
PHYSICAL REVIEW B 97, 140507(R) (2018)
Rapid Communications

Pairing from strong repulsion in triangular lattice Hubbard model
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We propose a pairing mechanism between holes in the dilute limit of doped frustrated Mott insulators.
Hole pairing arises from a hole-hole-magnon three-body bound state. This pairing mechanism has its roots
on single-hole kinetic energy frustration, which favors antiferromagnetic (AFM) correlations around the hole.
We demonstrate that the AFM polaron (hole-magnon bound state) produced by a single hole propagating on a
field-induced polarized background is strong enough to bind a second hole. The effective interaction between
these three-body bound states is repulsive, implying that this pairing mechanism is relevant for superconductivity.
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The long-sought resonating valence bond superconductor
[1,2] was the germ of two fundamental ideas in modern
condensed-matter physics. Besides seting the basis for finding
quantum spin liquid states in Mott insulators, it suggested
a clear connection between geometric frustration and super-
conductivity. The new century is witnessing an explosion of
works based on the first idea [3]. The superconductivity found
in two-dimensional CoO2 layers [4] also triggered efforts to
test the second idea [5–9]. However, the relationship between
frustration and superconductivity remains much less explored.

Nagaoka’s theorem reveals a striking interplay between
magnetism and electronic kinetic energy in slightly doped
Mott insulators [10,11]. The theorem states that a single hole
propagating on a D-dimensional (D > 1) bipartite lattice with
infinite on-site Hubbard repulsion U minimizes its kinetic
energy in a ferromagnetic (FM) background. This result moti-
vated the so-called “spin-bag” pairing mechanism [12]: a single
hole propagating on a bipartite antiferromagnet generates
a FM spin-bag inside which the hole is self-consistently
trapped. Two holes are attracted by sharing a common bag.
While never confirmed, this idea gives an interesting angle on
understanding how attraction can arise from bare repulsion.

As shown in Fig. 1(a) for a square lattice and nearest-
neighbor (NN) hopping t1, the single-hole kinetic energy
(−4|t1|) is minimized in a uniform FM background because
the interference between different paths connecting two given
points is always constructive. The situation is very different for
nonbipartite structures, such as the triangular lattice [13–15].
The single-hole kinetic energy is now frustrated if the product
of three hopping matrix elements of one triangle is positive.
For instance, the minimum kinetic energy of a single hole on
a triangular lattice is −3|t1| for a uniform FM background
if the kinetic energy is frustrated (t1 > 0) [see Fig. 1 (b)],
while it is −6|t1| in absence of frustration (t1 < 0). Frustration
arising from destructive interference between different paths
can be avoided if the uniform FM background is replaced with
a nonuniform state where one or more spins are flipped. As
shown in Fig. 1(c), hole paths no longer interfere if one path
goes through a flipped spin [13–15].

In this Rapid Communication we demonstrate that kinetic
frustration is also the source of hole pairing near the magnetic
field-induced fully polarized state. Below the saturation field,
Hsat, it is energetically convenient to flip at least one spin.
A single hole can then lower its kinetic energy by remaining
close to a flipped spin. The resulting hole-magnon bound state,
or AFM polaron [16], has a binding energy ∼−|t1|/2, i.e.,
the lowest single-polaron kinetic energy can reach a value
as low as −3.5|t1|, which must be compared against −3|t1|
(magnons have infinite mass for U → ∞). Remarkably, the
AFM polaron mass, mp � 10/|t1|, still has a moderate value.
If a second hole is present, the strong hole-magnon attraction
also leads to a three-body bound state, or AFM bipolaron,
which still has an effective mass of order 10/|t1|. Moreover, our
density matrix renormalization group (DMRG) results reveal a
repulsive interaction between AFM bipolarons, implying that
they should condense in the dilute limit.

