optical frequencies. Moreover, the suggested nanoribbon
geometry could serve as an electronically tunable platform to
enhance light-matter interaction in nanoscale for integrated
on-chip applications.
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