We start by considering a Hubbard model on a triangular
lattice with NN hopping t1 and third NN hopping t3:

HH = −t1
∑

〈ij〉1σ

c
†
iσ cjσ − t3

∑

〈ij〉3σ

c
†
iσ cjσ − μ

∑

i
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+U
∑
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ni↑ni↓ − H
∑
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Sz
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where nσ (r) = c
†
rσ crσ and μ is the chemical potential.

We will initially consider the U/|t1| → ∞ limit. The
ground state is fully polarized for H > Hsat. In this
regime the holes become noninteracting fermions with
dispersion εk = 2t1[cos(2kx/

√
3) + 2 cos(kx/

√
3) cos(ky)] +

2t3[cos(4kx/
√

3) + 2 cos(2kx/
√

3) cos(2ky)]. For t3 = 0 the
minimum of εk is ε0 = −6|t1| for t1 < 0 and ε±K = −3|t1|
for t1 > 0 (frustrated case [17]) with K = ( 4π

3 ,0). A finite t3
changes the degree of kinetic energy frustration [18].

AFM polaron. The single-hole ground state is no longer
fully polarized for H < Hsat = −�h−m

b , where �h−m
b is the

hole-magnon binding state energy. This bound state forms to
suppress the destructive interference (frustration) of the single-
hole motion, a phenomenon that can be illustrated with a simple
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FIG. 1. Single-hole propagation in fully polarized (a) square and
(b) triangular lattices with t1 > 0. The signs indicate the optimal phase
factor for each path. (c) Lack of destructive interference when one of
the paths goes through a flipped spin.

variational wave function for the relative coordinate r of the
hole-magnon pair:

ψ(r) = cos α√
6

eimθ δ|r|,a + sin α√
6

ei(mθ+φ)δ|r|,2a. (2)

Here, m = 0, . . . ,5 is the crystal angular momentum fol-
lowing from the C6 symmetry of HH , θ = nπ/3 (0 �
n � 5) is the relative azimuthal angle and φ is the
phase difference between the two particles separated by
one and two lattice spaces a. Minimization of the vari-
ational energy E(α) = t1{(cos α)2[2 cos( mπ

3 ) + cos(mπ )] +
sin 2α cos(φ)} + t3[2 sin2 α cos( mπ

3 ) + cos(mπ )] for zero mo-
mentum of the two-particle system and t1 > 0, t3 > −0.75t1
gives m = 3 and φ = π . For t3 = 0, we obtain cos α = 0.3907
and Ẽmin = −3.3028t1, which is close to the exact ground-state
energy EG = −3.4227t1 obtained by solving the Lippmann-
Schwinger equation in the thermodynamic limit [19]. The
binding energy, mink∈BZ (εk) − EG, is 0.4227t1, indicating
a strong hole-magnon attraction. The correlation function
ch-m(r) = ∑

r ′ 〈nh(r − r ′)n↓(r ′)〉, shown in Fig. 2(b), reveals
the real-space distribution of the magnon around the hole for
the exact ground state.

The lowest energy magnon-hole pair can also have finite
momentum. Figure 2(c) shows the exact binding energy,
�h-m

b = E(1H1S) − E(1H ) − E(1S), as a function of t3/|t1|
that results from solving the Lippmann-Schwinger (LS) equa-
tion in the thermodynamic limit [19]. For t3 < −0.1615t1, the
lowest energy bound state is at the M point of the Brillouin
zone (BZ). The center-of-mass momentum of the ground state
moves from the M to the � point for t3 > −0.1615|t1|. A
positive t3 does not change the nature of the bound state, which
smoothly crosses over into another limit dominated by t3 [20].

From now on, we will adopt the notation mHnS to denote
states with m holes and n flipped spins. We will first consider
bound states of one hole (m = 1) and n � 1 flipped spins.
Figure 3(a) shows the H -t3/t1 phase diagram. The 1H1S is
stable over a relatively large window of magnetic field values

FIG. 2. (a) Dispersion relation of the hole-magnon bound state
with minimum at the � point for t3 = −0.1t1. (b) Correlation function
between the hole and the magnon ch-m(r) = ∑

r ′ 〈nh(r − r ′)n↓(r ′)〉
for the lowest energy bound state at the � point. (c) Binding energy
of the hole-magnon bound state �h-m = Eg(1H1S) − Eg(1H ) −
Eg(1S) as a function of t3/t1.

for small |t3|/t1 � 0.1. The number of magnons bounded to the
hole increases continuously upon further decreasing H , and
the critical field for the transition into a 1HnS state decreases
rapidly with n because the binding energy of the nth magnon
goes asymptotically to zero for n → ∞. This AFM polaron
state is then expected to evolve smoothly into the long-range
AFM ordering found in Ref. [13] for h → 0 (n → ∞) because
the radius of the AFM polaron (AFM correlation length)
diverges. Figure 3(b) shows ch-m(r) as a function of n for
n = 1,2,3. For n � 3, the radius of the AFM polaron turns out
to be significantly smaller than the linear size of the biggest
lattices that enable exact diagonalization (ED) of HH .

Hole pairing. The effective hole-magnon attraction enables
indirect hole-hole pairing via formation of a three-body bound
state of two holes and one magnon (2H1S). This state can be
regarded as an AFM “bipolaron” or spin bag: the two holes
share the same AFM region to lower their kinetic energy at
a minimum Zeeman energy cost. Its wave function is also
obtained by solving the LS equation in the thermodynamic
limit [19], which gives a reference to quantify the size effects
of ED and DMRG calculations on finite lattices [19].

The two holes and the magnon indeed form a tight bound
state for t1 > 0. The lowest energy 2H1S bound state has

1H1S

1H2S

1H3S

1HnS (n>3)

FP

−0.3 −0.2 −0.1 0
0

0.2
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H
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FIG. 3. (a) Phase diagram of one hole system on the t3-H plane
with t1 > 0. The gray region has stronger finite-size effects. (b)
Correlation function between the hole and the magnon ch-m(r) for
different number of flipped spins (t3 = −0.1t1).
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FIG. 4. (a) Binding energies �
p-h
b = Eg(2H1S) − Eg(1H1S) −

Eg(1H ) and �h-h-m
b = Eg(2H1S) − 2Eg(1H ) − Eg(1S) as a function

of t3/t1. The two kinks of �
p-h
b arise from a change in the center-of-

mass momentum of the AFM polaron (at t3 = 0.175t1) and the AFM
bipolaron (at t3 = 0.11t1). (b) Hole-hole, ch-h(r) and hole-magnon,
ch-m(r), correlation functions for different values of t3/t1 (L = 26).
(c) Dispersion relation of the bipolaron (2H1S bound state) for t3 =
−0.2t1 obtained from solving the LS equation (line) and from ED of
an L × L lattice with L = 24 (circles). The effective mass, m2H1S , is
extracted by fitting the long-wavelength region with a parabola. (d)
Stability region of 2H1S state in the H -t3/t1 phase diagram (U → ∞
limit).

center-of-mass momentum Q = 0 for t3 < −0.116t1 (t1 > 0).
The binding energy between a 1H1S polaron and a second
hole is defined as�p-h = Eg(2H1S) − Eg(1H1S) − Eg(1H ).
It is also useful to introduce the binding energy of the three-
body bound state relative to three noninteracting particles:
�h-h-m = Eg(2H1S) − 2Eg(1H ) − Eg(1S). Both binding en-
ergies are shown in Fig. 4(a). The negative value of �p-h

demonstrates the AFM bipolaron formation, as confirmed by
the hole-hole, ch-h(r) = ∑

r ′ 〈nh(r − r ′)nh(r ′)〉, and the hole-
magnon, ch-m(r), correlation functions shown in Fig. 4(b).
Figure 4(c) includes the AFM bipolaron dispersion relation for
t3 = −0.2t1, from which we extract an effective mass m2H1S �
9.91t−1

1 . The center-of-mass momentum of the lowest energy
bound state moves to the M point of the BZ for −0.116t1 <

t3 < −0.1t1. However, the bandwidth W2H1S � 0.0737t1 is
significantly narrower in this regime. Correspondingly, the
effective mass is large and anisotropic: m

‖
2H1S � 23.3t−1

1 and
m⊥

2H1S � 66.67t−1
1 for parallel and perpendicular directions to

the M vector.
As shown in Fig. 4(d), a second spin flips and binds

to the 2H1S bound state upon further lowering H . The
corresponding critical field is Hc

2S2H = −�b-m
b , where �b-m

b =
E(2H2S) − E(2H1S) − E(1S) is the binding energy between
the AFM bipolaron and the second magnon. The critical field
boundary shown in Fig. 4(d) is obtained from finite-size scaling
of the ground-state energy [19].

Interaction between AFM bipolarons. Given that hole pairs
are actually 2H1S bound states, we will further elucidate that
AFM bipolarons interact repulsively, instead of forming larger

FIG. 5. Correlation functions for four holes and two magnons:
(a) Hhole-hole, ch-h(r); hole-magnon, ch-m(r); and magnon-magnon,
cm-m(r). The calculation is performed by DMRG simulation on an
8 × 120 lattice and setting t1 = 1, t3 = −0.2, U = ∞. This result
indicates that the bipolarons (2H1S bound states) are well separated.
(b) Finite-size scaling of the binding energy between AFM bipolarons,
�b-b

b = E(4H2S) − 2E(2H1S). �b-b
b is positive for finite L and it

extrapolates to zero in the L → ∞ limit confirming the repulsive
nature of the interaction. (c) ED results: Binding energies �h-h-m

b and
�h-m

b as a function of U .

bound states with multiple holes and magnons. Figure 5(a)
shows the hole-hole, hole-magnon, and magnon-magnon cor-
relation functions for the ground state of the six-body 4H2S

system (t3/t1 = −0.2). According to this result, the particles
split into well separated 2H1S AFM bipolarons with the same
correlation functions, ch-h(r) and ch-m(r), of an individual
bipolaron [see Fig. 4(b)]. The magnon density-density cor-
relation function, cm-m(r) = ∑

r ′ 〈n↓(r − r ′)n↓(r ′)〉, confirms
that each bipolaron contains one magnon. The ground-state
energy Eg(4H2S) equals twice the ground-state energy of the
2H1S bound state, Eg(4H2S) = 2Eg(2H1S), within an error
of order 10−4t1. In addition, as shown in Fig. 5(b) for t3/t1 =
−0.2, �b−b

b = Eg(4H2S) − 2Eg(2H1S) is positive for finite
L and it extrapolates to zero for L → ∞, confirming the
repulsive nature of the effective interaction. We note, however,
that the two AFM bipolarons form a bound state when t3/t1
approaches −0.1 [region of strongest hole-magnon pairing
according to Figs. 2(c) and 4(a)]. However, as we discuss
below, the interaction between AFM bipolarons becomes also
repulsive in this region for a finite U � 20|t1|.

Effect of spin exchange. Our next step is to analyze the effect
of a finite U/|t1| � 1. The low-energy sector of the Hubbard
model is now described by the t-J model:

Ht-J = −t1
∑

〈ij〉1

c̃
†
iσ c̃jσ − t3

∑

〈ij〉3

c̃
†
iσ c̃jσ − μ

∑

i

ni

+ J1

∑

〈ij〉1

Si · Sj + J3

∑

〈ij〉3

Si · Sj − H
∑

i

Sz
i

−
i �=k∑

ijkσ

tij tjk

2U
c̃
†
iσ c̃kσ njσ̄ +

i �=k∑

ijkσ

tij tjk

2U
c̃
†
iσ c̃kσ̄ c̃

†
j σ̄ c̃jσ . (3)
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Jν = 4t2
ν /U (ν = 1,3) and c̃

(†)
iσ are annihilation (creation)

operators of constrained fermions: c̃
†
iσ = c

†
iσ̄ (1 − c

†
iσ̄ ciσ̄ ). The

XY part of the AFM exchange interactions, J1 and J3, generate
a finite magnon mass, while the Ising part induces a repulsive
interaction between any pair of particles (magnons or holes).
Consequently, a finite U/|t1| should reduce the binding energy
of the AFM polaron and bipolaron bound states. Indeed, as
shown in Fig. 5(c), the AFM polaron bound state disappears
below a critical value of U/|t1| � 12.2, implying that the
effective hole-hole attraction decreases upon reducing the bare
Coulomb repulsion U . Moreover, a finite U/|t1| increases the
repulsion between AFM bipolarons [see Fig. 5(b)].

Order parameter. Our results indicate the existence of a
stable gas of AFM bipolarons for low hole concentration ρh �
1 and H � Hsat [21]. In a pure 2D scenario, the AFM bipo-
larons must undergo a Berezinskii-Kosterlitz-Thouless transi-
tion [22–24] into a superfluid state at a transition temperature
TBKT of order ρh/m2H1S . The real-space superconducting (SC)
order parameter is � = 〈h†

i h
†
j S

−
k 〉, where i,j,k are neighboring

sites. Given the three-body nature of the bound state, the phase
θ of the order parameter � includes a charge and a spin con-
tribution (the superfluid current carries both charge and spin).
The Hubbard Hamiltonian in a magnetic field H = Hẑ has
a U(1) × U(1) symmetry associated with the conservation of∑

j nj and
∑

j Sz
j . The phase θ is transformed into θ − θs under

a global spin rotation by an angle θs and into θ + 2θc under a
global charge rotation by θc (c†jσ → e−iθc c

†
jσ ). The condensate

is then invariant under the product of a spin rotation by 2φ

and a charge rotation by φ [U(1) subgroup]. This invariance
implies lack of long-range magnetic ordering because the spin
field can have arbitrary large phase fluctuations δθs , which are
compensated by δθc. Magnetic order can only take place via
single magnon condensation.

The pairing symmetry is determined by the irreducible
representation of the single AFM bipolaron (2H1S) ground
state. For t3/t1 = −0.2 (t1 > 0), the wave function of the
2H1S bound state has zero total momentum and it belongs to
the B2 representation of the D6 space group (f2 wave) [25,26].

Discussion. Understanding the generation of effective at-
traction out of the bare Coulomb repulsion is a long sought-
after goal in condensed matter [27–44]. We have shown that
magnons provide a strong glue even in the U → ∞ limit
of a slightly doped frustrated Mott insulator. The strongly
attractive hole-magnon interaction is a manifestation of the
“counter-Nagaoka” mechanism [13–15]: a single hole can
lower its kinetic energy by creating a hole-magnon bound
state (AFM polaron). The second hole binds to the polaron
(AFM bipolaron) to lower its kinetic energy at a minimum
Zeeman energy cost. AFM bipolarons interact repulsively and
they should therefore condense in the dilute limit.

A saturation field of order |t1|/2 is much higher than typical
laboratory fields. Moreover, such a high field would produce
a large orbital effect not included in our analysis. For charged
systems, like electrons in a solid (e.g., NaxCoO2 [45]), this
problem can be avoided by replacing the external field with
the molecular field generated by the interaction between the
moments Sj and an insulating ferromagnetic layer. For neutral
systems, such as atomic gases [46–50], the orbital effect is
not present and the system can be easily driven into the fully
polarized state. Nevertheless, the main purpose of our analysis
is to understand how magnetic excitations can provide the
glue for hole-hole pairing in the vicinity of a field-induced
AFM quantum critical point of the finite-U Mott insulator.
Remarkably, we find that antiferromagnetism (single-magnon
condensation) is suppressed by the AFM bipolaron condensate
(SC state) because magnons do not condense individually, but
as a component of a three-body bound state. This mechanism
then illustrates the competition between antiferromagnetism
and superconductivity: magnons can either condense individu-
ally to form an AFM state or become part of an AFM bipolaron
that condenses into a SC state.
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